

HAC Test Report for Near Field Emissions IHDT56FQ1

Date of test: Date of Report:	Nov 16, 2005 – Nov 17, 2005 June 21, 2006
Laboratory:	Motorola Mobile Devices Business Product Safety & Compliance Laboratory 600 N. US Highway 45 Room: MW113 Libertyville, Illinois 60048
Test Responsible:	Katya Royzen Engineer
Statement of Compliance:	Motorola declares under its sole responsibility that portable cellular telephone FCC IHDT56FQ1 to which this declaration relates, complies with recommendations and guidelines FCC 47 CFR §20.19. The measurements were performed to ensure compliance to the ANSI C63.19-2006. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended below:
	(none)
Results Summary:	M Category = M3

©Motorola, Inc. 2006

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. INTRODUCTION
2. DESCRIPTION OF THE DEVICE UNDER TEST
3. TEST EQUIPMENT USED
4. VALIDATION
5. PROBE MODULATION FACTOR
6. TEST RESULTS7
APPENDIX 1: DETAILS OF THE WD'S SIGNAL11
APPENDIX 2: DETAILS JUSTIFYING THE CONVERSION TO PEAK
A2.1 Procedure for PMF measurements14
A2.2 0 Span Spectrum Plots for PMF measurements15
APPENDIX 3: HAC DISTRIBUTION PLOTS FOR VALIDATION
APPENDIX 4: HAC DISTRIBUTION PLOTS FOR E-FIELD AND H-FIELD
APPENDIX 5: MOTOROLA UNCERTAINTY BUDGET19
A5.1 Motorola Uncertainty Budget for RF HAC Testing20
A5.2 Probe Rotation Contributions to Isotropy Error20
APPENDIX 6: PICTURES OF TEST SETUP
APPENDIX 7: PROBE CALIBRATION CERTIFICATES24
APPENDIX 8: DIPOLE CHARACTERIZATION CERTIFICATE

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed Hearing Aid Compatibility (HAC) measurements for the portable cellular phone (FCC ID IHDT56FQ1). The portable cellular phone was tested in accordance with ANSI PC63.19-2006 standard. The test results presented herein clearly demonstrate compliance FCC 47 CFR § 20.19. This report demonstrates compliance for near field emissions only and not for the T-coil performance compliance.

2. Description of the Device Under Test

FCC ID Number	IHDT56FQ1				
Serial number	5281C085				
Mode(s) of Operation	800 CDMA 1900 CDMA BlueTooth				
Modulation Mode(s)	CDMA	CDMA	BlueTooth		
Maximum Output Power Setting	26.00dBm	25.00dBm	4.00dBm		
Duty Cycle	1:1	1:1	1:1		
Transmitting Frequency Rang(s)	824-849MHz 1851-1909MHz 2400 - 2483				
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype				
Device Category		Portable			

Table 1: Information for the Device Under Test

Note: If DUT contains Bluetooth Class II or Bluetooth Class I or WLAN device, the secondary transmitter was not enabled during testing. The intended use of the PCS transmitter does not include simultaneous operation when held to ear.

Test Equipment Used 3.

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.6) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the HAC measurements are taken within a shielded enclosure. The measurement uncertainty budget is given in Appendix 5. The list of calibrated equipment used for the measurements is shown below.

Table 2. Dosinetric System Equipment								
Description	Serial Number	Cal Due Date						
E-Field Probe ER3DV6R	SN 2244	7/20/2006						
H-Field Probe H3DV6	SN 6078	7/20/2006						
DAE3	SN 650	8/26/2006						
DAE3	SN 378	7/8/2006						
835 MHz Dipole CD835V3	SN 1042	6/23/2006						
1880 MHz Dipole CD1880V3	SN 1034	8/16/2006						

Table 2: Dosimetric System Equipment

Table 3: Additional Test Equipment							
Description	Serial Number	Cal Due Date					
Power Supply 6632B	US37475285	12/17/2005					
Signal Generator E4438C	MY45090104	8/4/2006					
Amplifier ZHL-42-SMA	N120299-24						
3db Attenuator 8491A	50579	12/27/2005					
Directional Coupler 778D	50790	8/29/2006					
Power Meter E4417A	MY45100140	9/2/2006					
Power Sensor #1 – E9323A	MY44420341	8/23/2006					
Power Sensor #2 - E9323A	MY44420342	8/23/2006					
10db attenuator 8491A	3929M50771	8/23/2006					
Spectrum Analyzer E4403B	US39440471	11/23/2006					

T-11. 2. A 1344. - I T - - 4 E ---- !-.

4. Validation

Validations of the DASY4 v4.6 test system were performed using the measurement equipment listed in Section 3.1. All validations occur in free space using the DASY4 test arch. Note that the 10mm probe to dipole separation is measured from the top edge of the dipole to the calibration reference point of the probe. SPEAG uses the center point of the probe sensor(s) as the reference point when establishing targets for their dipoles. Therefore, because SPEAG's dipoles and targets are used, it is appropriate to measure the 10mm separation distance to the center of the sensors as they do. This reference point was used for validation only. Validations were performed at 835 MHz and/or 1880 MHz. These frequencies are within each operating band and are within 2MHz of the mid-band frequency of the test device. The obtained results from the validations are displayed in the table below. The field contour plots are included in Appendix 3.

Validations were performed to verify that measured E-field and H-field values are within +/-25% from the target reference values provided by the manufacturer (Ref: Appendix 8). Per Section 4.3.2.1 of the C63.19 standard, "Values within +/-25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty." Therefore, the E- and H-Field dipole verification results, shown in Table 4, are in accordance with the acceptable parameters defined by the standard.

	Table 4: Dipole Measurement Summary								
Dipole	F (MHz)	Protocol	Input Power (mW)	E-Field Results (V/m)	Target for Dipole (V/m)	% Deviation			
SN 1042	835	CW	100	170.1	170	+0.1%			
SN 1034	1880	CW	100	130.75	134.8	-3.0%			

Table 4: Dipole Measurement Summary

Dipole	F (MHz)	Protocol	Input Power (mW)	H-Field Results (A/m)	Target for Dipole (A/m)	% Deviation
SN 1042	835	CW	100	0.489	0.439	+11.4%
SN 1034	1880	CW	100	0.453	0.454	-0.2%

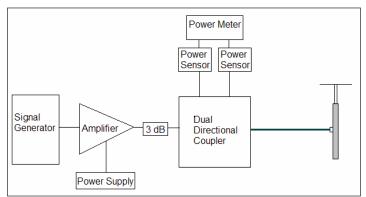


Figure 1: Setup for Validation

5. **Probe Modulation Factor**

After every probe calibration, the response of the probe to each applicable modulated signal (CDMA, GSM, etc) must be assessed at both 835 MHz and 1880 MHz. The response of the probe system to a CW field at the frequency(s) of interest is compared to its response to a modulated signal with equal peak amplitude. For each PMF assessment, a Signal Generator was used to replace the original CW signal with the desired modulated signal. The PMF results applicable to this test document are shown in Tables 5.

RF Field Probe Modulation Response was measured with the field probe and associated measurement equipment. The PMF was measured using a signal generator as follows:

- 1. Illuminate a dipole with a CW signal at the intended measured frequency.
- 2. Fix the probe at a set location relative to the dipole; typically located at the field reference point.
- 3. Record the reading of the probe measurement system of the CW signal.
- 4. Substitute a modulated signal of the same amplitude, using the same modulation as that used by the intended WD for the CW signal.
- 5. Record the reading of the probe measurement system of the modulated signal.
- 6 The ratio of the CW to modulated signal reading is the probe modulation factor.

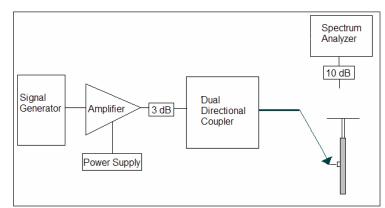


Figure 2a: Setup to Dipole

A spectrum analyzer was then used to set the peak amplitude of the modulated signal equal to the amplitude of the CW signal. The procedure, used to ensure that the amplitude is the same, is shown in Appendix 2. The 0 span spectrum plots are also provided in Appendix 2.

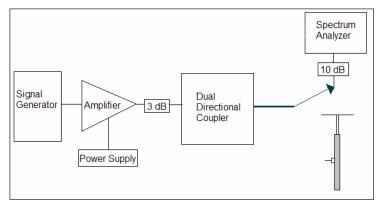


Figure 2b: Setup for Desired Peak Power using Spectrum Analyzer

f		Peak		-Field e SN 2244)	H-Field (Probe SN 6078)	
(MHz)	Protocol	Power (mW)	E-Field (V/m)	E-Field Modulation Factor	H-Field (A/m)	H-Field Modulation Factor
	CW	100	125.6		0.5043	
835	CDMA (full rate)	100	129.5	0.97	0.5403	0.93
	CDMA (1/8 rate)	100	48.65	2.58	0.2105	2.40
	АМ	100	79.08	1.59	0.3303	1.53
	CW	100	133.7		0.473	
1880	CDMA (full rate)	100	129.7	1.03	0.521	0.91
	CDMA (1/8 rate)	100	47.53	2.81	0.228	2.07
	АМ	100	80.02	1.67	0.3205	1.48

Table 5: PMF Measurement Summary

Note: PMF measurements were verified at WD's power as an input to the dipole (using signal generator).

6. Test Results

The phone was tested in all normal configurations for the ear use. When applicable, each configuration is tested with the antenna in its fully extended and fully retracted positions. These test configurations are tested at the high, middle and low frequency channels of each applicable operating mode; for example, GSM, CDMA, and TDMA.

The signal was setup by creating and maintaining an over the air connection between the DUT and an Agilent 8960 Wireless Communications Test Set. The CDMA radio is available on CDMA 2000(1X) and IS-95. The test equipment was configured to use "all up bits" for RC1 / SO2 on J-STD-008 for CDMA 1900 and TSB-84 for CDMA 800 MHz. The wideband and 0 span spectrum analyzer plots are shown in Appendix 1.

The DASY4 v4.6 measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The default settings for the grid spacing of the scan were set to 5mm as shown in the Field plots included in Appendix 3 and 4. The 5cm x 5cm area measurement grid is centered on the acoustic output of the device. The Test Arch provided by SPEAG is used to position the DUT. The WD reference plane is parallel to the device and contains the highest point on its contour in the area of the phone that normally rests against the user's ear. The measurement plane contains the nearest point on the probe sensor(s) relative to the WD. The pictures of the setup are included in Appendix 6.

The device is positioned such that the WD reference plane is located 10mm from, and parallel to, the measurement plane. This is in accordance with section 4.4 of the standard, which states that "The WD reference plane is a plane parallel with the front "face" of the WD and containing the highest point on its contour in the area of the phone that normally rests against the user's ear."

The following figure shows the position of the measurement grid with respect to the device under test.

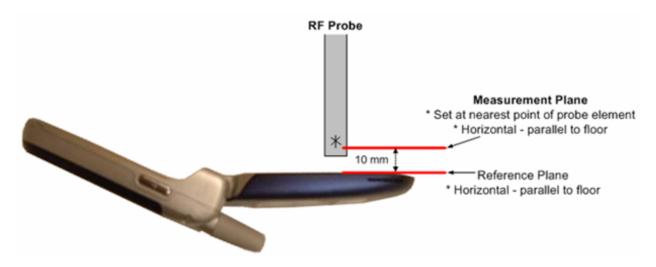


Figure 4: Clarification of Figure A-2 from the Standard

The HAC Rating results for E-Field and H-field are shown in Tables 6 and 9. Also shown are the measured conducted output powers, the measured drifts, excluded areas, and the peak fields. PMF measurements are taken from Section 5. The worst-case test conditions are indicated with **bold numbers** in the tables and are detailed in Appendix 4: HAC distribution plots for E-Field and H-Field.

Drift was measured using the typical DASY4 v4.6 measurement routines. The field is measured at the reference location (center of the ear piece) at the beginning of the test. Then after completion of the E or H field measurement, the probe returns to the same reference location and takes another measurement. The drift is the delta between these two values and is included in the test report scans.

Per SPEAG's recommendation, the phone plots in Appendix 4 use the standard GSM transmitter ratio 1:8 and standard CDMA transmitter ratio 1:1 as "Duty Cycle." Per SPEAG's recommendation, in order to account for probe modulation response, PMF is applied during the SEMCAD (post-processing) portion. PMF also appears in the phone plots in Appendix 4.

APPLICANT: MOTOROLA, INC.

FCC ID: IHDT56FQ1

CDMA 800 Emissions Limits				
Rating E-Field				
M3	199.5 – 354.8 V/m			
M4	< 199.5 V/m			

CDMA 1900 Emissions Limits				
Rating	E-Field			
M3	63.1 – 112.2 V/m			
M4	< 63.1 V/m			

 Table 6: HAC E-Field measurement results for the portable cellular telephone at highest possible output power (Full Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Conducted Output Power (dBm)	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (V/m)	Rating
Digital 800MHz		1013	26.13		0.008	6,8,9	98.1	M4
	Fixed	384	26.11	0.97	-0.028	3,6,9	98.7	M4
		777	25.84		0.005	2,3,6	97.8	M4
D: :- 1		25	25.10		0.070	2,3,6	54.2	M4
Digital 1900MHz	Fixed	600	25.09	1.03	-0.046	2,3,6	61.8	M4
1,00000000		1175	25.12		-0.081	2,3,6	67.6	M3

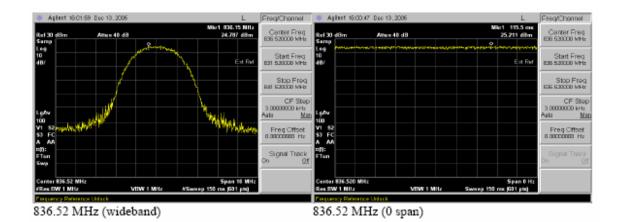
 Table 7: HAC E-Field measurement results for the portable cellular telephone at highest possible output power (1/8 Rate).

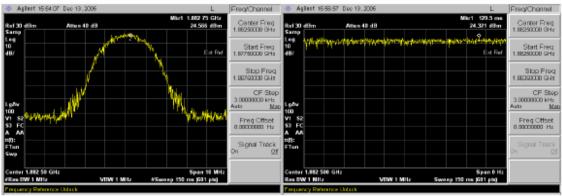
Frequency Band (MHz)	Antenna position	Channel Setting	Conducted Output Power (dBm)	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (V/m)	Rating
Digital 800MHz Fi	Fixed	1013	26.13	2.58	0.042	2,3,6	97.3	M4
		384	26.11		0.025	6,8,9	90.8	M4
		777	25.84		0.128	6,8,9	108.5	M4
D: :/ 1		25	25.10		-0.049	2,3,6	53.8	M4
Digital 1900MHz	Fixed	600	25.09	2.81	0.014	2,3,6	58.7	M4
170000000		1175	25.12		0.059	2,3,6	66.9	M3

CDMA 800 Emissions Limits		C
Rating	H-Field	R
M3	0.60 – 1.07 A/m	
M4	< 0.60 A/m	

CDMA 1900 Emissions Limits		
Rating	g H-Field	
M3	0.19 – 0.34 A/m	
M4 < 0.19 A/m		

Table 8: HAC H-Field measurement results for the portable cellular telephone
at highest possible output power (Full Rate).


Frequency Band (MHz)	Antenna position	Channel Setting	Conducted Output Power (dBm)	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (A/m)	Ratin g
D: :- 1		1013	26.13		0110	1,4	0.176	M4
Digital 800MHz	Fixed	384	26.11	0.93	0.188	4,7	0.177	M4
00011111		777	25.84		0.065	1,4	0.180	M4
D: :- 1		25	25.10		0.097	6,8,9	0.147	M4
Digital 1900MHz	Fixed	600	25.09	0.91	0.027	6,8,9	0.175	M4
1, COMINE		1175	25.12		0.037	6,8,9	0.193	M3


 Table 9: HAC H-Field measurement results for the portable cellular telephone at highest possible output power (1/8 Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Conducted Output Power (dBm)	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (A/m)	Ratin g
D: :/ 1		1013	26.13		0.147	1,4	0.167	M4
Digital 800MHz	Fixed	384	26.11	2.40	-0.055	4,7	0.158	M4
000000000		777	25.84		0.029	1,4	0.177	M4
D: :- 1		25	25.10		0.088	6,8,9	0.112	M4
Digital 1900MHz	Fixed	600	25.09	2.07	0.054	6,8,9	0.137	M4
TYTOTAL		1175	25.12		0.005	6,8,9	0.159	M4

Appendix 1

Details of the WD's signal

1882.5 MHz (wideband)

1882.5 MHz (0 span)

Appendix 2

Details justifying the conversion to peak

A2.1 Procedure for PMF measurements

- 1. Setup the HAC validation rack as you would for a normal CW HAC validation with forward power = 100mW
- 2. Setup the dipole and phantom as you would for a normal CW HAC validation.
- Open the "HAC Probe Mod Factor" template and verify the following parameters: Medium = "Air"; Communication System = "HAC – Dipole";

Ensure the proper probe & DAE are installed and laser aligned

- 4. MEASURE CW: Using the original CW signal, run the jobs in the "CW Measurement" procedure.
- 5. Do <u>not</u> turn off the signal generator power
- 6. Setting the CW Reference Level on the Spectrum Analyzer: To set the Reference level on the Spectrum Analyzer, remove the Validation Rack's Main Cable from the dipole and connect to the Spectrum Analyzer INPUT using a 10 dB attenuator and an adapter.
- 7. Set-Up the Spectrum Analyzer for the following Settings:

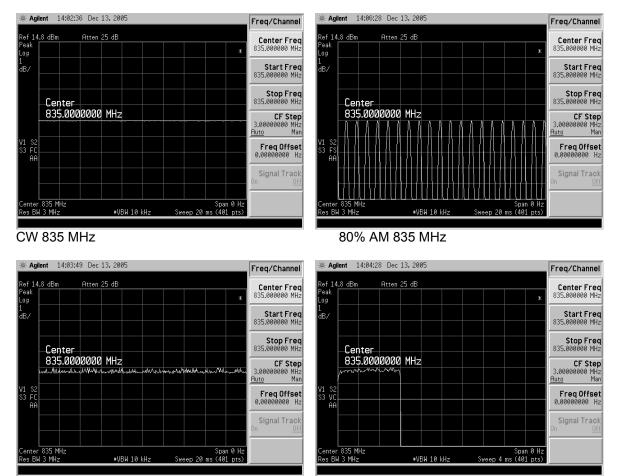
1 1	5
Frequency:	Freq. being tested (EX: 835/1880)
Span:	Zero Span
Res BW:	3 MHz
Video BW:	10 KHz
Sweep Time:	same as the table in step 9.2
Scale:	1dB
Detector:	PEAK / Manual

8. Adjust REF level until the CW signal is aligned with the Center Line (approx. 15dB). NOTE: After this point, the Reference Line must remain fixed. Do not change it.

9. MEASURE THE MODULATED SIGNAL(S):

- 9.1. Change the signal generator to the desired modulation.
- 9.2. Set the Spectrum Analyzer Sweep Time to the appropriate setting.

1	11 1
Modulation	Sweep Time
CW	20 msec
GSM	5 msec
CDMA	5 msec
TDMA	20 msec
80%AM	20 msec


- 9.3. With the Main cable still connected to the Spectrum Analyzer, adjust the amplitude of the power on the signal generator so that the PEAK of the modulated signal is at the CW Reference Line:
 - 9.3.1 On the Spectrum Analyzer, press the [View Trace] button and then select (Max Hold), this will show only the Peak output.

9.3.2 Press (Clear Write) and then (Max Hold) each time an amplitude adjustment is made.

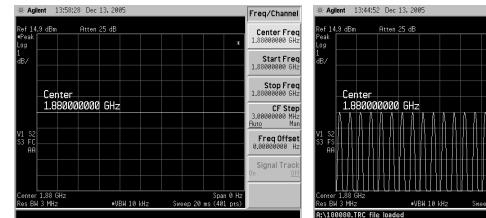
- 9.4. Allow the Max Hold line to stabilize. Then check that the highest peak of the Max Hold line corresponds with the CW Reference Line (without going over). If not correct, repeat section 6.
- 9.5. Remove the validation main cable from the spectrum analyzer and re-connect it to the Dipole.

10. Repeat 9 until all remaining modulation(S) have been completed.

A2.2 0 Span Spectrum Plots for PMF measurements

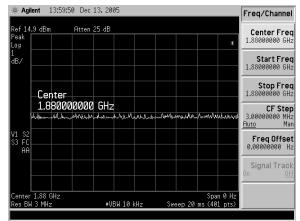
CDMA 835 MHz (full rate)

CDMA 835 MHz (1/8 rate)

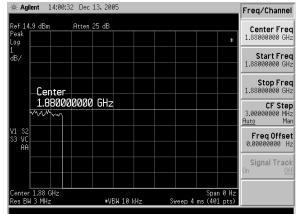

CW 1880 MHz

FCC ID: IHDT56FQ1

Freq/Channel


Center Freq 1.88000000 GHz

Start Freq 1.88000000 GHz



Stop Freq 1.8800000 GHz CF Step 3.00000000 MHz <u>Auto</u>Man Freq Offset 0.00000000 Hz Signal Track Span 0 Hz Sweep 20 ms (401 pts)

80% AM 1880 MHz

CDMA 1880 MHz (full rate)

CDMA 1880 MHz (1/8 rate)

Appendix 1

HAC distribution plots for Validation

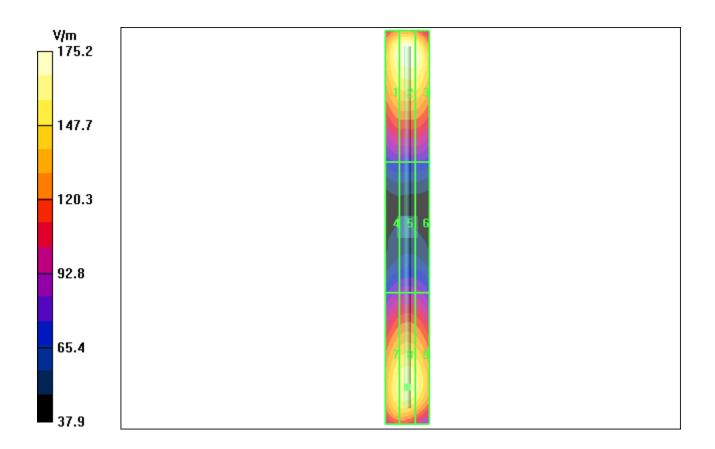
DUT: HAC-Dipole 835 MHz; Type: D835V3; Procedure Notes: 835 MHz HAC Validation / Dipole Sn# 1042; Input Power = 100 mW; Modulation: CW

Communication System: CW - HAC; Frequency: 835 MHz;

Duty Cycle: 1:1; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

- Probe: ER3DV6R SN2244; ConvF(1, 1, 1); Calibrated: 7/20/2005
- Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn650; Calibrated: 8/26/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA; ;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160


E Scan - ER probe center 10mm above CD835 Dipole/Hearing Aid Compatibility Test

(**41x361x1**): Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00; Reference Value = 124.4 V/m; Power Drift = 0.059 dB Maximum value of Total (interpolated) = 175.2 V/m

Average value of Total (interpolated) = (175.2 + 165.0) / 2 = 170.1 V/m

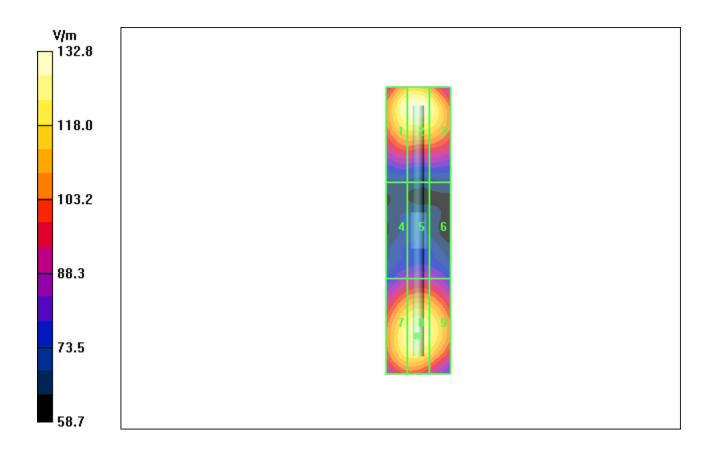
Peak E-field in V/III			
Grid 1	Grid 2	Grid 3	
170.4	175.2	172.0	
Grid 4	Grid 5	Grid 6	
88.0	90.8	89.4	
Grid 7	Grid 8	Grid 9	
162.2	165.0	161.5	

Peak E-field in V/m

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Procedure Notes: 1880 MHz HAC Validation / Dipole Sn# 1034; Input Power = 100 mW; Modulation: CW

Communication System: CW - HAC; Frequency: 1880 MHz; Duty Cycle: 1:1; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:


- Probe: ER3DV6R SN2244; ConvF(1, 1, 1); Calibrated: 7/20/2005
- Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn650; Calibrated: 8/26/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA; ;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

E Scan - ER probe center 10mm above CD1880 Dipole/Hearing Aid Compatibility Test (**41x181x1):** Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00; Reference Value = 131.3 V/m; Power Drift = -0.003 dB Maximum value of Total (interpolated) = 132.8 V/m

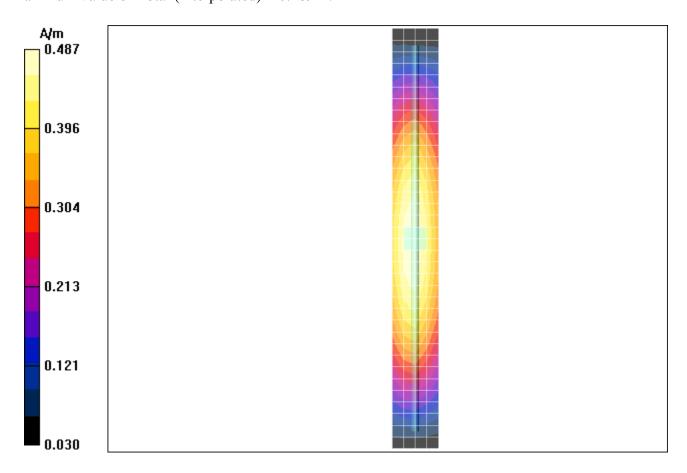
Average value of Total (interpolated) = (132.8 + 128.7) / 2 = 130.75 V/m

Grid 1	Grid 2	Grid 3	
130.8	132.8	127.4	
Grid 4	Grid 5	Grid 6	
86.5		87.9	
Grid 7	89.3 Grid 8		

Peak E-field in V/m

DUT: HAC-Dipole 835 MHz; Type: D835V3; Procedure Notes: 835 MHz HAC Validation / Dipole Sn# 1042; Input Power = 100 mW; Modulation: CW

Communication System: CW - HAC; Frequency: 835 MHz;


Duty Cycle: 1:1; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

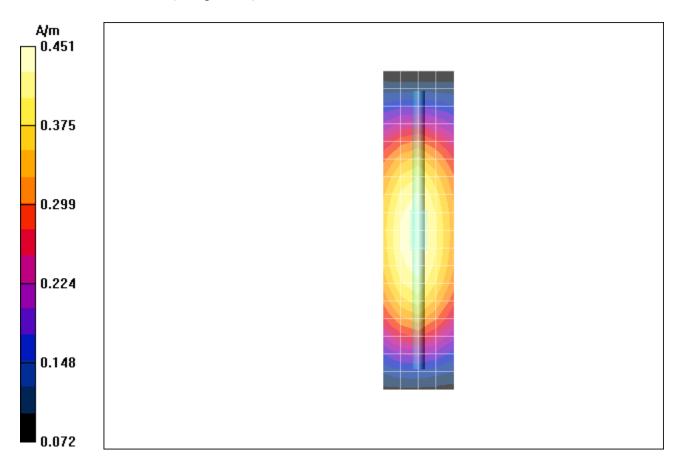
- Probe: H3DV6 SN6078; ; Calibrated: 7/20/2005
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn378; Calibrated: 7/8/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA; ;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

H Scan - H3DV6 probe center 10mm above CD835 Dipole/Hearing Aid Compatibility

Test (41x361x1): Measurement grid: dx=5mm, dy=5mm Probe Modulation Factor = 1.00; Reference Value = 0.517 A/m; Power Drift = 0.028 dB Maximum value of Total (interpolated) = 0.489 A/m

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Procedure Notes: 1880 MHz HAC Validation / Dipole Sn# 1034; Input Power = 100 mW; Modulation: CW

Communication System: CW - HAC; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³


DASY4 Configuration:

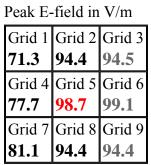
- Probe: H3DV6 SN6078; ; Calibrated: 7/20/2005
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn378; Calibrated: 7/8/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA; ;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

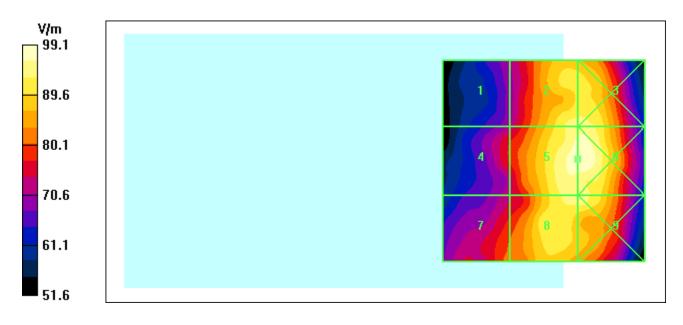
H Scan - H3DV6 probe center 10mm above CD1880 Dipole/Hearing Aid Compatibility

Test (41x181x1): Measurement grid: dx=5mm, dy=5mm

Probe Modulation Factor = 1.00; Reference Value = 0.476 A/m; Power Drift = -0.046 dB; Maximum value of Total (interpolated) = 0.453 A/m

Appendix 2

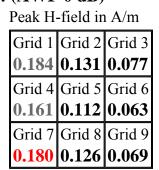

HAC distribution plots for E-Field and H-Field

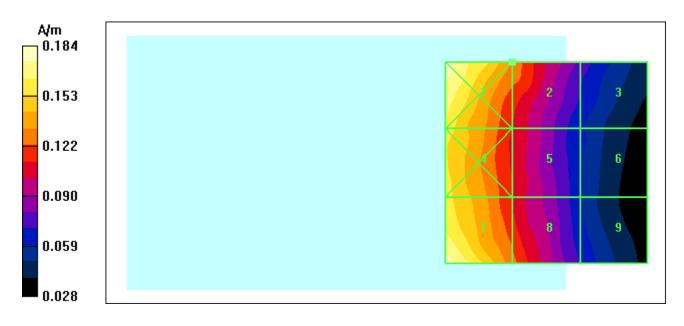

Serial: 5281C085; Procedure Notes: Pwr Step: Always UP; Antenna Position: INTERNAL; Vocoder Rate: FULL Rate; Communication System: CDMA 835; Frequency: 836.52 MHz; Communication System Channel Number: 384; Duty Cycle: 1:1; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m^{3;} DASY4 Configuration:

- Probe: ER3DV6R SN2244; ConvF(1, 1, 1); Calibrated: 7/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn650; Calibrated: 8/26/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

E Scan - ER sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test

(101x101x1): Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 98.7 V/m; Probe Modulation Factor = 0.970; Reference Value = 100.2 V/m; Power Drift = -0.028 dB; Hearing Aid Near-Field Category: M4 (AWF 0 dB)

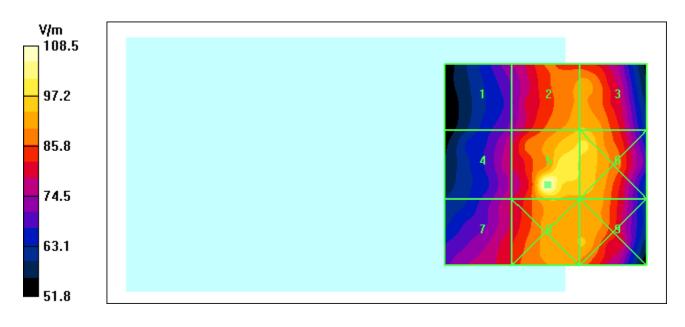



Serial: 5281C085; Procedure Notes: Pwr Step: Always UP; Antenna Position: INTERNAL; Vocoder Rate: FULL Rate; Communication System: CDMA 835; Frequency: 848.31 MHz; Communication System Channel Number: 777; Duty Cycle: 1:1; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³; DASY4 Configuration:

- Probe: H3DV6 SN6078; ; Calibrated: 7/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE3 Sn378; Calibrated: 7/8/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

H Scan - H3DV6 sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test

(101x101x1): Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 0.180 A/m; Probe Modulation Factor = 0.930; Reference Value = 0.093 A/m; Power Drift = 0.065 dB; Hearing Aid Near-Field Category: M4 (AWF 0 dB)

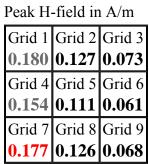

Serial: 5281C085; Procedure Notes: Pwr Step: Always UP; Antenna Position: INTERNAL; Vocoder Rate: 1/8 Rate; Communication System: CDMA 835, 1/8 Vocoder (HAC); Frequency: 848.31 MHz; Communication System Channel Number: 777; Duty Cycle: 1:8; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³; DASY4 Configuration:

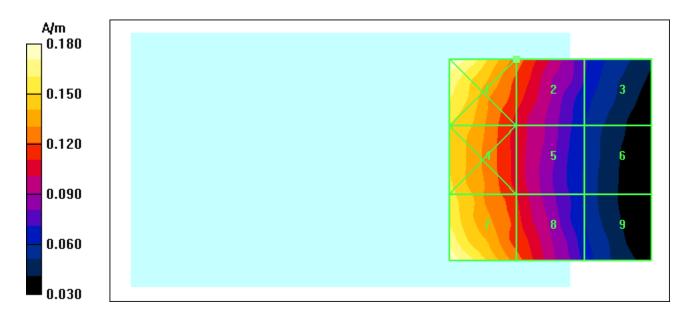
- Probe: ER3DV6R SN2244; ConvF(1, 1, 1); Calibrated: 7/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn650; Calibrated: 8/26/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

E Scan - ER sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test

(101x101x1): Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 108.5 V/m; Probe Modulation Factor = 2.58; Reference Value = 37.6 V/m; Power Drift = 0.128 dB; Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m			
Grid 1	Grid 2	Grid 3	
74.7	93.8	93.9	
Grid 4	Grid 5	Grid 6	
78.6	108.5	98.2	
Grid 7	Grid 8	Grid 9	
82.4	94.5	93.9	

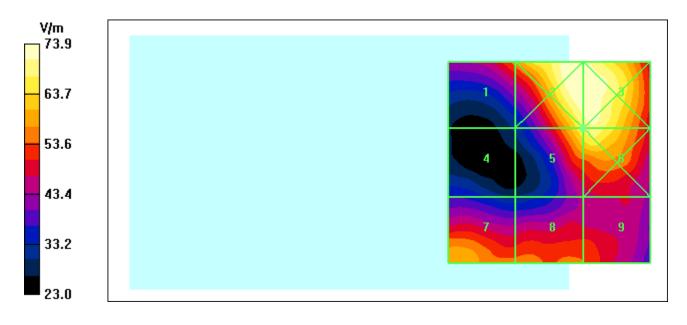



Serial: 5281C085; Procedure Notes: Pwr Step: Always UP; Antenna Position: INTERNAL; Vocoder Rate: 1/8 Rate; Communication System: CDMA 835, 1/8 Vocoder (HAC); Frequency: 848.31 MHz; Communication System Channel Number: 777; Duty Cycle: 1:8; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³; DASY4 Configuration:

- Probe: H3DV6 SN6078; ; Calibrated: 7/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE3 Sn378; Calibrated: 7/8/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA; Serial:
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

H Scan - H3DV6 sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test

(101x101x1): Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 0.177 A/m; Probe Modulation Factor = 2.40; Reference Value = 0.035 A/m; Power Drift = 0.029 dB; Hearing Aid Near-Field Category: M4 (AWF 0 dB)

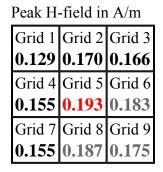

Serial: 5281C085; Procedure Notes: Pwr Step: Always UP; Antenna Position: INTERNAL; Vocoder Rate: FULL Rate; Communication System: CDMA 1900; Frequency: 1908.75 MHz; Communication System Channel Number: 1175; Duty Cycle: 1:1; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³; DASY4 Configuration:

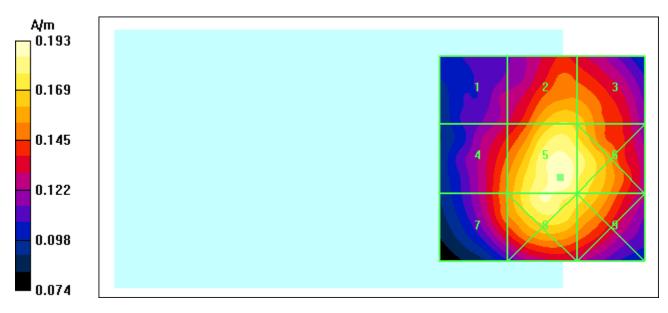
- Probe: ER3DV6R SN2244; ConvF(1, 1, 1); Calibrated: 7/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn650; Calibrated: 8/26/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

E Scan - ER sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test

(101x101x1): Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 67.6 V/m; Probe Modulation Factor = 1.03; Reference Value = 36.6 V/m; Power Drift = -0.081 dB; Hearing Aid Near-Field Category: M3 (AWF 0 dB)

Peak E-field in V/m			
Grid 1	Grid 2	Grid 3	
56.1	73.9	73.0	
Grid 4	Grid 5	Grid 6	
36.6	67.6	69.6	
Grid 7	Grid 8	Grid 9	
60.4	55.5	53.9	

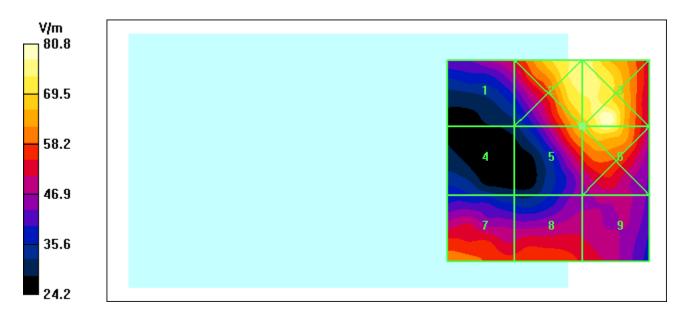



Serial: 5281C085; Procedure Notes: Pwr Step: Always UP Antenna Position: INTERNAL; Vocoder Rate: FULL Rate; Communication System: CDMA 1900; Frequency: 1908.75 MHz; Communication System Channel Number: 1175; Duty Cycle: 1:1; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³; DASY4 Configuration:

- Probe: H3DV6 SN6078; ; Calibrated: 7/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE3 Sn378; Calibrated: 7/8/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

H Scan - H3DV6 sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 0.193

A/m; Probe Modulation Factor = 0.910; Reference Value = 0.208 A/m; Power Drift = 0.037 dB; Hearing Aid Near-Field Category: M3 (AWF 0 dB)

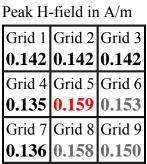

Serial: 5281C085; Procedure Notes: Pwr Step: Always UP; Antenna Position: INTERNAL; Vocoder Rate: 1/8 Rate; Communication System: CDMA 1900, 8th Vocoder; Frequency: 1908.75 MHz; Communication System Channel Number: 1175; Duty Cycle: 1:8; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³; DASY4 Configuration:

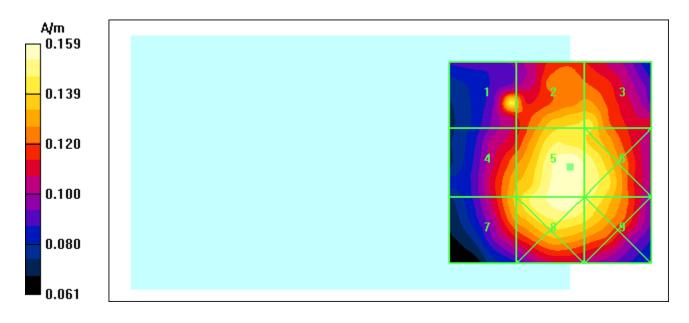
- Probe: ER3DV6R SN2244; ConvF(1, 1, 1); Calibrated: 7/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn650; Calibrated: 8/26/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

E Scan - ER sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test

(101x101x1): Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 66.9 V/m; Probe Modulation Factor = 2.81; Reference Value = 12.9 V/m; Power Drift = 0.059 dB; Hearing Aid Near-Field Category: M3 (AWF 0 dB)

Peak E-field in V/m			
Grid 1	Grid 2	Grid 3	
52.5	74.8	80.8	
Grid 4	Grid 5	Grid 6	
37.7	66.9	76.8	
Grid 7	Grid 8	Grid 9	
60.5	56.8	53.6	




Serial: 5281C085; Procedure Notes: Pwr Step: Always UP; Antenna Position: INTERNAL; Vocoder Rate: 1/8 Rate; Communication System: CDMA 1900, 8th Vocoder; Frequency: 1908.75 MHz; Communication System Channel Number: 1175; Duty Cycle: 1:8; Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³; DASY4 Configuration:

- Probe: H3DV6 SN6078; ; Calibrated: 7/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE3 Sn378; Calibrated: 7/8/2005
- Phantom: HAC Arch, Rev.1 (21-Sept-05); Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

H Scan - H3DV6 sensor tip 10mm above WD Ref/Hearing Aid Compatibility Test

(101x101x1): Measurement grid: dx=5mm, dy=5mm; Maximum value of peak Total field = 0.159 A/m; Probe Modulation Factor = 2.07; Reference Value = 0.077 A/m; Power Drift = 0.005 dB; Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Appendix 5

Measurement Uncertainty Budget

A5.1 Motorola Uncertainty Budget for RF HAC Testing

Т

TABLE A5.1: Motorola Uncertainty Budget							
UNCERTAINTY DESCRIPTION	Uncertainty Value (+/- %)	Prob. Dist.	Div.	(ci) E	(ci) H	Std. Unc. E	Std. Unc. H
MEASUREMENT SYSTEM							
Probe Calibration	5.1%	Ν	1.0000	1	1	5.1%	5.1%
Axial Isotropy	7.8%	R	1.7321	1	0.786	4.5%	3.5%
Sensor Displacement	16.5%	R	1.7321	1	0.145	9.5%	1.4%
Boundary Effects	2.4%	R	1.7321	1	1	1.4%	1.4%
Linearity	4.7%	R	1.7321	1	1	2.7%	2.7%
Scaling to Peak Envelope Power	2.0%	R	1.7321	1	1	1.2%	1.2%
System Detection Limit	1.0%	R	1.7321	1	1	0.6%	0.6%
Readout Electronics	0.3%	Ν	1.0000	1	1	0.3%	0.3%
Response Time	0.8%	R	1.7321	1	1	0.5%	0.5%
Integration Time	2.6%	R	1.7321	1	1	1.5%	1.5%
RF Reflections	5.6%	R	1.7321	1	1	3.2%	3.2%
Probe Positioner	1.2%	R	1.7321	1	0.67	0.7%	0.5%
Probe Positioning	4.7%	R	1.7321	1	0.67	2.7%	1.8%
Extrap. & Interpolation	1.0%	R	1.7321	1	1	0.6%	0.6%
TEST SAMPLE RELATED							
Total Device Positioning	3.2%	R	1.7321	1	1.306	1.8%	2.4%
Device Holder & Phantom	2.4%	R	1.7321	1	1	1.4%	1.4%
Power Drift	5.0%	R	1.7321	1	1	2.9%	2.9%
PHANTOM AND SETUP RELATED							
Phantom Thickness	2.4%	R	1.7321	1	0.67	1.4%	0.9%
Combined Std.Uncertainty						13.6%	9.2%
Expanded Std. Uncertainty on Power						27.2%	18.4%

CARLE	151.	Matarala	Uncertainty	Rudget
ADLL	A3.1.	within	Uncertainty	Duugei

A5.2 Probe Rotation Contributions to Isotropy Error

Probe rotation data was taken "for special focus on spherical isotropicity in measurement uncertainty and perturbation of EM fields." This data was taken at the interpolated maximum and directly accounted for in the uncertainty budget as "Axial Isotropy." Thirteen mobile devices were used to determine the probe isotropy uncertainty factors in section A4.1. Based on the resulting 82 E-Field probe rotations and 82 H-Field probe rotations, the upper 95% confidence interval value was calculated for each. These values represent a conservative assessment of the effect of the probe isotropy and have been appropriately included in the respective E- and Huncertainty budgets.

TABLE A5.2: Probe Rotation Data Summary							
	AVE	ST.DEV	Sample Size (n)	2σ	(ci)	Standard Uncertainty	
E-field	4.4%	1.7%	82	7.8%	1	4.5%	
H-field	3.8%	1.2%	82	6.1%	0.786	3.5%	

Isotropy error measurements were taken for 13 products across the respective frequency bands. The +2o values of all measurements was used as a worst case value for the uncertainty budget. Any significant differences between bands were also evaluated.

Appendix 6

Pictures of Test Setup

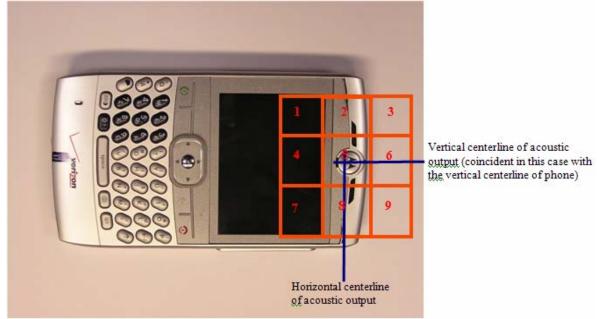


Figure A6-1. Phone Open - Orientation of Wireless Device and Measurement Plane

Figure A6-2. Views from the front

APPLICANT: MOTOROLA, INC.

FCC ID: IHDT56FQ1

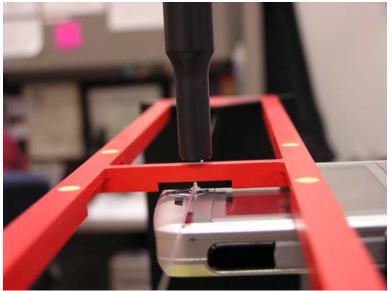


Figure A6-3. Views from the side

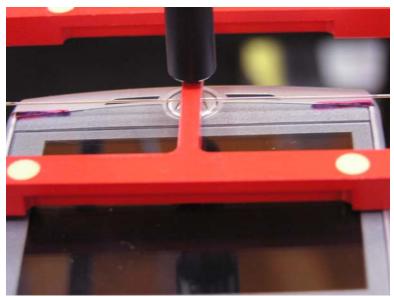


Figure A6-4. Views from the front

Appendix 5

Probe Calibration Certificates

SWISS

S

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

÷.

٠.

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates				Accreditation No.: SCS 108		
Client	Motorola MDb		Certific	ate No: ER3-2244_Jul05		
CALI	SITANION (5			
Object		ER3DV6R - SN:	2244			
Calibratior	n procedure(s)	QA CAL-02.v4 Calibration proceevaluations in ai	edure for E-field probes optin r	nized for close near field		
Calibratior	n date:	July 20, 2005				
Condition	of the calibrated item	In Tolerance				
		•	tional standards, which realize the phys probability are given on the following pa			
All calibrat	tions have been conduc	ted in the closed laborate	ory facility: environment temperature (22	2 ± 3)°C and humidity < 70%.		
Calibratior	n Equipment used (M&T	E critical for calibration)				
Primary S	tandards	ID #	Cal Date (Calibrated by, Certificate	No.) Scheduled Calibration		
	ter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)			
Power ser	nsor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	-		
Power ser	nsor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	•		
Reference	3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251-00403	•		
Reference	20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)			
Reference	e 30 dB Attenuator	SN: S5129 (30b)	10-Aug-04 (METAS, No. 251-00404	-		
Reference	Probe ER3DV6	SN: 2328	6-Oct-04 (SPEAG, No. ER3-2328_0	Dct04) Oct-05		
DAE4		SN: 907	21-Jun-05 (SPEAG, No. DAE4-907	_Jun05) Jun-06		
Secondary	y Standards	ID #	Check Date (in house)	Scheduled Check		
RF genera	ator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check	Dec-03) In house check: Dec-05		
_	nalyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check	-		
		Name	Function	Signature /		
Calibrated	by:	Nico Vetterli	Laboratory Technician	////		
Approved	by:	Katja Pokovic	Technical Manager	, Asii latza		

Issued: July 20, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
NORMx,y,z	sensitivity in free space
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	artheta rotation around an axis that is in the plane normal to probe axis (at
Connector Angle	measurement center), i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-1996, " IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 𝔅 = 0 for XY sensors and 𝔅 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- *Connector Angle*: The angle is assessed using the information gained by determining the *NORMx* (no uncertainty required).

Probe ER3DV6R

SN:2244

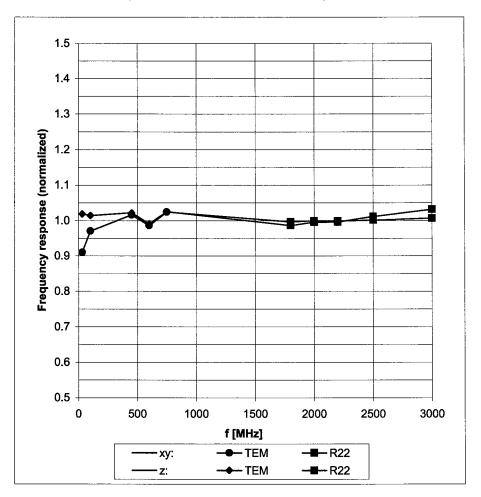
Manufactured: Last calibrated: Recalibrated: February 1, 2000 September 19, 2003 July 20, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

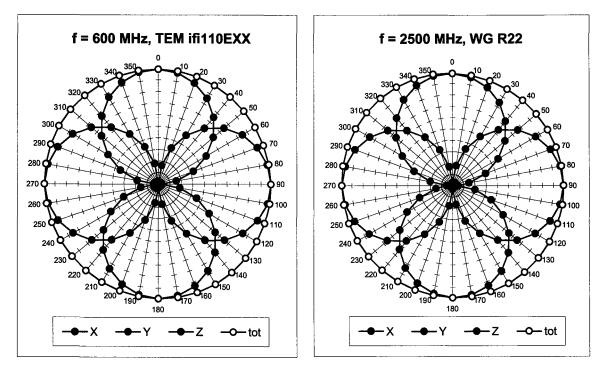
.

DASY - Parameters of Probe: ER3DV6R SN:2244

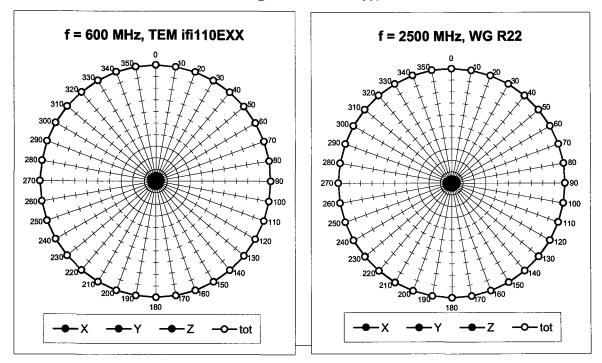

Sensitiv	vity in Free S	pace [µV/(V/m) ²]	Diode Co	ompression ^A
	NormX	1.81 ± 10.1 % (k=2)	DCP X	96 mV
	NormY	1.88 ± 10.1 % (k=2)	DCP Y	96 mV
	NormZ	2.02 ± 10.1 % (k=2)	DCP Z	98 mV
Freque	ncy Correctio	n		
	х	0.0		
	Y	0.0		
	Z	0.0		
Sensor	Offset	(Probe Tip to Sensor Cente	r)	
	х	2.5 mm		
	Υ	2.5 mm		
	Z	2.5 mm		
Connec	ctor Angle	211 °		

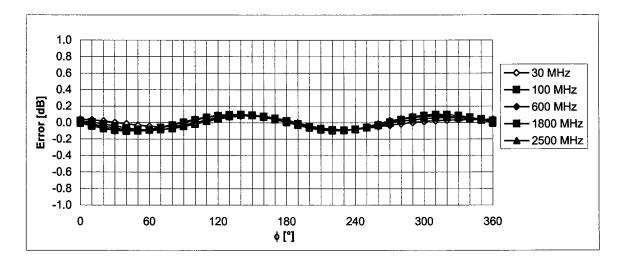
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A numerical linearization parameter: uncertainty not required

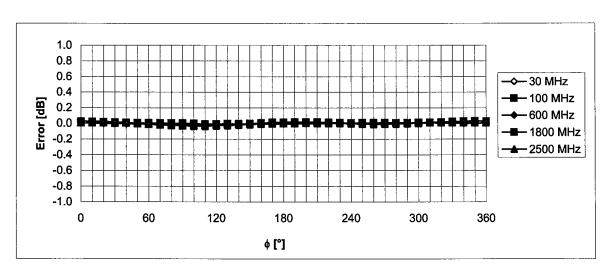

.

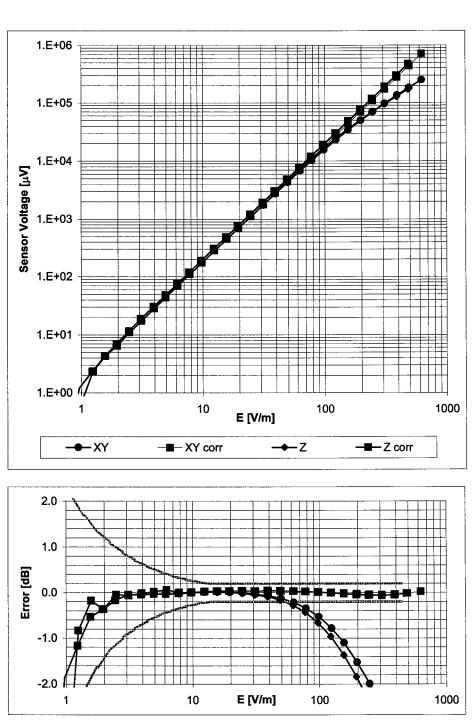
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Receiving Pattern (ϕ), ϑ = 90°


Receiving Pattern (ϕ **),** ϑ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ **),** ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(E-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

÷.

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Motorola MDb		Certificate:No: H	13-6078_Jul05
GAUGRANON	Heisahle (67.VI	E	
Object	H3DV6 - SN:607	78	
Calibration procedure(s)	QA CAL-03.v4 Calibration proceeding evaluations in ai	edure for H-field probes optimized for ir	r close near field
Calibration date:	July 20, 2005		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	ertainties with confidence	ational standards, which realize the physical units o probability are given on the following pages and ar cory facility: environment temperature (22 ± 3)°C an	re part of the certificate.
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251-00403)	Aug-05
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-04 (METAS, No. 251-00404)	Aug-05
Reference Probe H3DV6	SN: 6182	6-Oct-04 (SPEAG, No. H3-6182_Oct04)	Oct-05
DAE4	SN: 907	21-Jun-05 (SPEAG, No. DAE4-907_Jun05)	Jun-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	In house check: Dec-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov 05
	Name	Function	
Calibrated by:	Nico Vetterii	Laboratory Technician	X/A
Approved by:	Katja Pokovic	Zechnical Manager	What I have
			Issued: July 20, 2005

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Glossary:	
NORMx,y,z	sensitivity in free space
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization &	ϑ rotation around an axis that is in the plane normal to probe axis (at
Connector Angle	measurement center), i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-1996, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", 1996.

Methods Applied and Interpretation of Parameters:

- X,Y,Z_a0a1a2: Assessed for E-field polarization θ = 90 for XY sensors and θ = 0 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- *Connector Angle*: The angle is assessed using the information gained by determining the *X_a0a1a2* (no uncertainty required).

Probe H3DV6

SN:6078

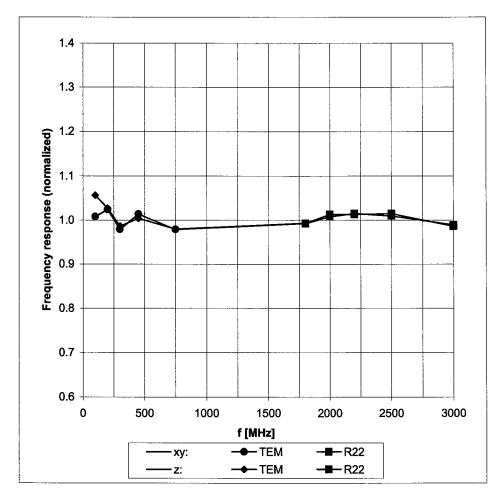
Manufactured: Last calibrated: Recalibrated: October 2, 2000 October 24, 2000 July 20, 2005

Calibrated for DASY Systems

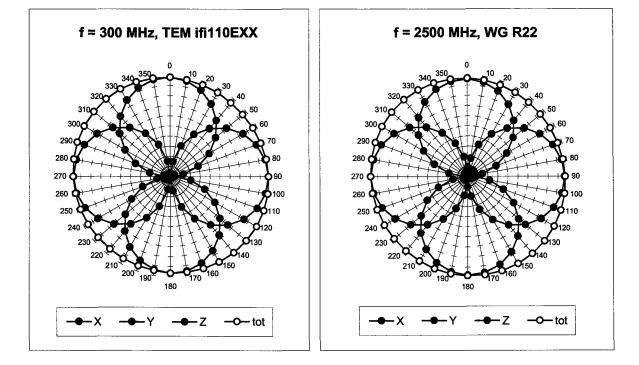
(Note: non-compatible with DASY2 system!)

.

DASY - Parameters of Probe: H3DV6 SN:6078

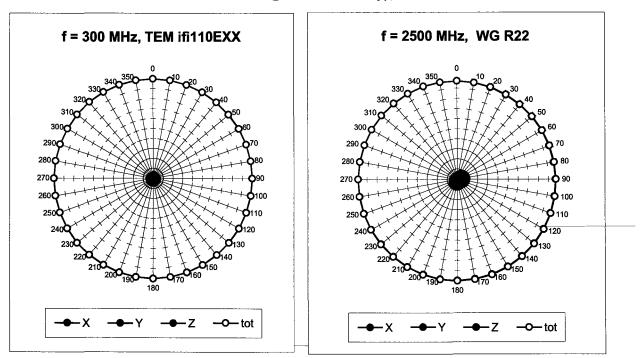

Sensitivity in Fr	ee Space	[A/m / √(µV))]
	a0	a1 a	a2
Х	2.839E-03	-2.570E-4	4.089E-5 ± 5.1 % (k=2)
Y	2.687E-03	-1.328E-4	4.685E-6 ± 5.1 % (k=2)
Z	3.031E-03	-2.036E-4	-2.215E-5 ± 5.1 % (k=2)
Diode Compres	sion ¹		
DCP X 8	6 mV		
DCPY 8	6 mV		
DCPZ 8	7 mV		
Sensor Offset		(Probe Tip to	Sensor Center)
x		3.0 I	mm
Y		3.0 (mm
Z		3.0 ו	mm
Connector Ang	le	143 '	5

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

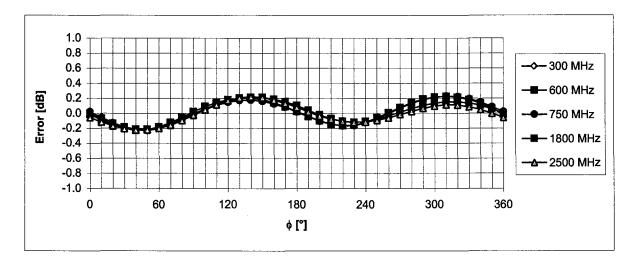

¹ numerical linearization parameter: uncertainty not required

Frequency Response of H-Field

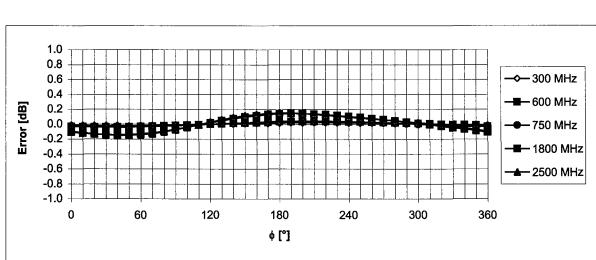
(TEM-Cell:ifi110, Waveguide R22)



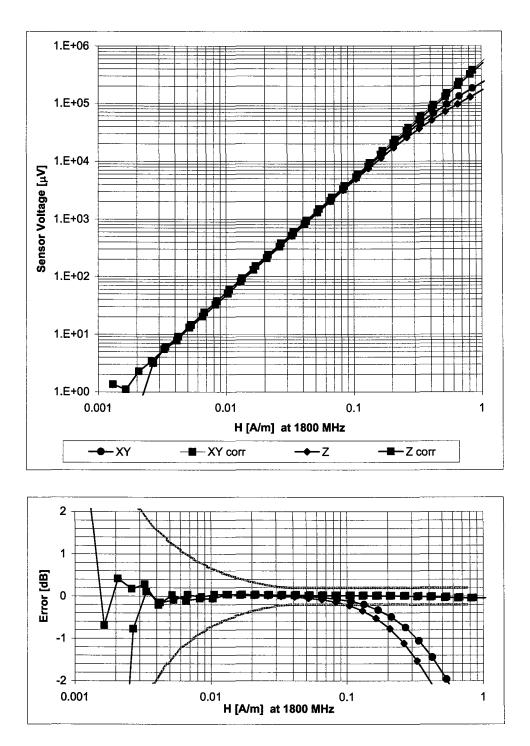
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), ϑ = 90°

Receiving Pattern (ϕ **),** ϑ = 0°


÷.

۰.


Receiving Pattern (ϕ **),** ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ **),** ϑ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Appendix 6

Dipole Characterization Certificate

		8.0051		and Sector and Sector	
Client	Motorola	MUD			
			アンション		

Certificate No: CD1880V3-1034_Aug05

CALIBRATION CERTIFICATE

Object	CD1880V3 - SN: 1034
Calibration procedure(s)	QA CAL-20.v3 Calibration procedure for dipoles in air
Calibration date:	August 16, 2005
Condition of the calibrated item	In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted at an environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	12-Oct-04 (METAS, No. 251-00412)	Oct-05
Power sensor HP 8481A	US37292783	12-Oct-04 (METAS, No. 251-00412)	Oct-05
20 dB Attenuator	SN: 5086 (20g)	11-Aug-05 (METAS, No 251-00498)	Aug-06
10 dB Attenuator	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-4419B	GB43310788	10-Aug-03 (SPEAG, in house check Jan-04)	In house check: Oct-05
Power sensor HP 8481A	MY41092312	10-Aug-03 (SPEAG, in house check Jan-04)	In house check: Oct-05
Power sensor HP 8481A	MY41093315	10-Aug-03 (SPEAG, in house check Jan-04)	In house check: Oct-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov-05
RF generator R&S SMT06	1039.2000.06	26-Jul-04 (SPEAG, in house check Jul-04)	In house check: Jan-06
DAE4	SN: 660	16-Dec-04 (SPEAG, No. DAE4-660_Dec04)	Calibration, Dec-05
Probe ER3DV6	SN: 2336	20-Jan-05 (SPEAG, No. ER3-2336_Jan05)	Calibration, Jan-06
Probe H3DV6	SN: 6065	10-Dec-04 (SPEAG, No. H3-6065-Dec04)	Calibration, Dec-05
	Name	Function	Signature
Calibrated by:	Mike Meili	Laboratory Technician	M.Theili
Approved by:	Fin Bomholt	Technical Director	Bmhell
			Issued: August 18, 2005
This calibration certificate is issu	ied as an intermediate so	lution until the specific calibration procedure is sub	mitted and accepted in the frame of

the accreditation of the Calibration Laboratory of Schmid & Partner Engineering AG (based on ISO/IEC 17025 International Standard)

Zeughausstrasse 43, 8004 Zurich, Switzerland

References

 ANSI-PC63.19-2001 (Draft 3.x, 2005)
 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections.
 It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.

.

 H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point.

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.6 B9
DASY PP Version	SEMCAD	V1.8 B151
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.454 A/m
Uncertainty for LI field measurement: 8 20/ (k=2)	· · · · · · · · · · · · · · · · · · ·	

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured above high end	100 mW forward power	135.4 V/m
Maximum measured above low end	100 mW forward power	134.2 V/m
Averaged maximum above arm	100 mW forward power	134.8 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

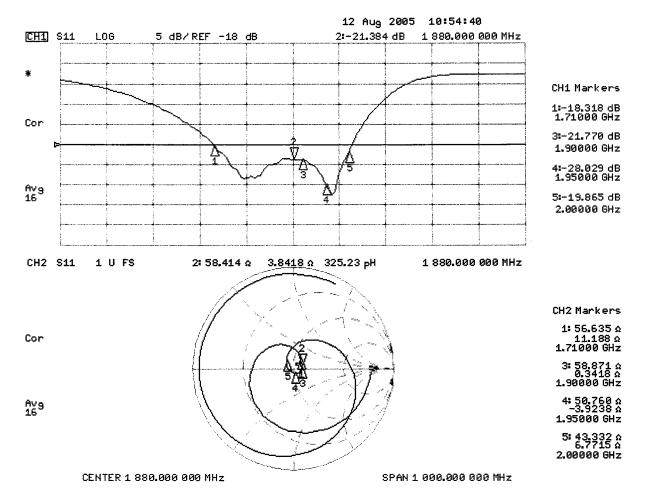
3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MHz	18.3 dB	(56.6 + j11.2) Ohm
1880 MHz	21.4 dB	(58.4 + j3.8) Ohm
1900 MHz	21.8 dB	(58.9 + j0.3) Ohm
1950 MHz	28.0 dB	(50.8 – j3.9) Ohm
2000 MHz	19.9 dB	(43.3 + j6.8) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

.

۰.

.

.

•

.

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1034

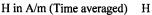
Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: H Dipole Section

DASY4 Configuration:

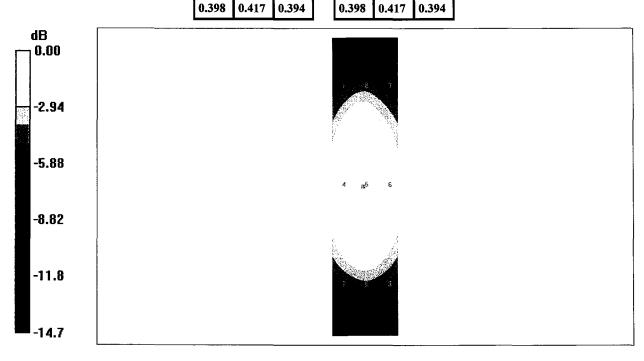
- Probe: H3DV6 - SN6065; Calibrated: 12/10/2004
- Sensor-Surface: (Fix Surface) •
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004 •
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial: 1002 ٠
- Measurement SW: DASY4, V4.6 Build 9; Postprocessing SW: SEMCAD, V1.8 Build 151 •

H Scan 10mm above CD1880V3/Hearing Aid Compatibility Test (41x181x1):

Grid 1


0.397

Grid 4


0.434

Grid 7

Measurement grid: dx=5mm, dy=5mm Maximum value of Total field (slot averaged) = 0.454 A/mReference Value = 0.481 A/m; Power Drift = 0.01 dBHearing Aid Near-Field Category: M2 (AWF 0 dB)

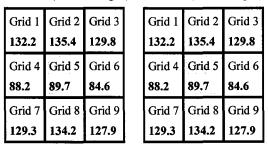
H in A/m (Slot averaged) Grid 2 Grid 3 Grid 1 Grid 2 Grid 3 0.417 0.390 0.397 0.417 0.390 Grid 5 Grid 6 Grid 4 Grid 5 Grid 6 0.454 0.429 0.434 0.454 0.429 Grid 8 Grid 9 Grid 7 Grid 8 Grid 9 0.417 0.394 0.398 0.417 0.394

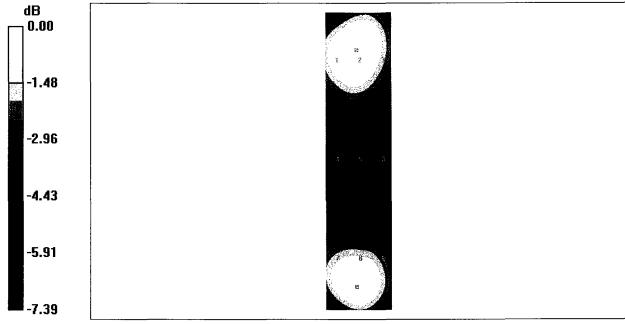
 $0 \, dB = 0.454 \, A/m$

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1034

Communication System: CW; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: E Dipole Section


DASY4 Configuration:


- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 1/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 9; Postprocessing SW: SEMCAD, V1.8 Build 151

E Scan 10mm above CD1880V3/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of Total field (slot averaged) = 135.4 V/m Reference Value = 149.8 V/m; Power Drift = -0.025 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

E in V/m (Time averaged) E in V/m (Slot averaged)

0 dB = 135.4 V/m

Client	Motorola MDb
	이 방법에 가지 않는 것 같아요. 것 같아요. 것 같아요. 가지 않는 것 같아요. 같아요. 같아요. 가지 않는 것 같아요. 나는 것 같아요.

Certificate No: CD835V3-1042_Jun05

CALIBRATION CERTIFICATE

Object	CD835V3 - SN: 1042
Calibration procedure(s)	QA CAL-20.v3 Calibration procedure for dipoles in air
Calibration date:	June 23, 2005
Condition of the calibrated item	In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted at an environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	12-Oct-04 (METAS, No. 251-00412)	Oct-05
Power sensor HP 8481A	US37292783	12-Oct-04 (METAS, No. 251-00412)	Oct-05
20 dB Attenuator	SN: 5086 (20g)	10-Aug-04 (METAS, No 251-00402)	Aug-05
10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-04 (METAS, No 251-00402)	Aug-05
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-4419B	GB43310788	10-Aug-03 (SPEAG, in house check Jan-04)	In house check: Oct-05
Power sensor HP 8481A	MY41092312	10-Aug-03 (SPEAG, in house check Jan-04)	In house check: Oct-05
Power sensor HP 8481A	MY41093315	10-Aug-03 (SPEAG, in house check Jan-04)	In house check: Oct-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov-05
RF generator R&S SMT06	1039.2000.06	26-Jul-04 (SPEAG, in house check Jul-04)	In house check: Jan-06
DAE4	SN: 660	16-Dec-04 (SPEAG, No. DAE4-901_Dec04)	Calibration, Dec-05
Probe ER3DV6	SN: 2336	20-Jan-05 (SPEAG, No. ER3-2336_Jan05)	Calibration, Jan-06
Probe H3DV6	SN: 6065	10-Dec-04 (SPEAG, No. H3-6065-Dec04)	Calibration, Dec-05
	Name	Function	Signature
Calibrated by:	Mike Meili	Laboratory Technician	billen
Approved by:	Fin Bomholt	Technical Director	F. Combielf
			Issued: August 18, 2005
		lution until the specific calibration procedure is acc	
		artner Engineering AG (based on ISO/IEC 17025 In	

References

 [1] ANSI-PC63.19-2001 (Draft 3.x, 2005) American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections.
 It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- *E- field distribution:* E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- *H-field distribution:* H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point.

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.6 B3
DASY PP Version	SEMCAD	V1.8 B149
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.439 A/m
Incertainty for H-field measurement: 8 2% (k=2)		

Uncertainty for H-field measurement: 8.2% (K=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	175.1 V/m
Maximum measured above low end	100 mW forward power	164.9 V/m
Averaged maximum above arm	100 mW forward power	170.0 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

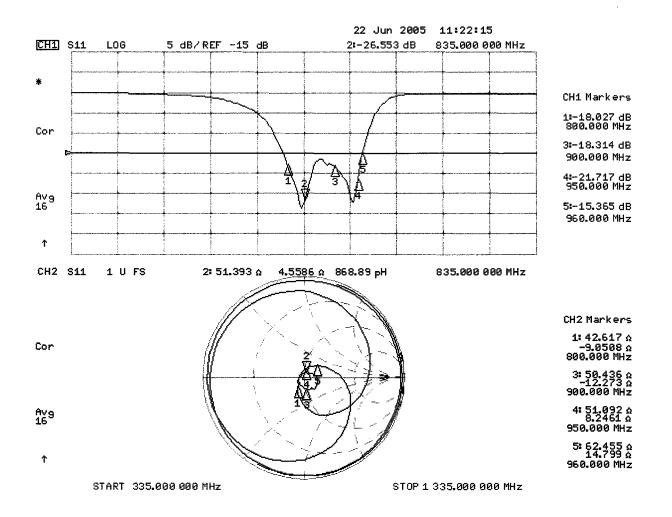
3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	18.0 dB	(42.6 – j9.1) Ohm
835 MHz	26.6 dB	(51.4 + j4.6) Ohm
900 MHz	18.3 dB	(50.4 – j12.3) Ohm
950 MHz	21.7 dB	(51.1 + j8.2) Ohm
960 MHz	15.4 dB	(62.5 + j14.8) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

3.3 Measurement Sheets

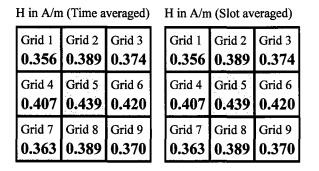
3.3.1 Return Loss and Smith Chart

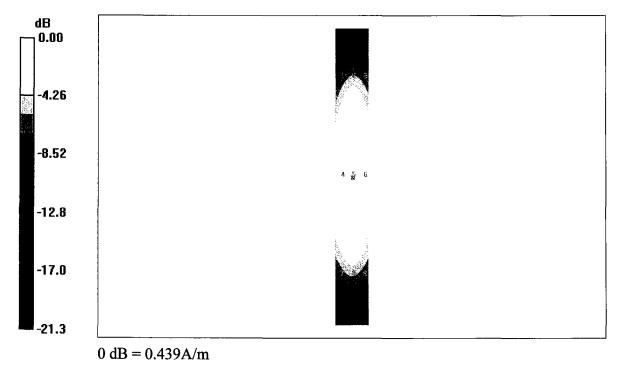
۰.

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1042

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: H Dipole Section


DASY4 Configuration:


- Probe: H3DV6 SN6065; Calibrated: 12/10/2004
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 149

H Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1):

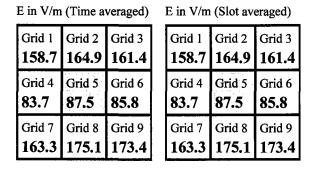
Measurement grid: dx=5mm, dy=5mmMaximum value of Total field (slot averaged) = 0.439 A/m Reference Value = 0.467 A/m; Power Drift = -0.011 dB

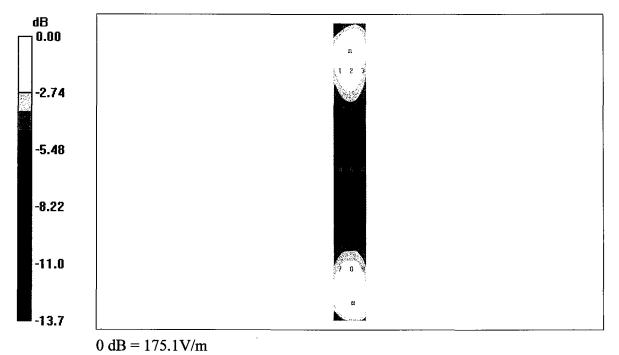
Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1042

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: E Dipole Section


DASY4 Configuration:


- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 1/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 12/16/2004
- Phantom: HAC Test Arch; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.6 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 149

E Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mmMaximum value of Total field (slot averaged) = 175.1 V/m Reference Value = 52.2 V/m; Power Drift = -0.022 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

