

TEST REPORT

FCC ID :	2ASDTVT33		<i>—</i>						
Test Report No:	TCT230109E018	$\langle \mathcal{C} \rangle$							
Date of issue:	Jan. 13, 2023								
Testing laboratory::	SHENZHEN TONGCE TESTING	LAB							
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Shen People's Republic of China	•							
Applicant's name: :	ClearClick Software LLC	ClearClick Software LLC							
Address:	3006 Teak Place, Fullerton, CA S	92835, United States							
Manufacturer's name :	Timsen Development Limited								
Address:	5F, 447# Tianhebei Road, Guang	gzhou, China							
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013								
Product Name::	ClearClick All-In-One Vintage-Sty	/le Turntable							
Trade Mark:	ONKYO	$(\mathbf{c}^{\mathbf{t}})$							
Model/Type reference :	VT33								
Rating(s):	AC 120V								
Date of receipt of test item	Jan. 09, 2023		S.						
Date (s) of performance of test:	Jan. 09, 2023 ~ Jan. 13, 2023								
Tested by (+signature) :	Onnado YE	Onnado - Chaces							
Check by (+signature) :	Beryl ZHAO	Bayl Proto							
Approved by (+signature):	Tomsin	om sma st							
General disclaimer:									

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	3
1.1. EUT description	3
1.2. Model(s) list	
1.3. Operation Frequency	
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	5
3.2. Description of Support Units	5
4. Facilities and Accreditations	
4.1. Facilities	
4.2. Location	6
4.3. Measurement Uncertainty	6
5. Test Results and Measurement Data	7
5.1. Antenna requirement	
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	
5.5. Carrier Frequencies Separation	14
5.6. Hopping Channel Number	15
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	
5.9. Conducted Band Edge Measurement	
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	20
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	ClearClick All-In-One Vintage-Style Turntable	(\mathcal{C})
Model/Type reference:	VT33	
Sample Number:	TCT230109E018-0101	
Bluetooth Version:	V5.0	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	
Antenna Type:	PCB Antenna	
Antenna Gain:	-0.58dBi	S.
Rating(s):	AC 120V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
2402MHz	20	2422MHz	22MHz 40 2442MHz 6		60	2462MHz	
2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
(X	(
2412MHz	30	2432MHz	50	2452MHz	70	2472MHz	
2413MHz	31	2433MHz	51	2453MHz	71	2473MHz	
2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
2421MHz	39	2441MHz	59	2461MHz			
	2402MHz 2403MHz 2412MHz 2413MHz 2420MHz	2402MHz 20 2403MHz 21 2412MHz 30 2413MHz 31 2420MHz 38	2402MHz 20 2422MHz 2403MHz 21 2423MHz 2412MHz 30 2432MHz 2413MHz 31 2433MHz 2413MHz 31 2433MHz 2420MHz 38 2440MHz	2402MHz 20 2422MHz 40 2403MHz 21 2423MHz 41 2412MHz 30 2432MHz 50 2413MHz 31 2433MHz 51 2420MHz 38 2440MHz 58	2402MHz 20 2422MHz 40 2442MHz 2403MHz 21 2423MHz 41 2443MHz 2412MHz 30 2432MHz 50 2452MHz 2413MHz 31 2433MHz 51 2453MHz 2420MHz 38 2440MHz 58 2460MHz	2402MHz 20 2422MHz 40 2442MHz 60 2403MHz 21 2423MHz 41 2443MHz 61 2412MHz 30 2432MHz 50 2452MHz 70 2413MHz 31 2433MHz 51 2453MHz 71 2413MHz 31 2433MHz 51 2453MHz 71 2420MHz 38 2440MHz 58 2460MHz 78	

Remark: Channel 0, 39 & 78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.

Report No.: TCT230109E018

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:								
Condition	Conducted Emission	Radiated Emission						
Temperature:	25.3 °C	23.6 °C						
Humidity:	56 % RH	52 % RH						
Atmospheric Pressure:	1010 mbar	1010 mbar						
Test Software:								
Software Information: BT_Tool								
Power Level:	7							
Test Mode:								
Engineering mode:	Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations							
The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested , only worse case DH1 is reported.								

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1	/	

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 5 of 101

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

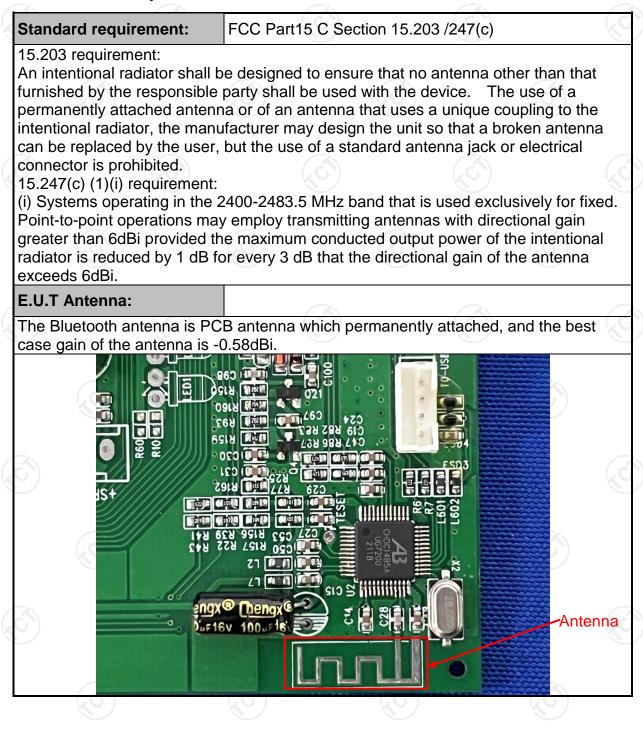
The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

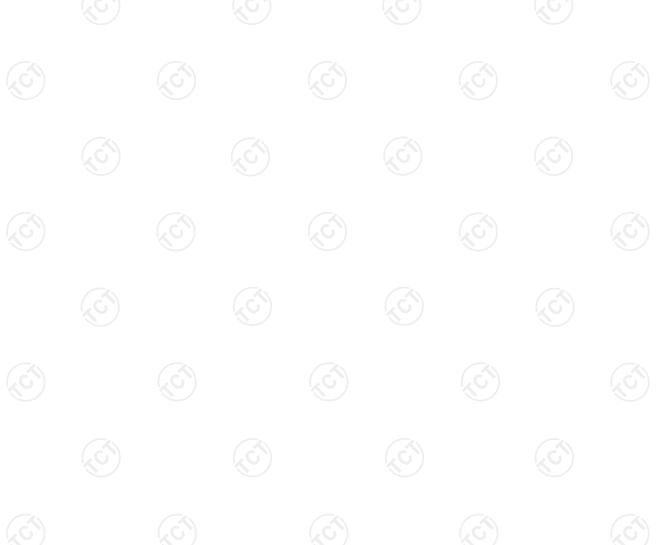
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

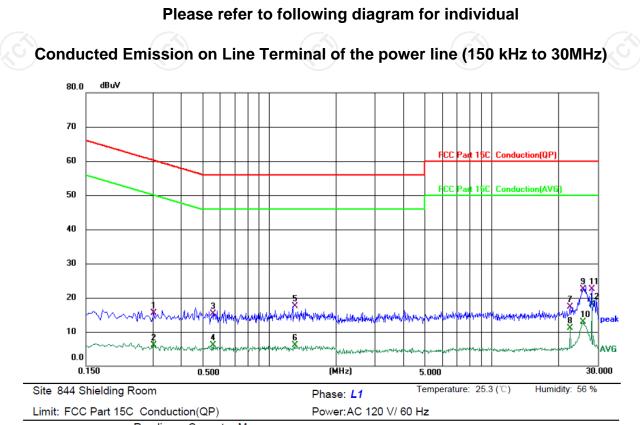
5.1. Antenna requirement

5.2. Conducted Emission

5.2.1. Test Specification


Test Requirement:	FCC Part15 C Section	15.207	No. Contraction of the second se
Test Method:	ANSI C63.10:2013		
Frequency Range:	150 kHz to 30 MHz	\mathcal{C}	
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto
	Frequency range	Limit (dBuV)
	(MHz)	Quasi-peak	Áverage
Limits:	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	Referenc	e Plane	
Test Setup:	E.U.T AC power Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m	EMI Receiver	- AC power
Test Mode:	Transmitting Mode		
	1. The E.U.T is conne	cted to an adapte	er through a line
Test Procedure:	 impedance stabilizing provides a 500hm/s/measuring equipme 2. The peripheral device power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63 10:2013 (2013) 	50uH coupling im nt. ces are also conne ISN that provides with 50ohm tern diagram of the line are checke nce. In order to fin re positions of equ must be changed	(L.I.S.N.). This apedance for the ected to the main a 500hm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all co l according to
Test Procedure: Test Result:	 provides a 50ohm/s measuring equipme 2. The peripheral device power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference emission, the relative 	50uH coupling im nt. ces are also conne ISN that provides with 50ohm tern diagram of the line are checke nce. In order to fin re positions of equ must be changed	(L.I.S.N.). Thi apedance for the ected to the mai a 500hm/50ul nination. (Please test setup and ed for maximum nd the maximum ipment and all co l according to

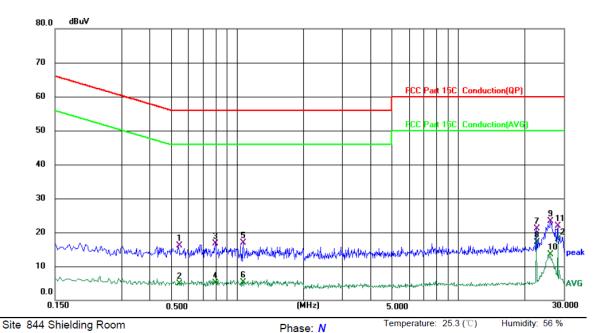
Page 8 of 101


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)											
Equipment	Equipment Manufacturer		Serial Number	Calibration Due							
EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023							
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023							
Line-5	ТСТ	CE-05	/	Jul. 03, 2024							
EMI Test Software	Shurple Technology	EZ-EMC	1	1							

Page 9 of 101

5.2.3. Test data


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3019	5.21	10.24	15.45	60.19	-44.74	QP	
2	0.3019	-4.06	10.24	6.18	50.19	-44.01	AVG	
3	0.5580	5.15	10.12	15.27	56.00	-40.73	QP	
4	0.5580	-3.94	10.12	6.18	46.00	-39.82	AVG	
5	1.3060	7.29	10.12	17.41	56.00	-38.59	QP	
6	1.3060	-4.01	10.12	6.11	46.00	-39.89	AVG	
7	22.5700	6.77	10.46	17.23	60.00	-42.77	QP	
8	22.5700	0.63	10.46	11.09	50.00	-38.91	AVG	
9	25.7900	12.05	10.46	22.51	60.00	-37.49	QP	
10	25.7900	2.51	10.46	12.97	50.00	-37.03	AVG	
11	28.2100	11.99	10.46	22.45	60.00	-37.55	QP	
12 *	28.2100	7.73	10.46	18.19	50.00	-31.81	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 10 of 101

Report No.: TCT230109E018

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit:	FCC Part 15	C Conduct	ion(QP)	n(QP) Power:AC 120 V/ 60 Hz						
No. N	/k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	 	
1	0.5435	6.03	10.13	16.16	56.00	-39.84	QP		 	
2	0.5435	-5.24	10.13	4.89	46.00	-41.11	AVG			
3	0.7980	6.66	10.11	16.77	56.00	-39.23	QP			
4	0.7980	-4.97	10.11	5.14	46.00	-40.86	AVG			
5	1.0660	6.78	10.11	16.89	56.00	-39.11	QP			
6	1.0660	-4.73	10.11	5.38	46.00	-40.62	AVG			

60.00 -38.94

50.00 -32.82

60.00 -36.79

50.00 -36.50

60.00 -38.07

50.00 -32.18

QP

AVG

QP

AVG

QP

AVG

Note1:

7

8

9

10

11

12

22.5779

22.5779

26.2540

26.2540

28.2259

28.2259

10.60

6.72

12.75

3.04

11.47

7.36

10.46

10.46

10.46

10.46

10.46

10.46

21.06

17.18

23.21

13.50

21.93

17.82

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and 8DPSK) was submitted only.

Page 11 of 101

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247	(b)(1)	
Test Method:	KDB 558074 D01 v05r02		
Limit:	Section 15.247 (b) The maximu power of the intentional radiato following: (1) For frequency hop in the 2400-2483.5 MHz band e non-overlapping hopping chan hopping systems in the 5725-5 For all other frequency hopping 2400-2483.5 MHz band 0.125	r shall not exceed the pping systems operating employing at least 75 nels, and all frequency 850 MHz band: 1 watt. g systems in the	
Test Setup:	Spectrum Analyzer	EUT	
Test Mode:	Transmitting mode with modula	ation	
Test Procedure:	Use the following spectrum ana Span = approximately 5 time centered on a hopping channel RBW > the 20 dB bandwidth of measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak functio peak of the emission.	es the 20 dB bandwidth, the emission being	

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	N/A			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/ >>	/

Page 14 of 101

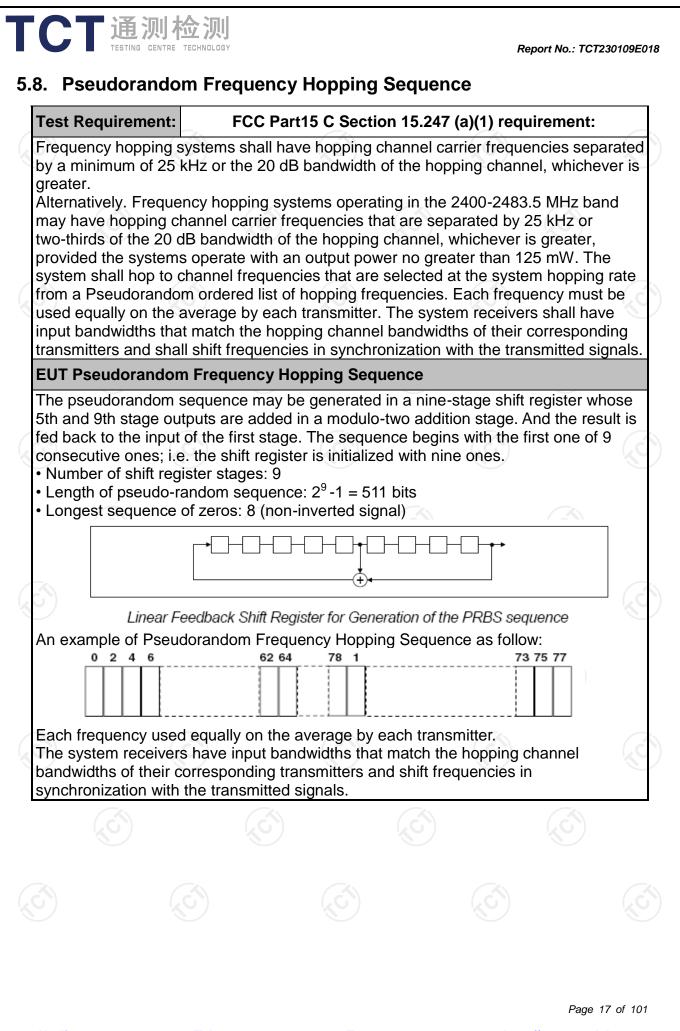
5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS
E.G.2. Toot Instruments	

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/


5.7. Dwell Time

5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

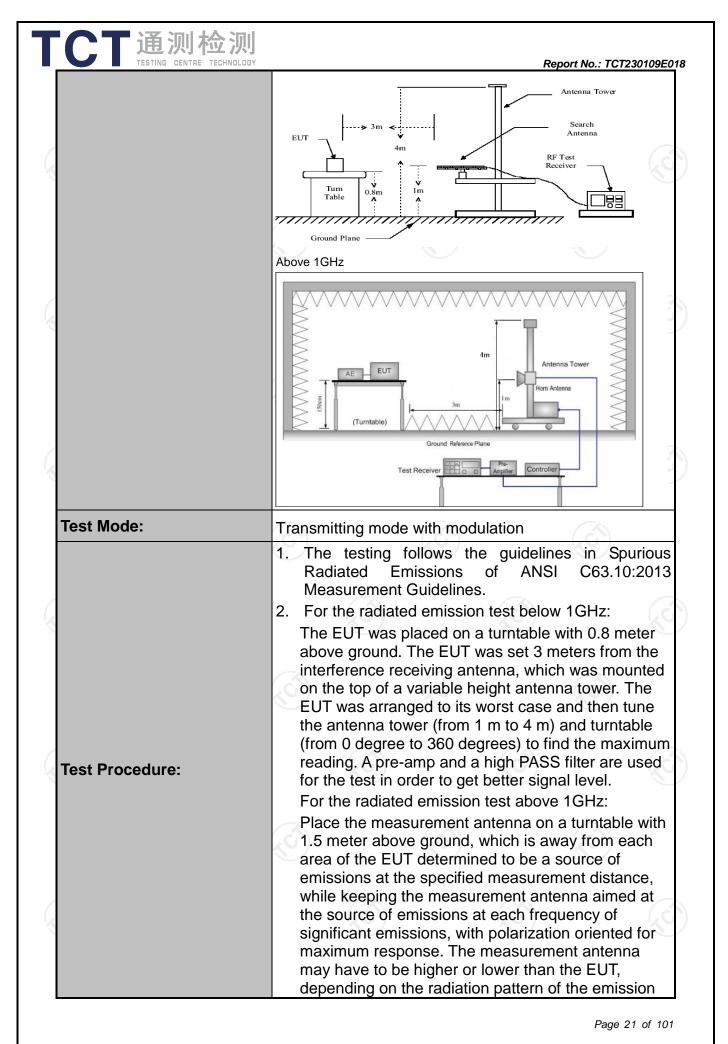
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		



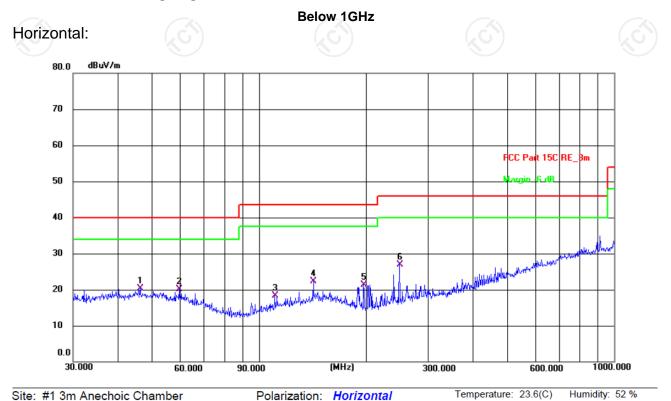
5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209	S S		~		
Test Method:	ANSI C63.10):2013						
Frequency Range:	9 kHz to 25 0	GHz			C	í)		
Measurement Distance:	3 m							
Antenna Polarization:	Horizontal &	Vertical						
	Frequency	Detector	RBW	VBW		Remark		
	9kHz- 150kHz	Quasi-peak		1kHz		i-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-peak	k 9kHz	30kHz	Quas	i-peak Value		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quas	i-peak Value		
	Above 1GHz	Peak	1MHz	3MHz		eak Value		
		Peak	1MHz	10Hz	Ave	erage Value		
	Frequen)CV	Field Str	-		asurement		
			(microvolts		Dista	nce (meters)		
	0.009-0.4		2400/F(I			300		
	0.490-1.7		24000/F(30			<u>30</u> 30		
	30-88		100			3		
	88-216		150		(ĉ	3		
Limit:	216-96		200			33		
	Above 9	60	500		3			
	Frequency		d Strength ovolts/meter)	Distan	Measurement Distance Detect (meters)			
	Above 1GH	z	500	3		Average		
			5000	3	(Peak		
Test setup:	For radiated emis	stance = 3m			Comput			
		K						

	rece mea max ante resti abov 3. Set EU 4. Use (1) (2)	Set RBW= for f>1GH Sweep = = max ho For avera correction	naximum si antenna ele emissions ion for max range of he ind or refer ximum pov continuous ing spectru l wide enou ceing meas =120 kHz fo auto; Dete old for peak age measu n factor me Duty cycle	emission s ignal. The evation sha . The meas ximum emi eights of fro rence grou wer setting ly. um analyze ugh to fully sured; or f < 1 GH BW; ector function rement: us ethod per = On time/	final all be that surement issions sha om 1 m to nd plane. and enal er settings: capture th lz, RBW=1 on = peak; e duty cyc	which all be 4 m ole the ne MHz Trace le
	Ì	Where N length of Average Level + 2 Corrected	N1*L1+N2 1 is numbe type 1 puls Emission L 0*log(Duty Reading: A	er of type 1 ses, etc. ₋evel = Pea ⁄ cycle) Antenna Fa	pulses, L ak Emissic actor + Cal	1 is on ble
Test results:	PASS	Where N length of Average Level + 2 Corrected	1 is numbe type 1 puls Emission L 0*log(Duty	er of type 1 ses, etc. ₋evel = Pea ⁄ cycle) Antenna Fa	pulses, L ak Emissic actor + Cal	1 is on ble
Test results:	PASS	Where N length of Average Level + 2 Corrected	1 is numbe type 1 puls Emission L 0*log(Duty Reading: /	er of type 1 ses, etc. ₋evel = Pea ⁄ cycle) Antenna Fa	pulses, L ak Emissic actor + Cal	1 is on ble
Test results:	PASS	Where N length of Average Level + 2 Corrected	1 is numbe type 1 puls Emission L 0*log(Duty Reading: /	er of type 1 ses, etc. ₋evel = Pea ⁄ cycle) Antenna Fa	pulses, L ak Emissic actor + Cal	1 is on ble
Test results:	PASS	Where N length of Average Level + 2 Corrected	1 is numbe type 1 puls Emission L 0*log(Duty Reading: /	er of type 1 ses, etc. ₋evel = Pea ⁄ cycle) Antenna Fa	pulses, L ak Emissic actor + Cal	1 is on ble


5.11.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Antenna Mast	Keleto	RE-AM	1	
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	1	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC	(C)	, «

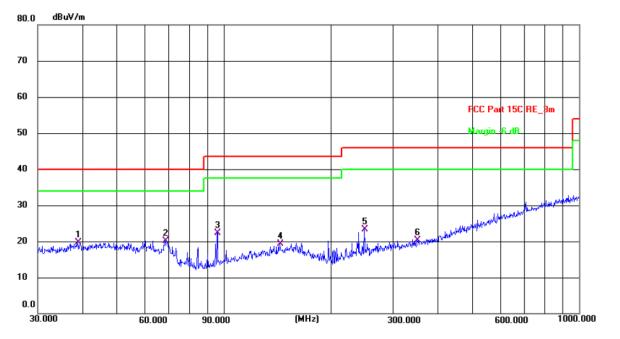
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.11.3. Test Data

Please refer to following diagram for individual

Site: #1 3m Anechoic Chamber

Polarization: Horizontal


Power: AC 120 V/60 Hz

Limit: F	CC Part 15C R	E_3m			Power: AC 120 V/60 Hz					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	46.3402	6.69	13.56	20.25	40.00	-19.75	QP	Ρ		
2	59.6493	7.87	12.23	20.10	40.00	-19.90	QP	Ρ		
3	110.9571	7.48	10.82	18.30	43.50	-25.20	QP	Ρ		
4	142.3243	9.64	12.73	22.37	43.50	-21.13	QP	Ρ		
5	197.2001	11.02	10.33	21.35	43.50	-22.15	QP	Ρ		
6 *	248.5519	14.57	12.27	26.84	46.00	-19.16	QP	Ρ		

Page 24 of 101

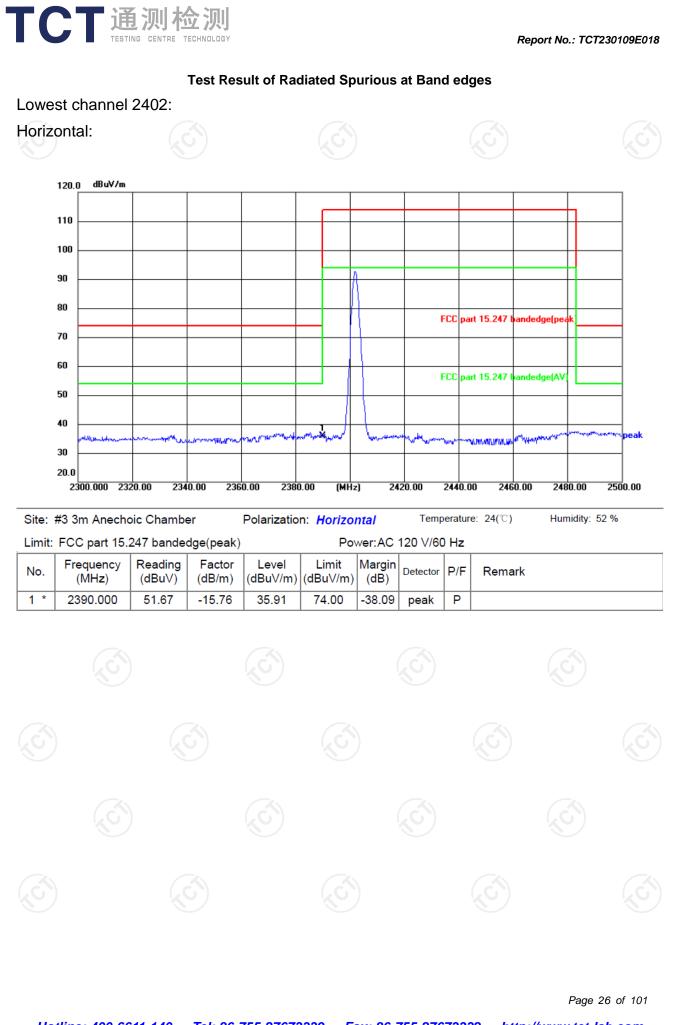
Report No.: TCT230109E018

Vertical:

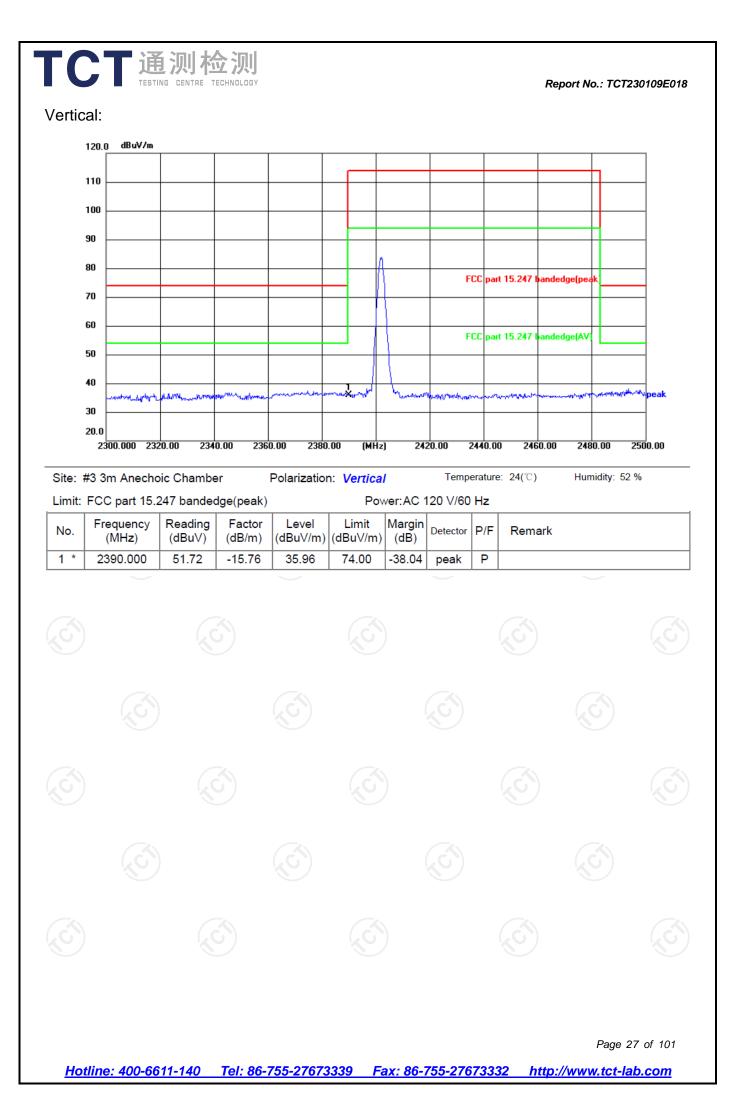
Site: #1 3m Anechoic Chamber Polarization: Vertical Temperature: 23.6(C) Humidity: 52 %

Power: AC 120 V/60 Hz

Limit:	FCC Part 15C RE_3m	


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	38.8878	6.07	13.62	19.69	40.00	-20.31	QP	Ρ	
2 *	68.3908	8.90	11.11	20.01	40.00	-19.99	QP	Ρ	
3	96.0986	12.99	9.35	22.34	43.50	-21.16	QP	Р	
4	143.8295	6.47	12.78	19.25	43.50	-24.25	QP	Ρ	
5	248.5519	10.94	12.27	23.21	46.00	-22.79	QP	Ρ	
6	350.4768	5.43	14.79	20.22	46.00	-25.78	QP	Ρ	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

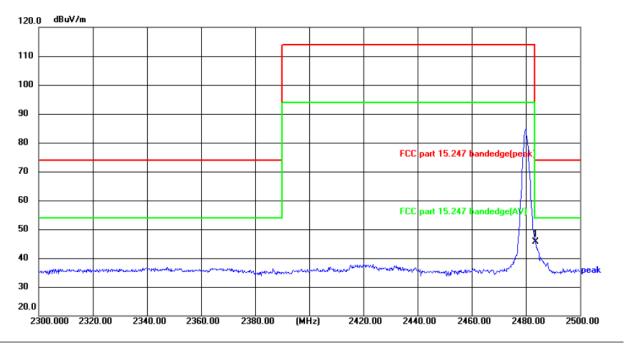

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Highest channel and 8DPSK)) was submitted only.

- 3. Freq. = Emission frequency in MHz
 - Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dB μ V/m) = Limit stated in standard
 - $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
 - * is meaning the worst frequency has been tested in the test frequency range.

Report No.: TCT230109E018

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT230109E018 Highest channel 2480: Horizontal: 120.0 dBuV/m 110 100 90 80 FCC part 15.247 bandedge(pea 70 60 FCC part 15.247 bandedge(A) 50 40 maria 30 20.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480.00 2500.00


 Site: #3 3m Anechoic Chamber
 Polarization: Horizontal
 Temperature: 24(°C)
 Humidity: 52 %

 Limit: ECC part 15 247 bandedge(peak)
 Power: AC 120 V/60 Hz

Linnt.	FCC part 15.	247 pande	uge(peak)		Power.AC 120 V/60 Hz				
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2483.500	65.13	-15.41	49.72	74.00	-24.28	peak	Ρ	

Vertical:

Site: #3 3m Anechoic ChamberPolarization: VerticalTemperature: 24(°C)Humidity: 52 %

Limit:	FCC part 15.2	247 bandeo	dge(peak)	Power:AC 120 V/60 Hz					
No.	Frequency (MHz)	Reading (dBu∀)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2483.500	60.93	-15.41	45.52	74.00	-28.48	peak	Ρ	

Note: Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

Page 29 of 101

Report No.: TCT230109E018

Above 1GHz

	Modulation	Type: 8D	PSK							
Low channel: 2402 MHz										
	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
	4804	Н	43.44		0.66	44.10		74	54	-9.90
	7206	Н	34.89		9.50	44.39		74	54	-9.61
		Н					~~~			
	(<u> </u>		U,C			· C`)		(\mathcal{O})	
	4804	V	43.13		0.66	43.79		74	54	-10.21
	7206	V	35.12		9.50	44.62		74	54	-9.38
		V								

Middle cha	nnel: 2441	MHz))		(LO)		KC KC
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4882	Н	44.16		0.99	45.15		74	54	-8.85
7323	XOH)	34.61	-120	9.87	44.48	0	74	54	-9.52
	Ĥ					· · ·			
4882	V	43.35		0.99	44.34		74	54	-9.66
7323	V	32.94		9.87	42.81		74	54	-11.19
· /	V			'S'	·)				

High channel: 2480 MHz

CT通测检测 TESTING CENTRE TECHNOLOGY

Frequency	Ant Pol	Peak	AV	Correction			Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4960	Н	44.76		1.33	46.09		74	54	-7.91
7440	Н	35.68		10.22	45.90		74	54	-8.10
	Н								
4960	V	44.89		1.33 🔪	46.22		74	54	-7.78
7440	V	35.70		10.22	45.92		74	54	-8.08
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-2.44	30	Pass
NVNT	1-DH1	2441	-3.24	30	Pass
NVNT	1-DH1	2480	-2.27	30	Pass
NVNT	2-DH1	2402	-0.39	21	Pass
NVNT	2-DH1	2441	-1.21	21	Pass
NVNT 🔇	2-DH1	2480	-0.39	21	Pass
NVNT	3-DH1	2402	0.15	21	Pass
NVNT	3-DH1	2441	-0.57	21	Pass
NVNT	3-DH1	2480	0.76	21	Pass

Appendix A: Test Result of Conducted Test

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Test Graphs Power NVNT 1-DH1 2402MHz

SENSE: PULSE SOURCE OFF

PNO: Fast ↔→ Trig: Free Run IFGain:Low #Atten: 30 dB

Avg Type: Log-Pwr Avg|Hold: 300/300

B Center Freq 2.402000000 GHz 10 dB/div Log

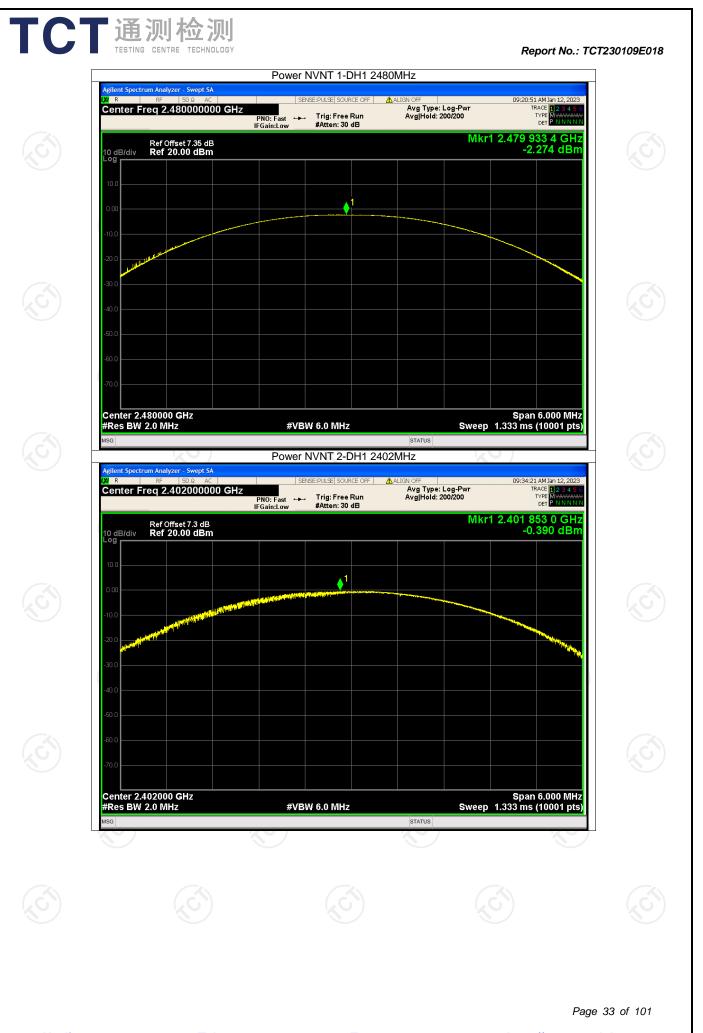
TCT 通测检测 TESTING CENTRE TECHNOLOGY

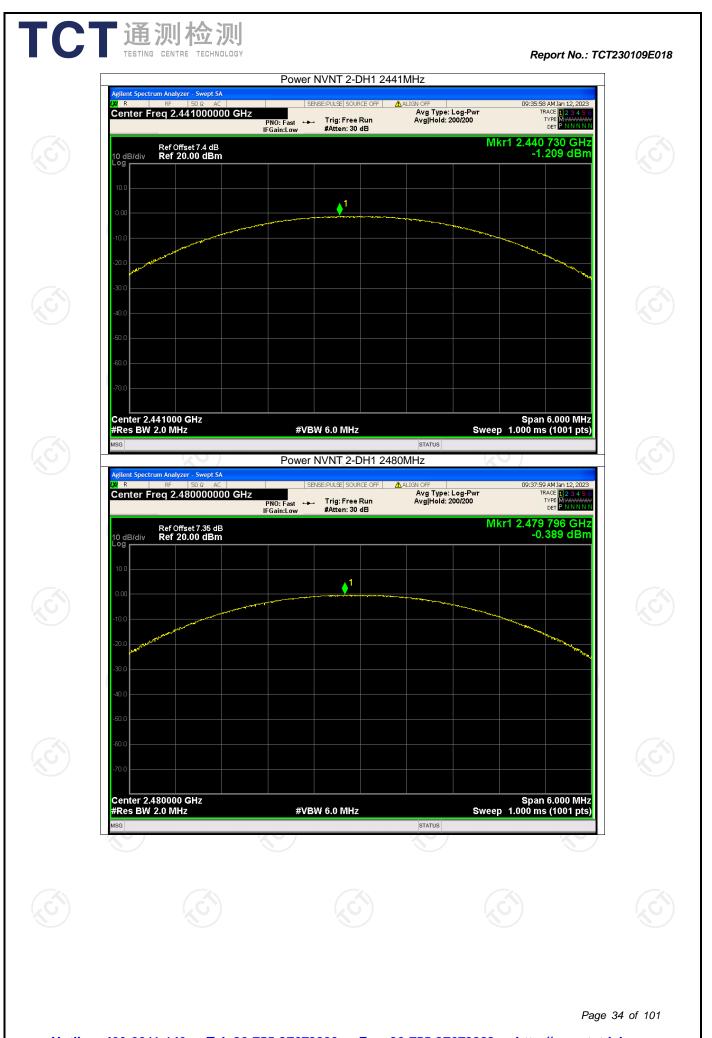
nt Spectr

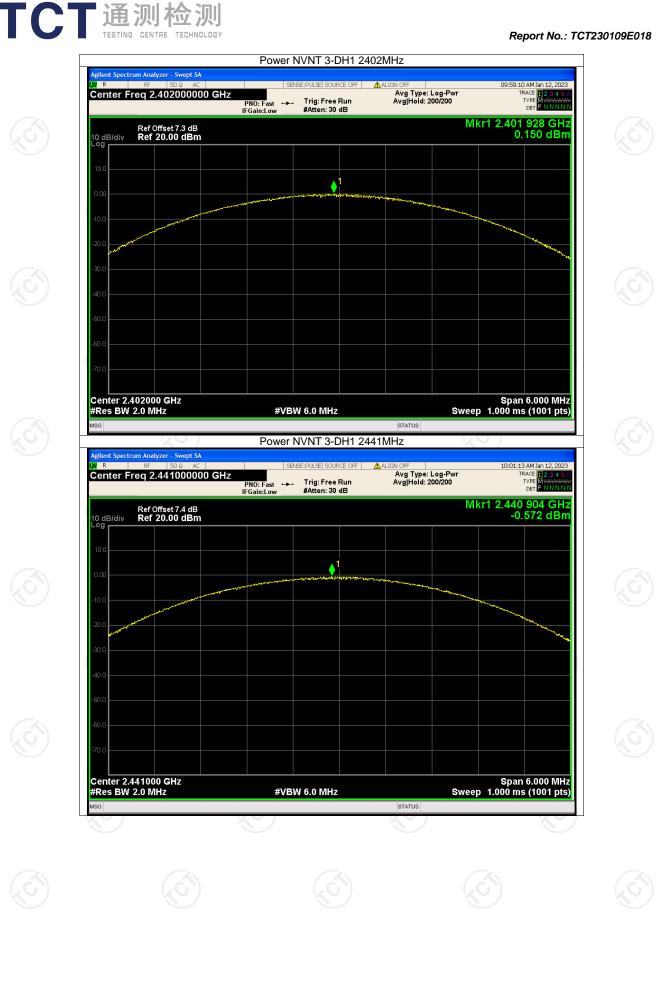
m Analyzei

Ref Offset 7.3 dB Ref 20.00 dBm

Swent SA

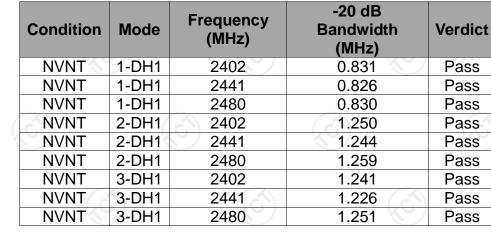

Report No.: TCT230109E018


09:15:51 AM Jan 12, 2023


TYPE DET

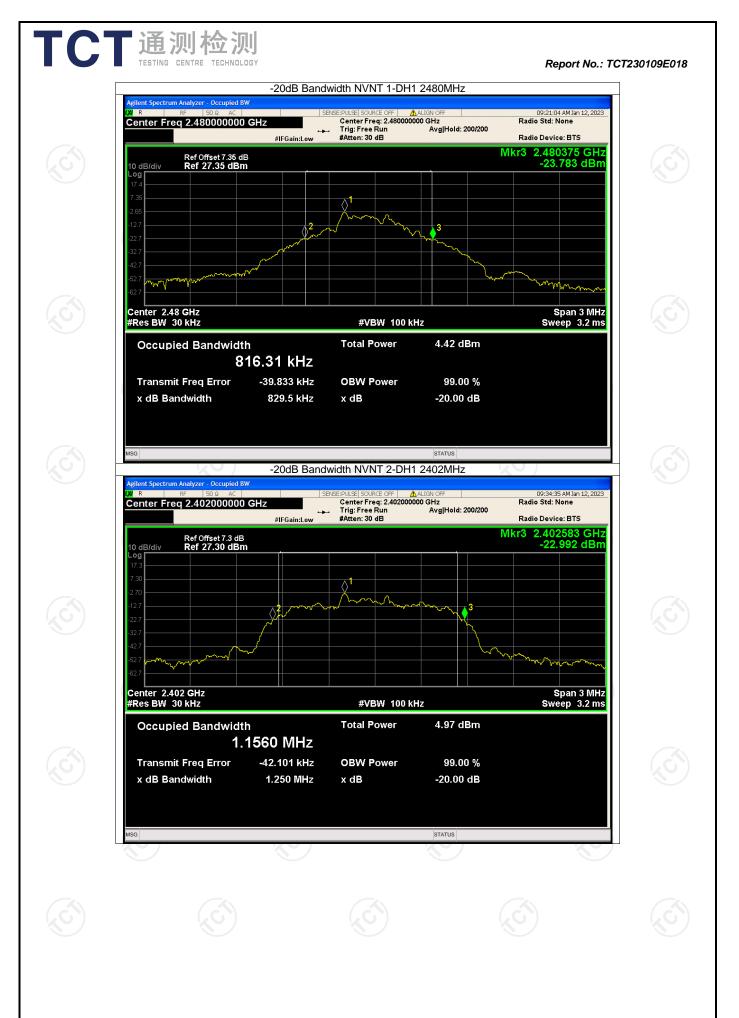
Mkr1 2.401 829 0 GHz -2.445 dBm

TRACE 1234



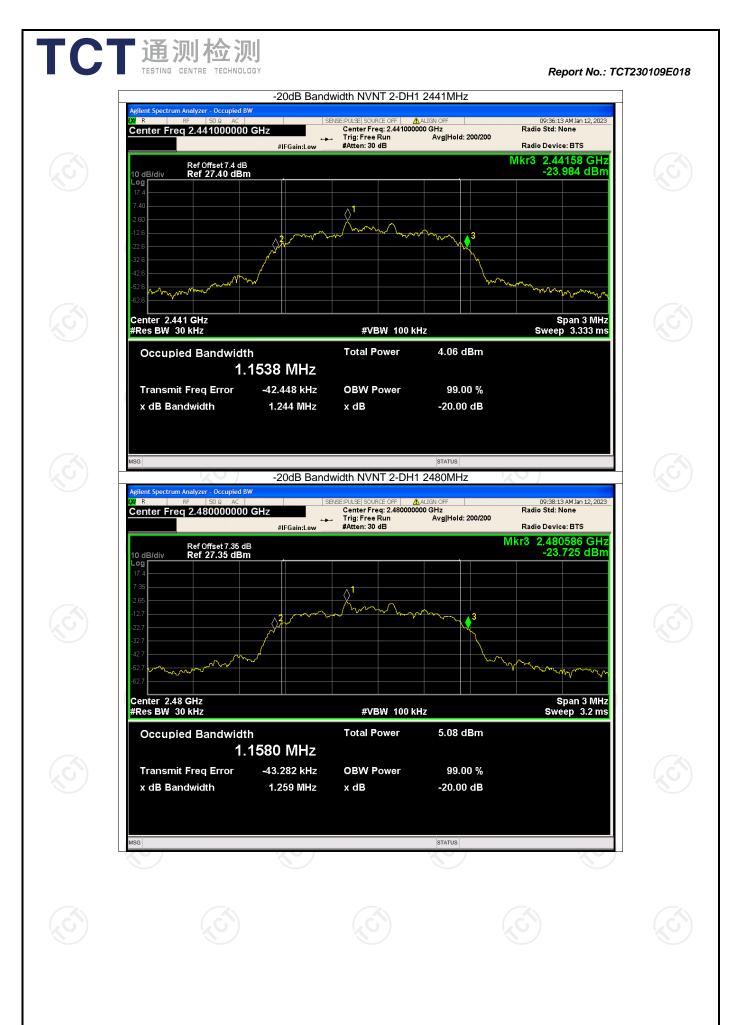
Page 35 of 101

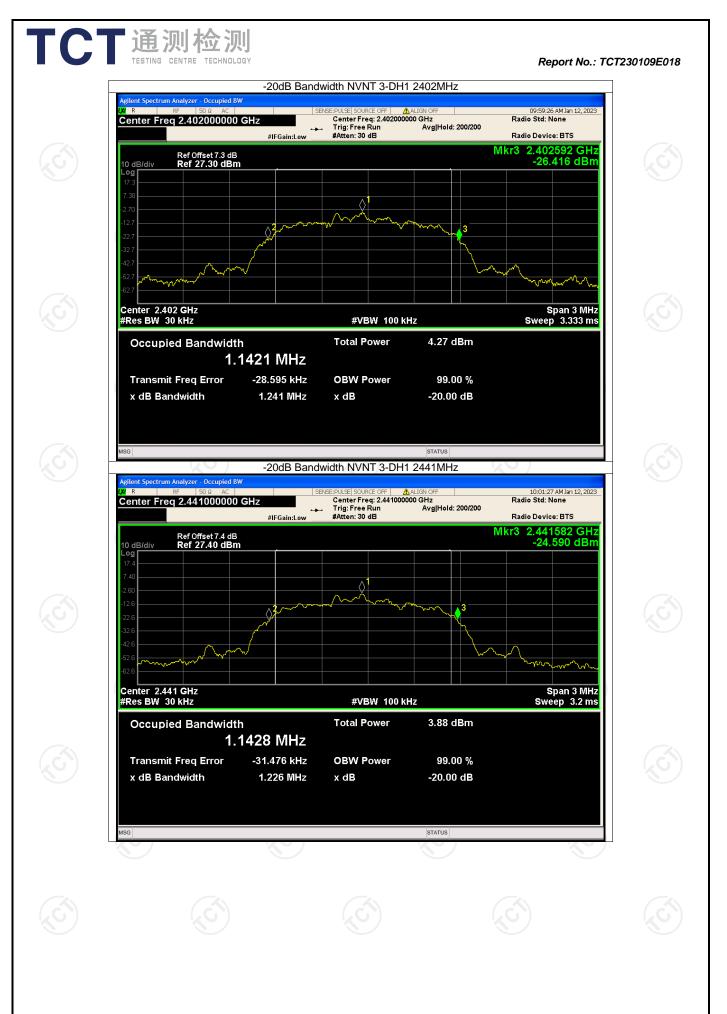
ectrum Analyzer - Swept SA FFreq 2.4800000000 GI Ref Offset 7.35 dB v Ref 20.00 dBm	Hz PNO: Fast ↔ IFGain:Low	NSE:PULSE SOURCE OFF	ALIGN OFF	10:02:45 AM Jan 12, 2023	
Ref Offset 7.35 dB v Ref 20.00 dBm		#Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 200/200	TRACE 12 3 4 5 6 TYPE MWWWW DET P N N N N N	
				Mkr1 2.479 958 GHz 0.756 dBm	
		1			
and the second sec			and a second		
2.480000 GHz W 2.0 MHz	#VB	W 6.0 MHz	Status	Span 6.000 MHz eep 1.000 ms (1001 pts)	
		W 2.0 MHz #VE	W 2.0 MHz #VBW 6.0 MHz Image: Constraint of the second		


-20dB Bandwidth

Page 37 of 101

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com





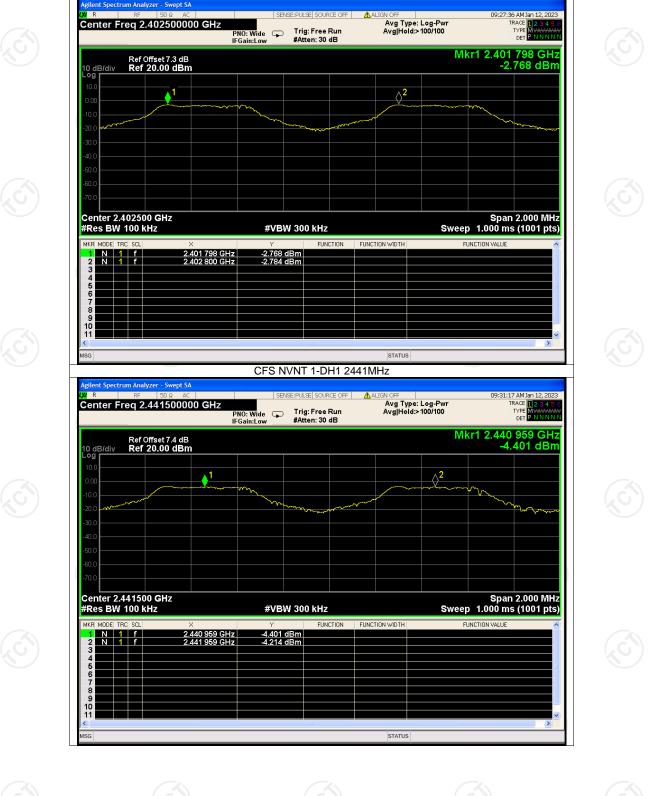
Page 39 of 101

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 41 of 101

			width NVNT 3-DH		Analyzer - Occupied BW	
	10:03:0 Radio Std: Radio Devi	ALIGN OFF 000 GHz Avg Hold: 200/200	ENSE:PULSE SOURCE OFF / 2 Center Freq: 2.480000 , Trig: Free Run #Atten: 30 dB	GHz #IFGain:Low	RF 50Ω AC 1 2.480000000 (Center Frec
0596 GHz .050 dBm	Mkr3 2.48 -26				Ref Offset 7.35 dB Ref 27.35 dBm	10 dB/div Log
						17.4 7.35
		3				-2.65 -12.7 -22.7
	\sim				- Martin	-32.7 -42.7
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- me					-52.7 -62.7
Span 3 MHz eep   3.2 ms	sw Sw		#VBW 100 k		GHz ) kHz	Center 2.48 #Res BW 30
		5.02 dBm	Total Power	482 MHz	ed Bandwidth 1.1	Occupie
		99.00 % -20.00 dB	OBW Power x dB	-29.916 kHz 1.251 MHz	Freq Error dwidth	Transmit x dB Ban
	<u>k0</u> 1	STATUS	<u> </u>		707	MSG

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

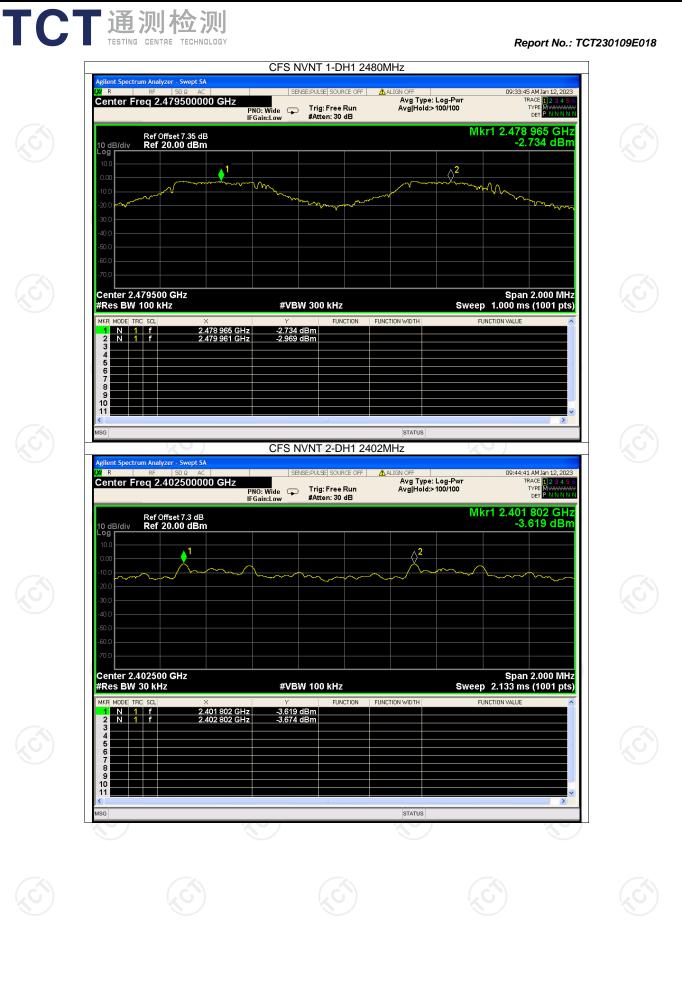



### **Carrier Frequencies Separation**

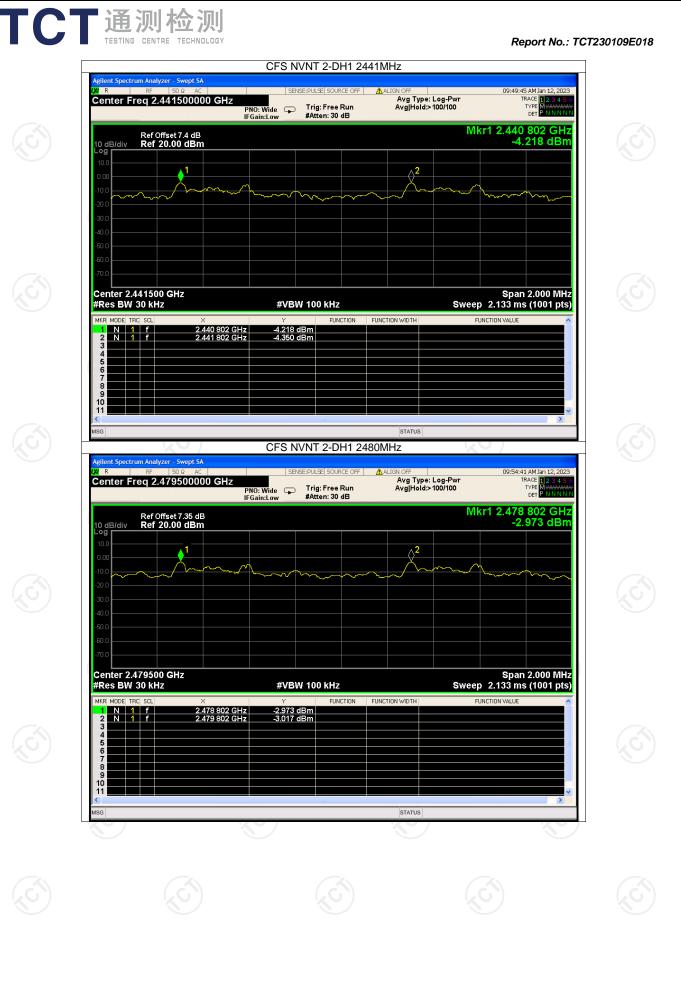
## TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT230109E018

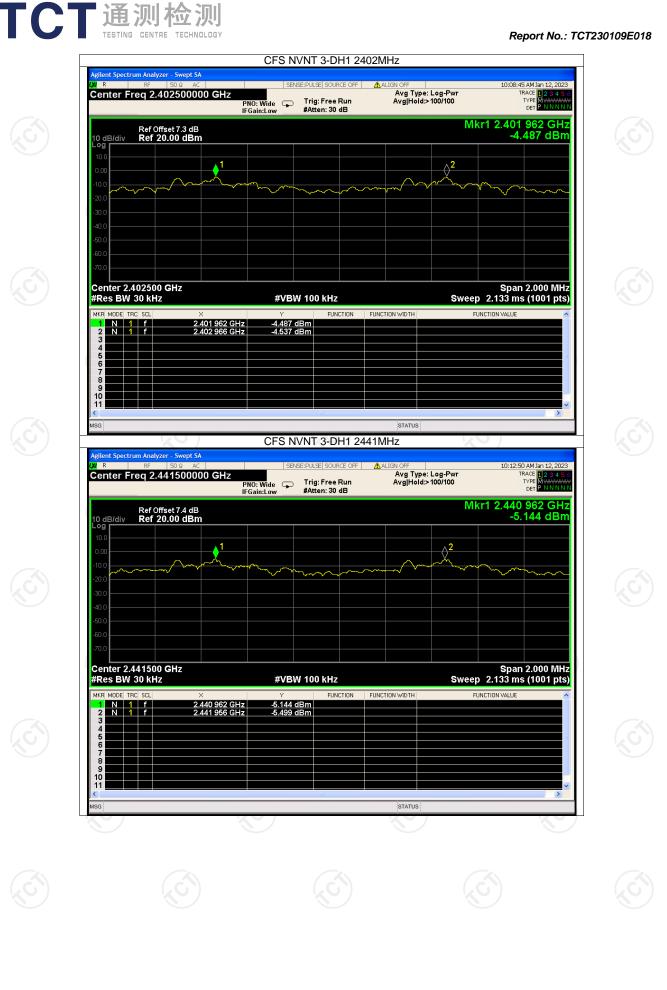
Page 43 of 101




Test Graphs CFS NVNT 1-DH1 2402MHz


**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT230109E018


Page 44 of 101



Page 45 of 101



Page 46 of 101



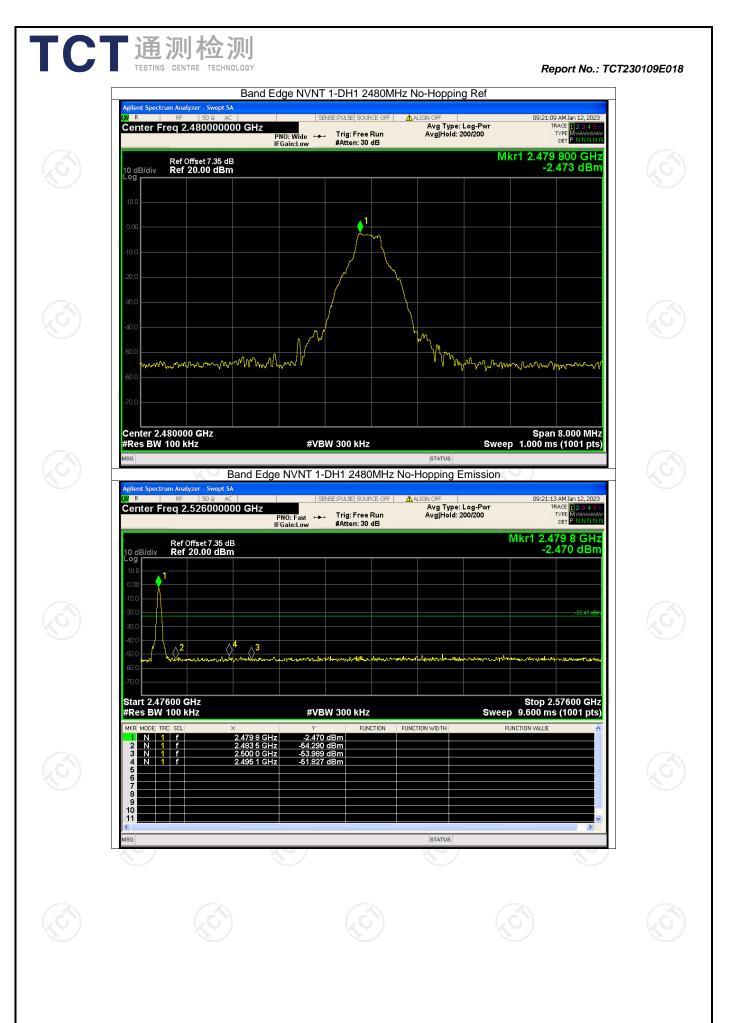
Page 47 of 101

	Agilent Spectrum A IXI R R Center Freq		SHZ PNO: Wide IFGain:Low	ENSE:PULSE SOURCE OFF	ALIGN OFF Avg Type: Log Avg Hold:>100/	10:18 -Pwr 100	:53 AM Jan 12, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Re 10 dB/div Re 10.0	ef Offset 7.35 dB ef 20.00 dBm	1				8 962 GHz 3.818 dBm	
	0.00 -10.0 -20.0					¢ ²	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	-30.0							
Š)	-70.0 Center 2.479 #Res BW 30	500 GHz kHz	#VE	W 100 kHz		Spa Sweep 2.133 n	n 2.000 MHz ns (1001 pts)	
	MKR MODE TRC SC 1 N 1 f 2 N 1 f 3 S	CL X	Y		FUNCTION WIDTH	FUNCTION VALUE		
	4 5 6 7 8 9							
	10 11 MSG			10	STATUS		×	


Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-49.39	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-49.35	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-49.42	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-49.06	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-48.68	-20	Pass
NVNT	3-DH1	2480	No-Hopping	-48.96	-20	Pass

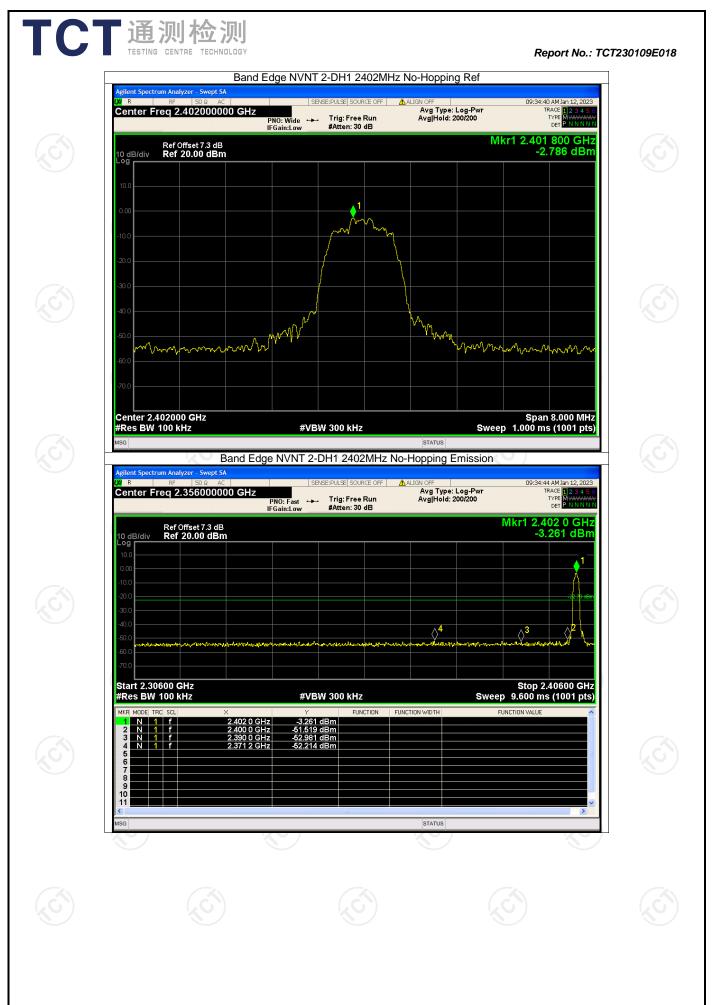
# Band Edge

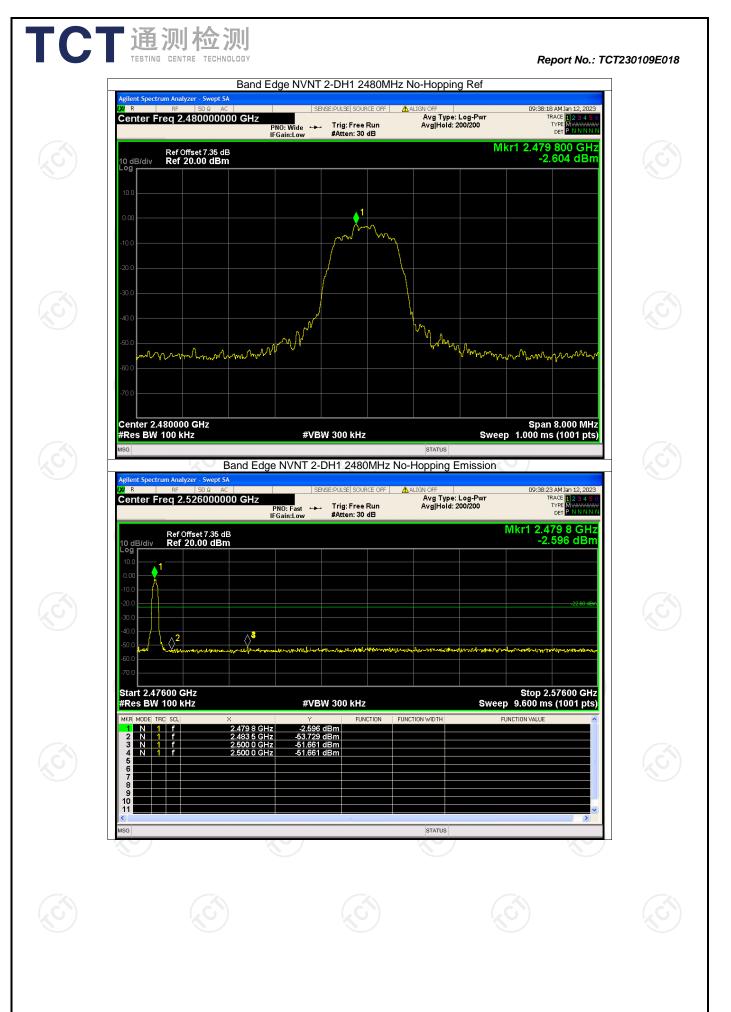
Report No.: TCT230109E018


Page 49 of 101

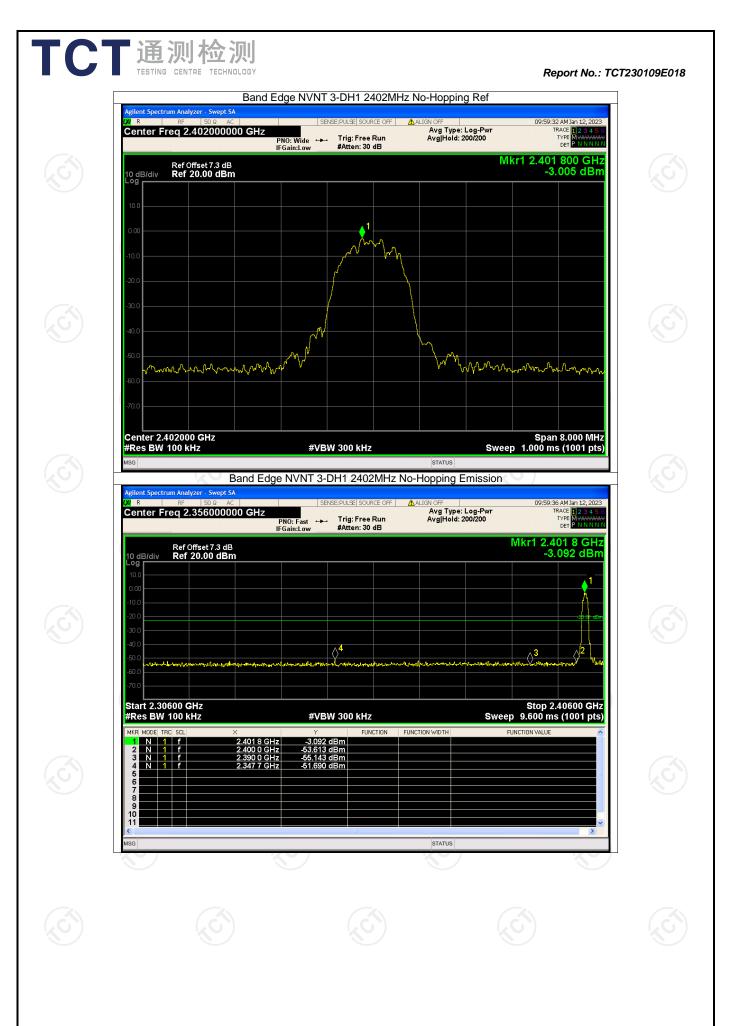




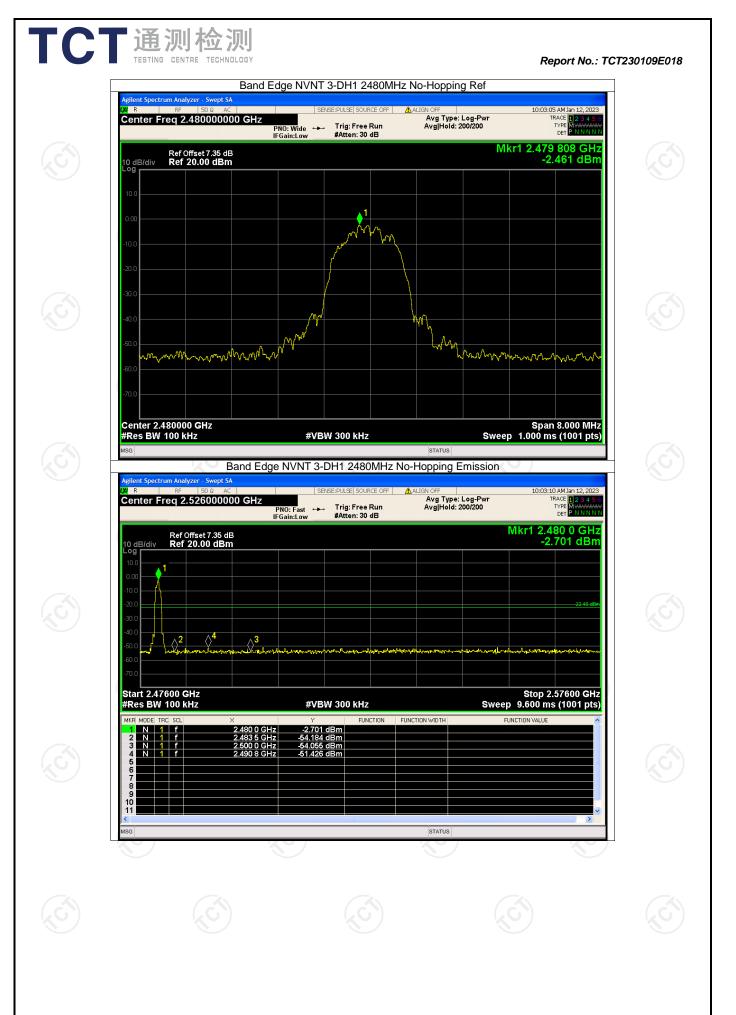

**FCT**通测检测 TESTING CENTRE TECHNOLOGY


Report No.: TCT230109E018




Page 51 of 101

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com






Page 53 of 101



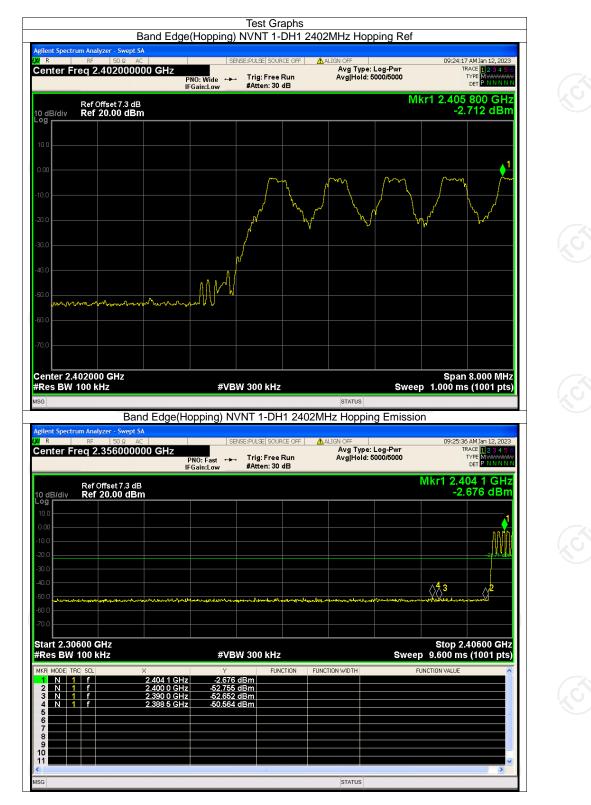
Page 54 of 101



Page 55 of 101

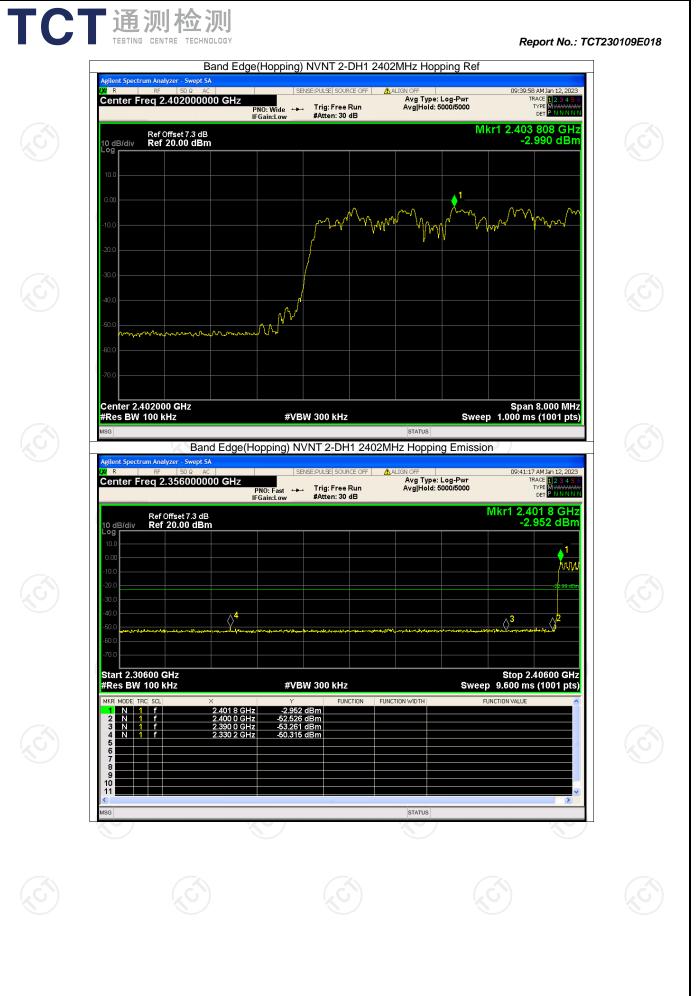
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Hopping	-47.85	-20	Pass
NVNT	1-DH1	2480	Hopping	-48.13	-20	Pass
NVNT	2-DH1	2402	Hopping	-47.32	-20	Pass
NVNT	2-DH1	2480	Hopping	-48.11	-20	Pass
NVNT	3-DH1	2402	Hopping	-47.84	-20	Pass
NVNT	3-DH1	2480	Hopping	-47.86	-20	Pass


#### Band Edge(Hopping) Max Value



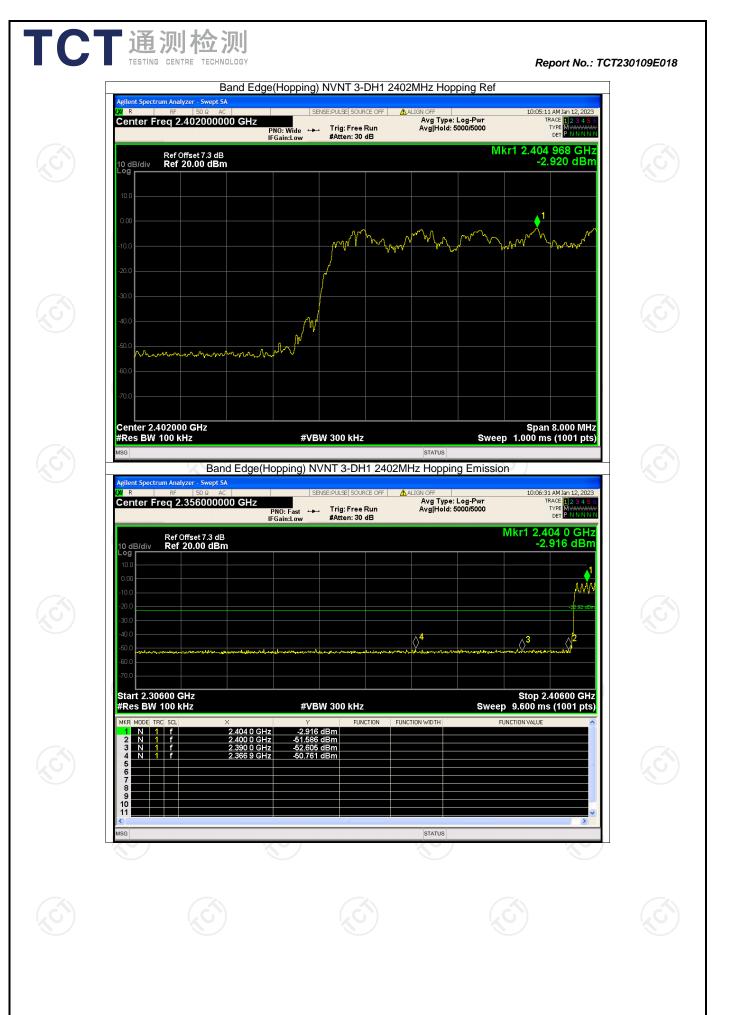
Report No.: TCT230109E018


Page 56 of 101

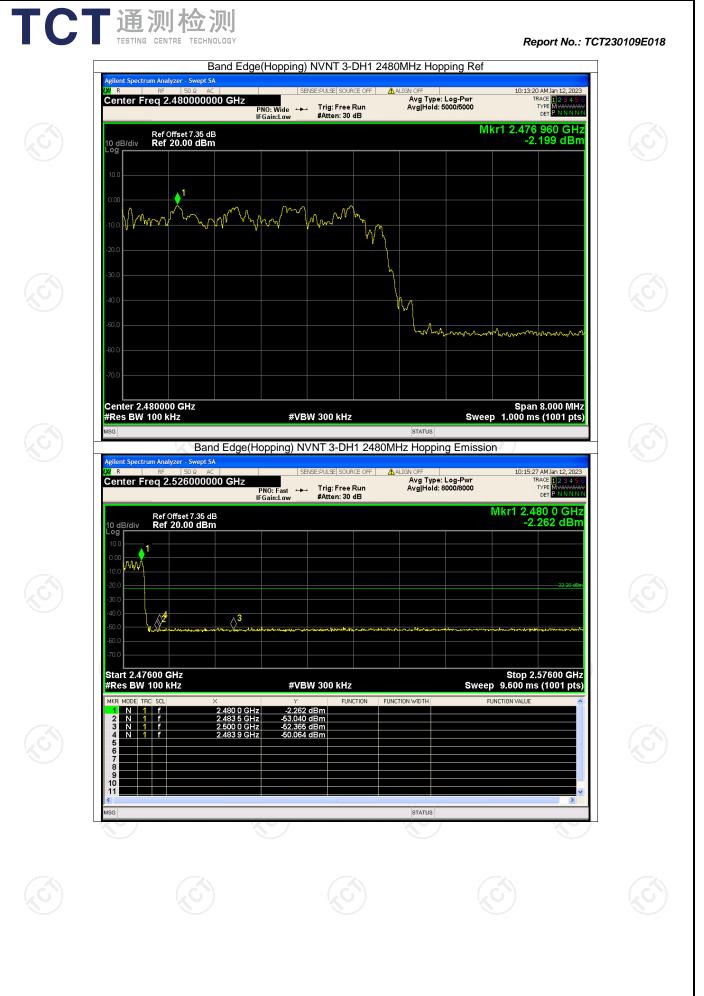
Report No.: TCT230109E018



Page 57 of 101







Page 59 of 101



Page 60 of 101



Page 61 of 101



Page 62 of 101

Report No.: TCT230109E018

Page 63 of 101

	·				
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	-47.87	-20	Pass
NVNT	1-DH1	2441	-46.50	-20	Pass
NVNT	1-DH1	2480	-47.65	-20	Pass
NVNT	2-DH1	2402	-47.38	-20	Pass
NVNT	2-DH1	2441	-46.64	-20	Pass
NVNT	2-DH1	2480	-47.57	-20	Pass
NVNT 🚫	3-DH1	2402	-47.51	-20	Pass
NVNT	3-DH1	2441	-46.70	-20	Pass
NVNT	3-DH1	2480	-48.21	-20	Pass



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

## Center 2.4020000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.000 ms (30001 pts) #VBW 300 kHz STATUS Tx. Spurious NVNT 1-DH1 2402MHz Emission um Analyzer - Swept SA SENSE:PULSE| SOURCE OFF ALIGN OFF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 10/10 09:17:02 AM Jan 12, 2023 TRACE 12345 TYPE MWWWW DET P N N N N Center Freq 13.265000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.401 7 GHz -3.662 dBm Ref Offset 7.3 dB Ref 17.30 dBm $\Diamond^3$ **∂**⁵ $\Diamond^4$ Start 30 MHz #Res BW 100 kHz Stop 26.50 GHz Sweep 2.530 s (30001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALU N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f -3.662 dBm -50.714 dBm -51.811 dBm -60.178 dBm -58.658 dBm 0 GHz 4 GHz 4.803 4 GHz 7.083 4 GHz 9.607 7 GHz

STATUS

Test Graphs Tx. Spurious NVNT 1-DH1 2402MHz Ref

SENSE:PULSE SOURCE OFF 🔥 ALIO

Trig: Free Run #Atten: 20 dB

PNO: Wide ↔→ IFGain:Low

Ø

Avg Type: Log-Pwr Avg|Hold: 400/400

B

10 dB/div Loa

R

10 dB/div Log **r** 

5

10

ent SA

Center Freq 2.402000000 GHz

Ref Offset 7.3 dB Ref 17.30 dBm

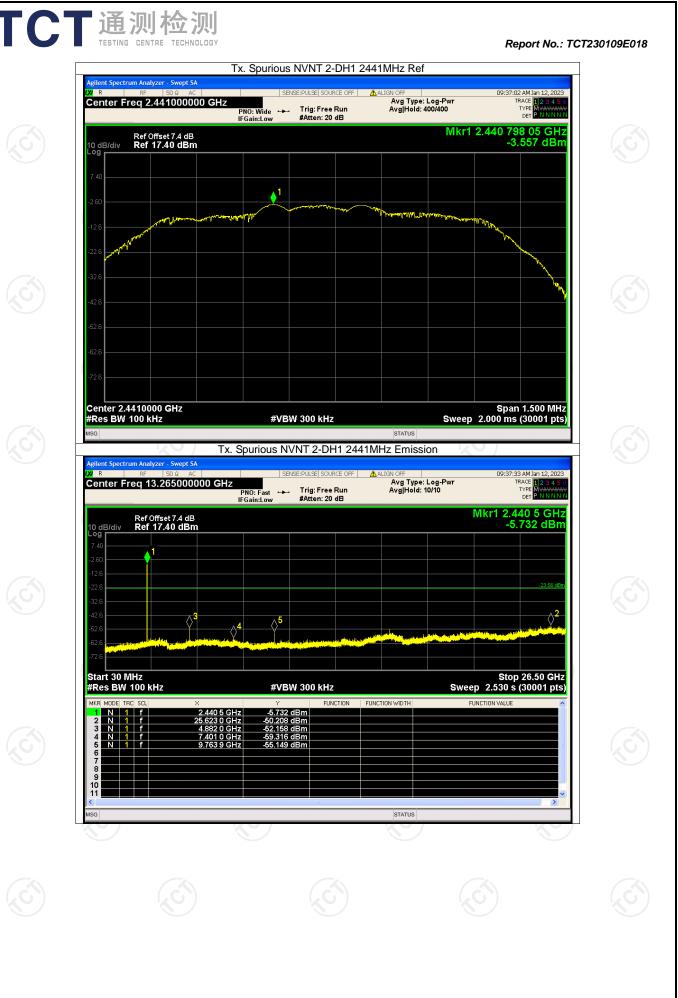
Report No.: TCT230109E018

Page 64 of 101

09:16:32 AM Jan 12, 2023

TRACE

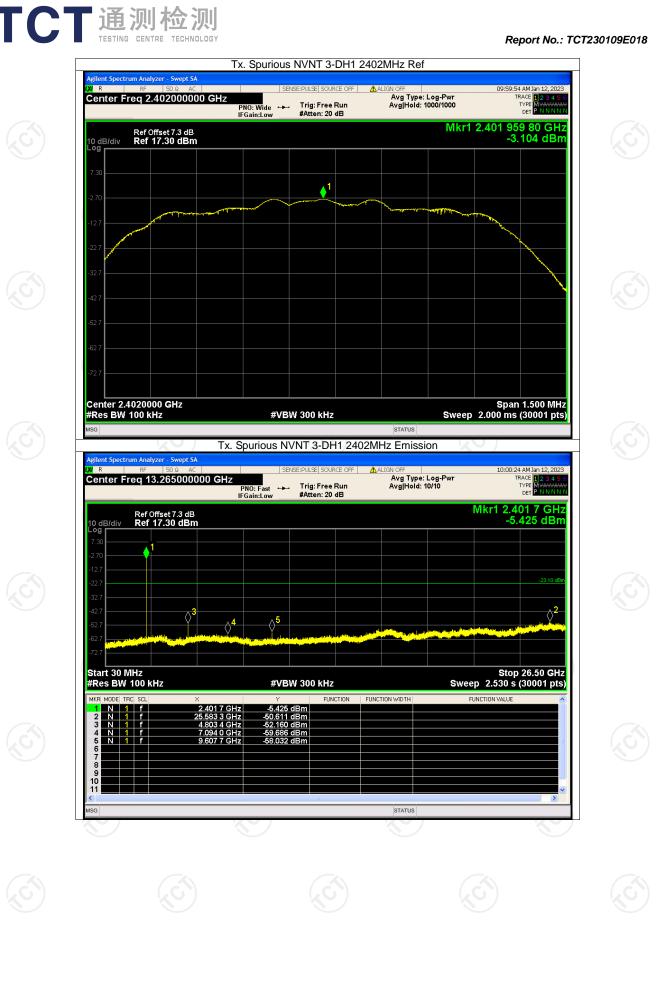
TYPE DET


Mkr1 2.401 799 70 GHz -2.842 dBm








Page 67 of 101

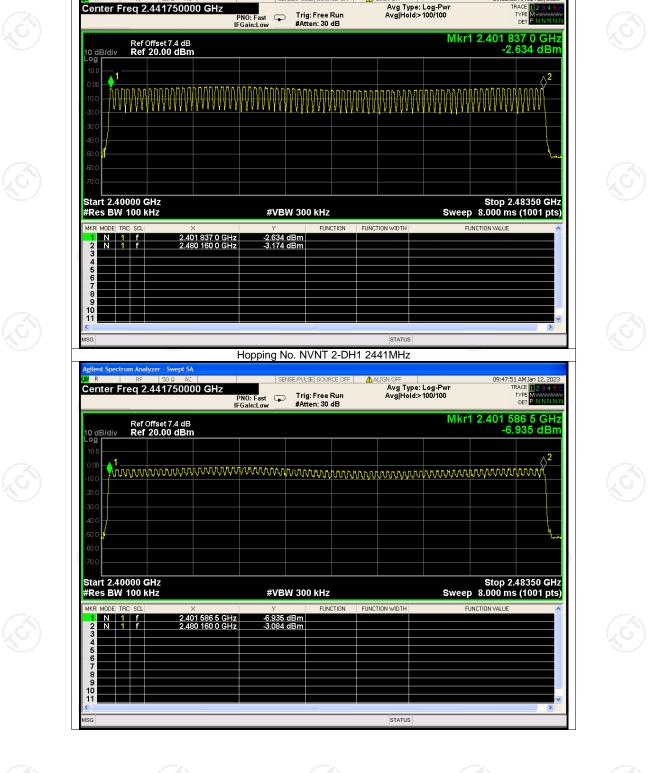


Page 68 of 101



Page 69 of 101




Page 70 of 101



Agilent Spectrum Analyzer - Swept SA	Tx. Spurious NVNT	3-DH1 2480MHz Ref	
R RF 50 Ω AC Center Freq 2.48000000	0 GHz PNO: Wide +++ Trig: Fre	Avg Type: Log-Pw ee Run Avg Hold: 400/400	10:03:20 AM Jan 12, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N
Ref Offset 7.35 dB 10 dB/div Ref 17.35 dBm	IFGain:Low#Atten: 2		/kr1 2.479 959 65 GHz -2.455 dBm
7.35			
-2.65		1 	
-12.7	and the second se	Journ Saul Marant and Marille B	Maluer Mary Mary
-22.7			
-32.7			
-42.7			
-52.7			
-72.7			
Center 2.4800000 GHz			Span 1.500 MHz
#Res BW 100 kHz	#VBW 300 kH	Hz Status	weep 2.000 ms (30001 pts)
Ref Offset 7.35 dB Ref 17.35 dBm 7.36 1.2.66 1.2.7 -2.2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2	45		Mkr1 2.480 2 GHz -2.397 dBm
Start 30 MHz #Res BW 100 kHz	#VBW 300 kF	Hz	Stop 26.50 GHz Sweep 2.530 s (30001 pts)
	2.480 2 GHz -2.397 dBm 5.705 0 GHz -50.663 dBm 4.960 5 GHz -50.706 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE
MKR MODE TRC SCL X	2.480 2 GHz -2.397 dBm 5.705 0 GHz -50.663 dBm 4.960 5 GHz -50.706 dBm 7.375 4 GHz -59.414 dBm		
1         N         1         f         2           2         N         1         f         22           3         N         1         f         24           4         N         1         f         5           5         N         1         f         5	9.920 1 GHz -54.497 dBm		
1         N         1         f         2           2         N         1         f         2!           3         N         1         f         2!           4         N         1         f         2!	9920 1 GHz -54.497 dBm		
1         N         1         f         2           2         N         1         f         2i           3         N         1         f         2i           4         N         1         f         5i           5         N         1         f         5i           6         7         8         5i         1	9.920 1 GHz -54.497 dBm		×
1         N         1         f         2           2         N         1         f         2i           3         N         1         f         2i           4         N         1         f         3i           5         N         1         f         3i           6         1         1         3i         1           8         9         1         1         1           10         11         1         1         1	9.920 1 GHz -54.497 dBm	STATUS	
1         N         1         f         ?           2         N         1         f         ?           3         N         1         f         ?           4         N         1         f         ?           5         N         1         f         ?           6	9.920 1 GHz -54.497 dBm	STATUS	
1         N         1         f         ?           2         N         1         f         ?           3         N         1         f         ?           4         N         1         f         ?           5         N         1         f         ?           6	9.920 1 GHz 54.497 dBm	STATUS	

Page 72 of 101

	TESTING (	则检测 CENTRE TECHNOLOGY Nu	umber o	f Hoppin	g Chann		oort No.: TCT2	230109E018
C	Condition NVNT	Mode 1-DH1		Hopping N 79	umber	Limit 15	Verd Pas	
	NVNT NVNT	2-DH1 3-DH1		79 79		15 15	Pas	SS
								73 of 101



Test Graphs Hopping No. NVNT 1-DH1 2441MHz

SENSE:PULSE SOURCE OFF 🔥 ALIO

**CT** 通测检测

F

TESTING CENTRE TECHNOLOGY

Report No.: TCT230109E018

Page 74 of 101

09:30:08 AM Jan 12, 2023

1 AMJan 12, 2023 RACE 1 2 3 4 5 6 TYPE MUNICIPAL	10:10: Pwr 10	2441MHz	NO. NVNT 3-DH	SHz SE	) Analyzer - Swept SA RF 50 Ω AC Q 2.441750000 (	LXI R	
	Mkr1 2.401 5		#Atten: 30 dB	PNO: Fast FGain:Low	Ref Offset 7.4 dB Ref 20.00 dBm	10 dB/div Log	
₩₩₩₽	<u>ላላላብላ</u> ላላላላላላላ	www.www.an	MMANUAAAA	www.pnw.ew		<b>1</b>	
						-40.0 -50.0 -60.0	
.48350 GHz s (1001 pts)	Stop 2 Sweep 8.000 m	FUNCTION WIDTH	W 300 kHz	Y	SCL ×	Start 2.400 #Res BW 1	
			dBm dBm	3 0 GHz -7.532 4 0 GHz -8.420	f 2.4015 f 2.4804	1 N 1 2 N 1 3 4 5 6 7	
×		STATUS	ш			8 9 10 11	
	NO N		S.		×		

ТСТ	通测 TESTING CEN	<b>山检测</b> TRE TECHNOLOGY				Repo	ort No.: TCT	230109E018
			Dwe	II Time				
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.39	124.41	319	31600	400	Pass
NVNT	1-DH3	2441	1.65	259.05	157	31600	400	Pass
NVNT	1-DH5	2441	2.89	315.01	109	31600	400	Pass

				(1115)				
NVNT	1-DH1	2441	0.39	124.41	319	31600	400	
NVNT	1-DH3	2441	1.65	259.05	157	31600	400	
NVNT	1-DH5	2441	2.89	315.01	109	31600	400	
NVNT	2-DH1	2441 🚫	0.40	128.00	320	31600	400	
NVNT	2-DH3	2441	1.65	259.05	157	31600	400	
NVNT	2-DH5	2441	2.9	310.30	107	31600	400	
NVNT	3-DH1	2441	0.40	127.60	319	31600	400	
NVNT	3-DH3	2441	1.65	264.00	160	31600	400	

2.90

316.10

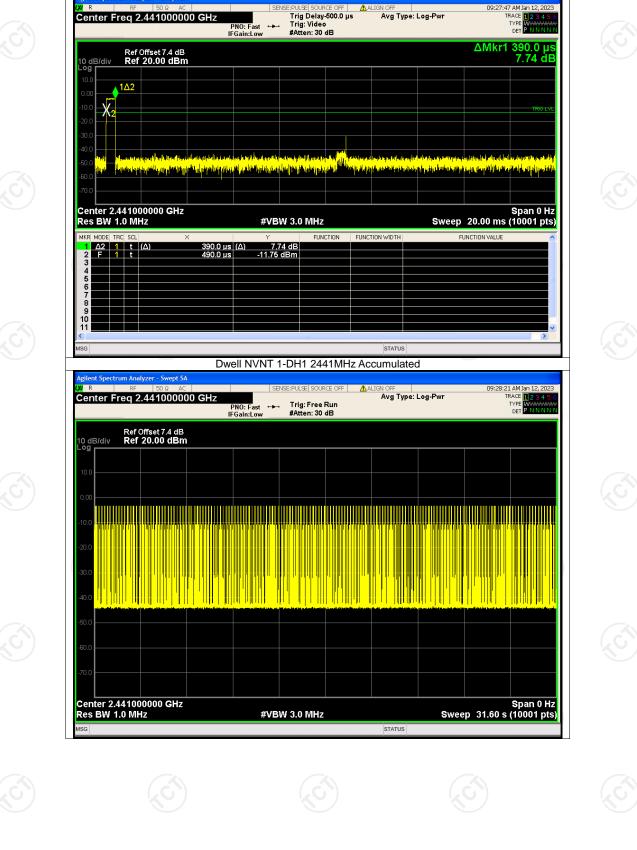
109

31600

400

NVNT

3-DH5


2441

Pass Pass Pass Pass Pass

Pass

Page 76 of 101

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Test Graphs Dwell NVNT 1-DH1 2441MHz One Burst

## 

Report No.: TCT230109E018

Page 77 of 101

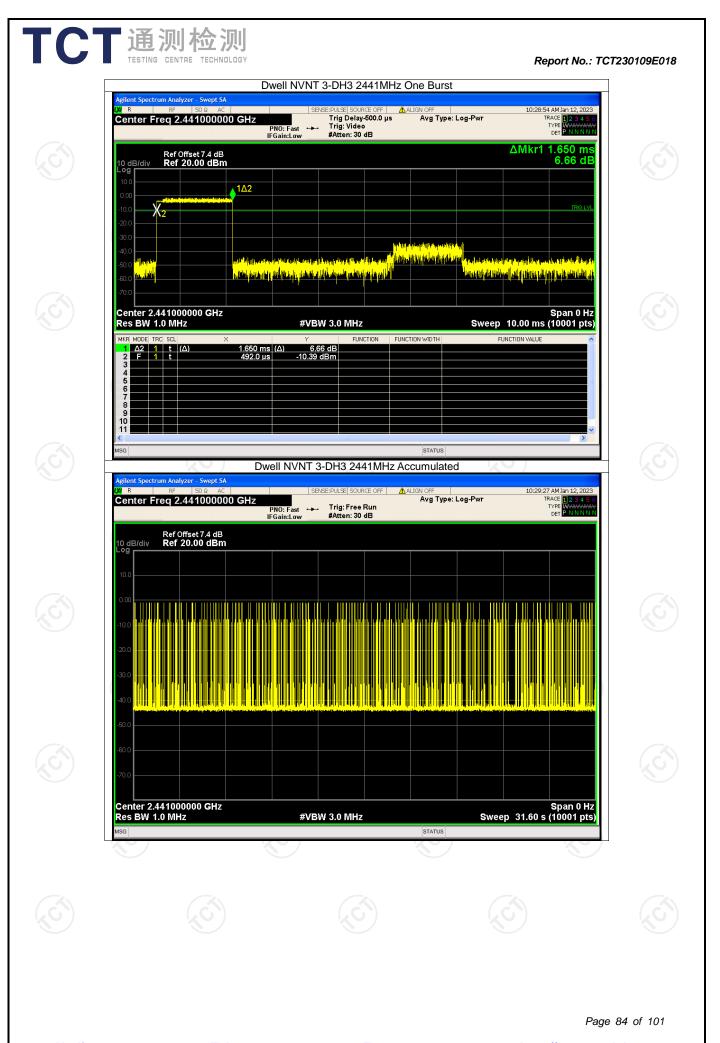
	gilent Spectrum Analyzer - Swept SA	Dwell NVNT 1-DH3 2441MHz Or	ne Burst	o.: TCT230109E018
	R RF 50 Ω AC Center Freq 2.441000000 GHz	SENSE:PULEE SOURCE OFF ALALIC Trig Delay-5000.0 µs PNO: Fast Trig: Video IFGain:Low #Atten: 30 dB	IN OFF         10:24:56 AM Jan 12, 27           Avg Type: Log-Pwr         TRACE           TYPE         TYPE           DET         TYPE	56 MW
	Ref Offset 7.4 dB 10 dB/div Ref 20.00 dBm - 9g		ΔMkr1 1.650 n -39.99 c	
	0.00			
	10.0 <b>X2</b>		TRO	
		er en	ti dana sa aki kina na pakina kata kata kata na kata n A kata na pana di kangan sala na kata da na kata na kat	
	70.0 Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Sweep 10.00 ms (10001 p	Hz
	MKR MODE TRC SCL Χ	Y FUNCTION FUNCTIO     O ms (Δ) -39.99 dB		
	3 4 5	.0 μs -12.20 dBm		
	6 7 8 9 9			
		Dwell NVNT 1-DH3 2441MHz Acc	umulated	
U	gilent Spectrum Analyzer - Swept SA / R RF 50 Q AC Center Freq 2.441000000 GHz	Z Taim Free Day	SN OFF 10:25:29 AM Jan 12, 20 Avg Type: Log-Pwr TRACE 12 3 4 TYPE WWWW	56
	Ref Offset 7.4 dB 0 dB/div Ref 20.00 dBm	PNO: Fast ++- Ing: Free Run IFGain:Low #Atten: 30 dB	DET <mark>P. N. N. N</mark>	
1	0 dB/div Ref 20.00 dBm			
	0.00			
$\langle G \rangle$				
	20.0			
	30.0			
	40.0			
	50.0			
S	70.0			
	Center 2.441000000 GHz		Span 0	Hz
	Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 31.60 s (10001 p	(ts)

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

ſ		AC SENSE:PULSE SOURCE OFF	Agilent Spectrum Analyzer - Sw           μα         R         RF         50 Ω           Center Freq 2.44100         Center Freq 2.44100
G	ΔMkr1 2.890 ms	PN0: Fast +++ Trig: Video IFGain:Low #Atten: 30 dB	Ref Offset 7.
	8.36 dB	μ 1Δ2	10.0
	TRIG LVL		-10.0 <b>2</b> -20.0 <b>2</b> -20
	ana thi an a thi fire. A na kawana sa shi fanin na ku na	in a second s	-30.0
	ad his well all control of a particular of the second decomposition of the second decomposition of the second d	s f i n tr 10, 1 n de diterre se infratis anna fan se	-50.0 400 10 -60.0 400 10 -60.0 400 10 -60.0
	Span 0 Hz Sweep 10.00 ms (10001 pts)	z #VBW 3.0 MHz	Center 2.441000000 Res BW 1.0 MHz
	H FUNCTION VALUE	X         Y         FUNCTION           2.890 ms         (Δ)         8.36 dB           493.0 μs         -12.36 dBm	MKR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t 3 Δ
			4 5 6 7
	×		8 9 10 11
	us lated	Dwell NVNT 1-DH5 2441MHz	MSG
	10:26:28 АМ Jan 12, 2023 Туре: Log-Pwr ТRACE 123 4 5 6 туре WAMANAN ост P NN NN N	AC SENSE:PULSE SOURCE OFF	Agilent Spectrum Analyzer - Sw W R RF 50 Ω Center Freq 2.44100
		PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 30 dB	Ref Offset 7.
		m	10 dB/div Ref 20.00 d
C			0.00
No Co			-10.0 <b>-11.0</b>
			-20.0
			-40.0
			-60.0
			-70.0
	Span 0 Hz Sweep 31.60 s (10001 pts)	z #VBW 3.0 MHz	Center 2.441000000 0 Res BW 1.0 MHz
	us		MSG

	gilent Spectrum Analyzer - Swept SA	NVNT 2-DH1 2441MHz One Bur		
	enter Freq 2.441000000 GHz PN0: 1 IF6ain:	Fast 🛶 Trig: Video	09:44:50.4MJan 12,2023 pe: Log-Pwr TRACE 12:345.6 TYPE WALLAND DET PINNINN	
	Ref Offset 7.4 dB 10 dB/div Ref 20.00 dBm		∆Mkr1 400.0 µs -2.54 dB	
	-og 10.0 0.00			
	10.0 X2 1∆2 20.0 X2		TRIGLUL	
	30.0			
		periteral de la compañía de la compañía de la compañía de de la compañía de de la compañía de la compañía de la A la compañía de la c	na ta aktore konserva se na se na se na se na se na se konserva na se na se preserva se na se preserva se pres Na se a forma preserva se preserva se preserva da forma da da se preserva preserva se na se preserva se preserv	
	70.0			
	Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 10.00 ms (10001 pts)	
	MKR MODE TRC SCL Χ 1 Δ2 1 t (Δ) 400.0 μs (Δ) 2 F 1 t 492.0 μs	Y FUNCTION FUNCTION WIDTH -2.54 dB -11.51 dBm	FUNCTION VALUE	
	3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
	7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9999999999			
			× ×	
	sg Dwell N	status NVNT 2-DH1 2441MHz Accumulat	ted	
0	gilent Spectrum Analyzer - Swept SA R RF 50Ω AC Center Freq 2.441000000 GHz	SENSE:PULSE SOURCE OFF	09:45:23 AM Jan 12, 2023 De: Log-Pwr TRACE 23 4 5 6	
	PNO: I IFGain	Fast 🛶 Trig: Free Run	TYPE WWWWWWW DET P N N N N N	
	Ref Offset 7.4 dB 0 dB/div Ref 20.00 dBm			
	10.0			
	0.00			
	20.0			
	50.0			
G`)	70.0			
	Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 31.60 s (10001 pts)	
	SG	STATUS		

Page 80 of 101


	nt Spectrum Analyzer - Swept SA	Dwell NVNT 2-DH3 2441MHz One		222
	RF 50 Ω AC nter Freq 2.441000000 GHz	SENSE:PULSE SOURCE OFF ▲ ALIGN Trig Delay-500.0 µs A PNO: Fast → Trig: Video IFGain:Low #Atten: 30 dB	OFF 10:26:54 MJan 12, 20 vg Type: Log-Pwr TRACE 12 3 4 TYPE V DET P NNN	5 6
10 0	Ref Offset 7.4 dB IB/div Ref 20.00 dBm		ΔMkr1 1.650 m 6.78 d	B
10. 0.0				
-10.0 -20.0 -30.0				
-40. -50. -60.		en Markon Barren berrek fin bekennen er et er bere beiten son der Berlande Markon Barren berrek fins son bilden er bilden er beiten bereiten beiten bereiten beiten beiten beiten beiten Markon Barren beiten bilden bilden bie bilden bie		
Cel	nter 2.441000000 GHz s BW 1.0 MHz	#VBW 3.0 MHz	Span 0 H Sweep 10.00 ms (10001 pi	
мкв 1 2	MODE         TRC         SCL         X           Δ2         1         t         (Δ)         1.650           F         1         t         493.0	Υ         FUNCTION         FUNCTION \           ms         (Δ)         6.78 dB         -           μs         -10.44 dBm         -         -	VIDTH FUNCTION VALUE	
3 4 5				=
6 7 8 9				
10 11			>	<b>v</b>
MSG		Dwell NVNT 2-DH3 2441MHz Accur	nulated	
L <b>XI</b> F	nt Spectrum Analyzer - Swept SA RF 50 Ω AC	SENSE:PULSE SOURCE OFF	OFF 10:27:27 AM Jan 12, 20	123
Ce	nter Freq 2.441000000 GHz	PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	Vg Type: Log-Pwr TRACE 1234 TYPE WWWW DET PNNN	
10 c Log	Ref Offset 7.4 dB IB/div Ref 20.00 dBm			
10.0				
0.00				
-10.0	, <u>"'''' '''''''''''''''''''''''''''''''</u>			
-20.0				
-30.0				
-50.0	a na shekara da barkara ku barkara da shekara ku shekara shekara ku barkara ku shekara ku shekara shekara ku s An ana shekara da barkara ku shekara da shekara ku shekara ku shekara ku shekara ku shekara ku shekara ku sheka	lan na kana na Na kana na kana		
-60.0				
-70.0				
	nter 2.441000000 GHz		Span 0 l	Hz
Res	3 BW 1.0 MHz	#VBW 3.0 MHz	Sweep 31.60 s (10001 p	(S)
N.	9			フ

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	Dw Agilent Spectrum Analyzer - Swept SA W R RF 50 Q AC		10-27-40 AM Ian 12 2023	
	Center Freq 2.441000000 GHz		Type: Log-Pwr TRACE 123456 Type WWWWW DET PNNNN	
	Ref Offset 7.4 dB 10 dB/div Ref 20.00 dBm		∆Mkr1 2.900 ms -39.11 dB	
	100 0.00 -100		TROJVL	
	-20.0			
	40.0 -50.0 (h)(10) -60.0 (10) -70.0		ter er andet men til folgen der er den forset en er et in sterne forset in sterne forset met kommen er er ster I vor sig stant om stort er statet op store der och stort et visit och stort stort pro-	
	Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 10.00 ms (10001 pts)	
	MKR         MODE         TPC         SCL         X           1         Δ2         1         t         (Δ)         2.900 ms           2         F         1         t         .493.0 µs           3         -         -         .493.0 µs           4         -         -         .           5         -         .         .           6         -         -         .           7         -         .         .           8         -         .         .           9         -         .         .           10         -         .         .           11         .         .         .	-10.06 dBm		
	MSG Dwe Agilent Spectrum Analyzer - Swept SA	II NVNT 2-DH5 2441MHz Accumul		
	10 dB/div Ref 20.00 dBm	SENSE:PULSE SOURCE OFF ALIGN OFF Avg T NO: Fast ↔ Trig: Free Run Sain:Low #Atten: 30 dB	10:28:13 AM3an 12, 2023 Type: Log-Pwr TRACC 2, 2 4 5 6 TYPE WANNAWA DET 2 N NNW N	
	0.00 -10.0 -20.0 -30.0 -40.0 -50.0			
	-60.0			Ś
	Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 31.60 s (10001 pts) Js	
l		I C		

	Dwel	I NVNT 3-DH1 2441MHz One B	Report No.: TC	<b>Г230109E01</b>
LXI R	Spectrum Analyzer - Swept SA RF 50 Ω AC er Freq 2.441000000 GHz PN0:	Fast 🛶 Trig: Video	10:08:54 AMJan 12, 2023 Type: Log-Pwr TRACE 12:33 4 5 6 TYPE WWW OET PMINININ	
10 dB	Ref Offset 7.4 dB	n:Low #Atten: 30 dB	ΔMkr1 400.0 μs 6.96 dB	
Log 10.0 -10.0 -20.0 -30.0			TRQ LVL	
-40.0 -50.0 -60.0 -70.0		i fra formen da Balanci i ferra mana bera politika a mana pala partika a mana pala partika a pala pa 11 mata wa a da pana tin fanja na da fan fan fan fan fan fan fan fan fan fa	eta eta ante lecense la terrenza (latere en anterna en la dece transfere a titor de la terre a terre e na se de la constitución de la constitución de la constitución de la constitución de la la constitución de la c na se de la constitución de la cons	
Res	er 2.441000000 GHz BW 1.0 MHz	#VBW 3.0 MHz	Span 0 Hz Sweep 10.00 ms (10001 pts)	
1 1	DIDE         TRC         SCL         ×           2         1         t         400.0 μs         (Δ)           1         t         492.0 μs         (Δ)           4         492.0 μs         (Δ)           4         492.0 μs         (Δ)	Y         EPUNCTION         FUNCTION         V/IDT           6.96 dB         -10.55 dBm         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		
MSG	Duell	STAT NVNT 3-DH1 2441MHz Accumu		
<b>IX</b> Cent	Spectrum Analyzer - Swept. SA RF   50 Ω AC   Pr Freq 2.441000000 GHz PNO: IFGai Ref Offset 7.4 dB	SENSE:PULSE SOURCE OFF		
10 dB Log 10.0 -	div Ref 20.00 dBm			
-10.0 -20.0 -30.0 -40.0				
-60.0 - -60.0 - -70.0 -	r 2.441000000 GHz		Span 0 Hz	
Res I	W 1.0 MHz	#VBW 3.0 MHz	Sweep 31.60 s (10001 pts)	
C				

Page 83 of 101

