Prediction of MPE Limit 47 CFR § 2.1091/ § 2.1093 $$S_{20} = \frac{P_A G_N}{4\pi R_{20}^2}$$ $$S_C = \frac{P_A G_N}{4\pi R_C^2}$$ $$R_{\rm C} = \sqrt{\frac{P_{\rm A}G_{\rm N}}{4\pi S_{\rm L}}}$$ $$S_L = \frac{180}{f^2} (mW/cm^2)$$ S_{20} = Power Density of the Device at 20cm S_1 = Power Density Limit $\mathbf{S}_{\mathbf{C}}$ = Power Density of the Device at the Compliance Distance $\mathbf{R}_{\mathbf{C}}$ $R_{20} = 20 cm$ R_c = Minimum Distance to the Radiating Element to Meet Compliance P_T = Power Input to Antenna P_A = Adjust Power G_N = Numeric Gain of the Antenna f = Transmit Frequency **Transmit Duty Cycle = 50%** ## **Use Group = General Popuation** | Transmit Duty Cycle: | 50.00 | (%) | |---|---------|-----------| | Tx Frequency (f): | 27.41 | (MHz) | | RF Power at Antenna Input Port (P _T): | 4000.00 | (mW) | | Antenna Gain: | 3.00 | (dBi) | | Numeric Antenna Gain (G _N): | 2.00 | (numeric) | | Cable or Other Loss: | 0.00 | (dB) | | Duty Cycle/Loss Adjusted Power (P _A): | 2000.00 | (mW) | | S _L = | 0.240 | (mW/cm ²) | |---------------------------|-------|-----------------------| | S ₂₀ at 20cm = | 0.794 | (mW/cm ²) | | R _c = | 36.4 | (cm) | | s _c = | 0.24 | (mW/cm²) | User's Manual must indicate a minimum separation distance of: 37cm Art Voss **Senior Engineer** Celltech Labs Inc.