

TEST REPORT

Report No.	CISRR250401020
Project No.	CISR250401020
FCC ID	2BL5X-A7
Applicant	Zhengzhou Fanai Electronic Technology Co., Ltd
Address	104,1-4 Floor, Unit 1, Building 34#, International Medical Industrial Park, Xuedian Town, Xinzheng City, Zhengzhou City, Henan Province, China
Manufacturer	Zhengzhou Fanai Electronic Technology Co., Ltd
Address	104,1-4 Floor, Unit 1, Building 34#, International Medical Industrial Park, Xuedian Town, Xinzheng City, Zhengzhou City, Henan Province, China
Product Name	Gunner
Trade Mark	N/A
Model/Type reference	A7
Listed Model(s)	N/A
Standard	Part 15 Subpart C Section 15.231
Test date	April 2, 2025 ~ April 11, 2025
Issue date	April 12, 2025
Test result	Complied

Kory Huang

Prepared by: Rory Huang

GenryLong

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	3
2. SUMMARY OF TEST RESULT	4
3. SUMMARY	5
 3.1. Product Description 3.2. Radio Specification Description 3.3. Modification of EUT 3.4. Testing Site 3.5. Field Strength Calculation 3.6. DISTURBANCE Calculation 	5 6 6 6
4. TEST CONFIGURATION	7
 4.1. Test frequency list	7 7 7 8 8
5. TEST CONDITIONS AND RESULTS	D
5.1. Antenna Requirement 1 5.2. AC Conducted Emission 1 5.3. 20 dB Bandwidth 1 5.4. Radiated Spurious Emission 1 5.5. Transmitter Deactivation Time 1 5.6. Duty cycle Factor 1	1 2 3 8
6. TEST SETUP PHOTOS	D
7. EXTERNAL AND INTERNAL PHOTOS	1
7.1 External photos 2 7.2 Internal photos 2	

1. <u>REPORT VERSION</u>

Version No.	Issue date	Description
00	April 12, 2025	Original

2. SUMMARY OF TEST RESULT

Report clause	Test Item	Standard Requirement	Result
5.1	Antenna Requirement	15.203	PASS
5.2	AC Conducted Emission	15.207	
5.3	20 dB Bandwidth	15.231(c)	PASS
5.4	Radiated Spurious Emission	15.231 (a)/15.205/15.209	PASS
5.5	Transmitter Deactivation Time	15.231	PASS
5.6	Duty cycle Factor	15.231	PASS

Note:

- The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Product Description

Aain unit information:	
Product Name:	Gunner
Trade Mark:	N/A
Model No.:	A7
Listed Model(s):	N/A
Model difference:	N/A
Power supply:	Battery: DC 12V
Hardware version:	N/A
Software version:	N/A

3.2. Radio Specification Description

Technology:	SRD
Modulation:	ASK
Operation frequency:	315.1MHz
Channel Number:	1
Occupied Bandwidth:	163.72kHz
Keying:	Manual
Type of Information:	Control
Antenna type:	Telescopic Antenna
Antenna gain:	0.67dBi

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.	
Laboratory Location 101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Str Guangming District, Shenzhen, Guangdong, China		
FCC registration number 736346		

3.5. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)	
RA = Reading Amplitude	AG = Amplifier Gain	
AF = Antenna Factor		

3.6. DISTURBANCE Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)	
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor	

4. TEST CONFIGURATION

4.1. Test frequency list

Channel	Frequency (MHz)	
CH1	315.1	

4.2. Test mode

or RF test items:		
The engineering prototype is provided wi transmission.Power setting Default.	ith key switching channel to realize	EUT continuous
Test Item	Test Mode	Modulation
Conducted test item	TX-CH1	ASK
	Normal link	
	Charging	
Radiated test item	TX-CH1	ASK
	Normal link	
	Charging	

The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Item	Equipment name	Trade Name	Model No.
1			

4.4. Test sample information

Туре	sample no.
Engineer sample	CISR250401020-1#
Normal sample	CISR250401020-2#

4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.6. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	1.63dB
2	Power Spectral Density	1.34dB
3	20dB Bandwidth	0.002%
4	Duty cycle	-
5	Conducted Band Edge and Spurious Emission	1.93dB
6	Radiated Band Edge Emission	3.76dB for 30MHz-1GHz
0		3.80dB for above 1GHz
7	Radiated Spurious Emission	3.76dB for 30MHz-1GHz
		3.80dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.7. Equipment Used during the Test

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	SKET	9.3*6.3*6	N/A	2024.09.01	3Year
Spectrum analyzer	Agilent	N9020A	MY50530263	2025.01.08	1Year
Receiver	ROHDE&SCHWARZ	ESCI	100853	2025.01.08	1Year
Spectrum analyzer	R&S	FSV-40N	/	2025.01.08	1Year
Bilog Antenna	Schwarzbeck	VULB 9163	1463	2025.01.08	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2487	2025.01.08	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	1	2025.01.08	2Year
RF Cable	Tonscend	Cable 1	/	2025.01.08	1Year
RF Cable	Tonscend	Cable 2	/	2025.01.08	1Year
RF Cable	SKET	Cable 3	/	2025.01.08	1Year
Pre-amplifier	Tonscend	TAP9K3G32	AP21G806153	2025.01.08	1Year
Pre-amplifier	Tonscend	TAP01018050	AP22E806229	2025.01.08	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8127	/	2025.01.08	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	1	2025.01.08	1Year
Horn Antenna	SCHWARZBECK	BBHA9170	1130	2025.01.08	2 Year
Preamplifier	Tonscend	TAP18040048	AP21C806126	2025.01.08	1Year
variable-frequency power source	Pinhong	PH1110	/	2025.01.08	1Year
6dB Attenuator	SKET	DC-6G	/	N/A	N/A
Artificial power network	Schwarzbeck	NSLK8127	8127-01096	2025.01.08	1Year
EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2025.01.08	1Year
8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2025.01.08	1Year
Artificial power network	Schwarzbeck	ENV216	1	2025.01.08	1Year
Antenna tower	SKET	Bk-4AT-BS	AT2021040101- V1	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Standard Applicable	FCC CFR Title 47 Part 15 Subpart C Section 15.203:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the response-ble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
<u>Description</u>	The EUT antenna is Telescopic Antenna(0.67dBii), the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used. Antenna structure please refer to the EUT internal photographs antenna photo.

Remark: The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen Bangce Testing Technology Co., Ltd. does not assume any responsibility.

5.2. AC Conducted Emission

Test mode: Refer to the clause 4.2	Limit:	FCC CFR Title 47 Part 15 Subpart C Section 15.207				
Test configuration: Outsi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Image: Configuration: Test configuration: Image: Configuration: Test procedure: 1. The EUT was setup according to ANSI C63.10 requirements. 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting urface. 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 or hm /500H coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a line inpedance stabilization network (LISN). The LISN provides a 50 or hm /500H coupling impedance for the measuring equipment. 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. 0.15MHz to 30MHz using a re			Limit (dBuV)		
Image: test configuration: 0.5-5 66 46 * Decreases with the logarithm of the frequency. * Decreases with the logarithm of the frequency. Image: test procedure: 1. The EUT was setup according to ANSI C63.10 requirements. 1. The EUT was setup according to ANSI C63.10 requirements. 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting grane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50.014 coupling impedance for the measuing equipment. 4. The peripheral devices are also connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50.014 coupling impedance for the measuing equipment. 5. Each current-carrying conductor, was individually connected through a LISN (Refer to the block diagram of the test setup and photographs). 5. Each current-carrying conductor, was individually connected through a LISN to the input power source. 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. 8. During the above scans, the emissions w		Frequency range (MHZ)	Quasi-peak	Average		
Test configuration: 5-30 60 50 * Decreases with the logarithm of the frequency. * Decreases with the logarithm of the frequency. Test configuration: * Decreases with the logarithm of the frequency. Test procedure: 1. The EUT was setup according to ANSI C63.10 requirements. 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting guiraces of EUT were at least 80 cm from any other grounded conducting surface. 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs) 5. Each current-carrying conductor of the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. During the above scans, the emissions were maximi		0.15-0.5	0.15-0.5 66 to 56*			
 * Decreases with the logarithm of the frequency. * Decreases with the logarithm of the frequency. * Test configuration: * Test procedure: 1. The EUT was setup according to ANSI C63.10 requirements. 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs) 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. 8. During the above scans, the emissions were maximized by cable manipulation. 		0.5-5	56	46		
Test configuration: Image: Configuration of the configuratin of the		5-30	60	50		
Test procedure: 1. The EUT was setup according to ANSI C63.10 requirements. 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs) 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. 6. The excess length of the power cord between the EUT and the LISN receptace were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. 8. During the above scans, the emissions were maximized by cable manipulation. Test mode: Refer to the clause 4.2		* Decreases with the logarith	m of the frequency.			
 The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. During the above scans, the emissions were maximized by cable manipulation. 	<u>Test configuration:</u>					
Test mode: Refer to the clause 4.2	Test procedure:	 The EUT was setup according to ANSI C63.10 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. Conducted emissions were investigated over the frequency range from 				
	Test mode:	·				
	Result:	Not Applicable				

PASS

5.3. 20 dB Bandwidth

<u>Limit:</u>	frequency for devices of	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.				
Test configuration:	Spectrum Analyzer	Spectrum Analyzer				
		EUT				
	Reality of the second se	Conducted Fable				
	🛶 Ground Re	eference Plane 🔶				
Test procedure:		tput was connected to the sp path loss was compensated				
	2. Set to the maximu continuously	m power setting and enable	the EUT transmit			
	3. Use the following s	spectrum analyzer settings:				
	Span = approxima Test channel	tely 2 to 3 times the 20 dB b	andwidth, centered on a			
	RBW ≥ 1% of the 2	20 dB bandwidth, VBW ≥ RB	W			
	Sweep = auto, Det	tector function = peak, Trace	= max hold			
	4. Measure and reco	rd the results in the test repo	rt.			
Test mode:	Refer to the clause 4.2	Refer to the clause 4.2				
Result:	Passed	Passed				
Center Frequency of operation(MHz)	Measured 20dB Bandwidth(kHz)	Limit(kHz) Result				

315.1

1084.75

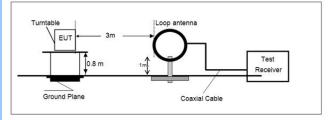
156

5.4. Radiated Spurious Emission

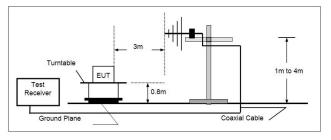
			L	

FCC CFR Title 47 Part 15 Subpart C Section 15.209

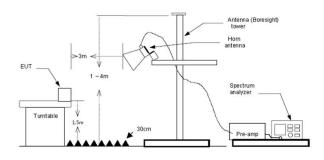
Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak


Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz(Field strength	75.63	Average
of fundamental)	95.63	Peak
Above 1GHz(Field strength	50.63	Average
of harmonics)	75.63	Peak

Test configuration:

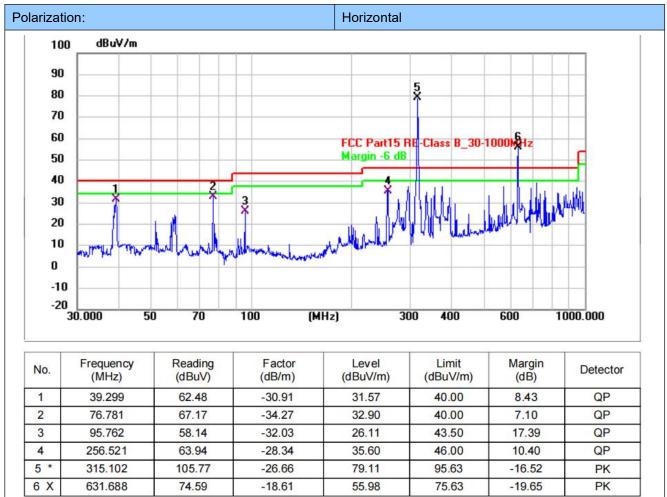

9kHz~30MHz

30 MHz ~ 1 GHz

Above 1 GHz

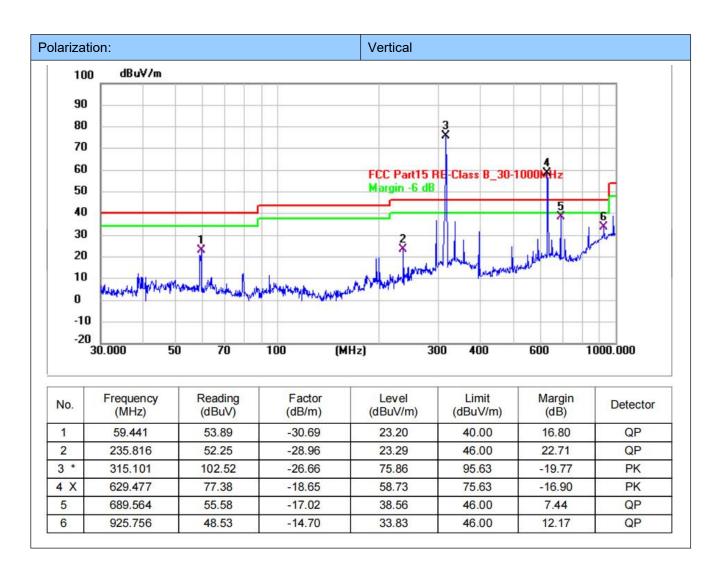
Test procedure:	 The EUT was setup and tested according to ANSI C63.10. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
	 The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
	4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
	 Set to the maximum power setting and enable the EUT transmit continuously.
	6. Use the following spectrum analyzer settings
	 Span shall wide enough to fully capture the emission being measured;
	b) Below 1 GHz:
	RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;
	If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
	 Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement
	 d) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement
Test mode:	Refer to the clause 4.2
Result:	Passed

Note:


- 1) Level= Reading + Factor/Transd; Factor/Transd =Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.
- 4) The other emission levels were very low against the limit.
- 5) This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.

<u>For 9 kHz ~ 30 MHz</u>

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.



<u> For 30 MHz ~ 1000 MHz</u>

	Fundamental and Harmonics Result						
Frequency	Peak Level	AV Factor(dBµV/m)	Average Level	Limit(dBµV/m)	Limit(dBµV/m)	Conclusion	
(MHz)	(dBµV/m)	(see Section 5.4)	(dBµV/m)	(Peak)	(average)	Conclusion	
315.101	79.11	-9.16	69.95	95.63	75.63	PASS	
631.668	55.98	-9.16	46.82	75.63	50.63	PASS	

Fundamental and Harmonics Result						
Frequency	Peak Level	AV Factor(dBµV/m)	Average Level	Limit(dBµV/m)	Limit(dBµV/m)	Conclusion
(MHz)	(dBµV/m)	(see Section 5.4)	(dBµV/m)	(Peak)	(average)	Conclusion
315.101	75.86	-9.16	66.7	95.63	75.63	PASS
629.477	58.73	-9.16	49.57	75.63	50.63	PASS

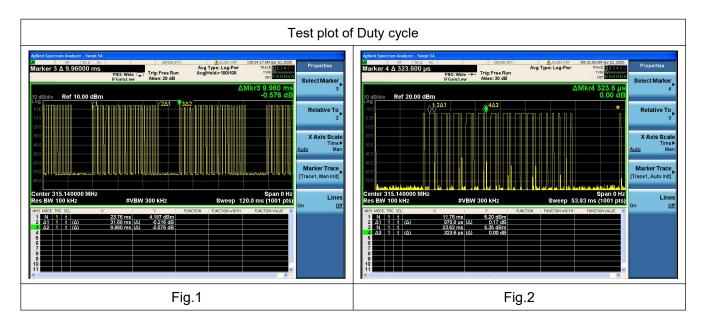
For 1 GHz ~ 4 GHz

Test channel: 315.1MHz										
Freq. (MHz)	Readi ng (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Rema rk	Pola rity
1260	69.16	31.33	4.23	38.62	-3.06	66.10	74	7.90	PK	Н
1260	49.68	31.33	4.23	38.62	-3.06	46.62	54	7.38	AVG	Н
1260	67.17	31.33	4.23	38.62	-3.06	64.11	74	9.89	PK	V
1260	50.45	31.33	4.23	38.62	-3.06	47.39	54	6.61	AVG	V

5.5. Transmitter Deactivation Time

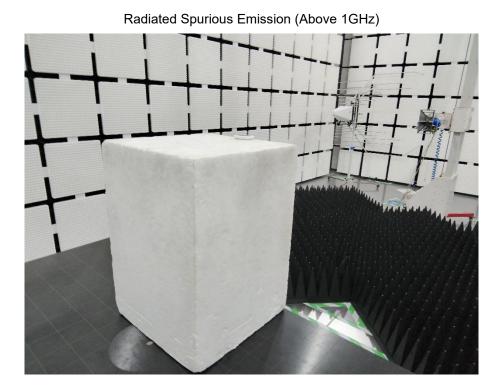
Limit:	A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
Test configuration:	Spectrum Analyzer
	EUT
	Non-Conducted Table
	Ground Reference Plane
Test procedure:	Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.
<u>Test mode:</u>	Refer to the clause 4.2
Result:	Passed

	Test F	Results	
requency (MHz)	Activation Time(s)	Limit: not more than 5 seconds of being released (s)	Conclusion
315.1	0.12	5	PASS
Agilent Spectrum An OX FF Marker 1 Δ 1 10 dB/div Re 0 00 -10.0 -20.0 -30.0 -30.0 -40.0 -60.0 -70.0 -80.0 -80.0 -80.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0	20.000 ms PNO: Wide Trig: Free Run Atten: 20 dB 10.00 dBm 10.00 dBm 10.0	ALIGN OFF 09:13:23 AM Apr 10, 2025 Avg Type: Log-Pwr Avg Hold: 5/100 TRACE 12.34.5 ° Multiple: Log-Pwr Avg Hold: 5/100 Trace 12.34.5 ° Avg Type: Log-Pwr Avg T	Marker Select Marker 1 Normal Delta Fixed⊳
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Properties►
/ 8 9 9 10 11		•	More 1 of 2

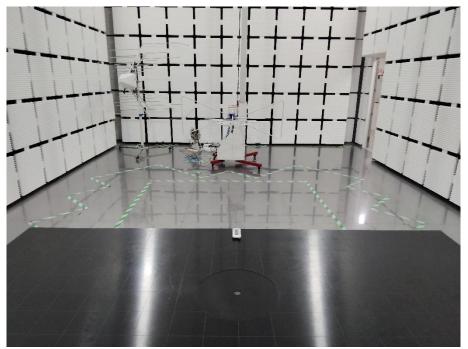


5.6. Duty cycle Factor

Limit:	No dedicated limit specified in the Rules.		
<u>Test configuration:</u>	Spectrum Analyzer EUT Non-Conducted Table		
<u>Test procedure:</u>	 Ground Reference Plane 1. Place the EUT on the table and set it in transmitting mode. 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. 3. Set centre frequency of spectrum analyzer=operating frequency. 4. Set the spectrum analyzer as RBW=100kHz, VBW=300kHz, Span=0Hz, Adjust Sweep=Auto. 5. Repeat above procedures until all frequency measured was complete. 		
<u>Test mode:</u>	Refer to the clause 4.2		
Result:	Passed		


Test Data

Ton = 0.97*10+0.32*15=14.5(ms) Tp = 41.64(ms) The duty cycle=14.5/41.64=34.82% Average Correction Factory = 20log (Ton/Tp) =20log (0.3482) = -9.16dB



6. TEST SETUP PHOTOS

Radiated Spurious Emission (below 1GHz)

7. EXTERNAL AND INTERNAL PHOTOS

9010010 50 30 40 50 6

7.1 External photos

40

30

20 10 mm

ONIOFF

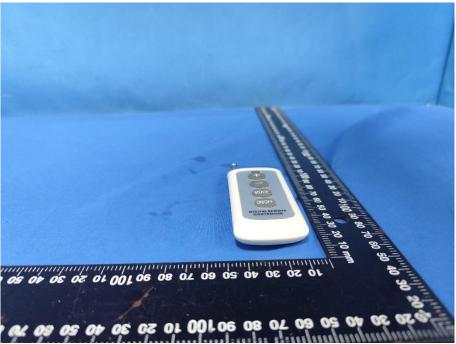
DIGITAL REMOTE

10 S0 30 40 20

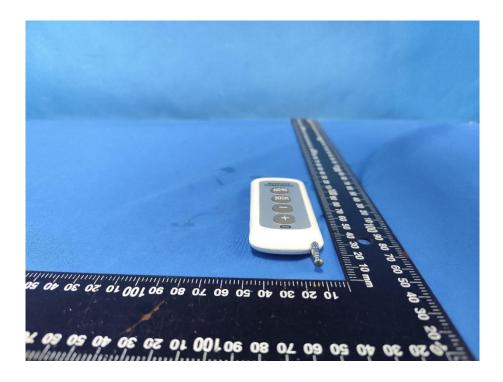
90

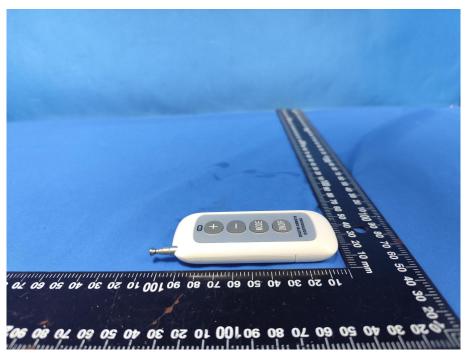
8

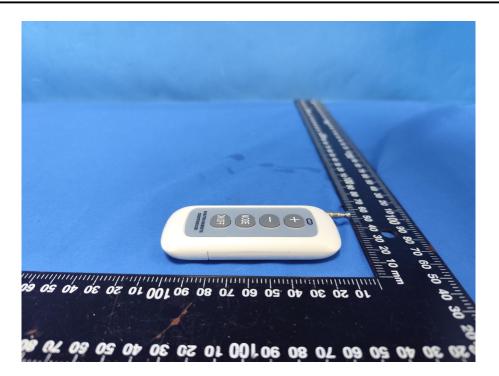
70

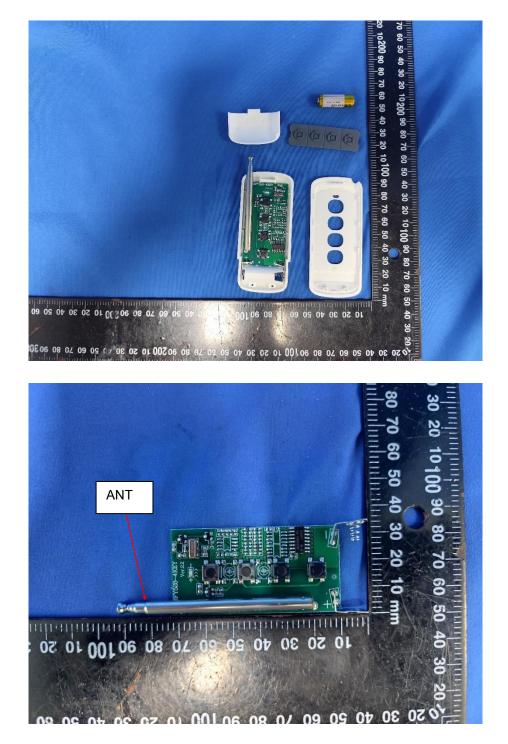

60 50

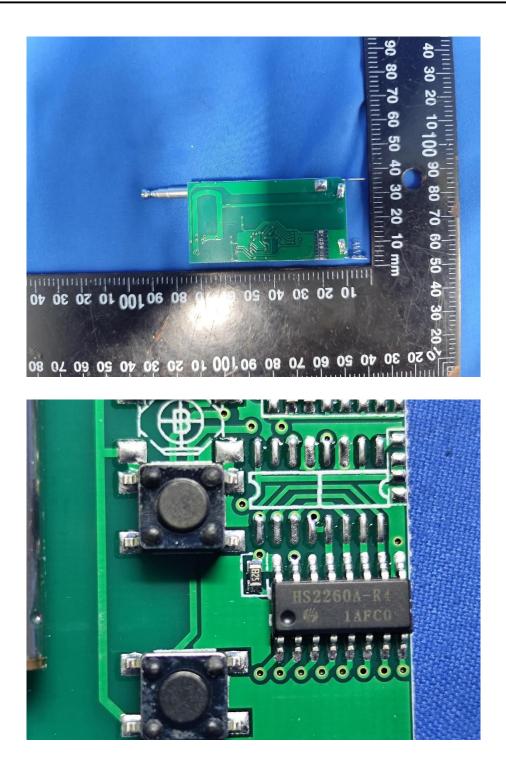
40 30 20











7.2 Internal photos

-----End of the report-----