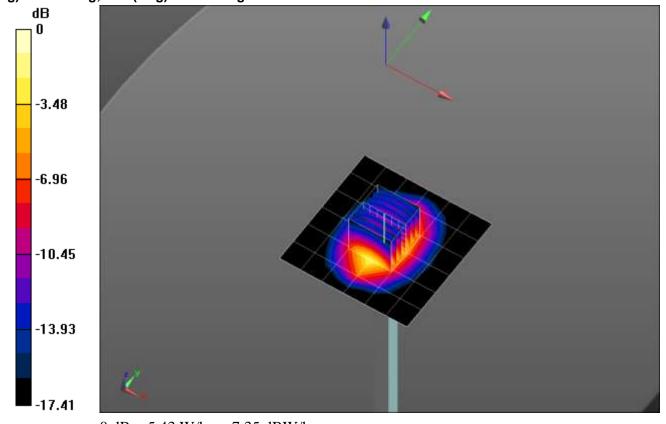
2021-10-26 SystemPerformanceCheck-D1900V2 SN 5d202

Frequency: 1900 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1900 MHz; $\sigma = 1.492$ S/m; $\epsilon_r = 40.525$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.01, 8.01, 8.01); Calibrated: 4/26/2021;
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Head/Pin=100 mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

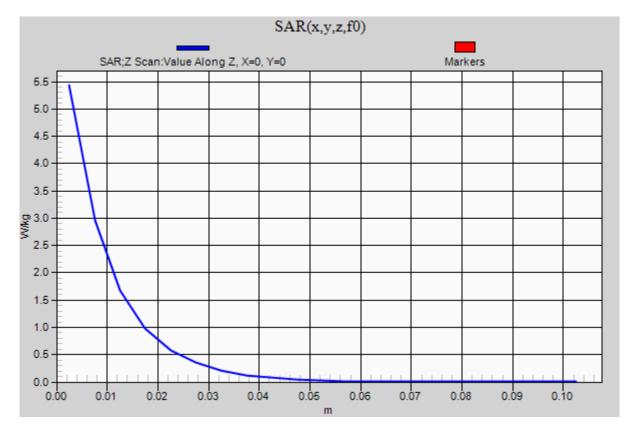

Maximum value of SAR (measured) = 5.43 W/kg

Head/Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.979 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 7.44 W/kg

SAR(1 g) = 3.99 W/kg; SAR(10 g) = 2.08 W/kg


0 dB = 5.43 W/kg = 7.35 dBW/kg

Test Laboratory: UL LLC SAR Lab 1A Date/Time: 10/26/2021 12:37:50 PM

2021-10-26 SystemPerformanceCheck-D1900V2 SN 5d202

Frequency: 1900 MHz; Duty Cycle: 1:1

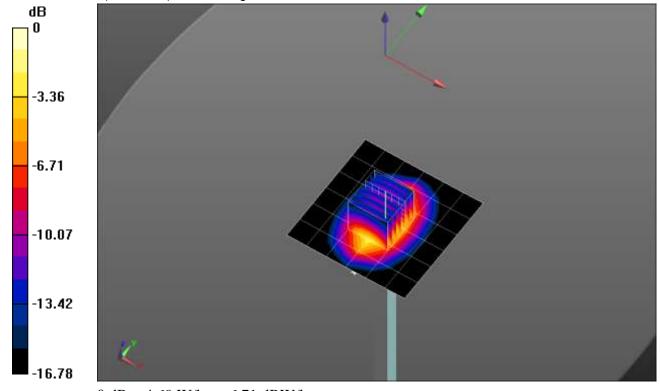
Head/Pin=100 mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 5.43 W/kg

2021-10-29 SystemPerformanceCheck-D1750V2 SN 1136

Frequency: 1750 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1750 MHz; $\sigma = 1.367$ S/m; $\epsilon_r = 40.198$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439; Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.36, 8.36, 8.36); Calibrated: 4/26/2021;
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Head/Pin=100 mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

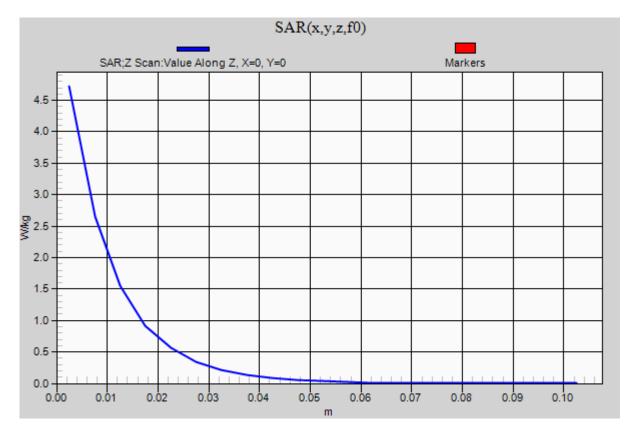

Maximum value of SAR (measured) = 4.70 W/kg

Head/Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.403 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 6.35 W/kg

SAR(1 g) = 3.52 W/kg; SAR(10 g) = 1.88 W/kg Maximum value of SAR (measured) = 4.69 W/kg


0 dB = 4.69 W/kg = 6.71 dBW/kg

Test Laboratory: UL LLC SAR Lab 1A Date/Time: 10/29/2021 5:28:42 PM

2021-10-29 SystemPerformanceCheck-D1750V2 SN 1136

Frequency: 1750 MHz; Duty Cycle: 1:1

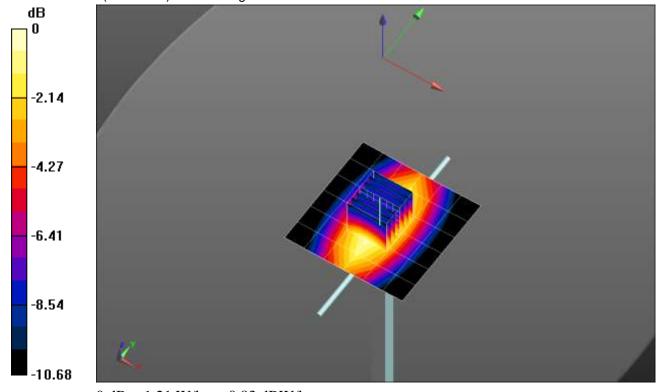
Head/Pin=100 mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 4.72 W/kg

2021-11-01 SystemPerformanceCheck-D900V2 SN 1d180

Frequency: 900 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 900 MHz; $\sigma = 0.953$ S/m; $\epsilon_r = 42.226$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(9.98, 9.98, 9.98); Calibrated: 4/26/2021;
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Head/Pin=100 mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

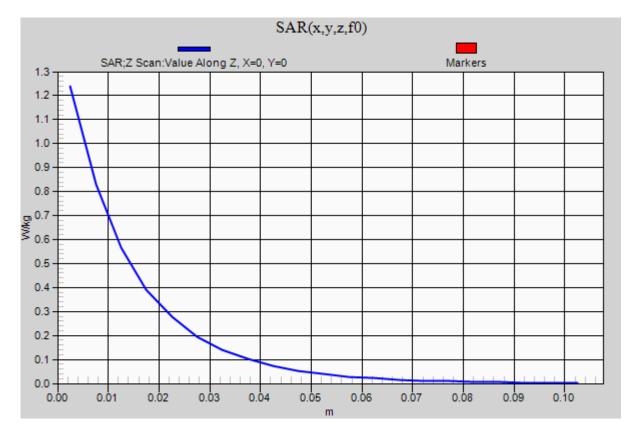

Maximum value of SAR (measured) = 1.22 W/kg

Head/Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.254 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 0.990 W/kg; SAR(10 g) = 0.645 W/kg Maximum value of SAR (measured) = 1.21 W/kg


0 dB = 1.21 W/kg = 0.83 dBW/kg

Test Laboratory: UL LLC SAR Lab 1A Date/Time: 11/1/2021 8:58:41 PM

2021-11-01 SystemPerformanceCheck-D900V2 SN 1d180

Frequency: 900 MHz; Duty Cycle: 1:1

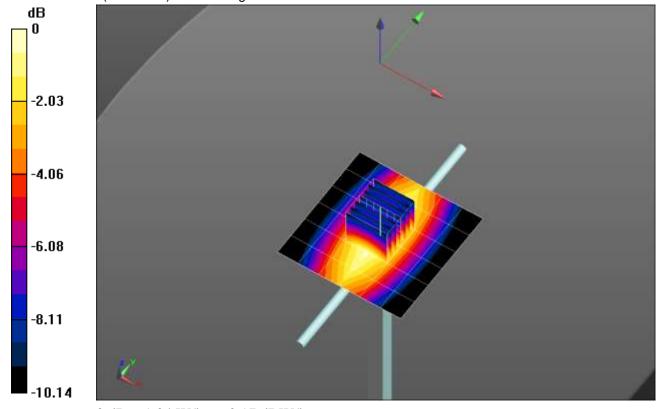
Head/Pin=100 mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.24 W/kg

2021-11-02 SystemPerformanceCheck-D750V3 SN 1139

Frequency: 750 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 750 MHz; $\sigma = 0.898$ S/m; $\epsilon_r = 42.663$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(10.42, 10.42, 10.42); Calibrated: 4/26/2021;
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Head/Pin=100 mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

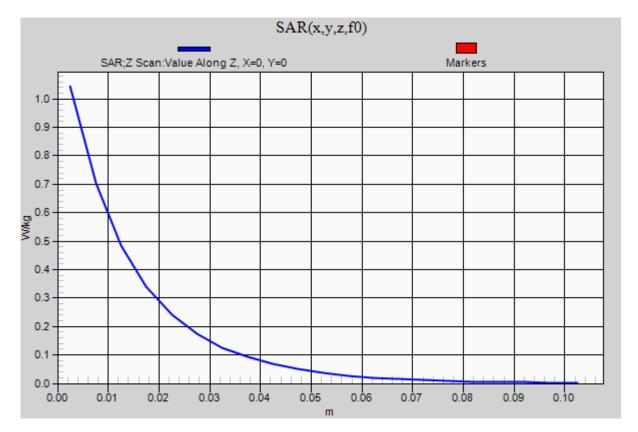

Maximum value of SAR (measured) = 1.05 W/kg

Head/Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.610 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.859 W/kg; SAR(10 g) = 0.567 W/kg Maximum value of SAR (measured) = 1.04 W/kg


0 dB = 1.04 W/kg = 0.17 dBW/kg

Test Laboratory: UL LLC SAR Lab 1A Date/Time: 11/2/2021 8:29:52 PM

2021-11-02 SystemPerformanceCheck-D750V3 SN 1139

Frequency: 750 MHz; Duty Cycle: 1:1

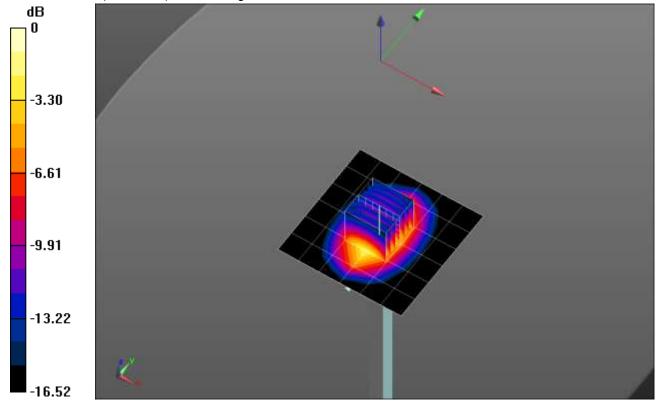
Head/Pin=100 mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.04 W/kg

2021-11-03 SystemPerformanceCheck-D1750V2 SN 1136

Frequency: 1750 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1750 MHz; $\sigma = 1.365$ S/m; $\epsilon_r = 39.527$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.36, 8.36, 8.36); Calibrated: 4/26/2021;
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Head/Pin=100 mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

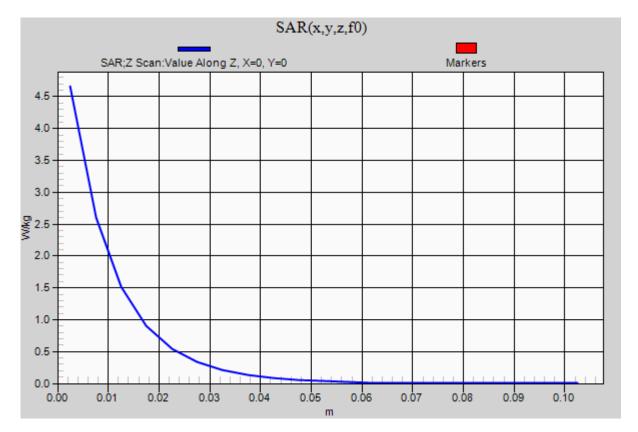

Maximum value of SAR (measured) = 4.66 W/kg

Head/Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.033 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 6.28 W/kg

SAR(1 g) = 3.47 W/kg; SAR(10 g) = 1.85 W/kg Maximum value of SAR (measured) = 4.64 W/kg


0 dB = 4.64 W/kg = 6.67 dBW/kg

Test Laboratory: UL LLC SAR Lab 1A Date/Time: 11/3/2021 8:52:15 PM

2021-11-03 SystemPerformanceCheck-D1750V2 SN 1136

Frequency: 1750 MHz; Duty Cycle: 1:1

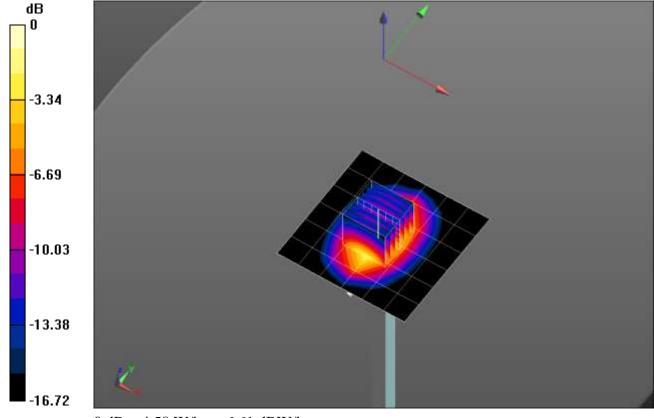
Head/Pin=100 mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 4.66 W/kg

2021-11-05 SystemPerformanceCheck-D1750V2 SN 1136

Frequency: 1750 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1750 MHz; $\sigma = 1.319$ S/m; $\epsilon_r = 39.017$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.36, 8.36, 8.36); Calibrated: 4/26/2021;
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Head/Pin=100 mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

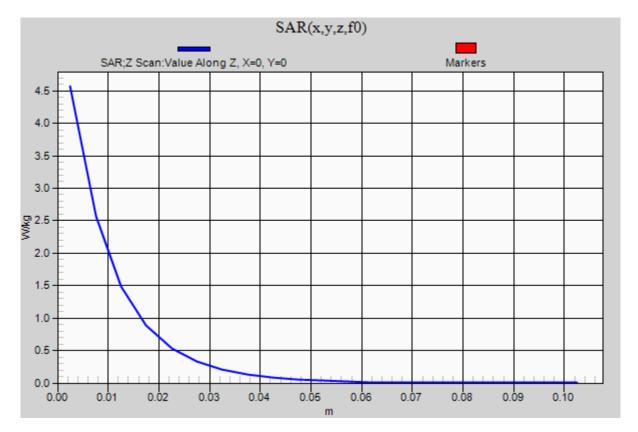

Maximum value of SAR (measured) = 4.56 W/kg

Head/Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.329 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 6.25 W/kg

SAR(1 g) = 3.44 W/kg; SAR(10 g) = 1.83 W/kg Maximum value of SAR (measured) = 4.58 W/kg


0 dB = 4.58 W/kg = 6.61 dBW/kg

Test Laboratory: UL LLC SAR Lab 1A Date/Time: 11/5/2021 7:57:17 PM

2021-11-05 SystemPerformanceCheck-D1750V2 SN 1136

Frequency: 1750 MHz; Duty Cycle: 1:1

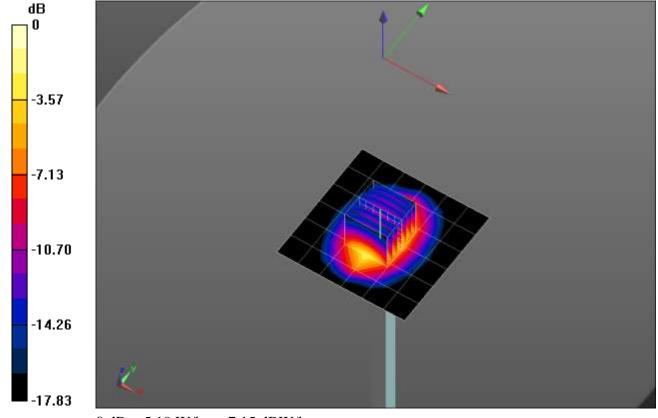
Head/Pin=100 mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 4.57 W/kg

2021-11-05 SystemPerformanceCheck-D1900V2 SN 5d202

Frequency: 1900 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1900 MHz; $\sigma = 1.422$ S/m; $\epsilon_r = 38.718$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.01, 8.01, 8.01); Calibrated: 4/26/2021;
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Head/Pin=100 mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

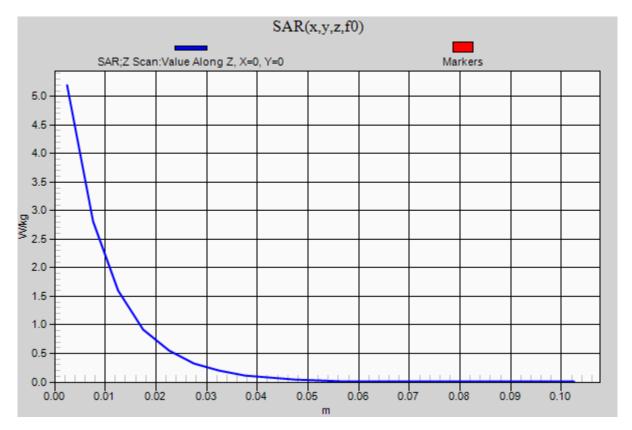

Maximum value of SAR (measured) = 5.20 W/kg

Head/Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.857 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 7.18 W/kg

SAR(1 g) = 3.83 W/kg; SAR(10 g) = 1.99 W/kg Maximum value of SAR (measured) = 5.19 W/kg


0 dB = 5.19 W/kg = 7.15 dBW/kg

Test Laboratory: UL LLC SAR Lab 1A Date/Time: 11/5/2021 8:32:18 PM

2021-11-05 SystemPerformanceCheck-D1900V2 SN 5d202

Frequency: 1900 MHz; Duty Cycle: 1:1

Head/Pin=100 mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 5.19 W/kg

W-CDMA Band II

Frequency: 1852.4 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.394$ S/m; $\epsilon_r = 38.855$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439; Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.01, 8.01, 8.01); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Rear/RMC Rel. 99_ch 9262 Repeat/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.24 W/kg

Rear/RMC Rel. 99_ch 9262 Repeat/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 28.581 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.76 W/kg

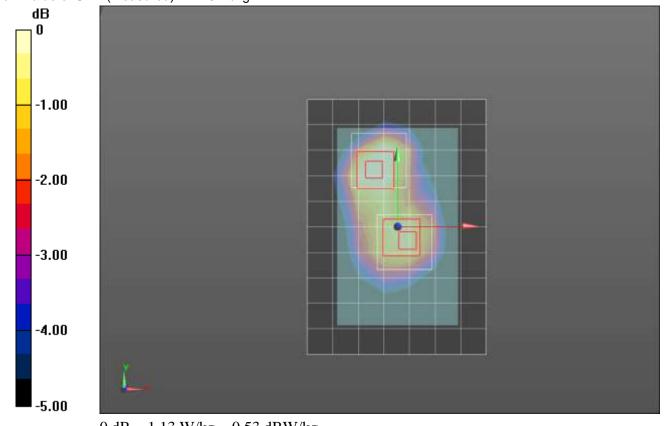
SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.615 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.48 W/kg

Rear/RMC Rel. 99_ch 9262 Repeat/Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm


Reference Value = 28.581 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.842 W/kg; SAR(10 g) = 0.551 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.13 W/kg

0 dB = 1.13 W/kg = 0.53 dBW/kg

W-CDMA Band IV

Frequency: 1752.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.367$ S/m; $\epsilon_r = 39.523$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.36, 8.36, 8.36); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Rear/RMC Rel. 99_ch 1513/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.49 W/kg

Rear/RMC Rel. 99_ch 1513/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 31.200 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.83 W/kg

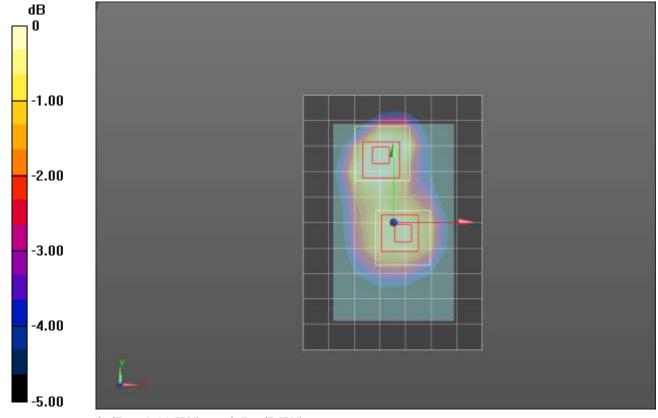
SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.651 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.56 W/kg

Rear/RMC Rel. 99_ch 1513/Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 31.200 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.906 W/kg; SAR(10 g) = 0.599 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.19 W/kg

0 dB = 1.19 W/kg = 0.76 dBW/kg

W-CDMA Band V

Frequency: 836.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.929$ S/m; $\epsilon_r = 42.376$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439; Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(9.98, 9.98, 9.98); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

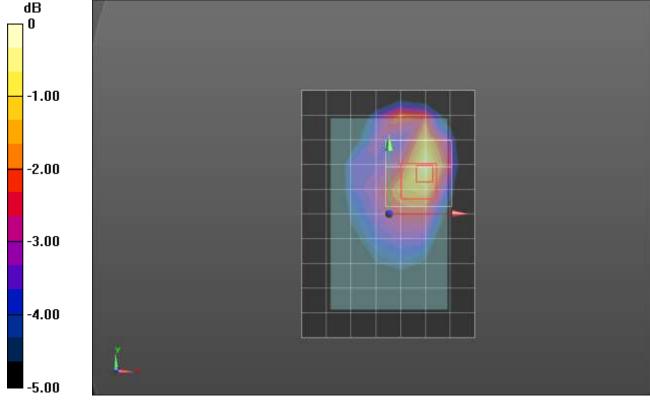
Rear/RMC Rel. 99_ch 4183/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.196 W/kg

Rear/RMC Rel. 99_ch 4183/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 14.665 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.237 W/kg

SAR(1 g) = 0.164 W/kg; SAR(10 g) = 0.111 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

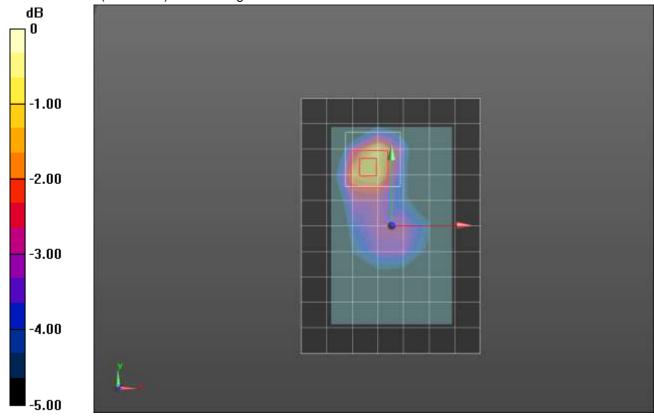
Maximum value of SAR (measured) = 0.214 W/kg

0 dB = 0.214 W/kg = -6.70 dBW/kg

Frequency: 1860 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1860 MHz; $\sigma = 1.398$ S/m; $\epsilon_r = 38.829$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.01, 8.01, 8.01); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Rear/QPSK RB 1,0 Ch 18700/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.60 W/kg


Rear/QPSK RB 1,0 Ch 18700/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 32.046 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.28 W/kg

SAR(1 g) = 1.37 W/kg; SAR(10 g) = 0.807 W/kg Maximum value of SAR (measured) = 1.93 W/kg

0 dB = 1.93 W/kg = 2.86 dBW/kg

Frequency: 1732.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.358$ S/m; $\epsilon_r = 40.213$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439; Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.36, 8.36, 8.36); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Rear/QPSK RB 1,49 Ch 20175/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.16 W/kg

Rear/QPSK RB 1,49 Ch 20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.451 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.859 W/kg; SAR(10 g) = 0.505 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.25 W/kg

Rear/QPSK RB 1,49 Ch 20175/Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.451 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.726 W/kg; SAR(10 g) = 0.486 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.944 W/kg

0 dB = 0.944 W/kg = -0.25 dBW/kg

Frequency: 836.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.929$ S/m; $\epsilon_r = 42.376$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439; Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(9.98, 9.98, 9.98); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

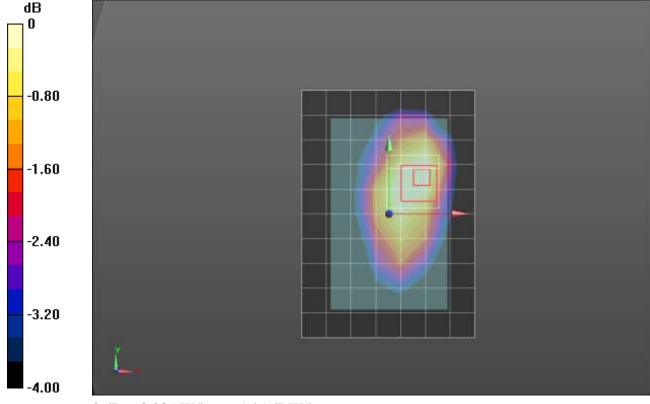
Rear/QPSK RB 1,0 Ch 20525/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.305 W/kg

Rear/QPSK RB 1,0 Ch 20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 16.096 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.312 W/kg

SAR(1 g) = 0.221 W/kg; SAR(10 g) = 0.151 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.285 W/kg

0 dB = 0.285 W/kg = -5.45 dBW/kg

Frequency: 707.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.881$ S/m; $\epsilon_r = 42.837$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(10.42, 10.42, 10.42); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

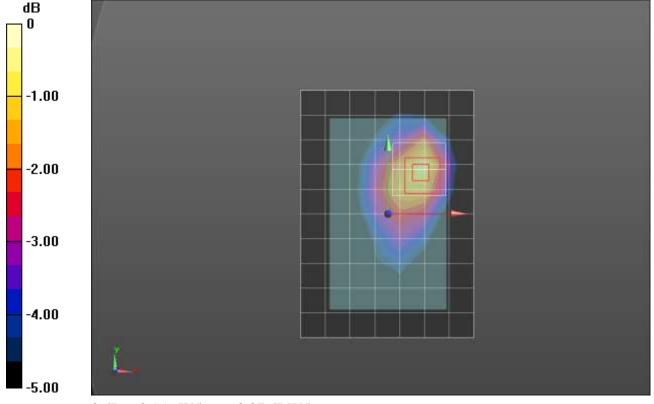
Rear/QPSK RB 1,25 Ch 23095/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.143 W/kg

Rear/QPSK RB 1,25 Ch 23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 12.658 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.171 W/kg

SAR(1 g) = 0.117 W/kg; SAR(10 g) = 0.076 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.156 W/kg

0 dB = 0.156 W/kg = -8.07 dBW/kg

Frequency: 782 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.909$ S/m; $\epsilon_r = 42.537$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(10.42, 10.42, 10.42); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

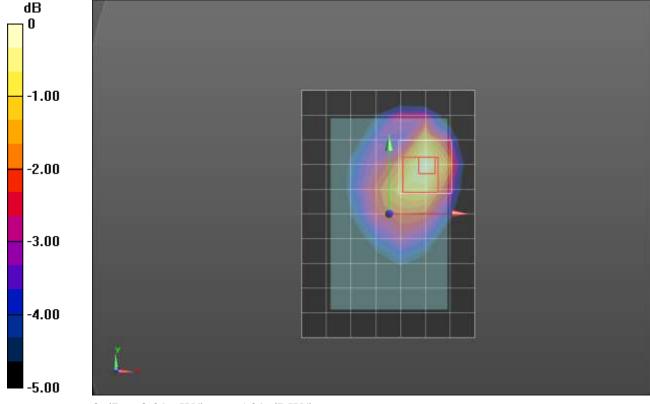
Rear/QPSK RB 1,49 Ch 23230/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.295 W/kg

Rear/QPSK RB 1,49 Ch 23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 17.734 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.326 W/kg

SAR(1 g) = 0.223 W/kg; SAR(10 g) = 0.147 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.296 W/kg

0 dB = 0.296 W/kg = -5.29 dBW/kg

Frequency: 793 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 793 MHz; $\sigma = 0.913$ S/m; $\epsilon_r = 42.497$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439; Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(10.42, 10.42, 10.42); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

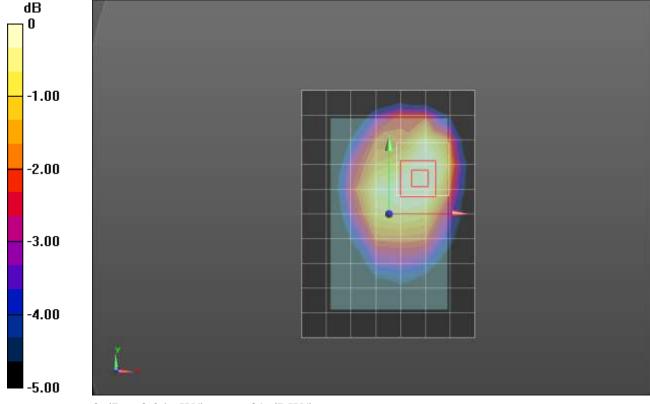
Rear/QPSK RB 1,25 Ch 23330/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.279 W/kg

Rear/QPSK RB 1,25 Ch 23330/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 16.449 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.277 W/kg

SAR(1 g) = 0.197 W/kg; SAR(10 g) = 0.132 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.246 W/kg

0 dB = 0.246 W/kg = -6.09 dBW/kg

Frequency: 1770 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1770 MHz; σ = 1.378 S/m; ϵ_r = 39.49; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439: Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(8.36, 8.36, 8.36); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Rear/QPSK RB 1,49 Ch 132572/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.44 W/kg

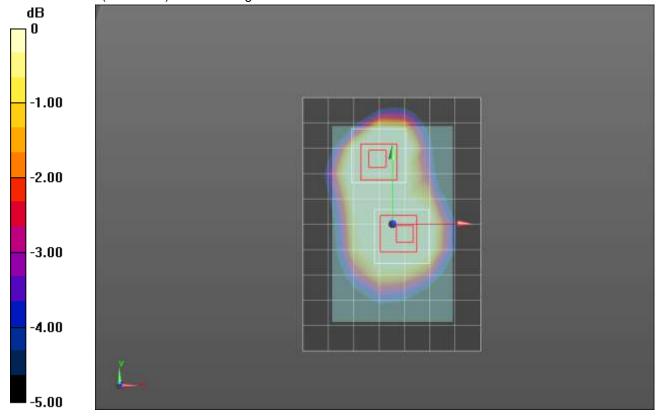
Rear/QPSK RB 1,49 Ch 132572/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.653 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.965 W/kg; SAR(10 g) = 0.578 W/kg Maximum value of SAR (measured) = 1.03 W/kg


Rear/QPSK RB 1,49 Ch 132572/Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 27.653 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.741 W/kg; SAR(10 g) = 0.488 W/kg Maximum value of SAR (measured) = 0.788 W/kg

0 dB = 0.788 W/kg = -1.03 dBW/kg

Frequency: 680.5 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 680.5 MHz; $\sigma = 0.871$ S/m; $\epsilon_r = 42.922$; $\rho = 1000$ kg/m³ DASY5 Configuration:

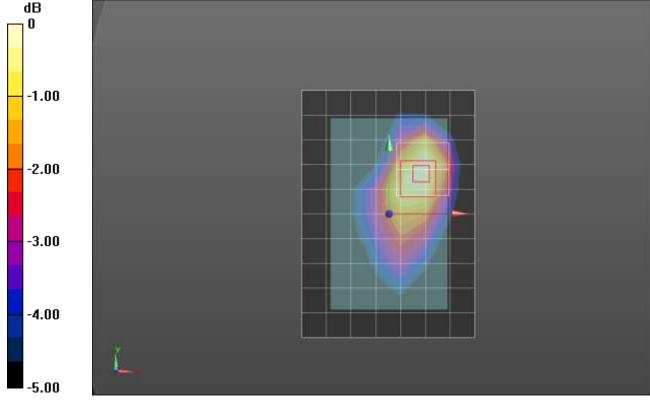
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1439; Calibrated: 8/11/2021
- Probe: EX3DV4 SN7569; ConvF(10.42, 10.42, 10.42); Calibrated: 4/26/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI A v5.0; Type: QD OVA 002 AA; Serial: 1194

Rear/QPSK RB 1,49 Ch 133297/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.145 W/kg

Rear/QPSK RB 1,49 Ch 133297/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm


Reference Value = 12.183 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.150 W/kg

SAR(1 g) = 0.104 W/kg; SAR(10 g) = 0.071 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.136 W/kg

0 dB = 0.136 W/kg = -8.66 dBW/kg

Head Tissue Simulating Liquids

Head Tissue	Parameters according to IEEE	Std 1528-2013 / IEC 62209 / FCC k	(DB 865664 D01
Narrow- Band	Product	Test Frequency (MHz)	Main Ingredients
Solutions (±5% tolerance)	HSL300V2 HSL450V2 HSL750V2 HSL900V2 HSL1450V2 HSL1750V2 HSL1800V2 HSL1900V2 HSL1950V2 HSL2450V2	300 450 750 835, 900 1450, 1500, 1640 1750 1800, 1900 1900 1950, 2000 2450, 2600	Water, Sugar Water, Sugar Water, Sugar Water, Sugar Water, DGBE
Broad- Band Solutions (±5% tolerance)	Product HBBL30-250V3 HBBL1350-1850V3 HBBL1550-1950V3 HBBL1900-3800V3 HBBL3500-5800V5	Test Frequency (MHz) 30-250 1400-1800 1750-1900 1950-3000 3500-5800	Main Ingredients Water, Tween Water, Tween Water, Tween Water, Tween Water, Oil

Body Tissue Simulating Liquids

Body Tissue (Muscle)	Parameters according to FCC	Parameters according to FCC KDB 865664 D01							
Narrow- Band Solutions (±5% tolerance)	Product MSL300V2 MSL450V2 MSL750V2 MSL900V2 MSL1450V2 MSL1750V2 MSL1800V2 MSL1900V2 MSL1950V2 MSL1950V2 MSL2450V2	Test Frequency (MHz) 300 400, 450 750 835, 900 1450, 1500, 1640 1750 1800, 1900 1950, 2100 2450, 2600	Main Ingredients Water, Sugar Water, Sugar Water, Sugar Water, Sugar Water, DGBE						
Broad- Band Solutions (±5% tolerance)	Product MBBL130-250V3 MBBL1350-1850V3 MBBL1550-1950V3 MBBL1900-3800V3 MBBL3500-5800V5	Test Frequency (MHz) 130-250 1350-1800 1550-1850 1950-3800 3500-5800	Main Ingredients Water, Tween Water, Tween Water, Tween Water, Tween Water, Oil						

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HSL750V2)

Product No. SL AAH 075 AA (Charge: 140210-5)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

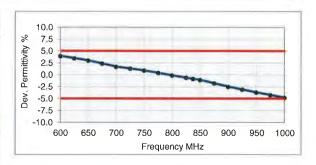
Validation results were within ± 2.5% towards the target values of Methanol.

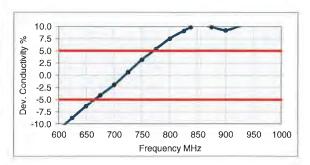
Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.


TSL Temperature 22°C


Test Date 12-Feb-14 Operator IEN

Additional Information

TSL Density 1.284 g/cm³ TSL Heat-capacity 2.701 kJ/(kg*K)

	Measu	ired		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	НР-е"	sigma	eps	sigma	∆-ерз	Δ-sigma
600	44.4	23.49	0.78	42.7	0.88	3.9	-11.1
625	44.1	23.23	0.81	42.6	0,88	3.5	-8.6
650	43.7	22.96	0.83	42.5	0.89	3.0	-6.2
675	43.3	22.68	0.85	42.3	0.89	2.4	-4.1
700	42.9	22.40	0.87	42.2	0.89	1.7	-1.9
725	42.6	22.25	0.90	42.1	0.89	1.3	0.7
750	42.3	22.10	0.92	41.9	0.89	0.9	3.2
775	42.0	21.89	0.94	41.8	0.90	0.4	5.4
800	41.6	21.67	0.96	41.7	0.90	-0.1	7.5
825	41,3	21.55	0.99	41.6	0.91	-0.6	9.0
838	41.2	21.49	1.00	41.5	0.91	-0.8	9.8
850	41.1	21.42	1.01	41.5	0.92	-1.1	10.6
875	40.8	21,29	1.04	41.5	0.94	-1.8	9.9
900	40.5	21.15	1.06	41.5	0.97	-2.5	9.2
925	40.2	21.01	1.08	41.5	0.98	-3.1	10.0
950	39.9	20.87	1.10	41.4	0.99	-3.7	10.9
975	39.6	20.79	1.13	41.4	1.00	-4.3	12.2
1000	39.4	20.71	1.15	41.3	1.01	-4.8	13.5

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HSL900V2)

Product No. SL AAH 090 BB (Charge: 140205-4)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

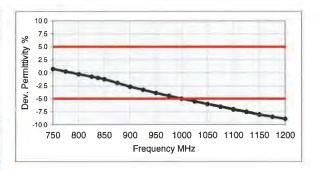
Validation results were within ± 2.5% towards the target values of Methanol.

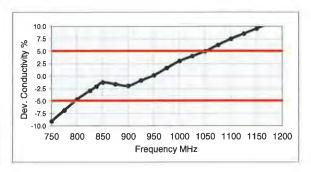
Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.


TSL Temperature 22°C


Test Date 12-Feb-14
Operator IEN

Additional Information

TSL Density 1.280 g/cm³ TSL Heat-capacity 2.942 kJ/(kg*K)

	Measu	red		Targe	t	Diff.to Target [%]	
f [MHz]	HP-e'	HP-e"	elgma	eps	sigma	∆-ерв	∆-sigma
700	42.9	19.58	0.76	42.2	0.89	1.6	-14.3
725	42.6	19.52	0.79	42.1	0.89	1.2	-11.7
750	42.3	19.47	0.81	41.9	0.89	0.8	-9.1
775	41.9	19.35	0.83	41.8	0.90	0.3	-6.8
800	41.6	19.23	0.86	41.7	0.90	-0.3	-4.6
825	41.3	19.18	0.88	41.6	0.91	-0.7	-2.9
838	41.1	19.16	0.89	41.5	0.91	-1.0	-2.1
850	41.0	19.13	0.90	41.5	0.92	-1.2	-1.2
875	40.7	19.07	0.93	41.5	0.94	-1.9	-1.6
900	40.4	19.00	0.95	41.5	0.97	-2.7	-1.9
925	40.1	18.92	0.97	41.5	0.98	-3,3	-0.9
950	39.8	18.85	1.00	41.4	0.99	-3.9	0.2
975	39.6	18.82	1.02	41.4	1.00	-4.4	1.6
1000	39.3	18.80	1.05	41.3	1.01	-5,0	3.0
1025	39.0	18.71	1.07	41.3	1.03	-5.5	4.0
1050	38.8	18.62	1.09	41.2	1.04	-6.0	5.0
1075	38.5	18.59	1.11	41.2	1.05	-6,5	6.3
1100	38.3	18.55	1.14	41.2	1.06	-7.0	7.5
1125	38.0	18.50	1.16	41.1	1.07	-7.5	8.5
1150	37.8	18.44	1.18	41.1	1.08	-8,0	9.6
1175	37.5	18.39	1.20	41.0	1.09	-8.4	10.6
1200	37.3	18.35	1.22	41.0	1.10	-8.9	11.6

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HSL1750V2)

Product No. SL AAH 175 (Charge: 120907-2)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

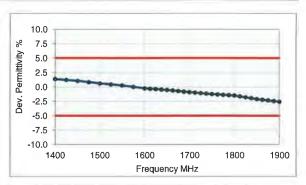
Setup Validation

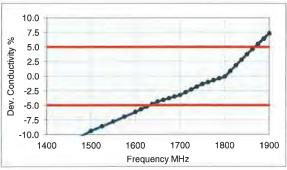
Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition


Ambient Environment temperatur (22 ± 3) °C and humidity < 70%.


TSL Temperature 22°C
Test Date 13-Sep-12
Operator CL

Additional Information

TSL Density 0.998 g/cm³ TSL Heat-capacity 3.572 kJ/(kg*K)

	Measu	red		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	HP-e"	відта	eps	sigma	∆-ерв	Δ-sigma
1400	41.2	13.09	1.02	40.6	1.18	1.4	-13.6
1425	41.0	13.14	1.04	40.5	1.19	1.2	-12.4
1450	40.9	13.19	1.06	40.5	1.20	1.1	-11.3
1475	40.8	13.26	1.09	40.5	1.21	0.8	-10.3
1500	40.7	13.34	1.11	40.4	1.23	0.6	-9.4
1525	40.6	13.39	1.14	40.4	1.24	0.4	-8.6
1550	40.5	13.44	1.16	40.4	1.26	0.3	-7.8
1575	40.3	13.49	1.18	40.3	1.27	0.0	-6.9
1600	40.2	13.55	1.21	40.3	1.28	-0.2	-6.1
1613	40.2	13.58	1.22	40.3	1.29	-0.3	-5.7
1625	40.1	13.62	1.23	40.3	1.30	-0.4	-5.2
1638	40.1	13.65	1.24	40.3	1.31	-0.5	-4.8
1650	40.0	13.68	1.26	40.2	1.31	-0.5	-4.3
1663	40.0	13.70	1.27	40.2	1.32	-0.6	-4.1
1675	39.9	13.71	1.28	40.2	1.33	-0.7	-3.8
1688	39.8	13.72	1.29	40.2	1.33	-0.8	-3.5
1700	39.8	13.73	1.30	40.2	1.34	-0.9	-3.2
1713	39.7	13.77	1.31	40.1	1.35	-1.0	-2.7
1725	39.7	13.81	1.33	40.1	1.36	-1.1	-2.3
1738	39.6	13.85	1.34	40.1	1.36	-1.2	-1.8
1750	39.6	13.89	1.35	40.1	1.37	-1.3	-1.4
1763	39.5	13.91	1.36	40.1	1.38	-1.3	-1.0
1775	39.5	13.93	1.38	40.0	1.39	-1.4	-0.7
1788	39.4	13.95	1.39	40.0	1.39	-1.4	-0.4
1800	39.4	13.97	1.40	40.0	1.40	-1.5	-0.1
1813	39.3	14.01	1.41	40.0	1.40	-1.7	0.9
1825	39.3	14.04	1.43	40.0	1.40	-1.8	1.8
1838	39.2	14.08	1.44	40.0	1.40	-2.0	2.8
1850	39.2	14.11	1.45	40.0	1.40	-2.1	3.8
1863	39.1	14.14	1.47	40.0	1.40	-2.2	4.7
1875	39.1	14.17	1.48	40.0	1.40	-2.3	5.6
1888	39.0	14.19	1.49	40.0	1.40	-2.5	6.5
1900	39.0	14.22	1.50	40.0	1.40	-2.6	7-4

Scrimic & Farther Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HSL 1900)

Product No. SL AAH 190 AA (Charge: 120112-1)

Manufacturer SPEAG

Measurement Method

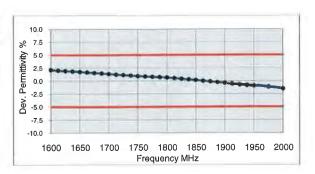
TSL dielectric parameters measured using calibrated OCP probe (type DAK).

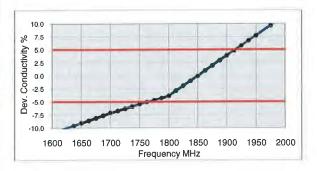
Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Condition 22°C; 30% humidity


TSL Temperature 22°C Test Date 18-Jan-12


Additional Information

TSL Density 0.985 g/cm³ TSL Heat-capacity 3.710 kJ/(kg*K)

Results

	Measu	ired		Targe	t	Diff.to Target [%	
f [MHz]	HP-e'	HP-e"	sigma	eps	sigma	∆-ерв	Δ-sigma
1600	41.2	12.84	1.14	40.3	1.28	2.1	-11.0
1613	41.1	12.88	1.16	40.3	1.29	2.0	-10.5
1625	41.1	12.93	1.17	40.3	1.30	1.9	-10.0
1638	41.0	12.97	1.18	40.3	1.31	1.8	-9.5
1650	40.9	13.01	1.19	40.2	1.31	1.8	-9.1
1663	40.9	13.05	1.21	40.2	1.32	1.7	-8.6
1675	40.8	13.10	1.22	40.2	1.33	1.6	-8.1
1688	40.8	13.14	1.23	40.2	1.33	1.4	-7.6
1700	40.7	13.18	1.25	40.2	1.34	1.3	-7.1
1713	40.6	13.22	1.26	40.1	1.35	1.2	-6.7
1725	40.6	13.25	1.27	40.1	1.36	1.1	-6.3
1738	40.5	13.28	1.28	40.1	1.36	1.0	-5.9
1750	40.5	13.31	1.30	40.1	1.37	0.9	-5.5
1763	40.4	13.35	1.31	40.1	1.38	0.9	-5.1
1775	40.4	13.38	1.32	40.0	1.39	0.8	-4.7
1788	40.3	13.41	1.33	40.0	1.39	0.7	-4.3
1800	40.3	13.44	1.35	40.0	1.40	0.6	-3.9
1813	40.2	13.48	1.36	40.0	1.40	0.5	-2.9
1825	40.2	13.52	1.37	40.0	1.40	0.4	-2.0
1838	40.1	13.55	1.39	40.0	1.40	0.3	-1.0
1850	40.1	13.59	1.40	40.0	1.40	0.1	-0.1
1863	40.0	13.63	1.41	40.0	1.40	0.0	0.9
1875	39.9	13.67	1.43	40.0	1.40	-0.1	1.9
1888	39.9	13.71	1.44	40.0	1.40	-0.3	2.9
1900	39.8	13.75	1.45	40.0	1.40	-0.4	3.8
1913	39.8	13.79	1.47	40.0	1.40	-0.5	4.8
1925	39.7	13.83	1.48	40.0	1.40	-0.7	5.8
1938	39.7	13.86	1.49	40.0	1.40	-0.8	6.7
1950	39.6	13.90	1.51	40.0	1.40	-0.9	7.7
1975	39.5	13.97	1.53	40.0	1.40	-1.2	9.6
2000	39.4	14.04	1.56	40.0	1.40	-1.5	11.6

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HSL1950V2)

Product No. SL AAH 195 CA (Charge: 120717-3)

Manufacturer SPEAG

Measurement Method

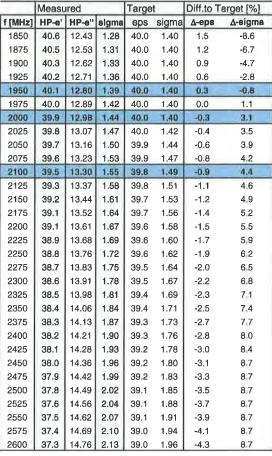
TSL dielectric parameters measured using calibrated OCP probe.

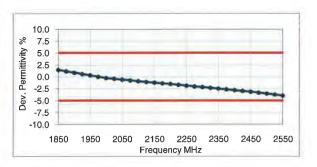
Setup Validation

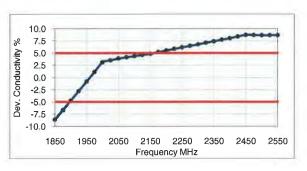
Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.


Test Condition


Ambient Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.


TSL Temperature 22°C
Test Date 18-Jul-12
Operator DI

TSL Density 0.995 g/cm³
TSL Heat-capacity 3.720 kJ/(kg*K)

					2.7		
-	Measu	ıred		Targe	t	Diff.to	Target
f (MHz)	HP.a'	HP.a"	elama	ens	siama	A-ens	A-Ri

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HSL2450V2)

Product No. SL AAH 245 BA (Charge: 130430-3)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

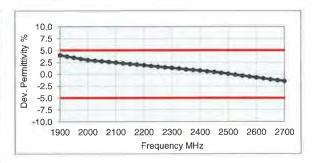
Setup Validation

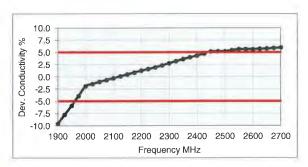
Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition


Ambient Environment temperatur (22 ± 3) °C and humidity < 70%.


TSL Temperature 23°C
Test Date 2-May-13
Operator CL

Additional Information

TSL Density 0.988 g/cm³ TSL Heat-capacity 3.680 kJ/(kg*K)

	Measu	red		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e	HP-e"	sigma	eps	sigma	∆-eps	∆-sigma
1900	41.6	11.98	1.27	40.0	1.40	4.0	-9.6
1925	41.5	12,06	1.29	40.0	1.40	3.8	-7.7
1950	41.4	12.15	1.32	40.0	1.40	3.5	-5.9
1975	41.3	12.24	1.35	40.0	1.40	3.3	-3.9
2000	41.2	12.34	1.37	40.0	1,40	3.0	-1,9
2025	41.1	12.44	1.40	40.0	1.42	2.9	-1.5
2050	41.0	12.54	1.43	39.9	1.44	2.8	-1,0
2075	40.9	12.62	1.46	39.9	1.47	2.6	-0.6
2100	40.8	12.71	1.48	39.8	1.49	2.5	-0,3
2125	40.7	12.80	1.51	39.8	1.51	2.3	0.1
2150	40.6	12.88	1.54	39.7	1.53	2.2	0.5
2175	40.5	12,97	1.57	39.7	1.56	2.0	0.9
2200	40.4	13.05	1.60	39.6	1.58	1.9	1.3
2225	40.3	13.13	1.63	39,6	1.60	1.7	1.6
2250	40.2	13.21	1.65	39.6	1.62	1.6	1.9
2275	40.1	13.30	1.68	39.5	1.64	1,5	2.4
2300	40.0	13.39	1.71	39.5	1.67	1.3	2.8
2325	39.9	13.48	1.74	39.4	1.69	1.2	3.2
2350	39.8	13.56	1.77	39.4	1.71	1.0	3.6
2375	39.7	13.64	1.80	39.3	1.73	0.9	4.0
2400	39.6	13.72	1.83	39.3	1.76	0.8	4.3
2425	39.5	13.80	1.86	39.2	1.78	0.6	4.8
2450	39.4	13.89	1.89	39.2	1.80	0.5	5.2
2475	39.3	13.96	1.92	39.2	1.83	0.3	5.2
2500	39.2	14.03	1.95	39.1	1.85	0.1	5.2
2525	39.1	14.12	1.98	39.1	1.88	-0.1	5.4
2550	39.0	14.22	2.02	39.1	1.91	-0.3	5.6
2575	38.9	14.28	2.05	39.0	1.94	-0.5	5.6
2600	38.7	14.34	2.07	39.0	1.96	-0.7	5.6
2625	38.6	14.41	2.10	39.0	1.99	-0.9	5.7
2650	38.5	14.48	2.13	38.9	2.02	-1.1	5.8
2675	38.4	14.55	2.17	38.9	2.05	-1.3	5.9
2700	38.3	14.62	2.20	38.9	2.07	-1.4	6.0

Schmid & Partner Engineering AG

s p e a

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HBBL1550-1950V3)

Product No. SL AAH 181 AA (Charge: 140206-3)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

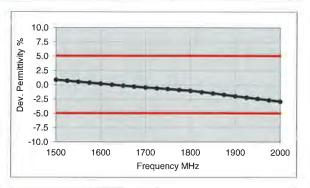
Validation results were within ± 2.5% towards the target values of Methanol.

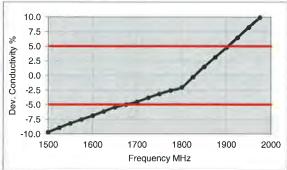
Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Environment temperatur (22 ± 3) °C and humidity < 70%.


TSL Temperature 22°C Test Date 12-Feb-14


Operator IEN

Additional Information

TSL Density 1.052 g/cm³ TSL Heat-capacity 3.322 kJ/(kg*K)

	Measu	red		Target		Diff.to Target [
f [MHz]	HP-e'	HP-e"	sigma	eps	sigma	∆-ерв	Δ-sigma
1500	40.8	13.29	1.11	40.4	1.23	0.9	-9.7
1525	40.7	13.34	1.13	40.4	1.24	0.7	-8.9
1550	40.6	13.38	1.15	40.4	1.26	0.6	-8.2
1575	40.5	13.41	1.17	40.3	1.27	0.4	-7.5
1600	40.4	13.44	1.20	40.3	1.28	0.2	-6.9
1625	40.3	13.48	1.22	40.3	1.30	0.1	-6.2
1650	40.2	13.53	1.24	40.2	1.31	-0.1	-5.4
1675	40.1	13.54	1.26	40.2	1.33	-0.3	-5.0
1700	40.0	13.55	1.28	40.2	1.34	-0.4	-4.5
1725	39.9	13.60	1.30	40.1	1.36	-0.6	-3.8
1750	39.8	13.64	1.33	40.1	1.37	-0.7	-3.1
1775	39.7	13.67	1.35	40.0	1.39	-0.9	-2.6
1800	39.6	13.70	1.37	40.0	1.40	-1.0	-2.0
1825	39.5	13.75	1.40	40.0	1.40	-1.2	-0.3
1850	39.4	13.81	1.42	40.0	1.40	-1.5	1.5
1875	39.3	13.84	1.44	40.0	1.40	-1.7	3.1
1900	39.2	13.88	1.47	40.0	1.40	-2.0	4.8
1925	39.1	13.92	1.49	40.0	1.40	-2.2	6.5
1950	39.0	13.97	1.52	40.0	1.40	-2.4	8.3
1975	38.9	14.01	1.54	40.0	1.40	-2.6	10.0
2000	38.8	14.05	1.56	40.0	1.40	-2.9	11.6

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HBBL1900-3800V3)

Product No. SL AAH 196 AB (Charge: 131212-1)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

Validation results were within ± 2.5% towards the target values of Methanol.

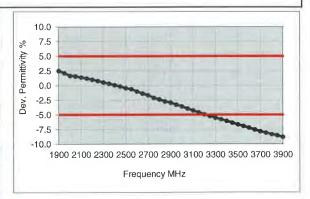
Target Parameters

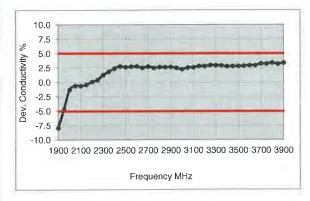
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.

TSL Temperature 22°C
Test Date 18-Dec-13
Operator IEN


Additional Information


TSL Density 1.054 g/cm³ TSL Heat-capacity 3.389 kJ/(kg*K)

	Measu	red		Targe		Diff.to T	arget [%]
f [MHz]	HP-e'	НР-е"	sigma	eps	sigma	Δ-eps	Δ-sigma
1900	41.0	12.2	1.3	40.0	1.4	2.5	-7.9
1950	40.8	12.3	1.3	40.0	1.4_	2.1	-4.7
2000	40.7	12.4	1.4	40.0	1,4	1.7	-1,3
2050	40.5	12,6	1.4	39.9	1.4	1.6	-0.6
2100	40.4	12.7	1.5	39.8	1.5	1.4	-0,6
2150	40.2	12.8	1.5	39.7	1.5	1.2	-0.4
2200	40.0	12.9	1.6	39.6	1.6	1.0	0.1
2250	39.9	13,0	1.6	39.6	1.6	0.8	0.4
2300	39.7	13.2	1.7	39.5	1.7	0.5	1.3
2350	39.5	13.3	1.7	39.4	1.7	0.3	1.8
2400	39.3	13.5	1.8	39.3	1,8	0.1	2.4
2450	39.1	13.6	1.9	39.2	1.8	-0.1	2.8
2500	39.0	13,7	1.9	39.1	1.9	-0.4	2.6
2550	38.8	13.8	2.0	39.1	1.9	-0.6	2.7
2600	38.6	14.0	2.0	39.0	2.0	-1.0	2.8
2650	38.4	14.0	2.1	38.9	2.0	-1.4	2.5
2700	38.2	14.2	2.1	38.9	2,1	-1.7	2.7
2750	38.0	14.3	2.2	38.8	2.1	-2.1	2.5
2800	37.8	14.4	2,2	38.8	2,2	-2.4	2.6
2850	37.6	14.5	2.3	38.7	2.2	-2.7	2.6
2900	37.5	14.6	2,4	38.6	2.3	-2.9	2.6
2950	37.3	14.6	2,4	38.6	2.3	-3.3	2.5
3000	37.1	14,7	2,5	38.5	2.4	-3.6	2.3
3050	36.9	14.8	2.5	38.4	2.5	-3.9	2.6
3100	36.7	14.9	2,6	38.4	2.5	-4.3	2.6
3150	36.6	15.0	2,6	38.3	2,6	-4.6	2.8
3200	36.4	15.0	2.7	38.3	2.6	-4.9	2.8
3250	36.2	15.1	2,7	38.2	2,7	-5.2	3.0
3300	36.1	15.2	2.8	38.2	2,7	-5.5	3.0
3350	35.9	15.2	2.8	38.1	2.8	-5.8	2.9
3400	35.7	15.3	2,9	38.0	2,8	-6.0	2.8
3450	35.6	15.3	2.9	38.0	2,9	-6.3	2.8
3500	35.4	15.4	3.0	37.9	2.9	-6.6	2.8
3550	35.3	15.4	3.0	37.9	3.0	-6.9	2.9
3600	35.1	15.5	3,1	37.8	3.0	-7.2	2.9
3650	34.9	15.5	3.2	37.8	3.1	-7.5	2.9
3700	34.7	15.6	3.2	37.7	3.1	-7.8	3.2
3750	34.6	15.7	3.3	37.6	3.2	-8.1	3.2
3800	34.5	15.7	3.3	37.6	3.2	-8.3	3.4

3850 34.3 15.8 3.4 37.5 3.3 -8.5

3.2

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HBBL3500-5800V5)

Product No. SL AAH 502 AB (Charge: 130123-1)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

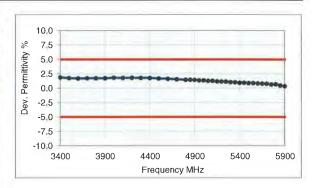
Setup Validation

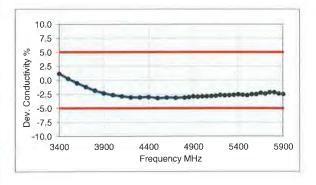
Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition


Ambient Environment temperatur (22 ± 3) °C and humidity < 70%.


TSL Temperature 22°C
Test Date 23-Jan-13
Operator DI

Additional Information

TSL Density 0.985 g/cm³ TSL Heat-capacity 3.383 kJ/(kg*K)

	Measu	ired		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e	HP-e"	sigma	eps	sigma	∆-eps	∆-sigma
3400	38.8	15.03	2.84	38.0	2.81	1.9	1.2
3500	38.6	15.00	2.92	37.9	2.91	1.8	0.3
3600	38.5	14.98	3.00	37,8	3.02	1.7	-0.5
3700	38.4	14.97	3.08	37.7	3.12	1.7	-1.2
3800	38.2	14.95	3.16	37.6	3.22	1.7	-1.8
3900	38.1	14.96	3.25	37.5	3.32	1.7	-2,3
4000	38,0	14,99	3,34	37.4	3.43	1.8	-2.6
4100	37.9	15.03	3.43	37.2	3,53	1.8	-2.8
4200	37.8	15.06	3.52	37.1	3.63	1.8	-3.0
4300	37.7	15,13	3.62	37.0	3.73	1.8	-3.1
4400	37.6	15.20	3.72	36.9	3.84	1.8	-3.0
4500	37,4	15.23	3.81	36,8	3.94	1.7	-3,2
4600	37.3	15.30	3.92	36.7	4.04	1.6	-3.1
4700	37.1	15.35	4.01	36.6	4.14	1.5	-3.1
4800	37.0	15.41	4.11	36.4	4.25	1,5	-3,1
4850	36.9	15.45	4.17	36.4	4.30	1.5	-3.0
4900	36.8	15.49	4.22	36.3	4.35	1.4	-2.9
4950	36.8	15,51	4.27	36,3	4.40	1.4	-2.9
5000	36.7	15.54	4.32	36.2	4.45	1.4	-2.9
5050	36.6	15.57	4.37	36.2	4.50	1.3	-2.8
5100	36.6	15.60	4.42	36.1	4.55	1.3	-2.8
5150	36.5	15.63	4.48	36.0	4.60	1.2	-2.7
5200	36.4	15.67	4.53	36.0	4.66	1.2	-2.6
5250	36.3	15.68	4.58	35.9	4.71	1.1	-2.7
5300	36.2	15.71	4.63	35.9	4.76	1.0	-2.6
5350	36.2	15.74	4.68	35.8	4.81	1.0	-2.6
5400	36.1	15.78	4.74	35.8	4.86	0,9	-2.5
5450	36.0	15.78	4.78	35.7	4.91	0.9	-2.6
5500	36.0	15.79	4.83	35.6	4.96	0.9	-2.6
5550	35.9	15.84	4.89	35.6	5.01	0.9	-2.5
5600	35.8	15.86	4,94	35.5	5.07	0.8	-2.5
5650	35.8	15.91	5.00	35.5	5.12	0.8	-2.2
5700	35.7	15.91	5.05	35.4	5.17	0.8	-2.4
5750	35.6	15.97	5.11	35.4	5.22	0.7	-2.1
5800	35.5	15.98	5.16	35.3	5.27	0.7	-2.1
5850	35.5	16.01	5.21	35.3	5.34	0.5	-2-4
5900	35.4	16.05	5.27	35.3	5.40	0,3	-2.4

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MSL750V2)

Product No. SL AAM 075 (Charge: 120831-2)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

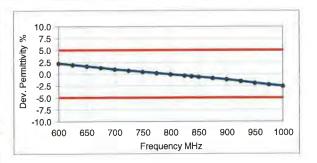
Validation results were within ± 2.5% towards the target values of Methanol.

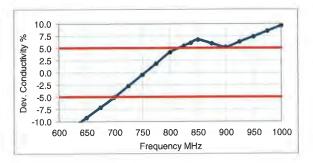
Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.


TSL Temperature 22°C Test Date 5-Sep-12


Operator CL

Additional Information

TSL Density 1.212 g/cm³ TSL Heat-capacity 3.006 kJ/(kg*K)

	Measu	ired		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	НР-ө"	відта	eps	sigma	∆-ерв	∆-sigma
600	57.4	24.67	0.82	56.1	0.95	2.2	-13.5
625	57.1	24.34	0.85	56.0	0.95	1.9	-11.3
650	56.8	24.01	0.87	55.9	0.96	1.6	-9.1
675	56.6	23.71	0.89	55.8	0.96	1.3	-7.1
700	56.3	23.41	0.91	55.7	0.96	1.0	-5.0
725	56.0	23.20	0.94	55.6	0.96	0.7	-2.7
750	55.8	22.99	0.96	55.5	0.96	0.5	-0.4
775	55.5	22.81	0.98	55.4	0.97	0.2	1.9
800	55.3	22.64	1.01	55.3	0.97	-0.1	4.2
825	55.1	22.47	1.03	55.2	0.98	-0.3	5.5
838	54.9	22.39	1.04	55.2	0.98	-0.5	6.1
850	54.8	22.31	1.05	55.2	0.99	-0.6	6.7
875	54.6	22.19	1.08	55.1	1.02	-0.9	6.0
900	54.4	22.07	1.10	55.0	1.05	-1.1	5.2
925	54.1	21.96	1.13	55.0	1.06	-1.5	6.3
950	53.9	21.85	1.15	54.9	1.08	-1.9	7.4
975	53.7	21.75	1.18	54.9	1.09	-2.2	8.5
1000	53.5	21.64	1.20	54.8	1.10	-2.5	9.6

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MSL900V2)

Product No. SL AAM 090 CA (Charge: 140124-1)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

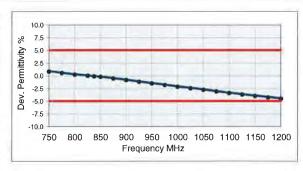
Setup Validation

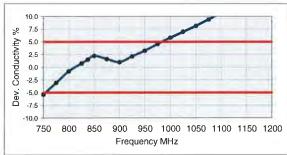
Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition


Ambient Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.


TSL Temperature 22°C
Test Date 29-Jan-14
Operator IEN

Additional Information

TSL Density 1.208 g/cm3 TSL Heat-capacity 3.113 kJ/(kg*K)

	Measu	ired		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	HP-e"	sigma	eps	sigma	∆-ерв	Δ-sigma
700	56.5	22.21	0.86	55.7	0.96	1.4	-9.9
725	56.3	22.03	0.89	55.6	0.96	1.1	-7.6
750	56.0	21.85	0.91	55.5	0,96	0.9	-5.4
775	55.8	21.71	0.94	55.4	0.97	0.6	-3.1
800	55.5	21.57	0.96	55.3	0.97	0.3	-0.8
825	55.3	21.47	0.99	55.2	0.98	0.1	0.8
838	55.2	21.42	1.00	55.2	0.98	-0.1	1.5
850	55.1	21.37	1.01	55.2	0.99	-0.2	2.2
875	54.8	21.28	1.04	55.1	1.02	-0.5	1.6
900	54.6	21.19	1.06	55.0	1.05	-0.8	1.0
925	54.3	21.10	1.09	55.0	1.06	-1.1	2.1
950	54.1	21.01	1.11	54.9	1.08	-1.5	3.2
975	53.9	20.96	1.14	54.9	1.09	-1.8	4.6
1000	53.7	20,90	1.16	54.8	1.10	-2.1	5.9
1025	53.5	20.82	1.19	54.8	1.11	-2.4	7.0
1050	53.3	20.75	1.21	54.7	1.12	-2.7	8.1
1075	53.0	20.70	1.24	54.7	1.13	-3.0	9.4
1100	52.8	20.66	1.26	54.7	1.14	-3.4	10.6
1125	52.6	20.57	1.29	54.6	1.15	-3.7	11.5
1150	52.4	20.48	1.31	54.6	1.17	-3,9	12,4
1175	52.2	20.47	1.34	54.5	1.18	-4.2	13.7
1200	52.0	20.46	1.37	54.5	1.19	-4.5	15.0

TSL Dielectric Parameters Page 1 of 1

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MSL1750V2)

Product No. SL AAM 175 (Charge: 120919-3)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

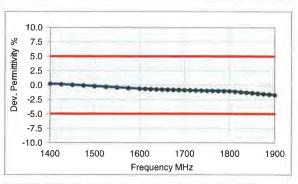
Validation results were within ± 2.5% towards the target values of Methanol.

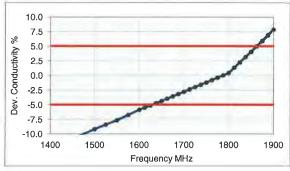
Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Environment temperatur (22 ± 3)°C and humidity < 70%.


TSL Temperature 22°C Test Date 20-Sep-12


Operator CL

Additional Information

TSL Density 0.998 g/cm³ TSL Heat-capacity 3.893 kJ/(kg*K)

	Measu	ired		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	НР-е"	eigme	eps	sigma	Д-ерв	Δ-sigma
1400	54.2	14.23	1.11	54.1	1.28	0.2	-13.2
1425	54.1	14.30	1.13	54.0	1.29	0.1	-12.1
1450	54.0	14.36	1.16	54.0	1.30	0.0	-10.9
1475	53.9	14.42	1.18	54.0	1.32	-0.1	-10.0
1500	53.8	14.49	1.21	53.9	1.33	-0.2	-9.2
1525	53.7	14.54	1.23	53.9	1.35	-0.3	-8.4
1550	53.7	14.59	1.26	53.9	1.36	-0.4	-7.7
1575	53.6	14.67	1.29	53.8	1.38	-0.5	-6.8
1600	53.5	14.74	1.31	53.8	1.39	-0.6	-5.9
1613	53.4	14.77	1.32	53.8	1.40	-0.7	- 5.5
1625	53.4	14.79	1.34	53.8	1.41	-0.7	-5.1
1638	53.3	14.82	1.35	53.7	1.42	-0.7	-4.7
1650	53.3	14.85	1.36	53.7	1.43	-0.8	-4.4
1663	53.2	14.88	1.38	53.7	1.43	-0.8	-4.0
1675	53.2	14.91	1.39	53.6	1.44	-0.8	-3.6
1688	53.1	14.94	1.40	53.6	1.45	-0.8	-3.2
1700	53.1	14.97	1.42	53.6	1.46	-0.9	-2.8
1713	53.1	15.01	1.43	53.5	1.46	-0.9	-2.4
1725	53.0	15.04	1.44	53.5	1.47	-0.9	-2.0
1738	53.0	15.07	1.46	53.5	1.48	-1.0	-1.6
1750	52.9	15.10	1.47	53.4	1.49	-1.0	-1.2
1763	52.9	15.14	1.48	53.4	1.50	-1.0	-0.8
1775	52.8	15.17	1.50	53.4	1.50	-1.0	-0.4
1788	52.8	15.21	1.51	53.3	1.51	-1.0	0.0
1800	52.7	15.24	1.53	53.3	1,52	-1.1	0.4
1813	52.7	15.27	1.54	53.3	1.52	-1.1	1.3
1825	52.7	15.30	1.55	53.3	1.52	-1.2	2.2
1838	52.6	15.33	1.57	53.3	1.52	-1.3	3.1
1850	52.6	15.37	1.58	53.3	1.52	-1.4	4.0
1863	52.5	15.40	1.60	53.3	1.52	-1.5	5.0
1875	52.5	15.44	1.61	53.3	1.52	-1.5	6.0
1888	52.4	15.48	1.63	53.3	1.52	-1.6	6.9
1900	52.4	15.51	1.64	53.3	1.52	-1.7	7.9

TSL Dielectric Parameters Page 1 of 1

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MSL1900V2)

Product No. SL AAM 190 (Charge: 120913-1)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

Validation results were within ± 2.5% towards the target values of Methanol.

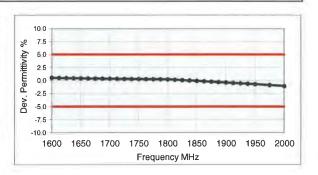
Target Parameters

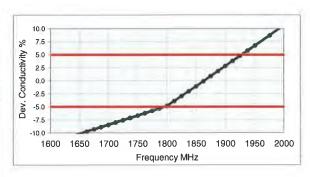
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Environment temperatur (22 ± 3)°C and humidity < 70%.

TSL Temperature 22°C


Test Date 20-Sep-12


Operator CL

Additional Information

TSL Density 0.996 g/cm³ TSL Heat-capacity 3.947 kJ/(kg*K)

	Measu	ıred		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	HP-e"	sigma	eps	sigma	∆-ерв	Δ-sigma
1600	54.1	13.80	1.23	53.8	1.39	0.5	-11.8
1613	54.1	13.84	1.24	53.8	1.40	0.5	-11.4
1625	54.0	13.87	1.25	53.8	1.41	0.5	-11.0
1638	54.0	13.91	1.27	53.7	1.42	0.5	-10.6
1650	53.9	13.95	1.28	53.7	1.43	0.4	-10.2
1663	53.9	13.99	1.29	53.7	1.43	0.4	-9.7
1675	53.8	14.02	1.31	53.6	1.44	0.4	-9.3
1688	53.8	14.06	1.32	53.6	1.45	0.4	-8.9
1700	53.8	14.10	1.33	53.6	1.46	0.4	-8.4
1713	53.7	14.14	1.35	53.5	1.46	0.3	-8.0
1725	53.7	14.19	1.36	53.5	1.47	0.3	-7.6
1738	53.6	14.23	1.38	53.5	1.48	0.3	-7.1
1750	53.6	14.27	1.39	53.4	1.49	0.3	-6.7
1763	53.5	14.31	1.40	53.4	1.50	0.3	-6.2
1775	53.5	14.35	1.42	53.4	1.50	0.3	-5.8
1788	53.5	14.40	1.43	53.3	1.51	0.2	-5.3
1800	53.4	14.44	1.45	53.3	1.52	0.2	-4.9
1813	53.4	14.48	1.46	53.3	1.52	0.2	-3.9
1825	53.3	14.52	1.47	53.3	1.52	0.1	-3.0
1838	53.3	14.56	1.49	53.3	1.52	0.0	-2.0
1850	53.3	14.61	1.50	53.3	1.52	-0.1	-1.1
1863	53.2	14.65	1.52	53.3	1.52	-0.1	-0.1
1875	53.2	14.69	1.53	53.3	1.52	-0.2	0.8
1888	53.1	14.74	1.55	53.3	1.52	-0.3	1.8
1900	53.1	14.78	1.56	53.3	1.52	+0.4	2.8
1913	53.0	14.83	1.58	53.3	1.52	-0,5	3.8
1925	53.0	14.87	1.59	53.3	1.52	-0.5	4.8
1938	53.0	14.91	1.61	53.3	1.52	-0,6	5.7
1950	52.9	14.95	1.62	53.3	1.52	-0.7	6.7
1975	52.8	15.03	1.65	53.3	1.52	-0.9	8.7
2000	52.7	15.11	1.68	53.3	1.52	-1.0	10.6

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MSL1950V2)

Product No. SL AAM 195 (Charge: 120919-2)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

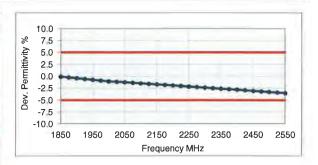
Validation results were within ± 2.5% towards the target values of Methanol.

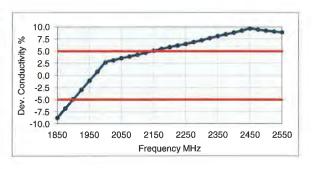
Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Environment temperatur (22 ± 3)°C and humidity < 70%.


TSL Temperature 22°C Test Date 20-Sep-12


Operator CL

Additional Information

TSL Density 0.997 g/cm³ TSL Heat-capacity 3.970 kJ/(kg*K)

	Measu	red		Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	HP-e"	Bigma	eps	sigma	∆-ерв	∆-sigma
1850	53.3	13.47	1.39	53.3	1.52	-0.1	-8.8
1875	53.2	13.58	1.42	53.3	1.52	-0.2	-6.8
1900	53.1	13.68	1.45	53.3	1.52	-0.4	-4.9
1925	53.0	13.77	1.47	53.3	1.52	-0,6	-3.0
1950	52.9	13.86	1.50	53,3	1.52	-0.7	-1.1
1975	52.8	13.94	1.53	53.3	1.52	-0.9	8.0
2000	52.7	14.03	1.56	53.3	1.52	-1:1	2.7
2025	52.6	14.13	1.59	53.3	1.54	-1.2	3,1
2050	52.6	14.23	1.62	53.2	1.57	-1.3	3,5
2075	52.5	14.32	1.65	53.2	1.59	-1.4	3.9
2100	52.4	14.41	1.68	53,2	1.62	-1.5	4.2
2125	52.3	14.51	1.72	53.1	1.64	-1.6	4.7
2150	52.2	14.61	1.75	53.1	1.66	-1.7	5.1
2175	52.1	14.70	1.78	53.1	1.69	-1.8	5.5
2200	52.0	14.79	1.81	53.0	1.71	-1.9	5.8
2225	51.9	14.88	1.84	53.0	1.74	-2.0	6.1
2250	51.8	14.96	1.87	53.0	1.76	-2.2	6.5
2275	51.7	15.05	1.91	52.9	1.78	-2.3	6.9
2300	51.6	15.14	1.94	52.9	1.81	-2.4	7.2
2325	51.5	15.24	1.97	52.9	1.83	-2.5	7.7
2350	51.4	15.33	2.00	52.8	1.85	-2.6	8.1
2375	51.4	15.42	2.04	52.8	1.88	-2.7	8.5
2400	51.3	15.50	2.07	52.8	1.90	-2.8	8.8
2425	51.2	15.60	2.10	52.7	1.93	-2.9	9.2
2450	51.1	15.69	2.14	52.7	1.95	-3.1	9.7
2475	51.0	15.78	2.17	52.7	1.99	-3.2	9.4
2500	50.9	15.87	2.21	52.6	2.02	-3.3	9.2
2525	50.8	15.96	2.24	52.6	2.06	-3.4	9.1
2550	50.7	16.06	2.28	52.6	2.09	-3.5	8.9
2575	50.6	16.14	2.31	52.5	2.13	-3.7	8.7
2600	50.5	16.23	2.35	52.5	2.16	-3.9	8.6

TSL Dielectric Parameters Page 1 of 1

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MSL2450V2)

Product No. SL AAM 245 BA (Charge: 130510-2)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

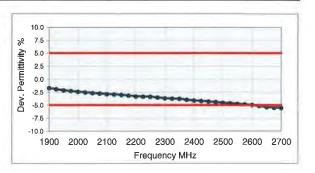
Setup Validation

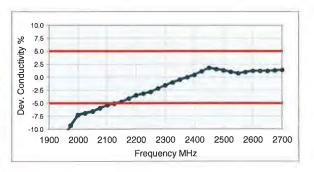
Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition


Ambient Environment temperatur (22 ± 3) °C and humidity < 70%.


TSL Temperature 22°C
Test Date 15-May-13
Operator IEN

Additional Information

TSL Density 0.996 g/cm³ TSL Heat-capacity 3.987 kJ/(kg*K)

	Measu	red	-	Targe	t	Diff.to T	arget [%]
f [MHz]	HP-e'	HP-e"	sigma	eps	sigma	∆-ерз	∆-sigma
1900	52.4	12.21	1.29	53.3	1.52	-1.7	-15.1
1925	52.3	12.32	1.32	53.3	1.52	-1.9	-13.2
1950	52.2	12.43	1.35	53.3	1.52	-2.1	-11.3
1975	52.1	12.55	1.38	53.3	1.52	-2.2	-9.3
2000	52.0	12.67	1.41	53.3	1.52	-2.4	-7.3
2025	51.9	12.75	1.44	53.3	1.54	-2.5	-6.9
2050	51.8	12.84	1.46	53.2	1.57	-2.6	-6.6
2075	51.7	12.96	1.50	53.2	1.59	-2.7	-6.0
2100	51.7	13.09	1.53	53.2	1.62	-2.8	-5.4
2125	51.6	13.17	1.56	53.1	1.64	-2.9	-5.0
2150	51.5	13.25	1.58	53.1	1.66	-3.0	-4.7
2175	51.4	13.37	1.62	53.1	1.69	-3.1	-4.1
2200	51.3	13.50	1.65	53.0	1.71	-3.3	-3.5
2225	51.2	13.58	1.68	53.0	1.74	-3.3	-3.1
2250	51.2	13.65	1.71	53.0	1.76	-3.3	-2.8
2275	51.1	13.78	1.74	52.9	1.78	-3.5	-2.2
2300	51.0	13.90	1.78	52.9	1.81	-3.6	-1.5
2325	50.9	14.01	1.81	52.9	1.83	-3.7	-1.0
2350	50.9	14.12	1.85	52.8	1.85	-3.8	-0.5
2375	50.7	14.21	1.88	52.8	1.88	-3.9	0.0
2400	50.6	14.31	1.91	52.8	1.90	-4.1	0.5
2425	50.5	14.44	1.95	52.7	1.93	-4.2	1.1
2450	50.5	14.56	1.99	52.7	1.95	-4.3	1.8
2475	50.4	14.64	2.02	52.7	1.99	-4.4	1.6
2500	50.3	14.72	2.05	52.6	2.02	-4.5	1.3
2525	50.2	14.79	2.08	52.6	2.06	-4.6	1.0
2550	50.1	14.86	2.11	52.6	2.09	-4.7	0.7
2575	50.0	15.00	2.15	52.5	2.13	-4.8	1.0
2600	49.9	15.14	2.19	52.5	2.16	-4.9	1,2
2625	49.8	15.23	2.22	52.5	2.20	-5.1	1.2
2650	49.6	15.33	2.26	52.4	2.23	-5.3	1.2
2675	49.6	15.45	2.30	52.4	2.27	-5.4	1.3
2700	49.5	15.56	2.34	52.4	2.30	-5.5	1.4

TSL Dielectric Parameters Page 1 of 1

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MBBL1550-1950V3)

Product No. SL AAM 181 AA (Charge: 140218-3)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

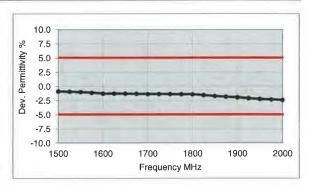
Setup Validation

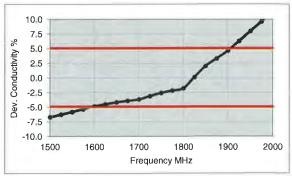
Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition


Ambient Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.


TSL Temperature 22°C
Test Date 19-Feb-14
Operator IEN

Additional Information

TSL Density 1.042 g/cm³ TSL Heat-capacity 3.475 kJ/(kg*K)

	Measu	red		Targe	t	Diff.to Target [%]		
f [MHz]	HP-e'	HP-e"	eigma	eps	sigma	∆-ерв	Δ-sigma	
1500	53.5	14.88	1.24	53.9	1.33	-0.9	-6.7	
1525	53.4	14.88	1.26	53.9	1.35	-0.9	-6.2	
1550	53.4	14.89	1.28	53.9	1.36	-1.0	-5.8	
1575	53.2	14.89	1.30	53.8	1.38	-1.1	-5.3	
1600	53.1	14.90	1.33	53.8	1.39	-1.2	-4.8	
1625	53.1	14.89	1.35	53.8	1.41	-1.2	-4.5	
1650	53.0	14.88	1.37	53.7	1.43	-1.3	-4.2	
1675	52.9	14.86	1.38	53.6	1.44	-1.3	-3.9	
1700	52.9	14.84	1.40	53.6	1.46	-1.3	-3.7	
1725	52.8	14.87	1.43	53.5	1.47	-1.3	-3.1	
1750	52.7	14.90	1.45	53.4	1.49	-1.4	-2.6	
1775	52.6	14.90	1.47	53.4	1.50	-1.4	-2.2	
1800	52.6	14.91	1.49	53.3	1.52	-1.4	-1.8	
1825	52.5	14.99	1.52	53.3	1.52	-1.5	0.1	
1850	52.4	15.07	1.55	53.3	1.52	-1.7	2.0	
1875	52.3	15.06	1.57	53.3	1.52	-1.8	3.3	
1900	52.3	15.05	1.59	53.3	1.52	-1.9	4.6	
1925	52.2	15.09	1.62	53.3	1.52	-2.1	6.3	
1950	52.1	15.13	1.64	53.3	1.52	-2.2	8.0	
1975	52.1	15.17	1.67	53.3	1.52	-2.3	9.7	
2000	52.0	15.21	1.69	53.3	1.52	-2.4	11.3	

a

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MBBL1900-3800V3)

Product No. SL AAM 196 AB (Charge: 140219-3)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

3650

3700

3750

3800

3850

48.7

48.5

48.4

48.3

48.2

17.1

17.2

17.3

17.4

17.5

3.47

3.55

3.61

3.67

3.74

51.1

51.1

51.0

50.9

50.8

3.49

3.55

3.61

3.66

3.72

-4.8

-4.9

-5.0

-5,1

-5.2

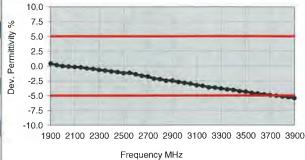
-0.5

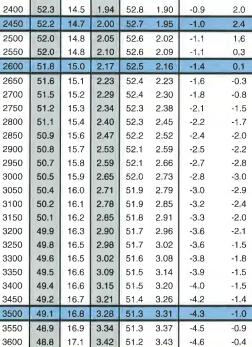
0.0

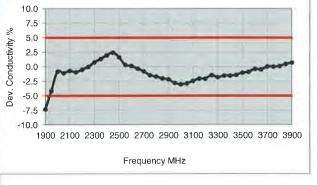
0.0

0.1

0.5


Ambient Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.


TSL Temperature 22°C
Test Date 19-Feb-14
Operator IEN


Additional Information

TSL Density 1.036 g/cm³ TSL Heat-capacity 3.508 kJ/(kg*K)

	Measured			Targe	rt	Diff.to T	arget [%]
f [MHz]	HP-e'	HP-e"	sigma	eps	sigma	∆-eps	∆-sigma
1900	53.5	13.3	1.41	53.3	1,52	0.5	-7.3
1950	53.4	13.4	1.46	53.3	1.52	0.2	-4.1
2000	53.3	13.5	1.51	53.3	1.52	0.0	-0.8
2050	53.2	13,6	1.55	53.2	1.57	0.0	-1,1
2100	53.1	13.7	1.60	53.2	1.62	-0.1	-0,7
2150	53.0	13.8	1.65	53.1	1.66	-0.2	-0.9
2200	52.8	13.9	1.70	53.0	1.71	-0.4	-0.5
2250	52.7	14.0	1.76	53.0	1.76	-0.4	0.0
2300	52.6	14.2	1.82	52.9	1.81	-0.6	0.7
2350	52.4	14.4	1.88	52.8	1.85	-0.7	1.3
2400	52.3	14.5	1.94	52.8	1.90	-0.9	2.0
2450	52.2	14.7	2.00	52.7	1.95	-1.0	2.4
2500	52.0	14.8	2.05	52.6	2,02	-1.1	1,6
2550	52.0	14.8	2.10	52.6	2.09	-1.1	0.3
2600	51.8	15.0	2.17	52.5	2.16	-1.4	0.1
2650	51.6	15.1	2.23	52.4	2.23	-1.6	-0.3

TSL Dielectric Parameters Page 1 of 1

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MBBL3500-5800V5)

Product No. SL AAM 501 EA (Charge: 140114-1)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated OCP probe.

Setup Validation

Validation results were within $\pm 2.5\%$ towards the target values of Methanol.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

5800

5850

5900

48.3

48.2

48.1

19.30

19,37

19.43

6.23

6.30

6.38

48.2

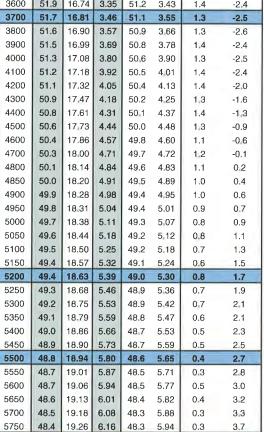
48-1

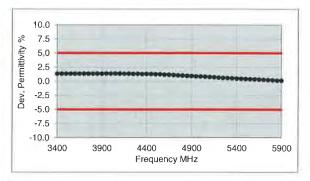
48.1

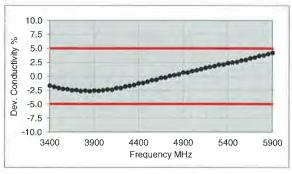
6.00

6.06

6.12


Ambient Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.


TSL Temperature 22°C
Test Date 15-Jan-14
Operator IEN


Additional Information

TSL Density 0.996 g/cm3 TSL Heat-capacity 3.765 kJ/(kg*K)

	Measu	ıred		Targe	t	Diff.to Target [%]		
f [MHz]	HP-e'	HP-e"	віgma	eps	sigma	∆-ерз	Δ-sigma	
3400	52.2	16.63	3.14	51.5	3,20	1.4	-1.8	
3500	52.0	16.67	3.25	51.3	3.31	1.3	-1.9	
3600	51.9	16.74	3.35	51.2	3.43	1.4	-2,4	
3700	51.7	16.81	3.46	51.1	3.55	1.3	-2.5	
3800	51.6	16.90	3.57	50.9	3.66	1.3	-2.6	

TSL Dielectric Parameters Page 1 of 1

0.2

0.1

0.1

3.8

4.0

4.3

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HBBL600-10000V6)

Product No. SL AAH U16 BD (Batch: 180208-1)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

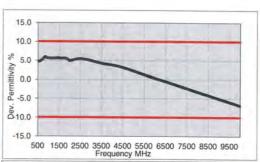
Target Parameters

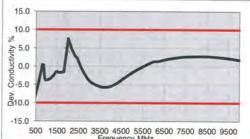
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C Test Date 8-Feb-18


Operator WM
Additional Information


TSL Density

TSL Heat-capacity

Results

	Meas	ured	SEX	Targe	t	Diff.to Targ	get [%]
f [MHz]	0'	е"	sigma	eps	sigma	Δ-eps	Δ-sigma
800	44.1	20.3	0.90	41.7	0.90	5.8	0.3
825	44.1	19.9	0.91	41.6	0.91	6.0	0.4
835	44.1	19.7	0.92	41.5	0.91	6.1	0.9
850	44.0	19.4	0.92	41.5	0.92	6.0	0.4
900	43.9	18.7	0.94	41.5	0.97	5.8	-3.1
1400	42.9	14.9	1.16	40.6	1.18	5.7	-1.6
1450	42.8	14.7	1.18	40.5	1.20	5.7	-1.7
1600	42.6	14.2	1.26	40.3	1.28	5.7	-1.9
1625	42.6	14.1	1.28	40.3	1.30	5.8	-1.4
1640	42.6	14.1	1.29	40.3	1.31	5.8	-1.2
1650	42.5	14.1	1.29	40.2	1.31	5.6	-1.8
1700	42.4	14.0	1.32	40.2	1.34	5.6	-1.6
1750	42.3	13.9	1.35	40.1	1.37	5.5	-1.5
1800	42.3	13.8	1.38	40.0	1.40	5.7	-1.4
1810	42.3	13.8	1.39	40.0	1.40	5.7	-0.7
1825	42.3	13.7	1.40	40.0	1.40	5.7	0.0
1850	42.2	13.7	1.41	40.0	1.40	5.5	0.7
1900	42.1	13.6	1.44	40.0	1.40	5.3	2.9
1950	42.0	13.6	1.47	40.0	1.40	5.0	5.0
2000	42.0	13.5	1.51	40.0	1.40	5.0	7.9
2050	41.9	13.5	1.54	39.9	1.44	5.0	6.6
2100	41.8	13.5	1.57	39.8	1.49	5.0	5.4
2150	41.8	13.5	1.61	39.7	1.53	5.2	5.0
2200	41.7	13.4	1.64	39.6	1.58	5.2	3.9
2250	41.6	13.4	1.68	39.6	1.62	5.2	3.6
2300	41.6	13.4	1.72	39.5	1.67	5.4	3.2
2350	41.5	13.4	1.76	39.4	1.71	5.4	2.9
2400	41.4	13.5	1.80	39.3	1.76	5.4	2.5
2450	41.4	13.5	1.84	39.2	1.80	5.6	2.2
2500	41.3	13.5	1.88	39.1	1.85	5.5	1.4
2550	41.2	13.5	1.92	39.1	1.91	5.4	0.6
2600	41.1	13.6	1.96	39.0	1.96	5.4	-0.2
3500	39.6	14.1	2.75	37.9	2.91	4.3	-5.5
3700	39.2	14.3	2.94	37.7	3.12	4.1	-5.7

			rrequer	icy ivinz			
5200	36.7	15.9	4.61	36.0	4.66	1.9	-1.0
5250	36.6	16.0	4.67	35.9	4.71	1.8	-0.9
5300	36.5	16.0	4.72	35.9	4.76	1.7	-0.7
5500	36.1	16.2	4.96	35.6	4.96	1.3	-0.1
5600	35.9	16.3	5.08	35.5	5.07	1.1	0.2
5700	35.7	16.4	5.19	35.4	5.17	0.9	0.5
5800	35.6	16.5	5.31	35.3	5.27	0.8	0.8
6000	35.2	16.6	5.55	35.1	5.48	0.4	1.3
6500	34.3	17.1	6.18	34.5	6.07	-0.5	1.8
7000	33.4	17.5	6.81	33.9	6.65	-1.4	2.3
7500	32.5	17.8	7.43	33.3	7.24	-2.3	2.7
8000	31.7	18.1	8.06	32.7	7.84	-3.2	2.8
8500	30.8	18.4	8.68	32.1	8.45	-4.2	2.8
9000	30.0	18.6	9.31	31.5	9.08	-5.1	2.6
9500	29.1	18.8	9.93	31.0	9.71	-5.9	2.2
10000	28.3	19.0	10.55	30.4	10.36	-6.9	1.8

Measurement Certificate / Material Test

Item Name Body Tissue Simulating Liquid (MBBL600-6000V6)

Product No. SL AAM U16 BE (Batch: 180219-1)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

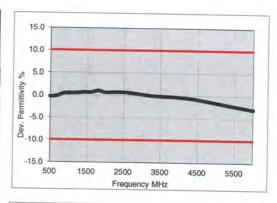
Target Parameters

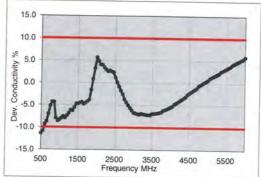
Target parameters as defined in the KDB 865664 compliance standard.

Test Condition

Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C
Test Date 21-Feb-18
Operator WM


Additional Information


TSL Density

TSL Heat-capacity

Results

	Meas	sured		Targe	et	Diff.to Targ	get [%]
f [MHz]	e'	e"	sigma		sigma		Δ-sigma
800	55.4	20.9	0.93	55.3	0.97	0.1	-4.1
825	55.4	20.4	0.94	55.2	0.98	0.3	-4.1
835	55.4	20.2	0.95	55.1	0.99	0.5	-3.6
850	55.3	20.0	0.95	55.2	0.99	0.3	-4.0
900	55.3	19.3	0.97	55.0	1.05	0.5	-7.6
1400	54.4	15.5	1.21	54.1	1.28	0.6	-5.5
1450	54.4	15.4	1.24	54.0	1.30	0.7	-4.6
1500	54.3	15.2	1.27	53.9	1.33	0.7	-4.5
1550	54.2	15.1	1.30	53.9	1.36	0.6	-4.4
1600	54.1	14.9	1.33	53.8	1.39	0.5	-4.3
1625	54.1	14.9	1.35	53.8	1.41	0.7	-4.3
1640	54.1	14.9	1.36	53.7	1,42	0.7	-4.2
1650	54.1	14.8	1.36	53.7	1.43	0.8	-4.9
1700	54.0	14.7	1.39	53.6	1.46	0.8	-4.8
1750	53.9	14.7	1.43	53.4	1.49	0.9	-4.0
1800	53.9	14.6	1.46	53.3	1.52	1.1	-3.9
1810	53.9	14.6	1.47	53.3	1.52	1.1	-3.3
1825	53.9	14.6	1.48	53.3	1.52	1.1	-2.6
1850	53.8	14.5	1.50	53.3	1.52	0.9	-1.3
1900	53.7	14.5	1.53	53.3	1.52	0.8	0.7
1950	53.7	14.5	1.57	53.3	1.52	0.8	3.3
2000	53.6	14.4	1.61	53.3	1.52	0.6	5.9
2050	53.6	14.4	1.65	53.2	1.57	0.7	5.1
2100	53.5	14.4	1.69	53.2	1.62	0.6	4.3
2150	53.4	14.4	1.73	53.1	1.66	0.6	4.2
2200	53.4	14.5	1.77	53.0	1.71	0.7	3.5
2250	53.3	14.5	1.81	53.0	1.76	0.6	2.8
2300	53.3	14.5	1.86	52.9	1.81	8.0	2.8
2350	53.2	14.5	1.90	52.8	1,85	0.7	2.7
2400	53.1	14.6	1.95	52.8	1.90	0.6	2.6
2450	53.1	14.6	2.00	52.7	1.95	0.8	2.6
	53.0	14.7	2.04	52.6	2.02	0.7	1.0
	52.9	14.8	2.09	52.6	2.09	0.6	0.0
2600	52.8	14.8	2.14	52.5	2.16	0.6	-0.9

3500	540	40.0		1070	18.18.1		_
	51.2	15.8	3.08	51.3	3.31	-0.2	-6.9
3700	50.9	16.1	3.31	51.1	3.55	-0.2	-6.7
5200	48.1	18.6	5.39	49.0	5.30	-1.9	1.8
5250	48.0	18.7	5.47	49.0	5.36	-2.0	2.0
5300	47.9	18.8	5.54	48.9	5.42	-2.0	2.2
5500	47.5	19.1	5.84	48.6	5.65	-2.3	3.3
5600	47.3	19.2	5.99	48.5	5.77	-2.5	3.7
5700	47.1	19.4	6.14	48.3	5.88	-2.6	4.4
5800	46.9	19.5	6.29	48.2	6.00	-2.8	4.8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Certificate No: EX3-7569_Apr21

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7569

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

April 26, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	23-Dec-20 (No. DAE4-660_Dec20)	Dec-21
Reference Probe ES3DV2	SN: 3013	30-Dec-20 (No. ES3-3013_Dec20)	Dec-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: April 28, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-7569_Apr21

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A B C D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

φ rotation around probe axis

Polarization 9

3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 – SN:7569 April 26, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7569

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.63	0.62	0.62	± 10.1 %
DCP (mV) ⁸	104.7	103.0	100.2	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	143.9	± 3.3 %	± 4.7 %
		Y	0.00	0.00	1.00		143.9		
		Z	0.00	0.00	1.00		140.3		
10352-	Pulse Waveform (200Hz, 10%)	X	20.00	95.75	23.94	10.00	60.0	± 3.6 %	± 9.6 %
AAA		Υ	20.00	95.08	22.97		60.0		
		Z	20.00	95.61	23.95		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	96.36	23.27	6.99	80.0	± 1.6 %	± 9.6 %
AAA		Y	20.00	95.96	22.61]	80.0		
		Z	20.00	95.64	22.91		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	100.84	24.20	3.98	95.0	± 1.4 %	± 9.6 %
AAA		Y	20.00	100.73	23.79		95.0	- 1	
		Z	20.00	98.14	22.79		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	107.96	26.30	2.22	120.0	± 1.2 %	± 9.6 %
AAA	1	Y	20.00	107.77	25.89		120.0		
		Z	20.00	101.85	23.26		120.0		
10387-	QPSK Waveform, 1 MHz	X	1.83	66.22	15.45	1.00	150.0	± 1.6 %	± 9.6 %
AAA		Y	1.77	66.08	15.21		150.0		
		Z	1.68	64.42	14.17		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.43	68.77	16.15	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	2.33	68.21	15.87		150.0		
		Z	2.16	66.48	14.75		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.17	71.58	19.35	3.01	150.0	± 0.7 %	± 9.6 %
AAA	_	Υ	3.02	71.01	19.15		150.0		
		Z	2.90	69.36	18.15		150.0		
10399-	64-QAM Waveform, 40 MHz	Х	3.68	67.63	16.04	0.00	150.0	± 0.7 %	± 9.6 %
AAA		Y	3.62	67.35	15.91		150.0		
		Z	3.52	66.59	15.35		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.89	65.37	15.38	0.00	150.0	± 2.0 %	± 9.6 %
AAA		Υ	4.81	65.16	15.28		150.0		
		Z	4.78	64.76	14.97		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 5).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7569

Sensor Model Parameters

	C1	C2	α	T1	T2	T3	T4	T5	T6
	fF	fF	V ⁻¹	ms.V⁻²	ms.V⁻¹	ms	V ⁻²	V ⁻¹	
Х	55.6	406.84	34.38	22.42	0.26	5.10	1.32	0.22	1.01
Υ	50.4	372.97	34.96	21.58	0.00	5.10	1.33	0.20	1.01
Z	54.9	409.60	35.28	22.49	0.34	5.10	1.10	0.28	1.01

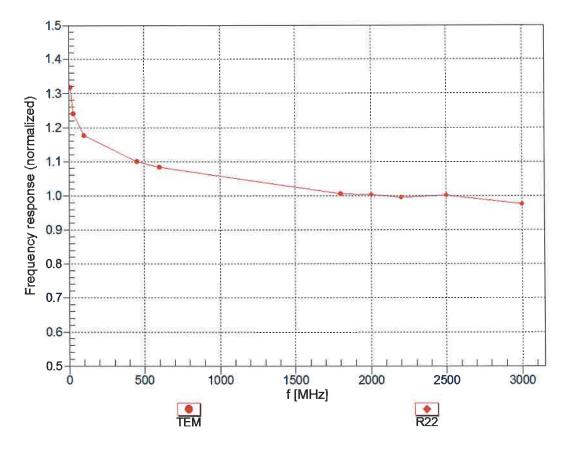
Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-87.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7569

Calibration Parameter Determined in Head Tissue Simulating Media

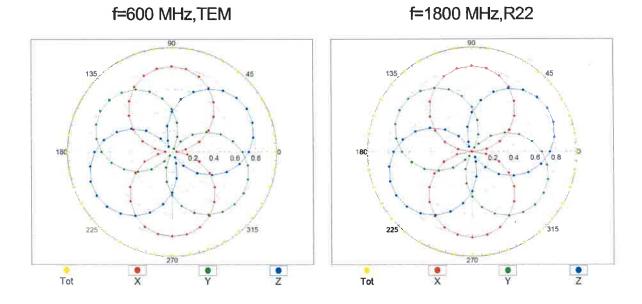

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.75	11.75	11.75	0.16	1.30	± 13.3 %
750	41.9	0.89	10.42	10.42	10.42	0.64	0.80	± 12.0 %
900	41.5	0.97	9.98	9.98	9.98	0.62	0.80	± 12.0 %
1450	40.5	1.20	8.90	8.90	8.90	0.59	0.80	± 12.0 %
1640	40.2	1.31	8.49	8.49	8.49	0.34	0.86	± 12.0 %
1750	40.1	1.37	8.36	8.36	8.36	0.34	0.86	± 12.0 %
1900	40.0	1.40	8.01	8.01	8.01	0.29	0.86	± 12.0 %
2300	39.5	1.67	7.84	7.84	7.84	0.31	0.93	± 12.0 %
2450	39.2	1.80	7.61	7.61	7.61	0.35	0.93	± 12.0 %
2600	39.0	1.96	7.49	7.49	7.49	0.29	0.98	± 12.0 %
3500	37.9	2.91	7.00	7.00	7.00	0.30	1.35	± 13.1 %
3700	37.7	3.12	6.70	6.70	6.70	0.30	1.35	± 13.1 %
4950	36.3	4.40	5.72	5.72	5.72	0.40	1.80	± 13.1 %
5250	35.9	4.71	5.24	5.24	5.24	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.79	4.79	4.79	0.40	1.80	± 13.1 %

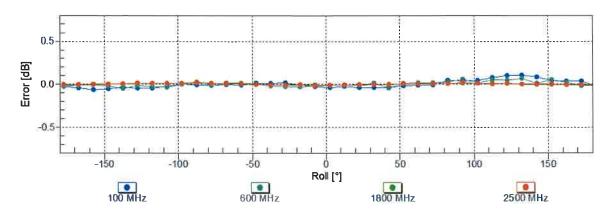
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

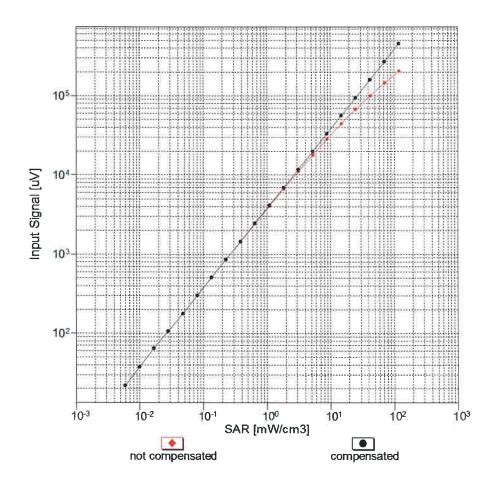
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

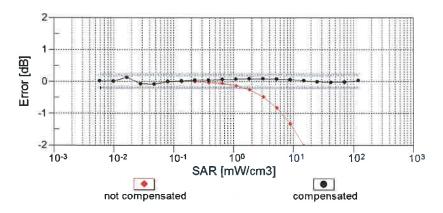



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

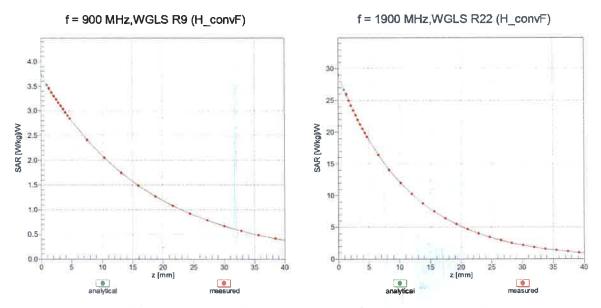
EX3DV4— SN:7569 April 26, 2021

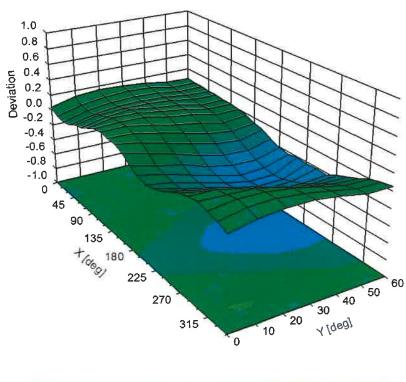
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


ποσοιντιί**ς** ι αιτοιτί (ψ), σ



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4— SN:7569 April 26, 2021

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc [±] (k=2)
0		CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 %
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.94	± 9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 16 Mbps)	WLAN	10.30	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
10070	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN		± 9.6 %
10077	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	11.00	
	CAB			3.97	± 9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %

10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
10105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	± 9.6 %
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111		LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10113	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAG	IEEE 802.11n (HT Greenfield, 31 Mbps, 10-QAM)	WLAN	8.15	± 9.6 %
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, 64-QAM)	WLAN	8.07	± 9.6 %
	CAG	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10118	CAD		WLAN		± 9.6 %
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	LTE-FDD	8.13	
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)		6.49	± 9.6 %
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10170					

4					
10181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10182	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10184	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	CAG	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	AAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10219	CAF	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %
10220	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	± 9.6 %
10225	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	± 9.6 %
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10230		LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.19	± 9.6 %
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD		± 9.6 %
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	9.48	± 9.6 %
10237	CAD			10.25	± 9.6 %
10237	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.21	± 9.6 %
10238	CAB		LTE-TDD	9.48	± 9.6 %
	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10240	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
10255	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
	7				

10260		LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.97	± 9.6 %
	CAG		LTE-TDD		± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD		
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)		9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAD	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAD	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAG	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	CAG	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	CAG	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	-	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10297	CAG	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
	CAF		LTE-FDD		
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)		6.39	± 9.6 %
10300	CAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	CAC	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WiMAX	12.03	± 9.6 %
10302	CAB	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WiMAX	12.57	± 9.6 %
10303	CAB	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	12.52	± 9.6 %
10304	CAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	11.86	± 9.6 %
10305	CAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WiMAX	15.24	± 9.6 %
10306	CAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WiMAX	14.67	± 9.6 %
10307	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WiMAX	14.49	± 9.6 %
10308	AAB	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WiMAX	14.46	± 9.6 %
10309	AAB	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WiMAX	14.58	± 9.6 %
10310	AAB	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	WiMAX	14.57	± 9.6 %
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAD	IDEN 1:3	iDEN	10.51	± 9.6 %
10314	AAD	iDEN 1:6	iDEN	13.48	± 9.6 %
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.6 %
10316	AAD	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10317		IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6 %
10317	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	6.99	± 9.6 %
	AAA				-
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN	8.37	± 9.6 %
10401	AAA	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc)	WLAN	8.60	± 9.6 %
10402	AAA	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
				0.77	-
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %

EX3DV4- SN:7569 April 26, 2021

10410	AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	± 9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10417	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	± 9.6 %
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	± 9.6 %
10422	AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 %
10423	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAE	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10425	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10426	AAE	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10430	AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10431	AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10432		LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10432	AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10433	AAC	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA		
10434	AAG	,	LTE-TDD	8.60	± 9.6 %
10435	AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)		7.82	± 9.6 %
	AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10448	AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	± 9.6 %
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	± 9.6 %
10450	AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	± 9.6 %
10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
10453	AAC	Validation (Square, 10ms, 1ms)	Test	10.00	± 9.6 %
10456	AAC	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc)	WLAN	8.63	± 9.6 %
10457	AAC	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAC	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAC	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.30	± 9.6 %
10463	AAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10467	AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10469	AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6 %
10470	AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10471	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10472	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10473	AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6 %
10474	AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10475	AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10477	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6 %
10478	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6 %
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	± 9.6 %
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10482	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	± 9.6 %
10483	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	± 9.6 %
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	± 9.6 %
10485	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	± 9.6 %
10486	AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	± 9.6 %
10487	AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	± 9.6 %
10701	AAC	112 135 (00 1 510/11, 00 /0 115, 0 1011 12, 04-Q/101, 0E 000)	-1- 100	0.00	± 3.0 /0

EX3DV4— SN:7569 April 26, 2021

10488	100	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	± 9.6 %
10489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10499	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	± 9.6 %
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
	AAF			7.74	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD		
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 %
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	± 9.6 %
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	± 9.6 %
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6 %
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6 %
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6 %
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6 %
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	± 9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	± 9.6 %
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	± 9.6 %
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	± 9.6 %
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6 %
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	± 9.6 %
10517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	± 9.6 %
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10519	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	± 9.6 %
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	± 9.6 %
10525	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN	8.36	± 9.6 %
10526	AAF	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.42	± 9.6 %
10527	AAF	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.21	± 9.6 %
10528	AAF	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	± 9.6 %
10529	AAF	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6 %
10531	AAF	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.43	± 9.6 %
10532	AAF	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10533	AAE	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN	8.38	± 9.6 %
10534	AAE	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
10535	AAE	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.45	± 9.6 %
10536	AAF	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)	WLAN	8.32	± 9.6 %
10537	AAF	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.44	± 9.6 %
10537		IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)	WLAN	8.54	± 9.6 %
10536	AAF	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.39	
10540	AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN		± 9.6 %
	AAA			8.46	± 9.6 %
10542	AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	± 9.6 %
10543	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6 %
10544	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %
10545	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %

10546	100	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc)	WLAN	8.35	± 9.6 %
10547	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc)	WLAN	8.49	± 9.6 %
10548	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc)	WLAN	8.37	± 9.6 %
10550	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.38	± 9.6 %
10551	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	± 9.6 %
10551	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	± 9.6 %
10552	AAC		WLAN	8.45	± 9.6 %
	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)			
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc)	WLAN	8.48	± 9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc)	WLAN WLAN	8.47	± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc)		8.50	± 9.6 %
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc)	WLAN	8.52	± 9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc)	WLAN	8.61	± 9.6 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)	WLAN	8.69	± 9.6 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc)	WLAN	8.77	± 9.6 %
10564	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	± 9.6 %
10565	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	± 9.6 %
10566	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	± 9.6 %
10567	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	8.00	± 9.6 %
10568	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	± 9.6 %
10569	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	± 9.6 %
10570	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	8.30	± 9.6 %
10571	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
10572	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
10573	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10574	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10575	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10576	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10577	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10578	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10579	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10580	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10581	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10583	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10584	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10587	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10588	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10589	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10590	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10591	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.63	± 9.6 %
10592	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10593	_	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc)	WLAN	8.64	± 9.6 %
10594	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 30pc dc)	WLAN	8.74	± 9.6 %
10595	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)	WLAN	8.74	± 9.6 %
10596	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN	8.71	± 9.6 %
10596	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCSS, 90pc dc)	WLAN	8.72	± 9.6 %
10597	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN		
10598	AAA			8.50	± 9.6 %
	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6 %
10600	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
10601	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	± 9.6 %
10602	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)	WLAN	8.94	± 9.6 %
10603	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)	WLAN	9.03	± 9.6 %

10604	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %
10605	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
10606	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10607	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
10608	AAC	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
10609	AAC	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
10610	AAC	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
10611	AAC	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10612	AAC	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10613	AAC	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
10614	AAC	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
10615	AAC	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10616	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	± 9.6 %
10617	AAC	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	± 9.6 %
10618	AAC	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
10619	AAC	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
10620	AAC	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	± 9.6 %
10621	AAC	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10622	AAC	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
10623	AAC	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
10624	AAC	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc)	WLAN	8.96	± 9.6 %
10625	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WLAN	8.96	± 9.6 %
10626	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.83	± 9.6 %
10627	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
10628	AAC	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8.71	± 9.6 %
10629	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
10630		IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	WLAN	8.72	
10631	AAC	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)	WLAN	8.81	± 9.6 %
10631	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10633	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	8.83	± 9.6 %
10634	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN		± 9.6 %
10635	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	8.81 8.83	± 9.6 %
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)			
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10639	AAC		WLAN	8.86	± 9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.85	± 9.6 %
	AAC		WLAN	8.98	± 9.6 %
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)	WLAN	9.06	± 9.6 %
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc)	WLAN	8.89	± 9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.05	± 9.6 %
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	9.11	± 9.6 %
10646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
10652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
10653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 %
10654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
10655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10658	AAC	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10659	AAC	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6 %
10660	AAC	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
10661	AAC	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10662	AAC	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAC	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %
10671	AAD	IEEE 802.11ax (20MHz, MCS0, 90pc dc)	WLAN	9.09	± 9.6 %
	1-				-

10672	AAD	IEEE 802.11ax (20MHz, MCS1, 90pc dc)	WLAN	8.57	± 9.6 %
10673	AAD	IEEE 802.11ax (20MHz, MCS2, 90pc dc)	WLAN	8.78	± 9.6 %
10674	AAD	IEEE 802.11ax (20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
10675	AAD	IEEE 802.11ax (20MHz, MCS4, 90pc dc)	WLAN	8.90	± 9.6 %
10676	AAD	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10677	AAD	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.73	± 9.6 %
10678	AAD	IEEE 802.11ax (20MHz, MCS7, 90pc dc)	WLAN	8.78	± 9.6 %
10679	AAD	IEEE 802.11ax (20MHz, MCS8, 90pc dc)	WLAN	8.89	± 9.6 %
10680	AAD	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10681	AAG	IEEE 802.11ax (20MHz, MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10682	AAF	IEEE 802.11ax (20MHz, MCS11, 90pc dc)	WLAN	8.83	± 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10684	AAC	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9.6 %
10685	AAC	IEEE 802.11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10686	AAC	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 %
10687	AAE	IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8.45	± 9.6 %
10688	AAE	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	± 9.6 %
10689	AAD	IEEE 802.11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	± 9.6 %
10690	AAE	IEEE 802.11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10691	AAB	IEEE 802.11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	± 9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8.29	± 9.6 %
10693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN	8.25	± 9.6 %
10694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc dc)	WLAN	8.57	± 9.6 %
10695	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc dc)	WLAN	8.78	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.91	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8.89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)	WLAN	8.73	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705		IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAC	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	
10707	AAC	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN		± 9.6 %
10708	AAC	IEEE 802.11ax (40MHz, MCS2, 99pc dc)		8.55	± 9.6 %
10709	AAC		WLAN	8.33	± 9.6 %
10710	AAC	IEEE 802.11ax (40MHz, MCS3, 99pc dc) IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.29	± 9.6 %
	AAC		WLAN	8.39	± 9.6 %
10712	AAC	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
10713	AAC	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAC	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	± 9.6 %
10715	AAC	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	± 9.6 %
10716	AAC	IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
10717	AAC	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
10718	AAC	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
10719	AAC	IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
10720	AAC	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
10721	AAC	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	± 9.6 %
10722	AAC	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
10723	AAC	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10724	AAC	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.90	± 9.6 %
10725	AAC	IEEE 802.11ax (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10726	AAC	IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	± 9.6 %
10727	AAC	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.66	± 9.6 %

10728	AAC	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAC	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAC	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10731	_	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10731	AAC	IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
10732	AAC	IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	± 9.6 %
	AAC		WLAN	8.25	± 9.6 %
10734	AAC	IEEE 802.11ax (80MHz, MCS3, 99pc dc)	WLAN	8.33	± 9.6 %
10735	AAC	IEEE 802.11ax (80MHz, MCS4, 99pc dc)	WLAN	8.27	± 9.6 %
10736	AAC	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN		± 9.6 %
10737	AAC	IEEE 802.11ax (80MHz, MCS6, 99pc dc)		8.36	
10738	AAC	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 %
10739	AAC	IEEE 802.11ax (80MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10740	AAC	IEEE 802.11ax (80MHz, MCS9, 99pc dc)	WLAN	8.48	± 9.6 %
10741	AAC	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAC	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAC	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	± 9.6 %
10744	AAC	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	± 9.6 %
10745	AAC	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	± 9.6 %
10746	AAC	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	± 9.6 %
10747	AAC	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAC	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	± 9.6 %
10749	AAC	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.90	± 9.6 %
10750	AAC	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN	8.79	± 9.6 %
10751	AAC	IEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10752	AAC	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10753	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	± 9.6 %
10754	AAC	IEEE 802.11ax (160MHz, MCS11, 90pc dc)	WLAN	8.94	± 9.6 %
10755	AAC	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	± 9.6 %
10756	AAC	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	± 9.6 %
10757	AAC	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	± 9.6 %
10758	AAC	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69	± 9.6 %
10759	AAC	IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN	8.58	± 9.6 %
10760	AAC	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	± 9.6 %
10761	AAC	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	± 9.6 %
10762	AAC	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	± 9.6 %
10763	-	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAC	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
10765	AAC	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
10766	AAC		5G NR FR1 TDD	7.99	± 9.6 %
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)		8.01	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	± 9.6 %
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10775	AAC	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %

10704		5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10784	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10786	AAC	5G NR (CP-OFDM, 100% RB, 13 MHz, QPSK, 13 KHz)	5G NR FR1 TDD	8.35	± 9.6 %
	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
10787	AAC				± 9.6 %
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	± 9.6 %
10803	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10817	AAD	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	± 9.6 %
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	± 9.6 %
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	± 9.6 %
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10834		5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	± 9.6 %
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10836	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	± 9.6 %
10837	AAE	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	± 9.6 %
	AAD		5G NR FR1 TDD		
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10840	AAD		5G NR FR1 TDD	7.67	± 9.6 %
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)		7.71	± 9.6 %
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	± 9.6 %
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %

10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,41	± 9.6 %
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	± 9.6 %
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	± 9.6 %
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10885		5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	± 9.6 %
10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	± 9.6 %
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	± 9.6 %
10908	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	± 9.6 %
10909	AAD	5G NR (DFT-s-OFDM, 50% RB, 13 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10910	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6 %
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
	AAD		5G NR FR1 TDD		± 9.6 %
10918	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)		5.86	± 9.6 %
10919	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.86	± 9.6 %
10920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87 5.84	± 9.6 %
10921	AAD	00 MIX (DI 1-5-01 DIVI, 100 /0 ND, 20 WILL, QESK, 30 KHZ)	JO MICH TOD	J.04	± 9.6 %

10922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %
10923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10925	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	± 9.6 %
10926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10930	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
10931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10937	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6 %
10938	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10939	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	± 9.6 %
10940	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	± 9.6 %
10941	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10942	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10943	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6 %
10944	AAB	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6 %
10945	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 %
10947	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10948	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10949	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
10950	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
10951	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6 %
10952	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	± 9.6 %
10953	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	± 9.6 %
10954	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	± 9.6 %
10955	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6 %
10956	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	± 9.6 %
10957	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	± 9.6 %
10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	± 9.6 %
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	± 9.6 %
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6 %
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6 %
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	± 9.6 %
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6 %
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CERTIFICATE NUMBER: 14030223JD01A

5772

UL INTERNATIONAL (UK) LTD **UNIT 1-3 HORIZON** KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 6

APPROVED SIGNATORY

Naseer Mirza

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D750V3

Serial Number: 1139

Calibration Date: 06/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE OF CALIBRATION ISSUED BY UL INTERNATIONAL (UK) LTD

CERTIFICATE NUMBER: 14030223JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0135601	Dipole	SPEAG	D750V3	SN1147	06 Oct 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

CERTIFICATE OF CALIBRATION ISSUED BY UL INTERNATIONAL (UK) LTD

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01A

Page 3 of 6

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F17/5ENYG1/A/01	
DASY Version:	cDASY16.0.0.116	
Phantom:	Flat section of SAM Twin Phantom	
Distance Dipole Centre:	15 mm (with spacer)	
Frequency:	750 MHz	

Dielectric Property Measurements – Head Simulating Liquid (HSL)

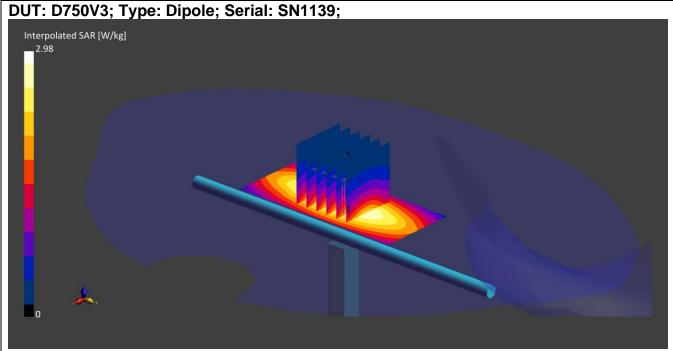
Simulant Liquid	Frequency	Room	Room Temp		l Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	750	20.9 °C	21 0 ℃	21.8 ℃	21 3 °C	εr	41.94	42.71	± 5%
пеаа	750	20.9 C	21.0 C	21.0 C	21.3 C	σ	0.89	0.91	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.04 W/Kg	8.12 W/Kg	+16.80 / -16.43%
пеац	SAR averaged over 10g	1.36 W/Kg	5.41 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Llaad	Impedance	46.64 2.23j Ω	± 3.01
Head	Return Loss	27.53	± 2.97


CERTIFICATE OF CALIBRATION ISSUED BY UL INTERNATIONAL (UK) LTD

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01A

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 750.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_115853_Head - 750 900 1750 2450 5250 5600 5750 5%; Medium parameters used: f = 750.0 MHz; σ = 0.905 S/m; ϵ_r = 42.7; ρ = 1000 kg/m3; $\Delta\epsilon_r$ = 1.84

%; $\Delta \sigma$ = 1.27 %; No correction

Phantom section: Flat;
DASY 6 Configuration:

- Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(10.34, 10.34, 10.34); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021

- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

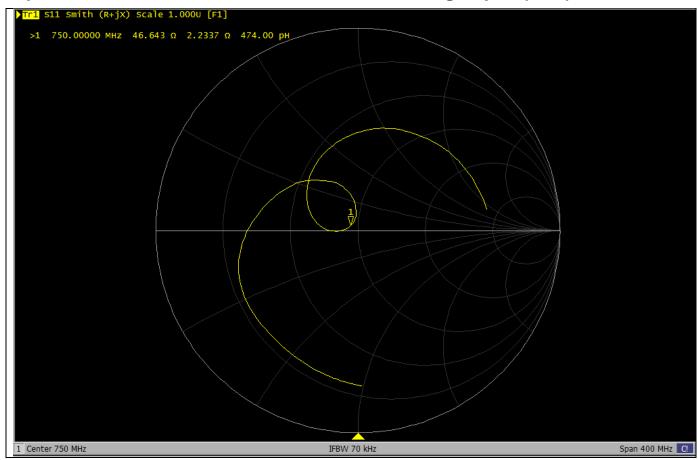
Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 2.350 V/m; Power Drift = 0.01 dB

Minimum horizontal 3dB distance: 17.2 mm;

Vertical M2/M1 Ratio: 89.5 %;

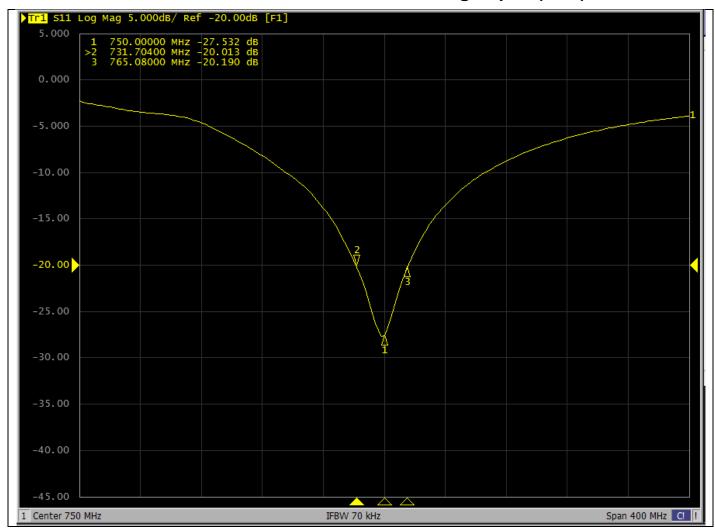

SAR(1 g) = 2.040 W/kg; SAR(10 g) = 1.360 W/kg

CERTIFICATE NUMBER: 14030223JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01A

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01A

Instrument ID: 1139

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01A

Instrument ID: 1139

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01A

Instrument ID: 1139

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CERTIFICATE NUMBER: 14030223JD01B

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 6

APPROVED SIGNATORY

Naseer Mirza

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D900V2

Serial Number: 1d180

Calibration Date: 06/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER: 14030223JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0134199	Dipole	SPEAG	D900V2	SN035	15 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	НР	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01B

Page 3 of 6

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number:	F17/5ENYG1/A/01			
DASY Version:	cDASY16.0.0.116			
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	15 mm (with spacer)			
Frequency:	900 MHz			

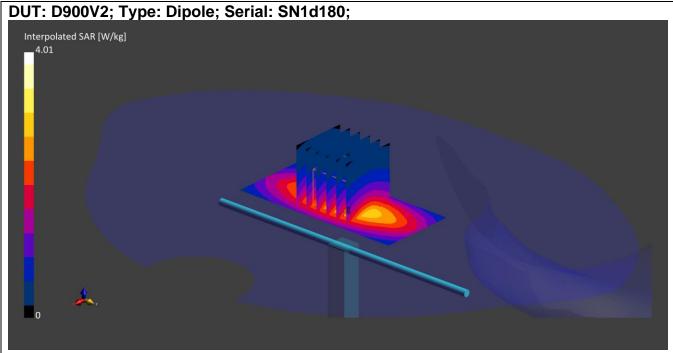
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	l Temp	Parameters	Target	Measured	Uncertainty	
Simulant Liquid	(MHz)	Start	End	Start	End	Farameters	Value	Value	(%)	
Hood	000	21.1 ℃	20.9 °C	21.0 %	21.8 °C 21.2 °C	21.2 °C	εr	41.50	42.32	± 5%
Head	900 21.1 °C	21.1 1 20.9 1		21.0 C	21.2 C	σ	0.97	0.96	± 5%	

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.67 W/Kg	10.63 W/Kg	+16.80 / -16.43%
пеаи	SAR averaged over 10g	1.75 W/Kg	6.97 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Llood	Impedance	47.97 -0.564j Ω	± 3.01
Head	Return Loss	33.79	± 3.34

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01B

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 900.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_115853_Head - 750 900 1750 2450 5250 5600 5750 5%; Medium parameters used: f = 900.0 MHz; σ = 0.96 S/m; ϵ_r = 42.3; ρ = 1000 kg/m3; $\Delta\epsilon_r$ = 1.97

%; $\Delta \sigma$ = -1.06 %; No correction

Phantom section: Flat; DASY 6 Configuration:

- Laboratory Name: Site65:

- Probe: EX3DV4 - SN7496; ConvF(9.7, 9.7, 9.7); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021

- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

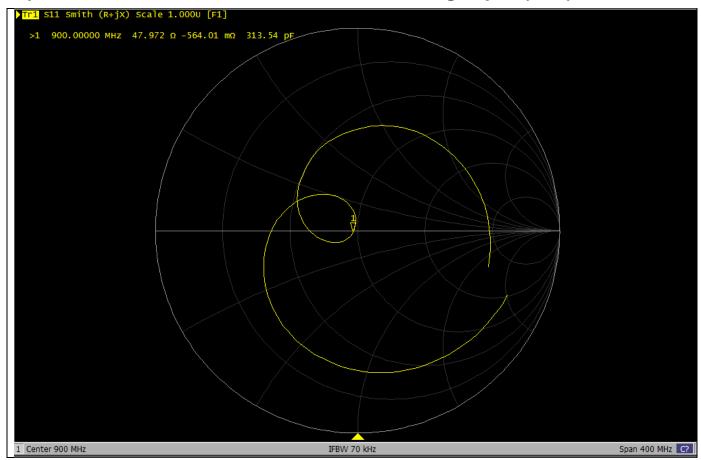
Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 3.110 V/m; Power Drift = -0.02 dB

Minimum horizontal 3dB distance: 18.0 mm;

Vertical M2/M1 Ratio: 88.7 %;

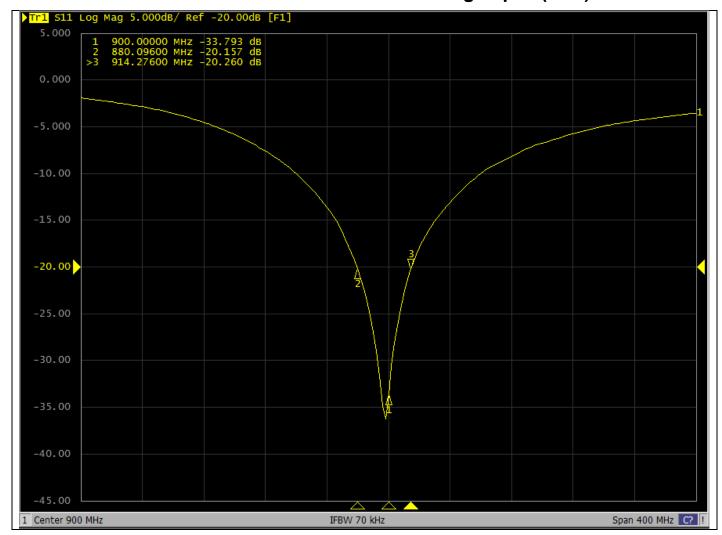

SAR(1 g) = 2.670 W/kg; SAR(10 g) = 1.750 W/kg

CERTIFICATE NUMBER: 14030223JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01B

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01B

Instrument ID: 1d180

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01B

Instrument ID: 1d180

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01B

Instrument ID: 1d180

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CERTIFICATE NUMBER: 14030223JD01D

Page 1 of 6

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

(UL)

APPROVED SIGNATORY

Naseer Mirza

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D1900V2

Serial Number: 5d202

Calibration Date: 06/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER: 14030223JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0134198	Dipole	SPEAG	D1900V2	537	16 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01D

Page 3 of 6

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number:	F17/5ENYG1/A/01			
DASY Version:	cDASY16.0.0.116			
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	10 mm (with spacer)			
Frequency:	1900 MHz			

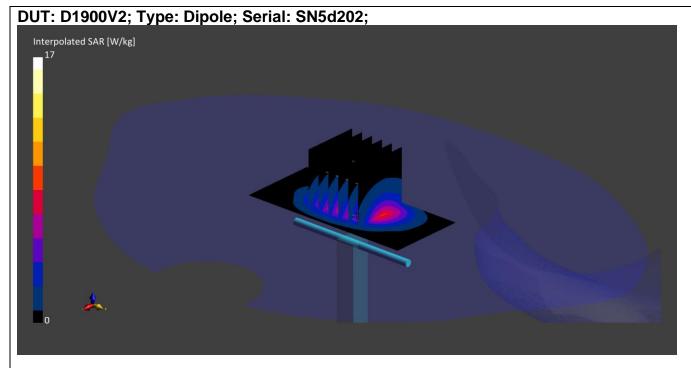
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	l Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	1000	21.4 °C	20.8 °C	21 4 ℃	20.9 °C	εr	40.00	40.17	± 5%
пеац	1900	21.4 6	20.0 C	21.4 C	20.9 C	σ	1.40	1.37	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	9.51 W/Kg	37.86 W/Kg	+16.80 / -16.43%
пеац	SAR averaged over 10g	5.09 W/Kg	20.26 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Llood	Impedance	51.95 -4.40j Ω	± 3.01
Head	Return Loss	26.34	± 2.97

CERTIFICATE NUMBER: 14030223JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 1900.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_122256_Head - 1900 2100 5%; Medium parameters used: f

= 1900.0 MHz; σ = 1.37 S/m; ε_r = 40.2; ρ = 1000 kg/m3; $\Delta \varepsilon_r$ = 0.44 %; $\Delta \sigma$ = -1.83 %; No

correction

Phantom section: Flat; **DASY 6 Configuration:**

- Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(8.4, 8.4, 8.4); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021 - Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818

- Measurement SW: cDASY16.0.0.116

Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm

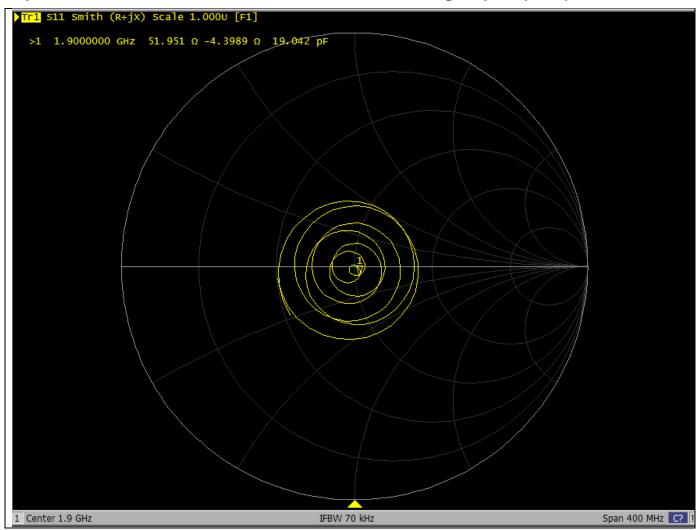
Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 13.320 V/m; Power Drift = -0.03 dB

Minimum horizontal 3dB distance: 9.9 mm;

Vertical M2/M1 Ratio: 85.2 %;

SAR(1 g) = 9.510 W/kg; SAR(10 g) = 5.090 W/kg

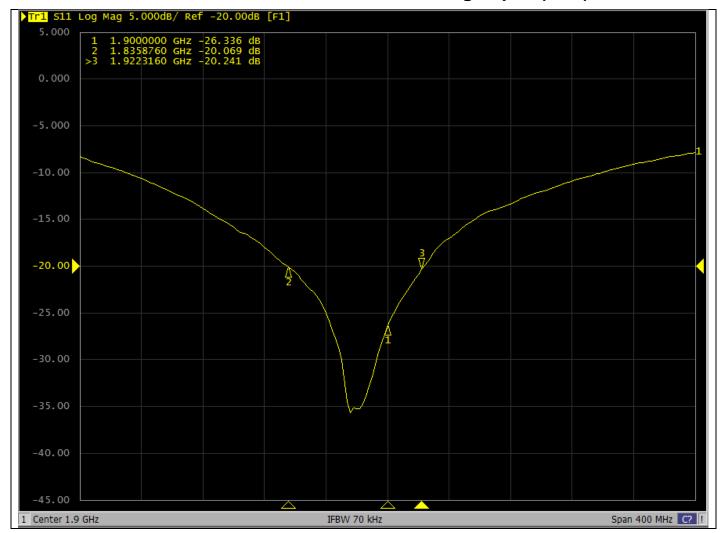

NUMBER: 14030223JD01D

CERTIFICATE

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01D

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01D

Instrument ID: 5d202

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01D

Instrument ID: 5d202

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01D

Instrument ID: 5d202

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 14/Oct/2021 CERTIFICATE NUMBER: 14030223JD01C

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

(UL)

Page 1 of 6

APPROVED SIGNATORY

.....

Naseer Mirza

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D1750V2

Serial Number: 1136

Calibration Date: 12/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER: 14030223JD01C

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0178321	Dipole	SPEAG	D1800V2	SN2d218	09 Mar 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01C

Page 3 of 6

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number:	F17/5ENYG1/A/01			
DASY Version:	cDASY16.0.0.116			
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	10 mm (with spacer)			
Frequency:	1750 MHz			

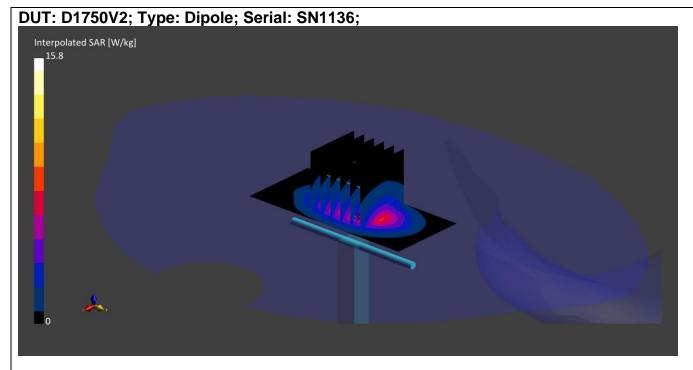
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency (MHz)	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
		Start	End	Start	End	i didilicicis	Value	Value	(%)
Head	1750	21.2 °C 20	20.6 °C	21.5 ℃	°C 21.0 °C	εr	40.08	40.89	± 5%
			20.6 C	21.5 C		σ	1.37	1.32	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head -	SAR averaged over 1g	8.65 W/Kg	34.44 W/Kg	+16.80 / -16.43%
	SAR averaged over 10g	4.68 W/Kg	18.63 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	50.78 0.15j Ω	± 3.01
	Return Loss	42.08	± 3.34

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01C

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 1750.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_11Oct2021_131452_Head - 1800 1900 5GHz 5%; Medium parameters used: f = 1750.0 MHz; σ = 1.32 S/m; ϵ_r = 40.9; ρ = 1000 kg/m3; $\Delta\epsilon_r$ = 2.03 %; $\Delta\sigma$ = -3.37 %; No

correction

Phantom section: Flat; DASY 6 Configuration: - Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(8.7, 8.7, 8.7); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

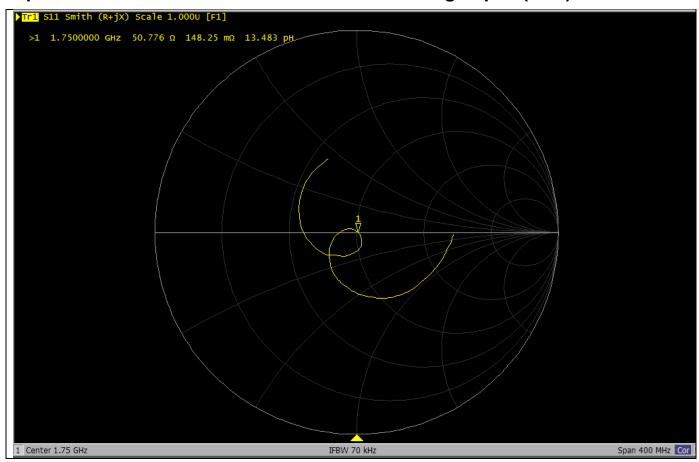
Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 10.660 V/m; Power Drift = 0.00 dB

Minimum horizontal 3dB distance: 9.6 mm;

Vertical M2/M1 Ratio: 83.1 %;

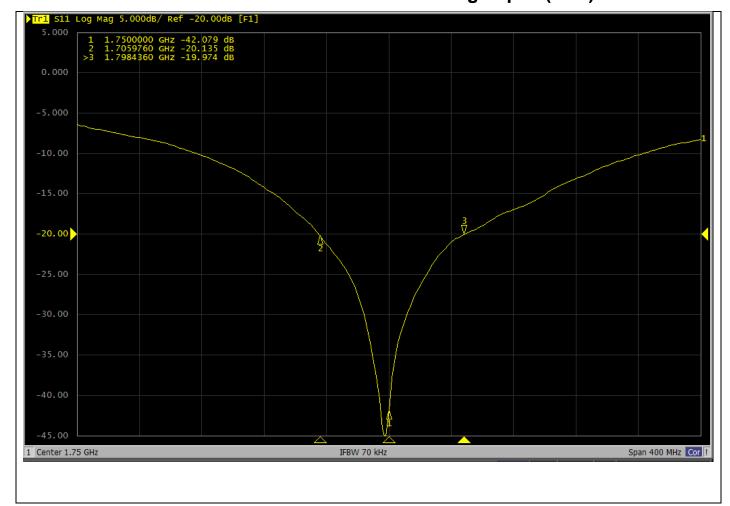

SAR(1 g) = 8.650 W/kg; SAR(10 g) = 4.680 W/kg

CERTIFICATE NUMBER: 14030223JD01C

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01C

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01C

Instrument ID: 1136

Calibration Date: 12/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01C

Instrument ID: 1136

Calibration Date: 12/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01C

Instrument ID: 1136

Calibration Date: 12/Oct/2021

Calibration Due Date: