Logitech, Inc.

F-0228A

August 23, 2004

Report No. LABT0098 Rev 02

Report Prepared By:

www.nwemc.com 1-888-EMI-CERT

© 2004 Northwest EMC, Inc

Test Report

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: August 23, 2004 Logitech, Inc. Model: F-0228A

	Emissions		
Specification	Test Method	Pass	Fail
FCC 15.247(a) Occupied Bandwidth:2003	ANSI C63.4:2001		
FCC 15.247(b) Output Power:2003	ANSI C63.4:2001		
FCC 15.247(c) Band Edge Compliance:2003	ANSI C63.4:2001		
FCC 15.247(c) Spurious Conducted Emissions:2003	ANSI C63.4:2001		
FCC 15.247(c) Spurious Radiated Emissions:2003	ANSI C63.4:2001		
FCC 15.247(d) Power Spectral Density:2003	ANSI C63.4:2001		

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.

22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066

Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Sould Market

Don Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Description	Date	Page Number
----------------------	------	-------------

01	Corrected model number of EUT		13,19,25,30,45,51
02	Correct supply voltage	9/30/04	9, 17, 43, 45, 46, 47

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU **Mutual Recognition Agreement**

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

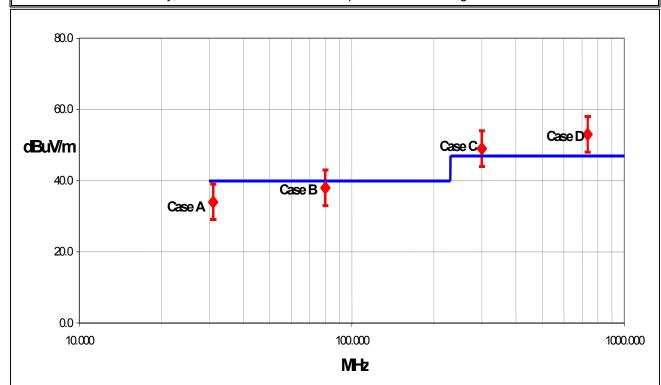
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761)

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Revision 04/29/02

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	Bico	nical	Log Pe	eriodic	D	ipole
	Distribution	Distribution Antenna		Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.05
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty <i>U</i>	normal (k = 2)	2.10
(level of confidence ≈ 95 %)	Hormai (K – 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 10/3/03

Party Requesting the Test		
Company Name:	Logitech, Inc.	
Address:	1499 SE Tech Center Place Suite 350	
City, State, Zip:	Vancouver, WA 98683	
Test Requested By:	Mitchell Phillipi	
Model:	F-0228A	
First Date of Test: 08-06-2004		
Last Date of Test:	08-15-2004	
Receipt Date of Samples:	08-05-2004	
Equipment Design Stage:	Production	
Equipment Condition:	No visual damage.	

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided.
I/O Ports:	DC

Functional Description of the EUT (Equipment Under Test):

Bluetooth headset with integral antenna. Battery operated. No provision for radio operation while charging.

Client Justification for EUT Selection:

Not Provided

Client Justification for Test Selection:

Not Provided

EUT Photo

Revision 4/28/03

	Equipment modifications				
Item	Test	Date	Modification	Note	Disposition of EUT
1	Occupied bandwidth	08/06/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.
2	Band Edge Compliance	08/06/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.
3	Spurious Conducted Emissions	08/06/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.
4	Spurious Radiated Emissions	08/11/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.
5	Output Power	08/15/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.
6	Power Spectral Density	08/15/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.

Occupied Bandwidth

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:

No Hop

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

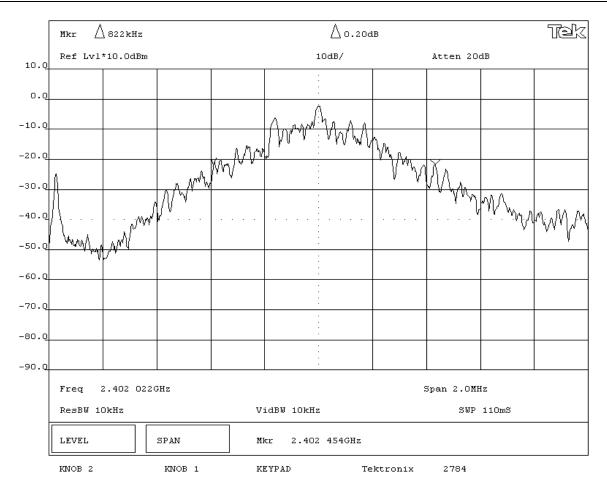
Software\Firmware Applied During Test						
Exercise software	Special Test Software	Version	Unknown			
Description						
The system was tested using special software developed to test all functions of the device during the test.						

EUT and Peripherals						
Description	Manufacturer	Model/Part Number	Serial Number			
EUT	Logitech, Inc.	F-0228A	#1			

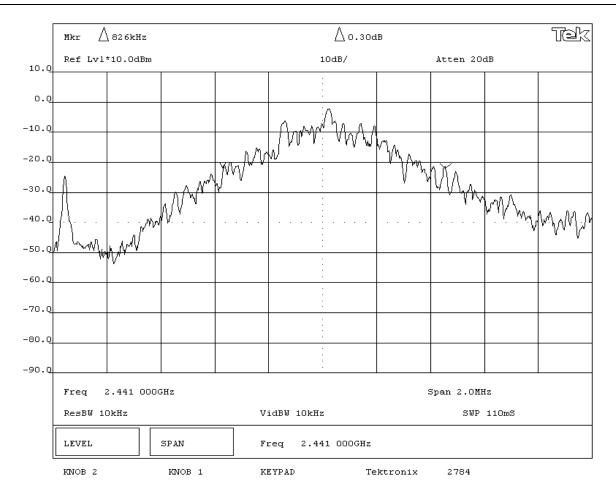
Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo		
Pre-Amplifier	Amplifier Research	LN1000	APA	NCR	NA		
Pre-Amplifier	Amplifier Research	LN1000	APB	11/18/2003	13 mo		
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo		

Occupied Bandwidth

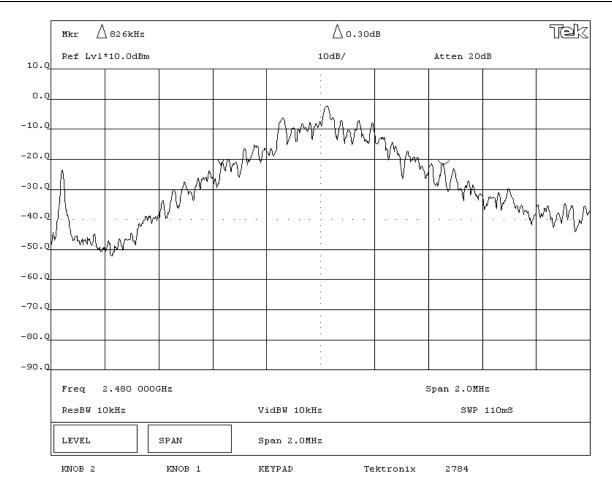
Revision 10/1/03


Test Description

Requirement: Per an FCC Interpretation sent to TCBs on October 8, 2002, frequency hoppers in the 2.4 GHz band operating under 15.247 are required to use a minimum of 15 non-overlapping channels. The hopping channel bandwidth can be wider than 1 MHz as long as the channels do not overlap and all emissions stay within the 2400-2483.5 MHz band. For example, a system that uses the minimum 15 channels can have hopping channel bandwidth that are up to 5 MHz wide. The measurement is made with the spectrum analyzer's resolution bandwidth set to ≥1% of the 20dB bandwidth, and the video bandwidth set to greater than or equal to the resolution bandwidth.


<u>Configuration</u>: The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

Completed by:


EMC EMISSIONS DATA SHEET						
						01/30/01
	F-0228A				Work Order:	
Serial Number:						08/06/04
	Logitech, Inc.					23 degrees C
Attendees:				Rod Peloquin	Humidity:	
Customer Ref. No.:			Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION						
	47 CFR 15.247(a)(1)(ii)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATION	ONS					
COMMENTS						
EUT OPERATING MOI	DES					
Modulated, No hop mo	ode					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
The maximum 20dB b	andwidth of the hopping channel i	s 1 MHz				
RESULTS			BANDWIDTH			
Pass			822 kHz			
SIGNATURE						
Tested By:	Rocky le Releys					
DESCRIPTION OF TES	ST .					
		20dB Bandwidt	h - Low Chan	nel		



NORTHWEST		EMISSION	S DATA SH	CCT		
EMC			O DATA SI	CCI		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION	NS					
Specification:	47 CFR 15.247(a)(1)(ii)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATION	ONS					
COMMENTS						
EUT OPERATING MO						
Modulated, No hop m						
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS	andwidth of the hopping chann	al is 4 MH=				
RESULTS	andwidth of the hopping chann	eis i winz	BANDWIDTH			
			826 kHz			
Pass SIGNATURE			020 KHZ			
Tested By:	Rolly be Feling	<u> </u>				
DESCRIPTION OF TES	ST					
		20dB Bandy	width - Mid Chan	nel		

EMC EMISSIONS DATA SHEET						
	F-0228A				Work Order:	01/30/01
Serial Number:	· · ·					08/06/04
	Logitech, Inc.					23 degrees C
Attendees:			Tosted by:	Rod Peloguin	Humidity:	
Customer Ref. No.:				Internal Battery	Job Site:	
TEST SPECIFICATION			i ower.	internal Dattery	JOD Site.	L V 00
	47 CFR 15.247(a)(1)(ii)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATION						
COMMENTS						
EUT OPERATING MOD						
Modulated, No hop mo	ode					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	andwidth of the hopping channel is	s 1 MHz				
RESULTS			BANDWIDTH			
Pass			826 kHz			
SIGNATURE Tested By:	Rolly be Felings					
DESCRIPTION OF TES	ST					
		20dB Bandwidth	ո - High Chan	nel		

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:

No Hop

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

Software\Firmware Applied During Test						
Exercise software	Special Test Software	Version	Unknown			
Description						
The system was tested using special software developed to test all functions of the device during the test.						

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	Logitech, Inc.	F-0228A	#1

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	2.0	No	AC Power Adapter	EUT

Output Power

Revision 10/1/03

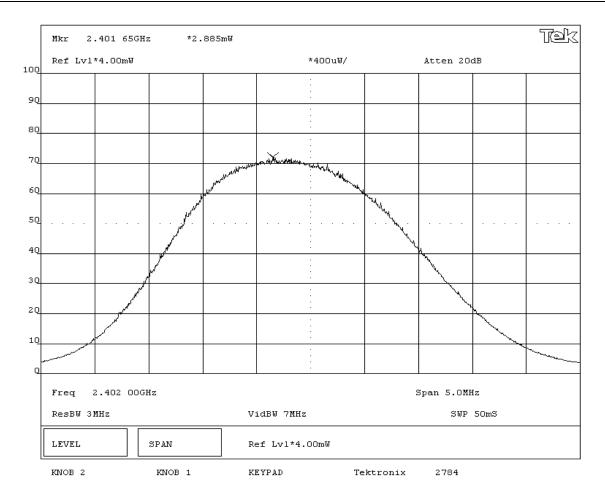
Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo		
Power Meter	Hewlett Packard	E4418A	SPA	07/23/2004	24 mo		
Power Sensor	Hewlett-Packard	8481H	SPB	07/23/2004	24 mo		
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo		

Test Description

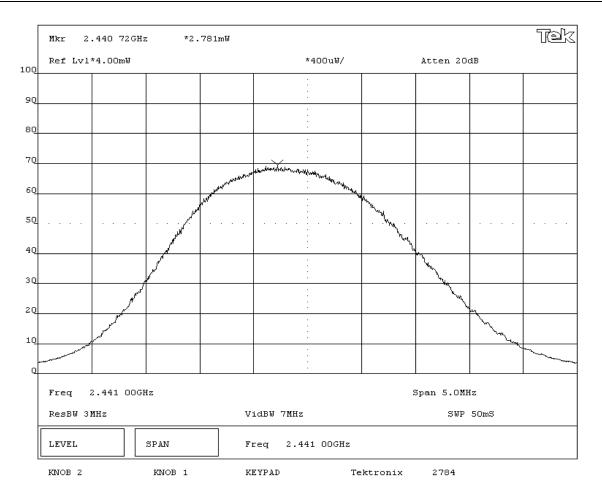
<u>Requirement</u>: Per 47 CFR 15.247(b)(1), the maximum peak output power must not exceed 1 Watt. The measurement is made using a spectrum analyzer using the following settings:

- Resolution bandwidth set to greater than the 6 dB bandwidth of the modulated carrier, and
- The video bandwidth set to greater than or equal to the resolution bandwidth.

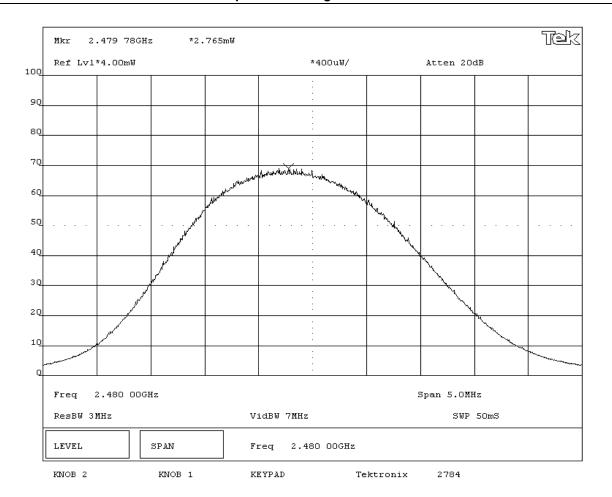
<u>Configuration</u>: The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


The spectrum analyzer power reading was calibrated prior to testing using the power meter, power sensor, and signal generator via the substitution method.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.


Completed by:

J. K.


NORTHWEST	EMICOLONIO DATA CHIEFT						
EMC						01/30/01	
	F-0228A				Work Order:		
Serial Number:	#1				Date:	08/15/04	
Customer:	Logitech, Inc.					79 degrees F	
Attendees:			Tested by:	Greg Kiemel	Humidity:		
Customer Ref. No.:	N/A		Power:	Battery	Job Site:	EV06	
TEST SPECIFICATION							
Specification:	47 CFR 15.247(b)(1)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001	
SAMPLE CALCULATION	ONS						
COMMENTS							
EUT OPERATING MOD	DES						
Modulated by PRBS at	maximum data rate						
DEVIATIONS FROM TI	EST STANDARD						
None							
REQUIREMENTS							
Maximum peak condu	cted output power does not excee	d 1 Watt					
RESULTS			AMPLITUDE				
Pass	_	_	2.885 mW	•			
SIGNATURE							
Tested By:							
DESCRIPTION OF TES	T						
		Output Power	- Low Chann	el			

NORTHWEST EMC							
						01/30/01	
	F-0228A				Work Order:		
Serial Number:	#1				Date:	08/15/04	
Customer:	Logitech, Inc.					79 degrees F	
Attendees:			Tested by:	Greg Kiemel	Humidity:		
Customer Ref. No.:	N/A Power: Battery				Job Site:	EV06	
TEST SPECIFICATION							
Specification:	47 CFR 15.247(b)(1)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001	
SAMPLE CALCULATION	ONS						
COMMENTS							
EUT OPERATING MOD	DES						
Modulated by PRBS at	t maximum data rate						
DEVIATIONS FROM TI	EST STANDARD						
None							
REQUIREMENTS							
Maximum peak condu	cted output power does not excee	d 1 Watt					
RESULTS			AMPLITUDE				
Pass			2.781 mW				
SIGNATURE							
Tested By:							
DESCRIPTION OF TES	ST						
		Output Power	- Mid Chann	el			

NORTHWEST EMC	EMICOLONIC DATA CHIEFT						
	F-0228A				Work Order:		
Serial Number:						08/15/04	
	Logitech, Inc.					79 degrees F	
Attendees:	<u> </u>		Tested by:	Greg Kiemel	Humidity:		
Customer Ref. No.:	N/A		Power:	Battery	Job Site:	EV06	
TEST SPECIFICATION	s						
Specification:	47 CFR 15.247(b)(1)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001	
SAMPLE CALCULATION	ONS						
COMMENTS							
EUT OPERATING MOD	DES						
Modulated by PRBS a	maximum data rate						
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
	cted output power does not exceed	1 Watt					
RESULTS			AMPLITUDE				
Pass	2.765 mW						
SIGNATURE	SIGNATURE						
Tested By:							
DESCRIPTION OF TES	ST.						
	Output Power - High Channel						

Band Edge Compliance

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

I	Channels in Specified Band Investigated:
	Low
Ī	High

Operating Modes Investigated:

No Hop

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

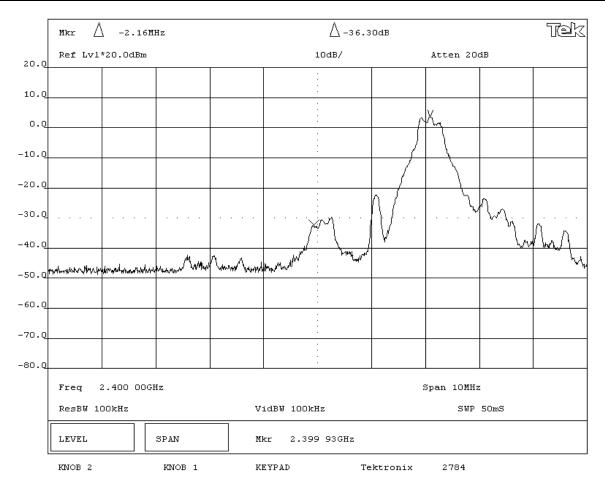
Software\Firmware Applied During Test						
Exercise software Special Test Software Version Unknown						
Description						
The system was tested using special software developed to test all functions of the device during the test.						

EUT and Peripherals						
Description	Manufacturer	Model/Part Number	Serial Number			
EUT	Logitech, Inc.	F-0228A	#1			

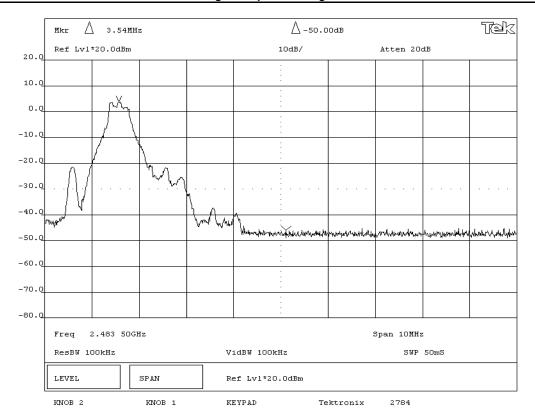
Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo	

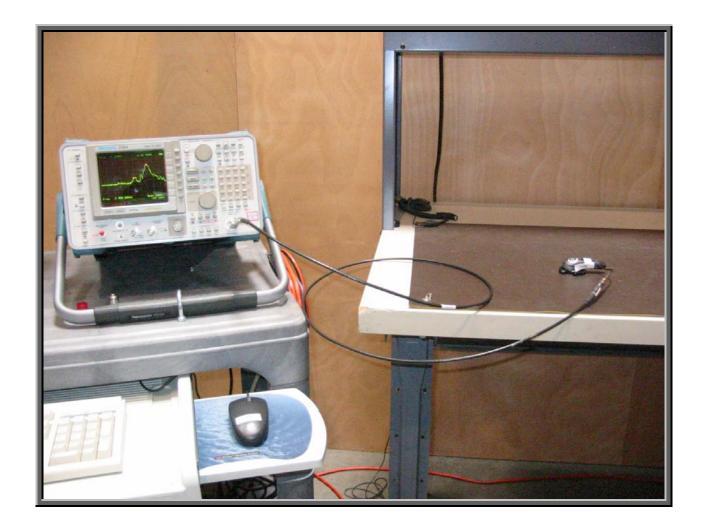
Band Edge Compliance

Revision 10/1/03


Test Description

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.


Configuration: The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.


Completed by:

EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01	
	F-0228A				Work Order:		
Serial Number:						08/06/04	
Customer:	Logitech, Inc.				Temperature:	23 degrees C	
Attendees:			Tested by:	Rod Peloquin	Humidity:		
Customer Ref. No.:	N/A			Internal Battery	Job Site:		
TEST SPECIFICATION	S ANG						
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001	
SAMPLE CALCULATION	ONS						
COMMENTS							
EUT OPERATING MOD	DES						
Modulated, No hop mo							
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum level of any	spurious emission at the edge of	the authorized band is 20 dB dow	n from the fundamenta	l			
RESULTS			AMPLITUDE				
Pass	-36.3 dB						
SIGNATURE							
Tested By:							
DESCRIPTION OF TES	ST						
	Band Edge Compliance - Low Channel						

NORTHWEST						
EMC		EMISSIONS I	DATA SH	EET	Rev BETA 01/30/01	
EUT:	F-0228A				Work Order: LABT0098	
Serial Number:	#1				Date: 08/06/04	
Customer:	Logitech, Inc.				Temperature: 23 degrees C	
Attendees:	None		Tested by:	Rod Peloquin	Humidity: 48% RH	
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site: EV06	
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year: 2001	
SAMPLE CALCULATION	ONS					
COMMENTS						
EUT OPERATING MOD						
Modulated, No hop mo						
DEVIATIONS FROM TE	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission at the edge of t	he authorized band is 20 dB down	from the fundamental			
RESULTS			AMPLITUDE			
Pass			-50 dB			
SIGNATURE						
Tested By:						
DESCRIPTION OF TES	ST					
	Band Edge Compliance - High Channel					

Spurious Conducted Emissions

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:

No Hop

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

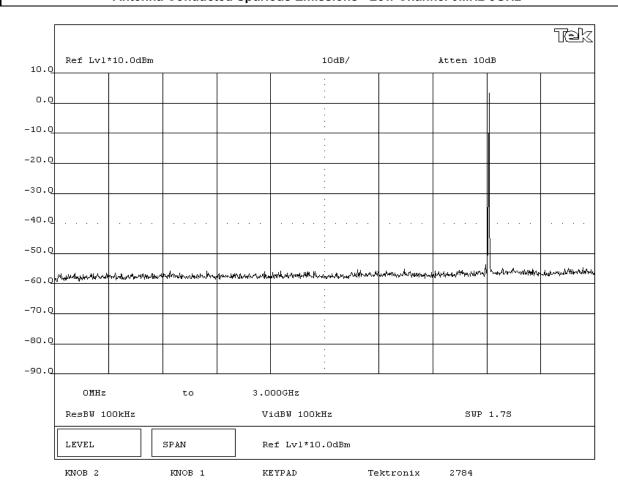
Software\Firmware Applied During Test						
Exercise software Special Test Software Version Unknown						
Description						
The system was tested using special software developed to test all functions of the device during the test.						

EUT and Peripherals						
Description	Manufacturer	Model/Part Number	Serial Number			
EUT	Logitech, Inc.	F-0228A	#1			

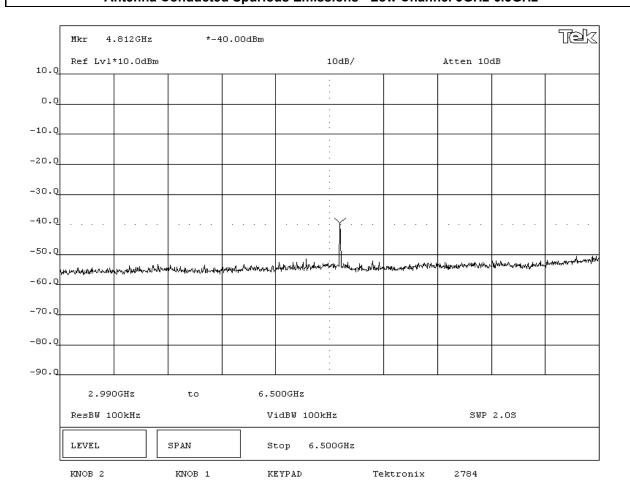
Measurement Equipment						
Description Manufacturer Model Identifier Last Cal Interval						
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo	

Spurious Conducted Emissions

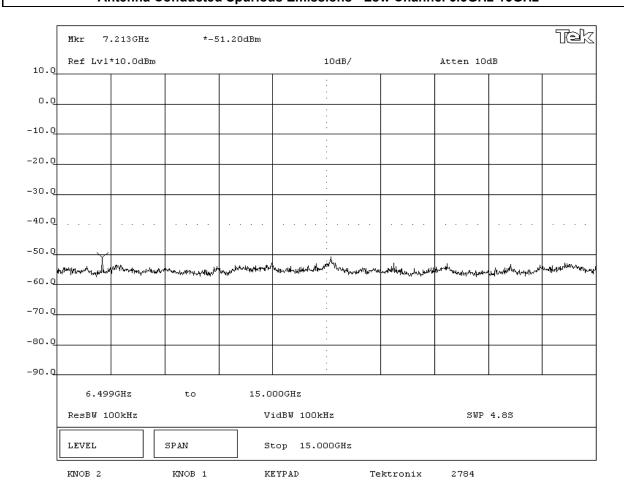
Revision 10/1/03

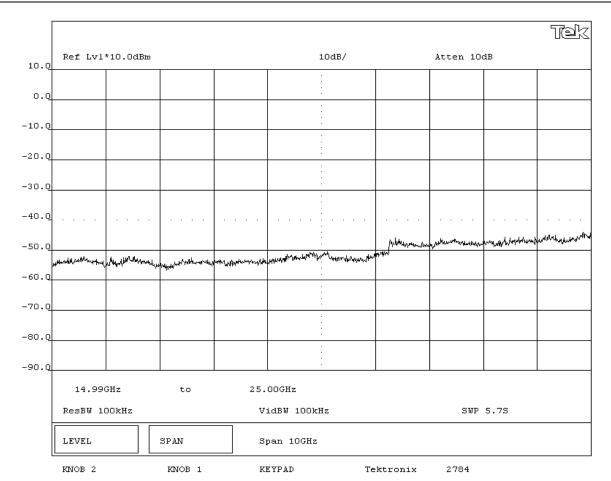

Test Description

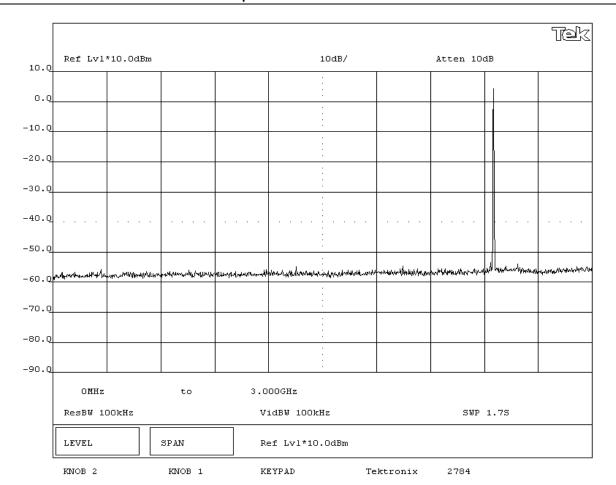
Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

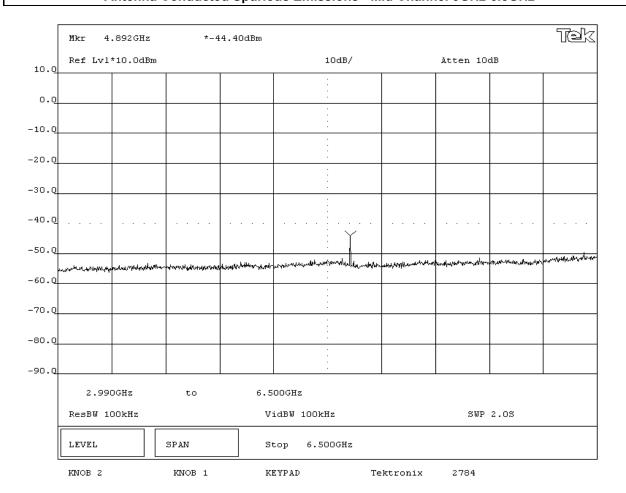

Configuration: The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

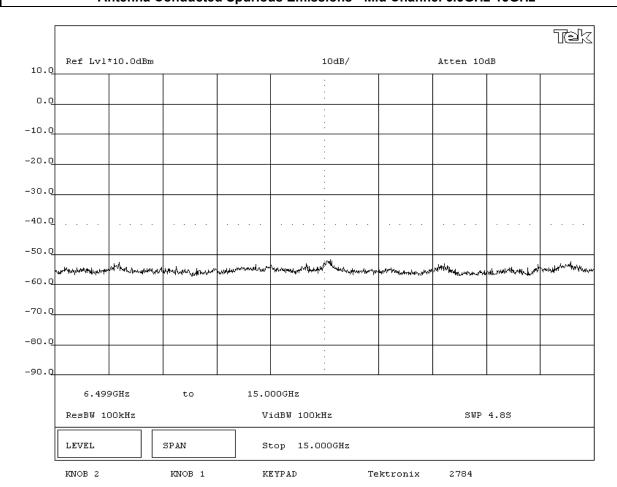
Completed by:

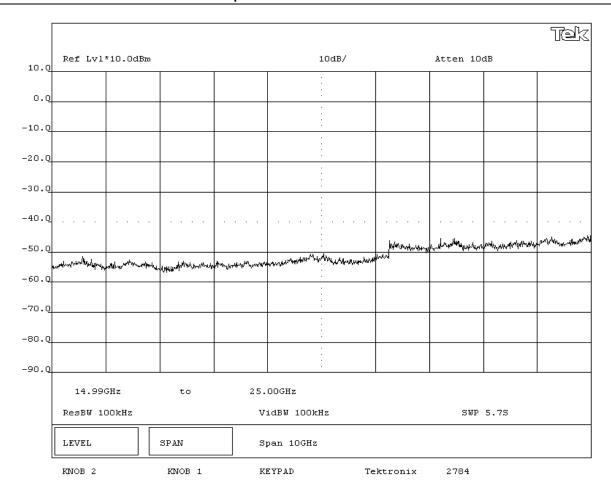

EMC		EMISSIONS	S DATA SH	EET		Rev BETA 01/30/01
	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Powers	Internal Battery	Job Site:	EV06
TEST SPECIFICATIONS	8					
Specification:	47 CFR 15.247(c)	Year: 2003	Method	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATIO	NS					
COMMENTS EUT OPERATING MOD Modulated by "FFFF" a	t maximum data rate					
DEVIATIONS FROM TE None	ST STANDARD					
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down	from the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Rolly be Feling	>				
DESCRIPTION OF TEST	Т					
	Antenna Cond	ducted Spurious E	missions - Low	Channel 0MH	lz-3GHz	

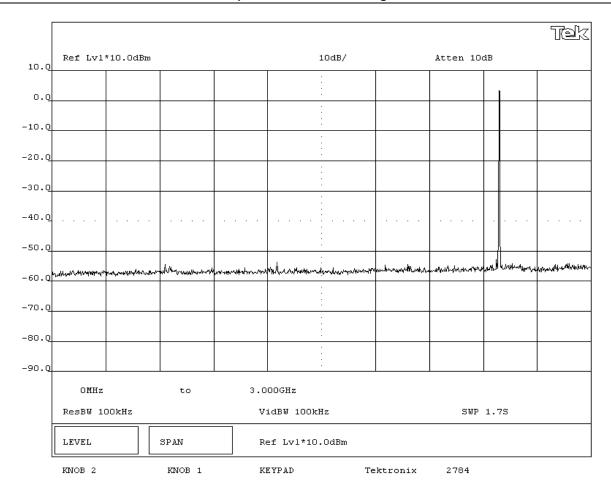

EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION	NS					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MO						
	at maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	spurious emission outside of the	e authorized band is 20 dB down fro	om the fundamental			
RESULTS						
Pass						
SIGNATURE	1					
Tested By:	Rochy le Reling	>				
DESCRIPTION OF TE						
I	Antenna Condi	icted Spurious Emis	ssions - I ow	Channel 3GE	1フ-6 5(3Hフ	

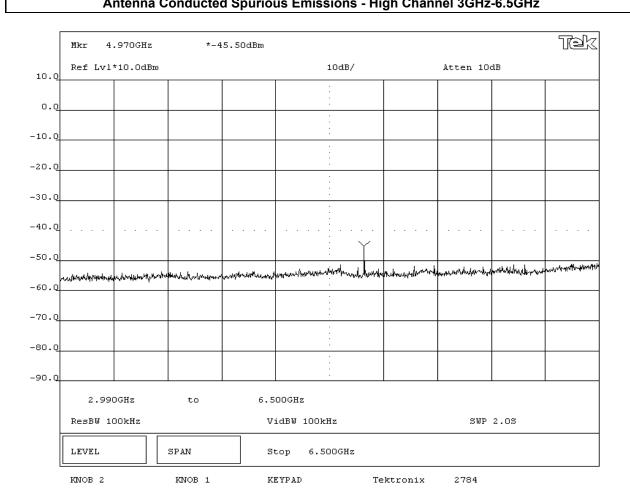

EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATIONS	6					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATION	NS					
COMMENTS						
EUT OPERATING MOD						
Modulated by "FFFF" a						
DEVIATIONS FROM TE	ST STANDARD					
None						
REQUIREMENTS						
	spurious emission outside of the	e authorized band is 20 dB dow	n from the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By: _	Rolly be Rolly	>				
DESCRIPTION OF TES	т					
DECOMM FROM OF TEO		cted Spurious Em	nissions - Low	Channel 6 5G	Hz-15GHz	

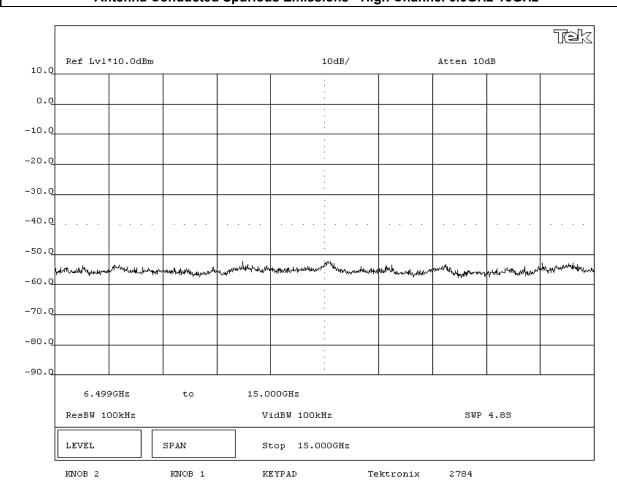

NORTHWEST		EMISSIONS	DATA CH	EET			
EMC		EINIIOOIONS	DAIA SH	CCI			Rev BETA 01/30/01
EUT:	F-0228A				Wo	ork Order:	LABT0098
Serial Number:	#1					Date:	08/06/04
Customer:	Logitech, Inc.				Tem	perature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin		Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery		Job Site:	EV06
TEST SPECIFICATION							
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4		Year:	2001
SAMPLE CALCULATION	ONS						
1							
1							
1							
COMMENTS							
EUT OPERATING MOD	DES						
Modulated by "FFFF"	at maximum data rate						
DEVIATIONS FROM TI	EST STANDARD						
None							
REQUIREMENTS							
Maximum level of any	spurious emission outside of th	e authorized band is 20 dB dow	n from the fundamental				
RESULTS							
Pass							
SIGNATURE							
0.0.0.0.0	1 0						
1	Rocky be Feling						
1	The same						
Tested By:							
DECORUPTION OF THE							
DESCRIPTION OF TES	ST	cted Spurious Em					

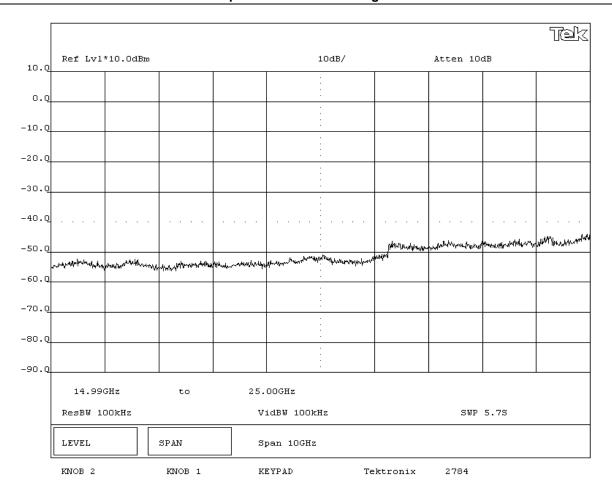

EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATION	ONS					
COMMENTS						
EUT OPERATING MO	DES					
Modulated by "FFFF"	at maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Rody be Feling	>				
DESCRIPTION OF TES	ST					
	Antenna Conc	lucted Spurious Em	issions - Mid	Channel 0M	Hz-3GHz	


EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION						
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATI	ONS					
COMMENTS EUT OPERATING MO	DES					
Modulated by "FFFF"						
DEVIATIONS FROM T						
None	20. 0.7.11.27.11.2					
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	e authorized band is 20 dB down fr	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Rolly be Feling					
DESCRIPTION OF TE	ST					
	Antenna Condi	ucted Spurious Emi	ssions - Mid	Channel 3GH	z-6.5GHz	


EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION	NS					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MO						
	at maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Rocky le Reling	<u> </u>				
DESCRIPTION OF TE						
	Antenna Condu	cted Spurious Emis	ssions - Mid (Channel 6 5G	Hz-15GHz	


EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION	ıs					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATION	ons					
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by "FFFF"	at maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	e authorized band is 20 dB down f	rom the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Roely le Feling	>				
DESCRIPTION OF TES	ST					
	Antenna Condu	ucted Spurious Emi	issions - Mid	Channel 15Gl	Hz-25GHz	


NORTHWEST EMC		EMISSION	S DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION	S					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATION	ONS					
COMMENTS						
EUT ODED ATING MOD	.50					
EUT OPERATING MOD Modulated by "FFFF" a						
DEVIATIONS FROM TE						
None	STSTANDARD					
REQUIREMENTS						
	spurious emission outside of the	he authorized band is 20 dB do	wn from the fundamental			
RESULTS			an nom and randamontal			
Pass SIGNATURE						
Tested By:	Rolly be Feling	<u></u>				
DESCRIPTION OF TES	Т					
	Antenna Cond	ducted Spurious E	Emissions - Higl	n Channel 0M	Hz-3GHz	


EMC	EMISSIC	ONS DATA SH	IEET		Rev BETA 01/30/01
EUT:	F-0228A			Work Order:	LABT0098
Serial Number:	#1			Date:	08/06/04
Customer:	Logitech, Inc.			Temperature:	23 degrees C
Attendees:	None	Tested by	: Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A	Power	: Internal Battery	Job Site:	EV06
TEST SPECIFICATION	is				
Specification:	47 CFR 15.247(c) Year: 2003	Method	: DA 00-705, ANSI C63.4	Year:	2001
COMMENTS					
EUT OPERATING MO					
•	at maximum data rate				
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS					
	spurious emission outside of the authorized band is 20	0 dB down from the fundamental			
RESULTS					
Pass					
SIGNATURE Tested By:	Rolly be Reley				
DESCRIPTION OF TES	Antenna Conducted Spuriou	us Emissions - High	Channel 3Gl	1z-6 5GHz	

EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATION	ONS					
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by "FFFF"	at maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Rolly be Reley	<u> </u>				
DESCRIPTION OF TES		cted Spurious Emis	sions - High	Channel 6 5G	Hz-15GHz	

EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/06/04
Customer:	Logitech, Inc.				Temperature:	23 degrees C
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:	N/A		Power:	Internal Battery	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	2001
SAMPLE CALCULATION	ONS					
COMMENTS						
EUT OPERATING MO	DES					
Modulated by "FFFF"	at maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Rolly be Rolly	>				
DESCRIPTION OF TES	ST					
	Antenna Condu	cted Spurious Emis	sions - High	Channel 15G	Hz-25GHz	

Power Spectral Density

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:

No Hop

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

Battery

Software\Firmware Applied During Test							
Exercise software	Special Test Software	Version	Unknown				
Description							
The system was tested using special software developed to test all functions of the device during the test.							

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	Logitech, Inc.	F-0228A	#1

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	2.0	No	AC Power Adapter	EUT

Power Spectral Density

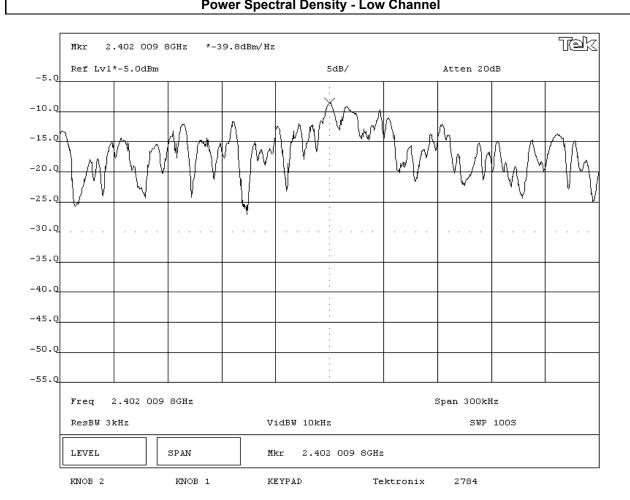
Revision 10/1/03

Measurement Equipment								
Description	Manufacturer	Model	Identifier	Last Cal	Interval			
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo			
Power Meter	Hewlett Packard	E4418A	SPA	07/23/2004	24 mo			
Power Sensor	Hewlett-Packard	8481H	SPB	07/23/2004	24 mo			
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo			

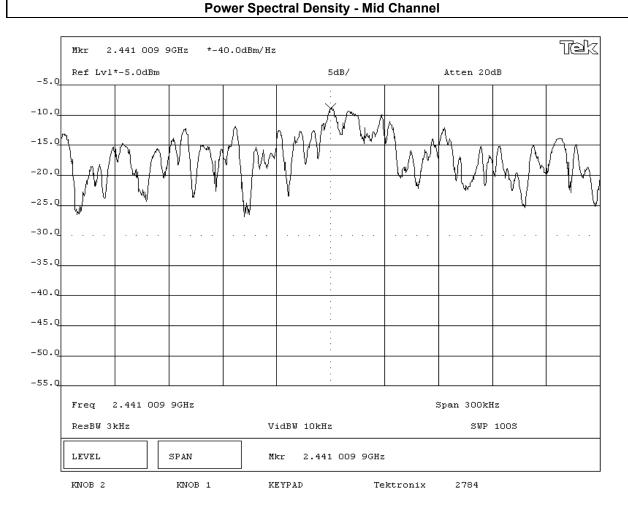
Test Description

Requirement: Per 47 CFR 15.247(d), the peak power spectral density conducted from the antenna port of a direct sequence transmitter must not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

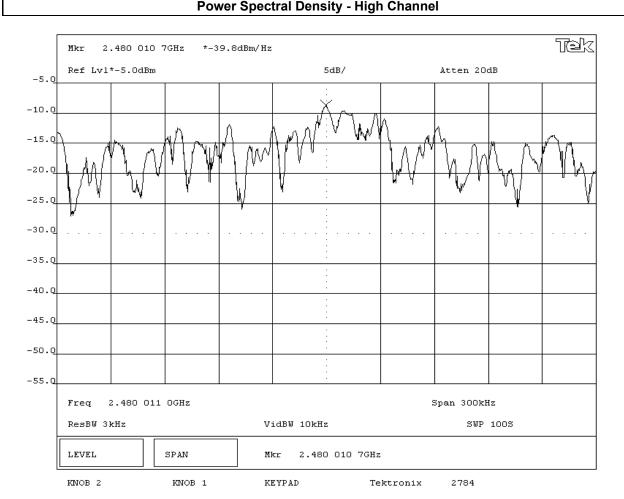
Configuration: The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

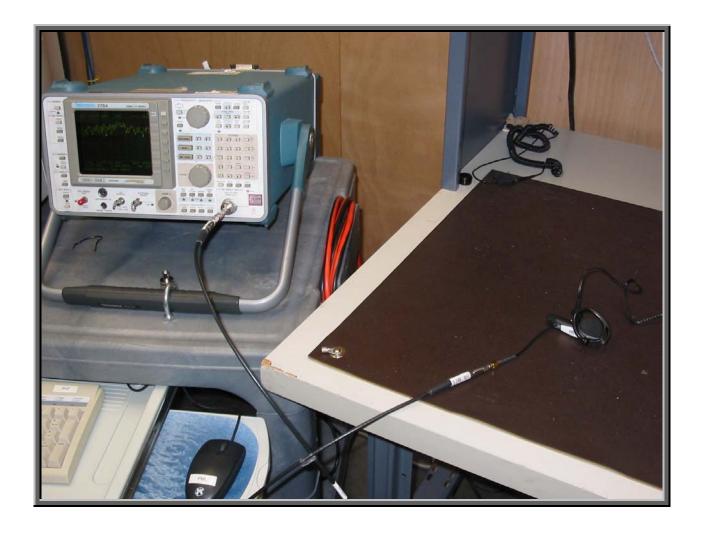

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $106 \div 3 \times 103 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."


The spectrum analyzer power reading was calibrated prior to testing using the power meter, power sensor, and signal generator via the substitution method.

Completed by:


EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01	
	F-0228A				Work Order:	LABT0098	
Serial Number:	#1				Date:	08/15/04	
Customer:	Logitech, Inc.				Temperature:	79 degrees F	
Attendees:	None		Tested by:	Greg Kiemel	Humidity:	45% RH	
Customer Ref. No.:	N/A		Power:	Battery	Job Site:	EV06	
TEST SPECIFICATION	NS						
Specification:	47 CFR 15.247(d)	Year: 2003	Method:	FCC 97-114, ANSI C63	3.4 Year:	2001	
SAMPLE CALCULATI	ONS						
Meter reading on spe-	ctrum analyzer is internally compe	ensated for cable loss and external	attenuation.				
Power Spectral Densi	ty per 3kHz bandwidth = Power Sp	pectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.			
Bandwidth Correction	r Factor = 10*log(3kHz/1Hz)						
COMMENTS							
EUT OPERATING MO	DES						
Modulated by PRBS a	t maximum data rate						
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
	r spectral density conducted from	a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz	band			
RESULTS			AMPLITUDE				
Pass	Power Spectral Density = -5.03 dBm / 3kHz						
SIGNATURE							
Tested By:	ADU.K.P						
DESCRIPTION OF TE	ST						
I		Dower Spectral Der	scity Low C	hannal			



NORTHWEST		ENICOLONIC	SATA OLI			
EMC		EMISSIONS I	JATA SH	EEI		Rev BETA 01/30/01
EUT:	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/15/04
Customer:	Logitech, Inc.				Temperature:	79 degrees F
Attendees:	None		Tested by:	Greg Kiemel	Humidity:	45% RH
Customer Ref. No.:	N/A		Power:	Battery	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(d)	Year: 2003	Method:	FCC 97-114, ANSI C6	3.4 Year:	2001
SAMPLE CALCULATION	ONS					
Meter reading on spec	ctrum analyzer is internally compe	nsated for cable loss and external	attenuation			
Power Spectral Densi	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction	Factor = 10*log(3kHz/1Hz)					
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by PRBS a	t maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum peak power	spectral density conducted from	a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz	band		
RESULTS			AMPLITUDE			
Pass	Power Spectral Density = -5.23 dBm / 3kHz					
SIGNATURE						
Tested By:	ARU.K.P					
DESCRIPTION OF TES	ST					

EMC		EET		Rev BETA 01/30/01		
	F-0228A				Work Order:	LABT0098
Serial Number:	#1				Date:	08/15/04
Customer:	Logitech, Inc.				Temperature:	79 degrees F
Attendees:	None		Tested by:	Greg Kiemel	Humidity:	45% RH
Customer Ref. No.:	N/A		Power:	Battery	Job Site:	EV06
TEST SPECIFICATION	NS					
Specification:	47 CFR 15.247(d)	FCC 97-114, ANSI C6	3.4 Year:	2001		
SAMPLE CALCULATI	ONS					
Meter reading on spe-	ctrum analyzer is internally compe	ensated for cable loss and external	lattenuation			
Power Spectral Densi	ty per 3kHz bandwidth = Power Sp	pectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction	r Factor = 10*log(3kHz/1Hz)					
COMMENTS						
EUT OPERATING MO						
Modulated by PRBS a	t maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	r spectral density conducted from	a DSSS transmitter does not exce		band		
RESULTS			AMPLITUDE			
Pass			Power Spectral Densi	ty = -5.03 dBm / 3kHz		
SIGNATURE						
Tested By:	ADU.K.P					
DESCRIPTION OF TE						
1		Dawar Chaotral Dar	saits, Lliah C	hannal		

Spurious Radiated Emissions

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:

No Hop

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

Battery

Frequency Range Invest	gated		
Start Frequency	30 MHz	Stop Frequency	26 GHz

Software\Firmware Applied During Test											
Exercise software Special Test Software Version Unknown											
Description											
The system was tested us	The system was tested using special software developed to test all functions of the device during the test.										

EUT and Peripherals											
Description	Manufacturer	Model/Part Number	Serial Number								
EUT	Logitech, Inc.	F-0228A	#2								

Spurious Radiated Emissions

Revision 10/1/03

Measurement Equipme	nt				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/23/2003	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/23/2003	13 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APJ	01/05/2004	13 mo
Antenna, Horn	EMCO	3115	AHC	09/18/2003	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	10/08/2003	12 mo
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26- 8P	APU	10/08/2003	12 mo
Attenuator	Pasternack	2082-6148-20	ATE	02/03/2004	13 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo

Test Description

Requirement: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

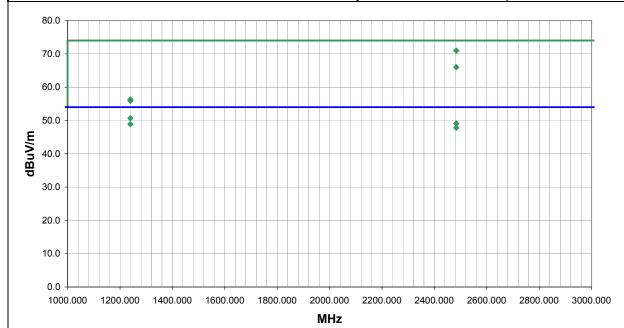
<u>Configuration</u>: The integral antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2001). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Bandwidths Used for Mea	surements		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 – 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were ma	ade using the handwidths	and detectors specified. No	video filter was used

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** 08/10/2004 Work Order: LABT0098 EUT: F-0228A Date: 08/11/04 Serial Number: #2 Customer: Logitech, Inc. Temperature: 79 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 29.9 Tested by: Holly Ashkannejhad Power: Battery Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS

EUT OPERATING MODES Bluetooth, High Channel


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Pass

Other

Holy Saligh Tested By:

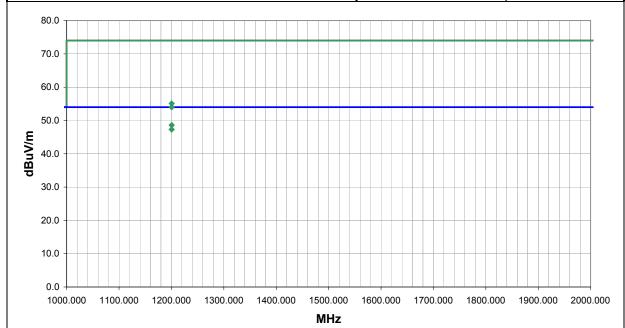
						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
2483.500	53.5	-2.5	78.0	1.1	3.0	20.0	H-Horn	PK	0.0	71.0	74.0	-3.0	
1239.511	39.0	-8.3	157.0	1.1	3.0	20.0	V-Horn	AV	0.0	50.7	54.0	-3.3	
2483.500	31.6	-2.5	17.0	1.7	3.0	20.0	V-Horn	AV	0.0	49.1	54.0	-4.9	
1239.511	37.2	-8.3	231.0	1.3	3.0	20.0	H-Horn	AV	0.0	48.9	54.0	-5.1	
2483.500	30.3	-2.5	78.0	1.1	3.0	20.0	V-Horn	AV	0.0	47.8	54.0	-6.2	
2483.500	48.5	-2.5	17.0	1.7	3.0	20.0	V-Horn	PK	0.0	66.0	74.0	-8.0	
1239.511	44.6	-8.3	231.0	1.3	3.0	20.0	H-Horn	PK	0.0	56.3	74.0	-17.7	
1239.511	44.2	-8.3	157.0	1.1	3.0	20.0	V-Horn	PK	0.0	55.9	74.0	-18.1	

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** 08/10/2004 Work Order: LABT0098 EUT: F-0228A Date: 08/11/04 Serial Number: #2 Customer: Logitech, Inc. Temperature: 79 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 29.9 Tested by: Holly Ashkannejhad Power: Battery Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS

EUT OPERATING MODES

Bluetooth, Low Channel


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Pass

Other

Holy Saling Tested By:

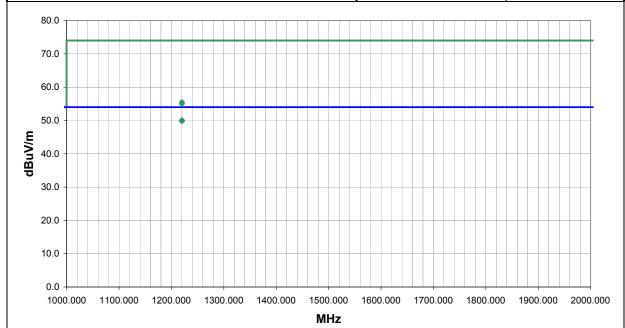
						External			Distance			Compared to	i
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	ĺ
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	ĺ
1200.515	37.2	-8.6	127.0	1.2	3.0	20.0	V-Horn	AV	0.0	48.6	54.0	-5.4	•
1200.515	35.9	-8.6	257.0	1.4	3.0	20.0	H-Horn	AV	0.0	47.3	54.0	-6.7	
1200.515	43.7	-8.6	127.0	1.2	3.0	20.0	V-Horn	PK	0.0	55.1	74.0	-18.9	
1200.515	42.6	-8.6	257.0	1.4	3.0	20.0	H-Horn	PK	0.0	54.0	74.0	-20.0	

NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** 08/10/2004 Work Order: LABT0098 EUT: F-0228A Date: 08/11/04 Serial Number: #2 Customer: Logitech, Inc. Temperature: 79 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 29.9 Tested by: Holly Ashkannejhad Power: Battery Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS

EUT OPERATING MODES

Bluetooth, Mid Channel


DEVIATIONS FROM TEST STANDARD

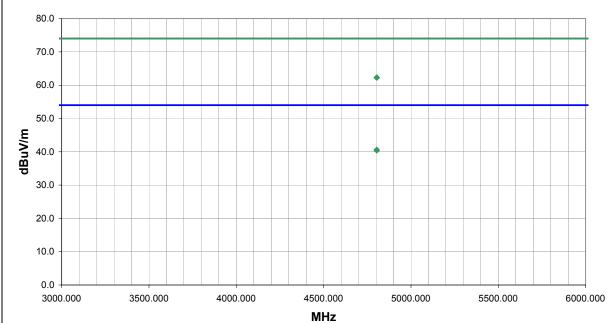
No deviations.

RESULTS Pass

Other

Holy Salingho Tested By:

						External			Distance			Compared to	1
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
1220.014	38.6	-8.5	234.0	1.6	3.0	20.0	H-Horn	AV	0.0	50.1	54.0	-3.9	
1220.014	38.3	-8.5	170.0	1.1	3.0	20.0	V-Horn	AV	0.0	49.8	54.0	-4.2	
1220.014	44.0	-8.5	234.0	1.6	3.0	20.0	H-Horn	PK	0.0	55.5	74.0	-18.5	
1220.014	43.5	-8.5	170.0	1.1	3.0	20.0	V-Horn	PK	0.0	55.0	74.0	-19.0	


RADIATED EMISSIONS DATA SHEET EMC 08/10/2004 EUT: F-0228A Work Order: LABT0098 Date: 08/11/04 Serial Number: #2 Customer: Logitech, Inc. Temperature: 79 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 29.9 Tested by: Holly Ashkannejhad Power: Battery Job Site: EV01 SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS **EUT OPERATING MODES** Bluetooth, Low Channel DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Run #
Pass 4

Other

Holy Aligh

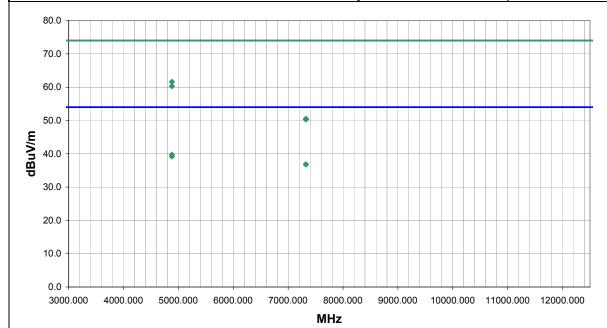
ı							External			Distance			Compared to	
ı	Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
ı	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
	4804.026	59.0	3.3	39.0	1.2	3.0	0.0	H-Horn	PK	0.0	62.3	74.0	-11.7	•
	4804.026	59.0	3.3	352.0	1.2	3.0	0.0	V-Horn	PK	0.0	62.3	74.0	-11.7	
	4804.026	37.3	3.3	352.0	1.2	3.0	0.0	V-Horn	AV	0.0	40.6	54.0	-13.4	
	4804.026	37.1	3.3	39.0	1.2	3.0	0.0	H-Horn	AV	0.0	40.4	54.0	-13.6	

RADIATED EMISSIONS DATA SHEET EMC 08/10/2004 EUT: F-0228A Work Order: LABT0098 Date: 08/11/04 Serial Number: #2 Customer: Logitech, Inc. Temperature: 79 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 29.9 Tested by: Holly Ashkannejhad Power: Battery Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS

EUT OPERATING MODES

Bluetooth, Mid Channel


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Pass

Other

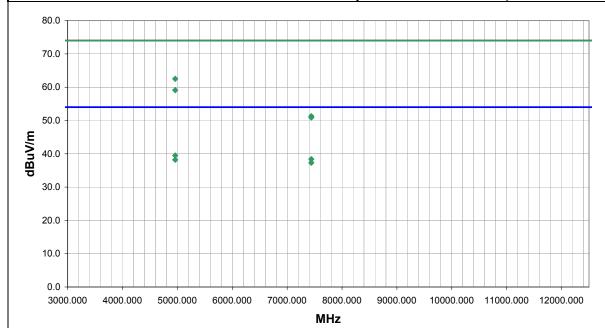
Holy Saligh Tested By:

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
4882.040	58.0	3.6	66.0	1.5	3.0	0.0	H-Horn	PK	0.0	61.6	74.0	-12.4	
4882.040	56.7	3.6	325.0	1.2	3.0	0.0	V-Horn	PK	0.0	60.3	74.0	-13.7	
4882.040	36.1	3.6	66.0	1.5	3.0	0.0	H-Horn	AV	0.0	39.7	54.0	-14.3	
4882.040	35.6	3.6	325.0	1.2	3.0	0.0	V-Horn	AV	0.0	39.2	54.0	-14.8	
7323.000	26.2	10.6	247.0	1.3	3.0	0.0	H-Horn	AV	0.0	36.8	54.0	-17.2	
7323.000	26.2	10.6	260.0	1.2	3.0	0.0	V-Horn	AV	0.0	36.8	54.0	-17.2	
7323.000	39.9	10.6	260.0	1.2	3.0	0.0	V-Horn	PK	0.0	50.5	74.0	-23.5	
7323.000	39.7	10.6	247.0	1.3	3.0	0.0	H-Horn	PK	0.0	50.3	74.0	-23.7	
	(MHz) 4882.040 4882.040 4882.040 4882.040 7323.000 7323.000	(MHz) (dBuV) 4882.040 58.0 4882.040 56.7 4882.040 35.6 7323.000 26.2 7323.000 39.9	(MHz) (dBuV) (dB) 4882.040 58.0 3.6 4882.040 56.7 3.6 4882.040 36.1 3.6 4882.040 35.6 3.6 7323.000 26.2 10.6 7323.000 39.9 10.6	(MHz) (dBuV) (dB) (degrees) 4882.040 58.0 3.6 66.0 4882.040 56.7 3.6 325.0 4882.040 36.1 3.6 66.0 4882.040 35.6 3.6 325.0 7323.000 26.2 10.6 247.0 7323.000 26.2 10.6 260.0 7323.000 39.9 10.6 260.0	(MHz) (dBuV) (dB) (degrees) (meters) 4882.040 58.0 3.6 66.0 1.5 4882.040 56.7 3.6 325.0 1.2 4882.040 36.1 3.6 66.0 1.5 4882.040 35.6 3.6 325.0 1.2 7323.000 26.2 10.6 247.0 1.3 7323.000 26.2 10.6 260.0 1.2 7323.000 39.9 10.6 260.0 1.2	(MHz) (dBuV) (dB) (degrees) (meters) (meters) 4882.040 58.0 3.6 66.0 1.5 3.0 4882.040 56.7 3.6 325.0 1.2 3.0 4882.040 36.1 3.6 66.0 1.5 3.0 4882.040 35.6 3.6 325.0 1.2 3.0 7323.000 26.2 10.6 247.0 1.3 3.0 7323.000 26.2 10.6 260.0 1.2 3.0 7323.000 39.9 10.6 260.0 1.2 3.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) 4882.040 58.0 3.6 66.0 1.5 3.0 0.0 4882.040 56.7 3.6 325.0 1.2 3.0 0.0 4882.040 36.1 3.6 66.0 1.5 3.0 0.0 4882.040 35.6 3.6 325.0 1.2 3.0 0.0 7323.000 26.2 10.6 247.0 1.3 3.0 0.0 7323.000 26.2 10.6 260.0 1.2 3.0 0.0 7323.000 39.9 10.6 260.0 1.2 3.0 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity 4882.040 58.0 3.6 66.0 1.5 3.0 0.0 H-Horn 4882.040 36.1 3.6 325.0 1.2 3.0 0.0 V-Horn 4882.040 35.6 3.6 325.0 1.2 3.0 0.0 V-Horn 4882.040 35.6 3.6 325.0 1.2 3.0 0.0 V-Horn 7323.000 26.2 10.6 247.0 1.3 3.0 0.0 V-Horn 7323.000 26.2 10.6 260.0 1.2 3.0 0.0 V-Horn 7323.000 39.9 10.6 260.0 1.2 3.0 0.0 V-Horn	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (meters) Polarity Detector 4882.040 58.0 3.6 66.0 1.5 3.0 0.0 H-Horn PK 4882.040 36.1 3.6 325.0 1.2 3.0 0.0 V-Horn PK 4882.040 35.6 3.6 325.0 1.2 3.0 0.0 V-Horn AV 4882.3000 26.2 10.6 247.0 1.3 3.0 0.0 V-Horn AV 7323.000 26.2 10.6 260.0 1.2 3.0 0.0 V-Horn AV 7323.000 39.9 10.6 260.0 1.2 3.0 0.0 V-Horn PK	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector Adjustment (dB) 4882.040 58.0 3.6 66.0 1.5 3.0 0.0 H-Horn PK 0.0 4882.040 56.7 3.6 325.0 1.2 3.0 0.0 V-Horn PK 0.0 4882.040 36.1 3.6 66.0 1.5 3.0 0.0 H-Horn AV 0.0 4882.040 35.6 3.6 325.0 1.2 3.0 0.0 V-Horn AV 0.0 7323.000 26.2 10.6 247.0 1.3 3.0 0.0 H-Horn AV 0.0 7323.000 26.2 10.6 260.0 1.2 3.0 0.0 V-Horn AV 0.0 7323.000 39.9 10.6 260.0 1.2 3.0 0.0 V-Horn PK 0.0	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector Adjustment (dB) Adjusted dBuV/m 4882.040 58.0 3.6 66.0 1.5 3.0 0.0 H-Horn PK 0.0 61.6 4882.040 36.1 3.6 66.0 1.5 3.0 0.0 V-Horn PK 0.0 60.3 4882.040 35.6 3.6 325.0 1.2 3.0 0.0 H-Horn AV 0.0 39.2 7323.000 26.2 10.6 247.0 1.3 3.0 0.0 V-Horn AV 0.0 36.8 7323.000 26.2 10.6 260.0 1.2 3.0 0.0 V-Horn AV 0.0 36.8 7323.000 39.9 10.6 260.0 1.2 3.0 0.0 V-Horn AV 0.0 36.8	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment (dB)V/m Adjustment (dB) Adjustment (dB	Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity Detector Detector Adjustment (dB) Adjustment dBuV/m Ajusted dBuV/m Spec. Limit dBuV/m Spec. (dB) 4882.040 58.0 3.6 66.0 1.5 3.0 0.0 H-Horn PK 0.0 61.6 74.0 -12.4 4882.040 36.1 3.6 66.0 1.5 3.0 0.0 V-Horn PK 0.0 60.3 74.0 -13.7 4882.040 35.6 3.6 325.0 1.2 3.0 0.0 V-Horn PK 0.0 39.2 54.0 -14.3 4882.040 35.6 3.6 325.0 1.2 3.0 0.0 V-Horn V-Horn AV 0.0 39.2 54.0 -14.8 7323.000 26.2 10.6 247.0 1.3 3.0 0.0 V-Horn V-Horn AV 0.0 36.8 54.0 -17.2 7323.000 39.9 10.6

RADIATED EMISSIONS DATA SHEET EMC 08/10/2004 EUT: F-0228A Work Order: LABT0098 Date: 08/11/04 Serial Number: #2 Customer: Logitech, Inc. Temperature: 79 Attendees: none Humidity: 45% Cust. Ref. No.: Barometric Pressure 29.9 Tested by: Holly Ashkannejhad Power: Battery Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 15.247(c) Spurious Radiated Emissions Method: ANSI C63.4 Year: 2003 Year: 2001 SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS

EUT OPERATING MODES Bluetooth, High Channel


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Pass

Other

Holy Saling Tested By:

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
4960.070	58.7	3.8	194.0	1.2	3.0	0.0	V-Horn	PK	0.0	62.5	74.0	-11.5	
4960.070	35.7	3.8	194.0	1.2	3.0	0.0	V-Horn	AV	0.0	39.5	54.0	-14.5	
4960.070	55.3	3.8	301.0	1.6	3.0	0.0	H-Horn	PK	0.0	59.1	74.0	-14.9	
7440.075	27.4	11.0	349.0	1.3	3.0	0.0	H-Horn	AV	0.0	38.4	54.0	-15.6	
4960.070	34.4	3.8	301.0	1.6	3.0	0.0	H-Horn	AV	0.0	38.2	54.0	-15.8	
7440.075	26.3	11.0	186.0	1.2	3.0	0.0	V-Horn	AV	0.0	37.3	54.0	-16.7	
7440.075	40.3	11.0	349.0	1.3	3.0	0.0	H-Horn	PK	0.0	51.3	74.0	-22.7	
7440.075	39.9	11.0	186.0	1.2	3.0	0.0	V-Horn	PK	0.0	50.9	74.0	-23.1	

BLUETOOTH APPROVALS

FCC Procedure Received from Joe Dichoso on 2-15-02

The following exhibit indicates the FCC Spread Spectrum requirements in Section 15.247 for devices meeting the Bluetooth Specifications in the 2.4 GHz band as of February 2001 operating in the USA. The purpose of this exhibit is to help expedite the approval process for Bluetooth devices. This exhibit provides items that vary for each device and also provides a list of items that are common to Bluetooth devices that explains the remaining requirements. The list of common items can be submitted for each application for equipment authorization. This exhibit only specifies requirements in Section 15.247, requirements in other rule Sections for intentional radiators such as in Section 15.203 or 15.207 must be also be addressed. A Bluetooth device is a FHSS transmitter in the data mode and applies as a Hybrid spread spectrum device in the acquisition mode.

For each individual device, the following items, 1-7 will vary from one device to another and must be submitted.

- 1) The occupied bandwidth in Section 15.247(a)(1)(ii).
- 2) Conducted output power specified in Section 15.247(b)(1).
- 3) EIRP limit in Section 15.247(b)(3).
- 4) RF safety requirement in Section 15.247(b)(4)
- 5) Spurious emission limits in Section 15.247(c).
- 6) Processing gain and requirements for Hybrids in Section 15.247(f) in the acquisition mode.
- 7) Power spectral density requirement in Section 15.247(f) in the acquisition mode.

For all devices, the following items, 1-12, are common to all Bluetooth devices and will not vary from one device to another. This list can be copied into the filing.

1 Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device don't influence the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason, the RF parameters in one op-mode is sufficient.

2 Frequency range of a Bluetooth device:

The maximum frequency of the device is: **2402 – 2480 M**Hz.

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for devices which will be operated in the USA. Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification must **not be** supported by the device.

3 Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organized in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from it's BD address which is unique for every Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4 Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode:

40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67,

56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59,

72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75,

09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06,

01, 51, 03, 55, 05, 04

5 Equally average use of frequencies in data mode and short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection
- 2. Internal master clock

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS. The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronization with other units, only the offsets are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 µs. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions, the Bluetooth system has the following behavior: The first connection between the two devices is established, a hopping sequence is generated. For transmitting the wanted data, the complete hopping sequence is not used and the connection ends. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6 Receiver input bandwidth, synchronization and repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz.

In every connection, one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single or multi-slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing is according to the packet type of the connection. Also, the slave of the connection uses these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence

7 Dwell time in data mode

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows: Dwell time = time slot length * hop rate / number of hopping channels *30s Example for a DH1 packet (with a maximum length of one time slot) Dwell time = $625 \mu s * 1600 1/s / 79 * 30s = 0.3797s$ (in a 30s period)

For multi-slot packet the hopping is reduced according to the length of the packet.

Example for a DH5 packet (with a maximum length of five time slots)

Dwell time = $5 * 625 \mu s * 1600 * 1/5 * 1/s / 79 * 30s = 0.3797s$ (in a 30s period)

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all Bluetooth devices. Therefore, all Bluetooth devices **comply** with the FCC dwell time requirement in the data mode.

This was checked during the Bluetooth Qualification tests.

The Dwell time in hybrid mode is approximately 2.6 mS (in a 12.8s period)

8 Channel Separation in hybrid mode

The nominal channel spacing of the Bluetooth system is 1Mhz independent of the operating mode.

The maximum "initial carrier frequency tolerance" which is allowed for Bluetooth is fcenter = 75 kHz.

This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/07-E) for three frequencies (2402, 2441, 2480 MHz).

9 Derivation and examples for a hopping sequence in hybrid mode

For the generation of the inquiry and page hop sequences the same procedures as described for the data mode are used (see item 5), but this time with different input vectors:

**For the inquiry hop sequence, a predefined fixed address is always used. This results in the same 32 frequencies used by all devices doing an inquiry but every time with a different start frequency and phase in this sequence.

**For the page hop sequence, the device address of the paged unit is used as the input vector. This results in the use of a subset of 32 frequencies which is specific for that initial state of the connection establishment between the two units. A page to different devices would result in a different subset of 32 frequencies.

So it is ensured that also in hybrid mode, the frequency is used equally on average. Example of a hopping sequence in inquiry mode:

48, 50, 09, 13, 52, 54,41, 45, 56, 58, 11, 15, 60, 62, 43, 47, 00, 02, 64, 68, 04, 06, 17, 21, 08, 10, 66, 70, 12, 14, 19, 23

Example of a hopping sequence in paging mode:

08, 57, 68, 70, 51, 02, 42, 40, 04, 61, 44, 46, 63, 14, 50, 48, 16, 65, 52, 54, 67, 18, 58, 56, 20, 53, 60, 62, 55, 06, 66, 64

10 Receiver input bandwidth and synchronization in hybrid mode:

The receiver input bandwidth is the same as in the data mode (1 MHz). When two Bluetooth devices establish contact for the first time, one device sends an inquiry access code and the other device is scanning for this inquiry access code. If two devices have been connected previously and want to start a new transmission, a similar procedure takes place. The only difference is, instead of the inquiry access code, a special access code, derived from the BD_ADDRESS of the paged device will be, will be sent by the master of this connection. Due to the fact that both units have been connected before (in the inquiry procedure) the paging unit has timing and frequency information about the page scan of the paged unit. For this reason the time to establish the connection is reduced.

11 Spread rate / data rate of the direct sequence signal

The Spread rate / Data rate in inquiry and paging mode can be defined via the access code. The access code is the only criterion for the system to check if there is a valid transmission or not. If you regard the presence of a valid access code as one bit of information, and compare it with the length of the access code of 68 bits, the Spread rate / Data rate will be 68/1.

12 Spurious emission in hybrid mode

The Dwell in hybrid mode is shorter than in data mode. For this reason the spurious emissions average level in data mode is worst case. The spurious emissions peak level is the same for both modes.