

FCC Test Report

Report No.: 2405Y58028EA

Applicant: Hatch Baby, Inc.

Address: 3525 Alameda De Las Pulgas, Suite D, Menlo Park, California,

94025 United States

Product Name: Hatch Restore 3

Product Model: RESTORE05

Multiple Models: N/A

Trade Mark: Hatch

FCC ID: 2AFYZ-RESTORE05

Standards: FCC CFR Title 47 Part 15C (§15.247)

Test Date: 2024-10-22 to 2024-12-12

Test Result: Complied

Report Date: 2024-12-12

Reviewed by:

Approved by:

Frank Yin

Frank Tin

Project Engineer

Jacob Kong

Jacob Gong

Manager

Prepared by:

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-006/V1.1 Page 1 of 64

Announcement

- 1. This test report shall not be reproduced except in full, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	2024-12-12	Original

Report Template: TR-4-E-006/V1.1 Page 2 of 64

Contents

5	E.U.	T Photo)	64
4	Test	Setup	Photo	63
		3.5.7	100 kHz Bandwidth of Frequency Band Edge	50
		3.5.6	Time of occupancy (dwell time)	50
		3.5.5	Number of hopping Frequency	
		3.5.4	Channel separation	
		3.5.2	Maximum Conducted Peak Output Power	
		3.5.1	99% Occupied Bandwidth	
		3.5.1	20 dB Emission Bandwidth	
	3.5		Conducted Test Data	
	3.4		ated emission Test Data	
	3.3		ine Conducted Emissions Test Data	
	3.2			
	3.1		Summary	
3	Test		s	
	2.8	Meas	surement Equipment	1
	2.7	Meas	surement Method	10
	2.6	Test	Procedure	9
	2.5	Test	Setup	7
	2.4	Block	CDiagram of Connection between EUT and AE	7
	2.3	Interd	connecting Cables	7
	2.2	Test .	Auxiliary Equipment	6
	2.1	Test	Configuration	6
2	Desc	cription	of Measurement	6
	1.7	Test	Methodology	5
	1.6	Labo	ratory Location	5
	1.5	Meas	surement Uncertainty	5
	1.4	Rela	ted Submittal(s)/Grant(s)	5
	1.3	Ante	nna information	4
	1.2		uct Description of EUT	
	1.1		t Information	
1			ormation	

1 General Information

1.1 Client Information

Applicant:	Hatch Baby, Inc.
Address:	3525 Alameda De Las Pulgas, Suite D, Menlo Park, California, 94025 United States
Manufacturer:	Hatch Baby, Inc.
Address:	3525 Alameda De Las Pulgas, Suite D, Menlo Park, California, 94025 United States

1.2 Product Description of EUT

The EUT is Hatch Restore 3 that contains Classic Bluetooth(BDR/EDR), BLE and 2.4G WLAN radios, this report covers the full testing of the Classic Bluetooth(BDR/EDR) radio.

Sample Serial Number	2T0R-5 for CE&RE test, 2T0R-6 for RF conducted test(assigned by WATC)
Sample Received Date	2024-10-16
Sample Status	Good Condition
Frequency Range	2402MHz - 2480MHz
Maximum Conducted Peak Output Power	4.38dBm
Modulation Technology	GFSK, π/4-DQPSK, 8DPSK
Spatial Streams	SISO (1TX, 1RX)
Antenna Gain [#]	3.76dBi
Power Supply	DC 24V from AC adapter
Adapter Information	Model: LACW030
	Input: AC100-240V, 50/60Hz, 0.8A
	Output: DC 24V/1.5A,
Modification	Sample No Modification by the test lab

1.3 Antenna information

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Device Antenna information:

The BT antenna is an internal antenna which cannot replace by end-user, please see product internal photos for details.

Report Template: TR-4-E-006/V1.1 Page 4 of 64

1.4 Related Submittal(s)/Grant(s)

FCC Part 15, Subpart C, Equipment Class: DTS, FCC ID: 2AFYZ-RESTORE05

1.5 Measurement Uncertainty

in modernment entertainty				
meter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))			
cted Emissions	±3.14dB			
Below 30MHz	±2.78dB			
Below 1GHz	±4.84dB			
Above 1GHz	±5.44dB			
	1.75dB			
	0.74dB			
	150Hz			
	0.34%			
	0.74dB			
	Below 30MHz Below 1GHz Above 1GHz			

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

1.6 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: qa@watc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 463912, the FCC Designation No.: CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.7 Test Methodology

FCC CFR 47 Part 2

FCC CFR 47 Part 15

KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2013

Report Template: TR-4-E-006/V1.1 Page 5 of 64

2 Description of Measurement

2.1 Test Configuration

Operating channels:							
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
0	2402	39	2441	76	2478		
1	2403	40	2442	77	2479		
				78	2480		
38	2440			/	/		

According to ANSI C63.10-2013 chapter 5.6.1 Table 11 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

Test Mode:					
Transmitting mode:	Transmitting mode: Keep the EUT in continuous transmitting with modulation				
Exercise software#:	ercise software [#] : EspRFTestTool V3.6				
	Power Level Setting [#]				
Mode	Data rate	Low Channel	Middle Channel	High Channel	
GFSK	1Mbps	5	5	5	
π/4 DQPSK	2Mbps	5	5	5	
8DPSK	3Mbps	5	5	5	
The exercise softwa	re and the maximum	power setting that pro	vided by manufacture	er.	

Worst-Case Configuration:

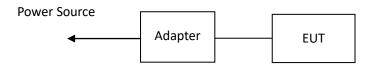
For AC power line conducted emission and radiated emission 9kHz-1GHz and above 18GHz were performed with the EUT transmits at the channel with highest output power as worst-case scenario.

For radiated emissions below 30MHz, three antenna orientations (parallel, perpendicular, gound-parallel) were tested, only record the worse case test data in report.

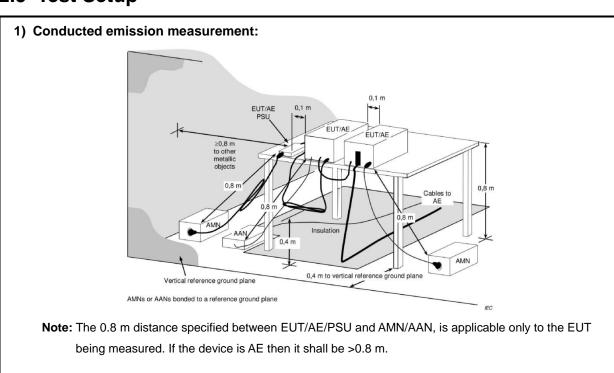
There is two WLAN module install in the device, the applicant declared only one module used as wireless module, another was disable the wireless function and work as MCU, detail please refer the declaration letter provide by applicant.

2.2 Test Auxiliary Equipment

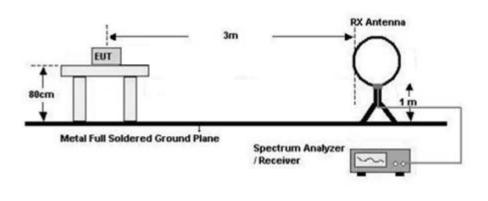
Manufacturer	Manufacturer Description		Serial Number
/	/ /		/


Report Template: TR-4-E-006/V1.1 Page 6 of 64

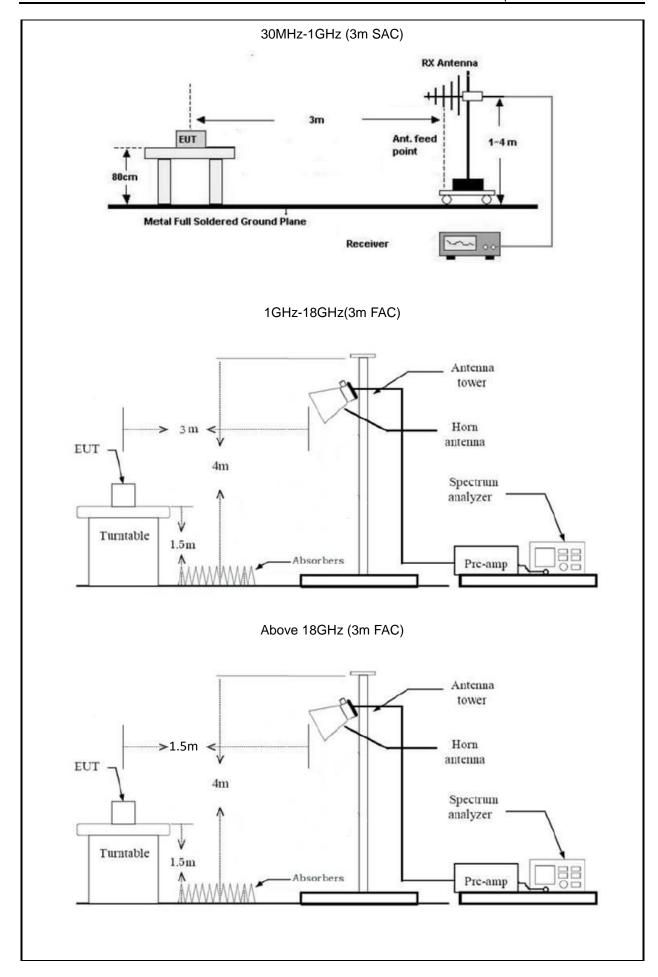
2.3 Interconnecting Cables


Manufacturer	Description	Length(m)	From	То
ASAP	DC Power Cable	1.5	Adapter	EUT

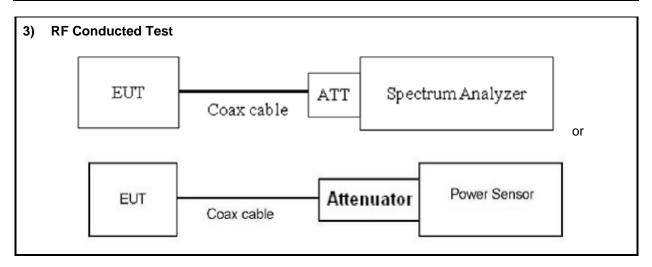
2.4 Block Diagram of Connection between EUT and AE


Note: for reference only, the actual connection setup used for testing please refer to the test photos.

2.5 Test Setup



2) Radiated emission measurement:


Below 30MHz (3m SAC)

2.6 Test Procedure

Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- Both sides of A.C. line are checked for maximum conducted interference. In order to find the
 maximum emission, the relative positions of equipment and all of the interface cables must be
 changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For below 30MHz

- 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).
- 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)

b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

c) For above 1GHz:

1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5 m (above 18GHz).

- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- The RBW/VBW of spectrum analyzer is set to 1MHz/3MHz for scan Peak emission, for measured average emission, reduce the VBW to 10Hz. (Note: a high VBW (for example 5kHz) may used to scan average emissions to avoid long sweep time.)
- 4. If the Peak emission complies with the Average limit, then perform average measurement is optional.
- 5. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 6. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

RF Conducted Test:

- 1. The antenna port of EUT was connected to the RF port of the test equipment (Power Meter or Spectrum analyzer) through Attenuator and RF cable.
- 2. The cable assembly insertion loss of 7.0dB (including 6.0 dB Attenuator and 1.0 dB cable) was entered as an offset in the power meter. Note: Actual cable loss was unavailable at the time of testing, therefore a loss of 1.0dB was assumed as worst case. This was later verified to be true by laboratory. (if the RF cable provided by client, the cable loss declared by client)
- 3. The EUT is keeping in continuous transmission mode and tested in all modulation modes.

2.7 Measurement Method

Description of Test	Measurement Method
AC Line Conducted Emissions	ANSI C63.10-2013 Section 6.2
Maximum Conducted Output Power	ANSI C63.10-2013 Section 7.8.5
20 dB Emission Bandwidth	ANSI C63.10-2013 Section 6.9.2
99% Occupied Bandwidth	ANSI C63.10-2013 Section 6.9.3
Channel separation	ANSI C63.10-2013 Section 7.8.2
Number of hopping Frequency	ANSI C63.10-2013 Section 7.8.3
Time of occupancy (dwell time)	ANSI C63.10-2013 Section 7.8.4
100kHz Bandwidth of Frequency Band Edge	ANSI C63.10-2013 Section 7.8.7.2&6.10
Radiated emission	ANSI C63.10-2013 Section 7.8&6.3&6.4&6.5&6.6

Report Template: TR-4-E-006/V1.1 Page 10 of 64

2.8 Measurement Equipment

Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date		
AC Line Conducted Emission Test							
ROHDE&	EMI TEST	ESR	101817	2024/6/4	2025/6/3		
SCHWARZ	RECEIVER	LON	101817	2024/0/4	2023/0/3		
R&S	LISN	ENV216	101748	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.12	N/A	2024/6/4	2025/6/3		
Farad	Test Software	EZ-EMC	Ver. EMEC-3A1	/	/		
		Radiated Emissio	n Test				
R&S	EMI test receiver	ESR3	102758	2024/6/4	2025/6/3		
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2024/6/4	2025/6/3		
SONOMA INSTRUMENT	Low frequency amplifier	310	186014	2024/6/4	2025/6/3		
A.H. Systems	PREAMPLIFIER	PAM-0118P	531	2024/6/4	2025/6/3		
COM-POWER	Amplifier	PAM-840A	461306	2024/8/7	2025/8/6		
BACL	Loop Antenna	1313-1A	4010611	2024/2/7	2027/2/6		
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2026/7/6		
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2026/7/5		
Ducommun technologies	Horn Antenna	ARH-4223-02	1007726-03	2023/7/10	2026/7/9		
Oulitong	Band Reject Filter	OBSF-2400-248 3.5-50N	OE02103119	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.9	N/A	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.13	N/A	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.15	N/A	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.16	N/A	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.17	N/A	2024/6/4	2025/6/3		
Audix	Test Software	E3	191218 V9	/	/		
		RF Conducted	Test				
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40	101419	2024/6/4	2025/6/3		
MEEA	6dB attenuator	603-06-1	N/A	2024/6/4	2025/6/3		
			l		ı		

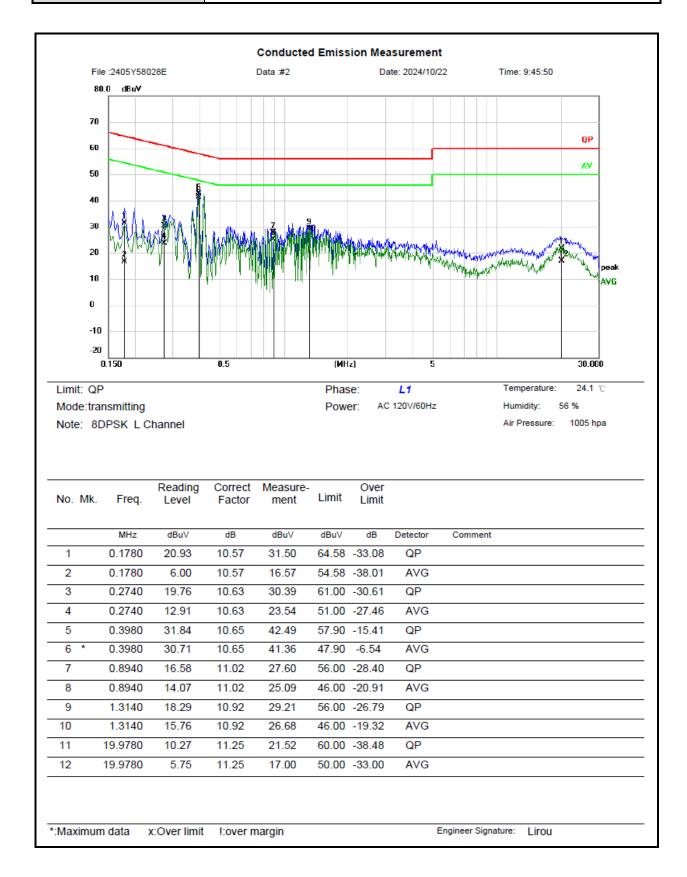
Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

Page 11 of 64

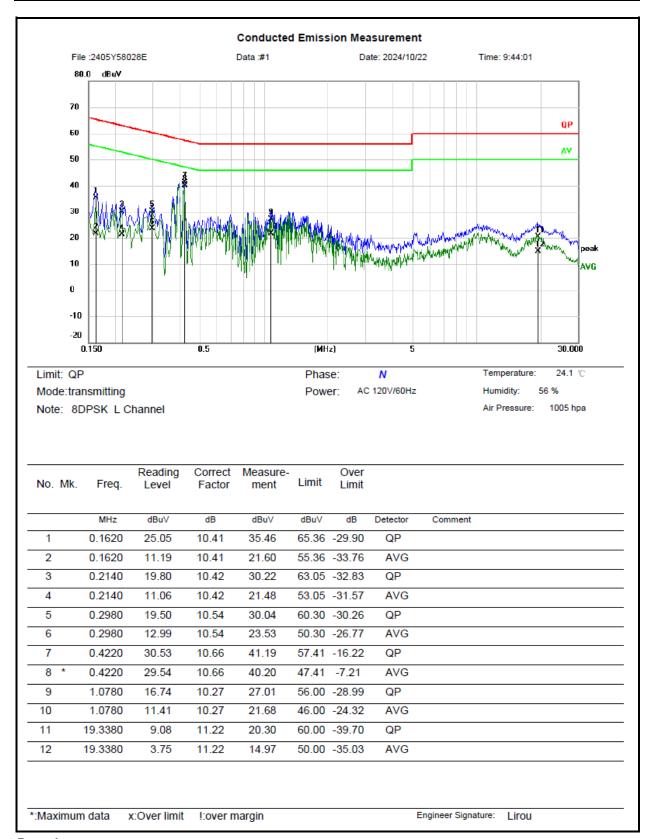
3 Test Results

3.1 Test Summary

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247 (a)(1)	20dB Emission Bandwidth	Compliance
-	99% Occupied Bandwidth	Report only
§15.247 (a)(1)	Channel separation	Compliance
§15.247 (a)(1)(iii)	Number of hopping Frequency	Compliance
§15.247 (a)(1)(iii)	Time of occupancy (dwell time)	Compliance
§15.247(b)(1)	Maximum Conducted Output Power	Compliance
§15.247(d)	100kHz Bandwidth of Frequency Band Edge	Compliance
§15.205, §15.209, §15.247(d)	Radiated emission	Compliance


3.2 Limit

Test items	Limit
AC Line Conducted Emissions	See details §15.207 (a)
Conducted Output Power	For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.
Channel separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Number of hopping Frequency	Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.
Time of occupancy (dwell time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Spurious Emissions, 100kHz Bandwidth of Frequency Band Edge	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).



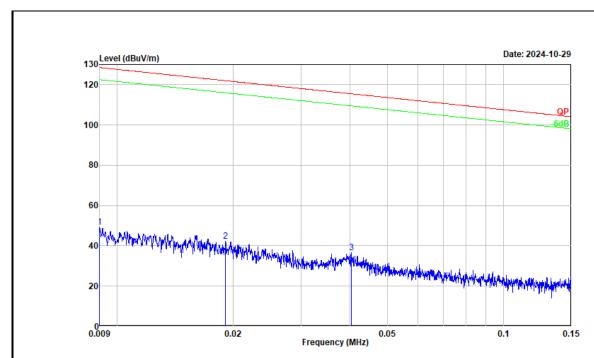
3.3 AC Line Conducted Emissions Test Data

Test Date:	2024-10-22	Test By:	Lirou Li
Environment condition:	Temperature: 24.1°C; Relative	Humidity:56%; ATM Pr	essure: 100.5kPa

Remark:

Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB)

Correct Factor(dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB)


Over Limit = Measurement - Limit

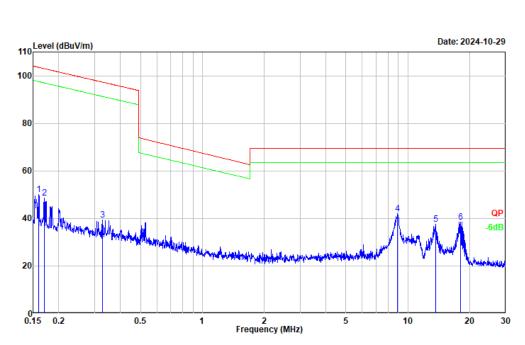
3.4 Radiated emission Test Data

9 kHz-30MHz:

Test Date:	2024-10-29	Test By:	Bard Huang
Environment condition:	Temperature: 23.7°C; Relative	Humidity:54%; ATM Pr	essure: 100.6kPa

Project No. : 2405Y58028E-RF Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 23.7℃/54%R.H./100.6kPa


Tested by : Bard Huang
Polarization : PARALLEL
Remark : 3DH5 Low channel

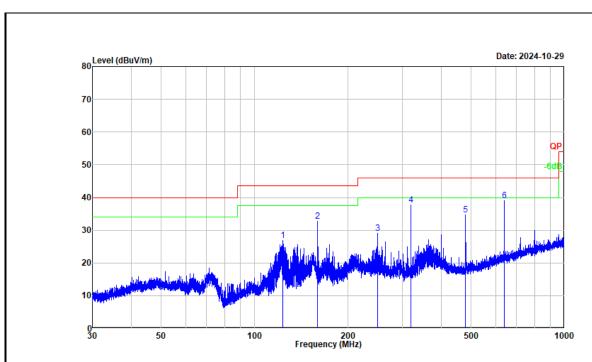
No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	0.009	11.39	38.01	49.40	128.52	-79.12	Peak
2 3	0.019 0.040	10.84 14.27	31.44 22.39	42.28 36.66	121.99 115.49	-79.71 -78.83	Peak Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

Environment : 23.7℃/54%R.H./100.6kPa Tested by : Bard Huang

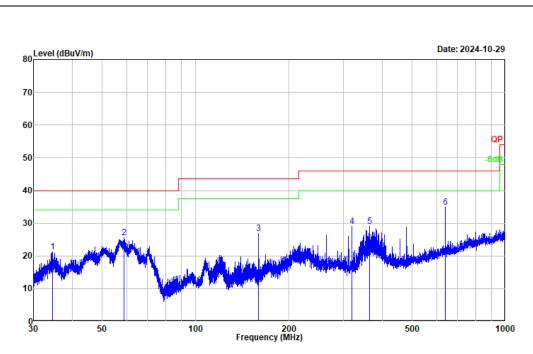
Polarization : PARALLEL


Remark : 3DH5 Low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	0.160	36.70	13.26	49.96	103.51	-53.55	Peak	
2	0.170	35.57	12.97	48.54	102.98	-54.44	Peak	
3	0.328	30.57	8.80	39.37	97.29	-57.92	Peak	
4	8.911	45.87	-3.75	42.12	69.54	-27.42	Peak	
5	13.617	41.08	-3.59	37.49	69.54	-32.05	Peak	
6	18.035	41.63	-3.22	38.41	69.54	-31.13	Peak	

30MHz-1GHz:

Test Date:	2024-10-29	Test By:	Bard Huang
Environment condition:	Temperature: 23.7°C; Relative	Humidity:54%; ATM Pr	essure: 100.6kPa


Project No. : 2405Y58028E-RF Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : $23.7^{\circ}\text{C}/54\%\text{R.H.}/100.6\text{kPa}$

Tested by : Bard Huang Polarization : horizontal Remark : 3DH5 low channel

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	123.482	43.44	-16.52	26.92	43.50	-16.58	Peak
2	159.995	49.55	-16.88	32.67	43.50	-10.83	Peak
3	249.863	41.62	-12.48	29.14	46.00	-16.86	Peak
4	320.077	48.75	-10.94	37.81	46.00	-8.19	Peak
5	480.107	42.54	-7.94	34.60	46.00	-11.40	Peak
6	640.050	43.65	-4.66	38.99	46.00	-7.01	Peak

Environment : $23.7^{\circ}\text{C}/54\%\text{R.H.}/100.6\text{kPa}$

Tested by : Bard Huang Polarization : vertical : 3DH5 low channel Remark

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	34.517	36.03	-14.88	21.15	40.00	-18.85	Peak
2	58.664	39.10	-13.51	25.59	40.00	-14.41	Peak
3	159.995	43.79	-16.88	26.91	43.50	-16.59	Peak
4	320.077	40.09	-10.94	29.15	46.00	-16.85	Peak
5	364.579	38.51	-9.55	28.96	46.00	-17.04	Peak
6	640.050	39.55	-4.66	34.89	46.00	-11.11	Peak

Above 1GHz:

Test Date:	2024-10-22~2024-10-31		Bard Huang
Environment condition:	Temperature: 22.8~24.3°C; Re 99.7~100.7kPa	elative Humidity:49~59%;	ATM Pressure:

Frequency (MHz)	Reading level (dBµV)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark			
GFSK										
Low Channel										
4804.000	51.06	horizontal	-2.87	48.19	74.00	-25.81	Peak			
4804.000	53.09	vertical	-2.87	50.22	74.00	-23.78	Peak			
			Middle Cl	hannel						
4882.000	50.33	horizontal	-2.32	48.01	74.00	-25.99	Peak			
4882.000	51.02	vertical	-2.32	48.70	74.00	-25.30	Peak			
			High Ch	annel						
4960.000	50.88	horizontal	-2.18	48.70	74.00	-25.30	Peak			
4960.000	49.92	vertical	-2.18	47.74	74.00	-26.26	Peak			
			π/4 DQ	PSK						
			Low Cha	annel						
4804.000	50.00	horizontal	-2.87	47.13	74.00	-26.87	Peak			
4804.000	52.99	vertical	-2.87	50.12	74.00	-23.88	Peak			
			Middle Cl	hannel						
4882.000	50.01	horizontal	-2.32	47.69	74.00	-26.31	Peak			
4882.000	50.73	vertical	-2.32	48.41	74.00	-25.59	Peak			
			High Ch	annel						
4960.000	50.52	horizontal	-2.18	48.34	74.00	-25.66	Peak			
4960.000	52.11	vertical	-2.18	49.93	74.00	-24.07	Peak			
			8DPS	SK						
			Low Ch	annel						
4804.000	50.56	horizontal	-2.87	47.69	74.00	-26.31	Peak			
4804.000	52.87	vertical	-2.87	50.00	74.00	-24.00	Peak			
			Middle Cl	hannel						
4882.000	48.95	horizontal	-2.32	46.63	74.00	-27.37	Peak			
4882.000	50.64	vertical	-2.32	48.32	74.00	-25.68	Peak			
			High Ch	annel						
4960.000	49.76	horizontal	-2.18	47.58	74.00	-26.42	Peak			
4960.000	51.02	vertical	-2.18	48.84	74.00	-25.16	Peak			

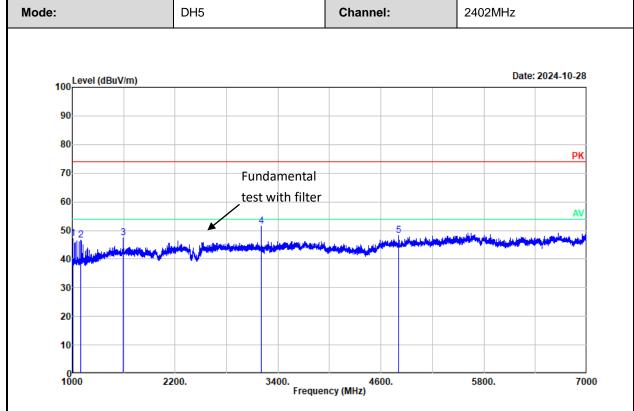
Remark:

Corrected Amplitude= Reading level + corrected Factor

Corrected Factor = Antenna factor + Cable loss - Amplifier gain

Margin = Corrected Amplitude - Limit

For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.


The emission levels of other frequencies that were lower than the limit 20dB, not show in test report.

For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.

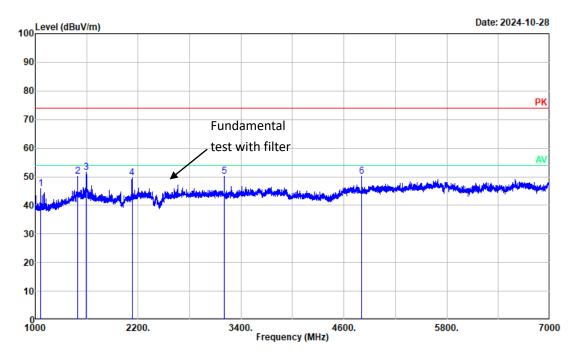
Report Template: TR-4-E-006/V1.1 Page 21 of 64

Test plot for example as below:

Project No. : 2405Y58028E-RF Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 24.3℃/52%R.H./100.1kPa

Tested by : Bard Huang
Polarization : horizontal
Remark : DH5 low channel


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	1008.000	55.44	-8.18	47.26	74.00	-26.74	Peak
2	1103.000	54.39	-7.88	46.51	74.00	-27.49	Peak
3	1593.000	52.05	-4.51	47.54	74.00	-26.46	Peak
4	3202.000	54.77	-3.16	51.61	74.00	-22.39	Peak
5	4804.000	51.06	-2.87	48.19	74.00	-25.81	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

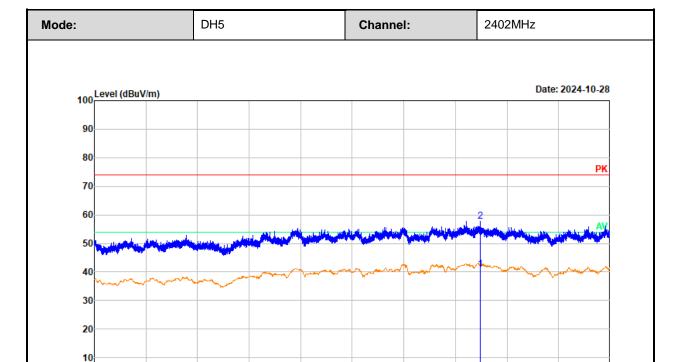
Over Limit = Result - Limit

Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$

Tested by : Bard Huang
Polarization : vertical
Remark : DH5 low channel

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	1065.000	53.85	-8.01	45.84	74.00	-28.16	Peak	
2	1494.000	55.39	-5.13	50.26	74.00	-23.74	Peak	
3	1598.000	55.84	-4.47	51.37	74.00	-22.63	Peak	
4	2129.000	53.91	-4.23	49.68	74.00	-24.32	Peak	
5	3202.000	53.33	-3.16	50.17	74.00	-23.83	Peak	
6	4804.000	53.09	-2.87	50.22	74.00	-23.78	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor


Result = Reading + Factor

Over Limit = Result - Limit

15800.

18000

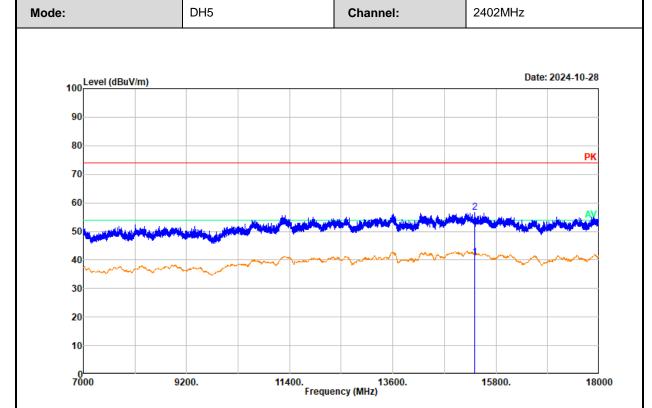
Project No. : 2405Y58028E-RF Test Mode : Transmitting Test Voltage : AC 120V/60Hz

7000

Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$

9200.

Tested by : Bard Huang
Polarization : horizontal
Remark : DH5 low channel

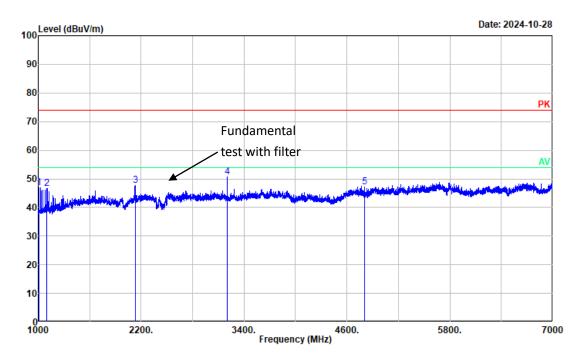

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	15226.000	35.59	5.24	40.83	54.00	-13.17	Average
2	15226.000	52.38	5.24	57.62	74.00	-16.38	Peak

11400. 13600. Frequency (MHz)

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

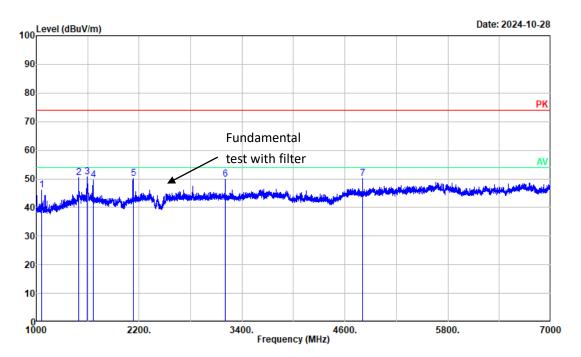
Result = Reading + Factor Over Limit = Result - Limit

Environment : 24.3℃/52%R.H./100.1kPa


Tested by : Bard Huang
Polarization : vertical
Remark : DH5 low channel

--No. Frequency Reading Factor Result Limit Over Limit Detector (MHz) (dBμV) (dBμV) (dBμV/m) (dBμV/m) (dBμV/m) (dB)

1 15347.000 35.57 5.40 40.97 54.00 -13.03 Average 2 15347.000 51.11 5.40 56.51 74.00 -17.49 Peak


Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$

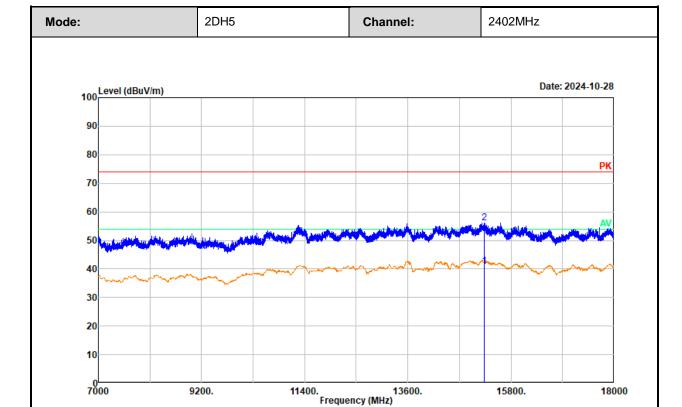
Tested by : Bard Huang Polarization : horizontal Remark : 2DH5 low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	1007.000	55.21	-8.19	47.02	74.00	-26.98	Peak
2	1103.000	54.58	-7.88	46.70	74.00	-27.30	Peak
3	2133.000	51.98	-4.22	47.76	74.00	-26.24	Peak
4	3203.000	53.84	-3.14	50.70	74.00	-23.30	Peak
5	4804.000	50.00	-2.87	47.13	74.00	-26.87	Peak

Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$

Tested by : Bard Huang Polarization : vertical

Remark : 2DH5 low channel

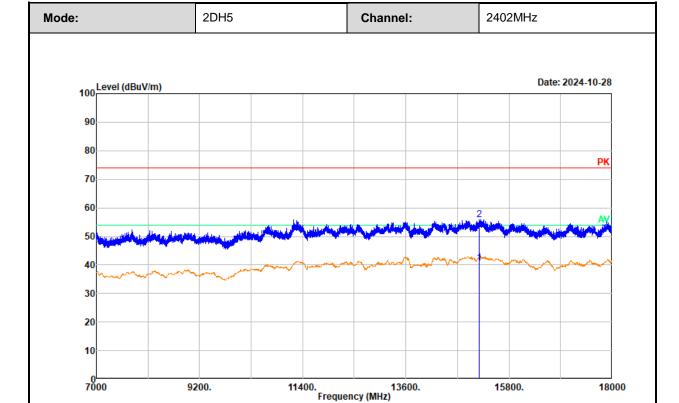

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	1066.000	54.16	-8.01	46.15	74.00	-27.85	Peak	
2	1494.000	55.41	-5.13	50.28	74.00	-23.72	Peak	
3	1593.000	55.11	-4.51	50.60	74.00	-23.40	Peak	
4	1665.000	53.73	-4.02	49.71	74.00	-24.29	Peak	
5	2132.000	54.44	-4.22	50.22	74.00	-23.78	Peak	
6	3203.000	53.03	-3.14	49.89	74.00	-24.11	Peak	
7	4804.000	52.99	-2.87	50.12	74.00	-23.88	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Result = Reading + Factor Over Limit = Result - Limit

Report Template: TR-4-E-006/V1.1

Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$

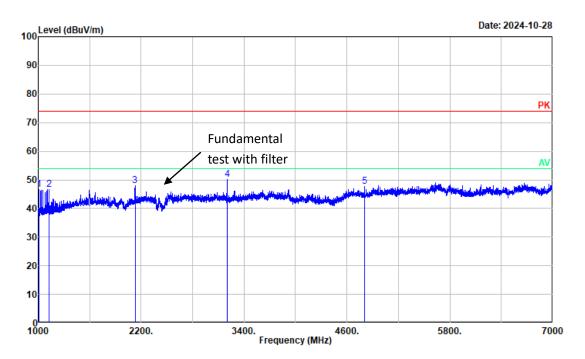

Tested by : Bard Huang Polarization : horizontal Remark : 2DH5 low channel

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	15224.000	35.70	5.24	40.94	54.00	-13.06	Average
2	15224.000	50.87	5.24	56.11	74.00	-17.89	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

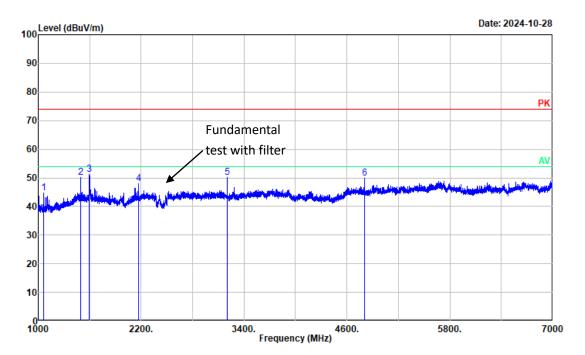
Over Limit = Result - Limit

Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$


Tested by : Bard Huang Polarization : vertical

Remark : 2DH5 low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	15156.000	35.43	5.21	40.64	54.00	-13.36	Average	
2	15156.000	50.64	5.21	55.85	74.00	-18.15	Peak	


Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$

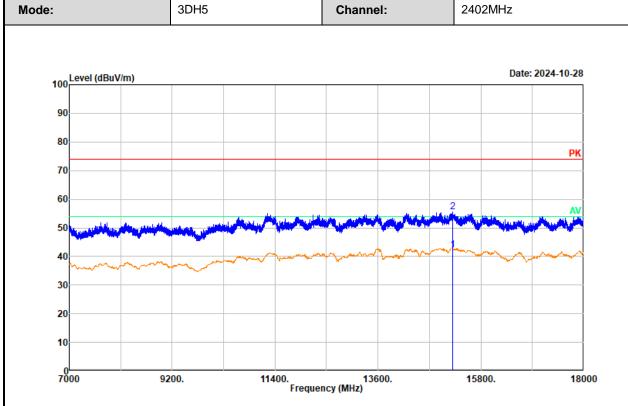
Tested by : Bard Huang Polarization : horizontal Remark : 3DH5 low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	1008.000	54.74	-8.18	46.56	74.00	-27.44	Peak
2	1128.000	54.47	-7.75	46.72	74.00	-27.28	Peak
3	2129.000	52.23	-4.23	48.00	74.00	-26.00	Peak
4	3203.000	53.26	-3.14	50.12	74.00	-23.88	Peak
5	4804.000	50.56	-2.87	47.69	74.00	-26.31	Peak

Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$

Tested by : Bard Huang Polarization : vertical

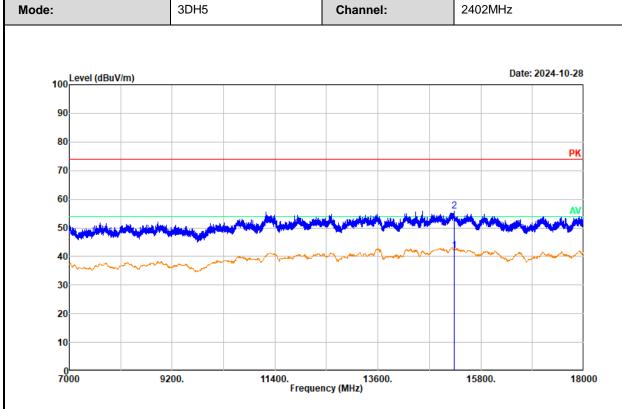
Remark : 3DH5 low channel


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	1064.000	52.65	-8.01	44.64	74.00	-29.36	Peak	
2	1496.000	55.20	-5.13	50.07	74.00	-23.93	Peak	
3	1593.000	55.64	-4.51	51.13	74.00	-22.87	Peak	
4	2166.000	51.98	-3.98	48.00	74.00	-26.00	Peak	
5	3203.000	53.26	-3.14	50.12	74.00	-23.88	Peak	
6	4804.000	52.87	-2.87	50.00	74.00	-24.00	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Result = Reading + Factor Over Limit = Result - Limit

Report Template: TR-4-E-006/V1.1

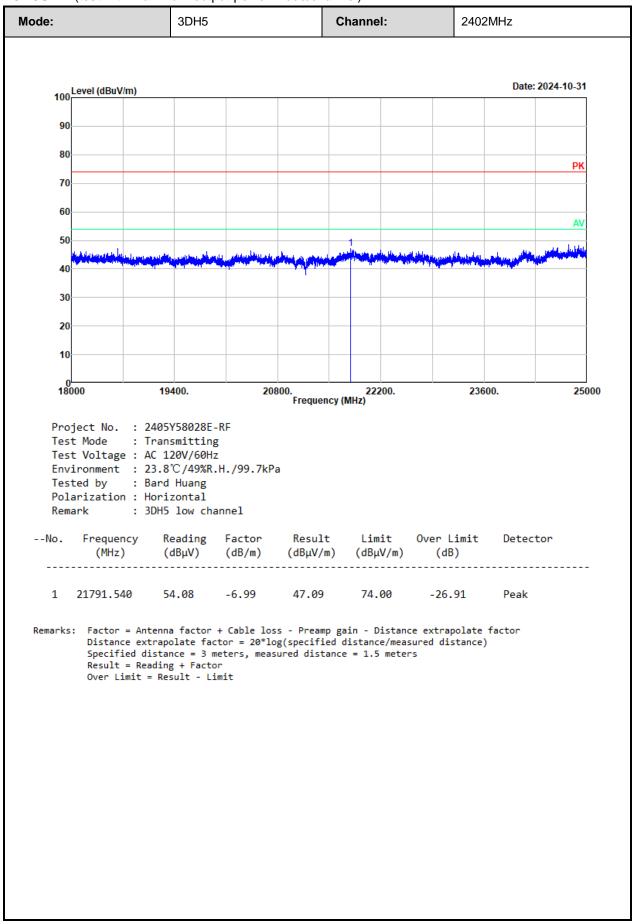


Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$

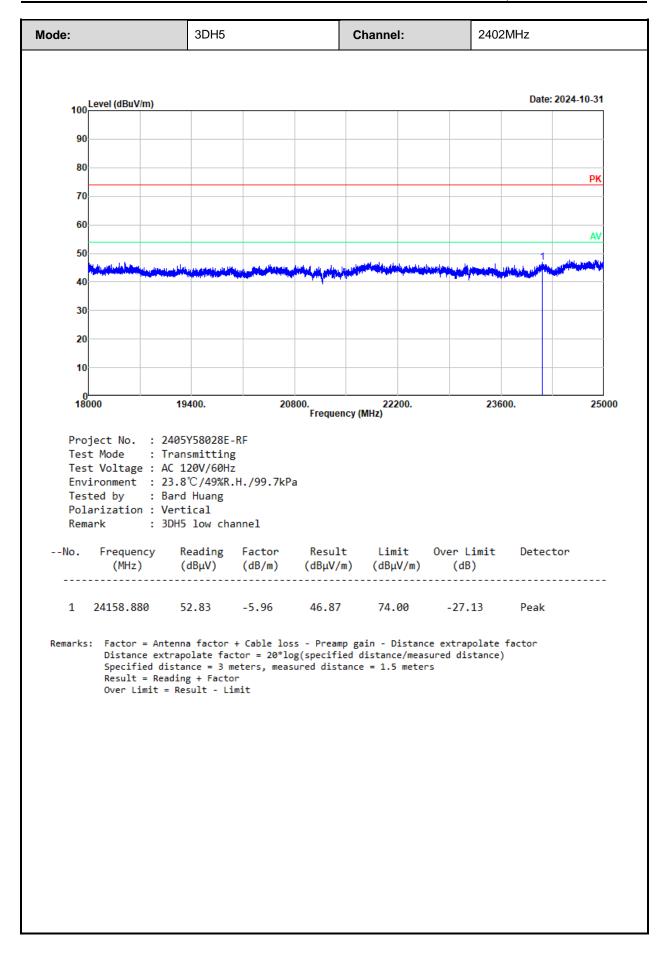
Tested by : Bard Huang Polarization : horizontal Remark : 3DH5 low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)		Limit (dBμV/m)	Over Limit (dB)	Detector
1	15192.000	37.12	5.27	42.39	54.00	-11.61	Average
2	15192.000	50.37	5.27	55.64	74.00	-18.36	Peak

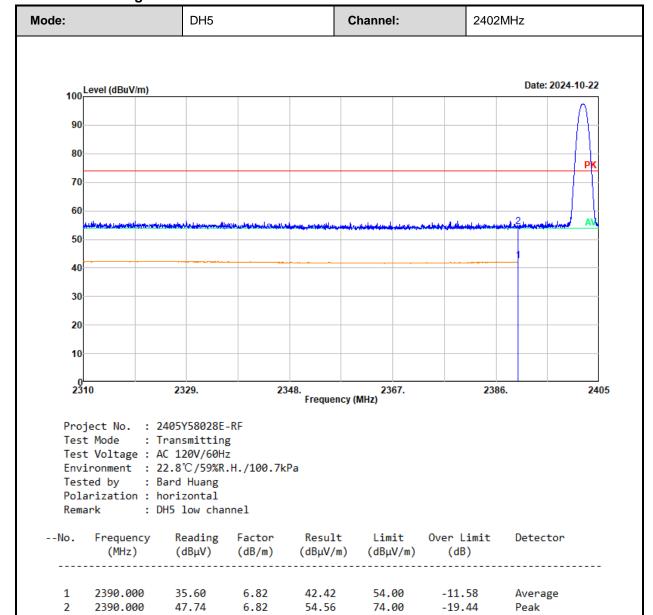
Environment : $24.3\,^{\circ}\text{C}/52\%\text{R.H.}/100.1\text{kPa}$


Tested by : Bard Huang Polarization : vertical

Remark : 3DH5 low channel

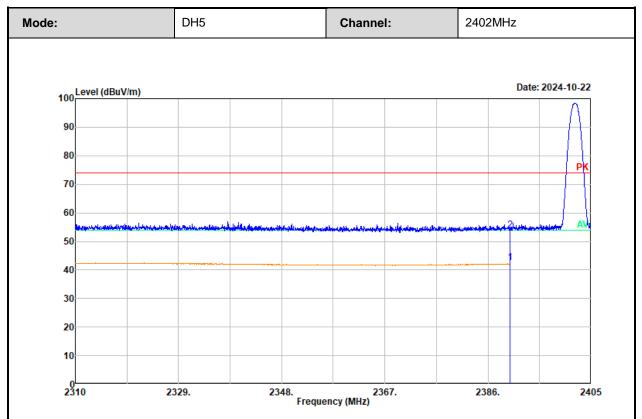

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	15222.000	36.86	5.25	42.11	54.00	-11.89	Average
2	15222.000	50.62	5.25	55.87	74.00	-18.13	Peak

18-25GHz: (test with maximum output power mode/channel)



Peak

Radiated band edge:

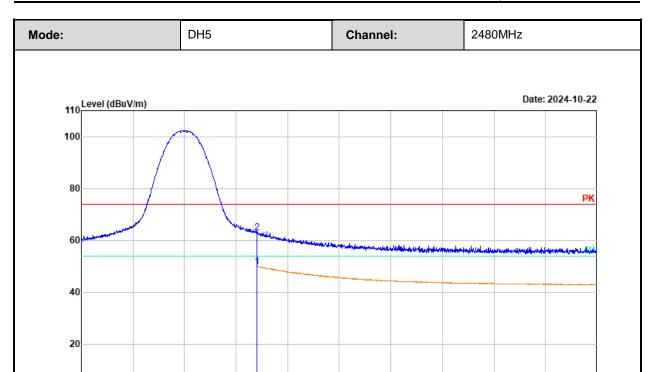


Remarks: Factor = Antenna factor + Cable loss - Preamp gain
Result = Reading + Factor

Over Limit = Result - Limit

2

Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$


Tested by : Bard Huang Polarization : vertical

Remark : DH5 low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1	2389.982	35.61	6.82	42.43	54.00	-11.57	Average
2	2389.982	47.18	6.82	54.00	74.00	-20.00	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

2475

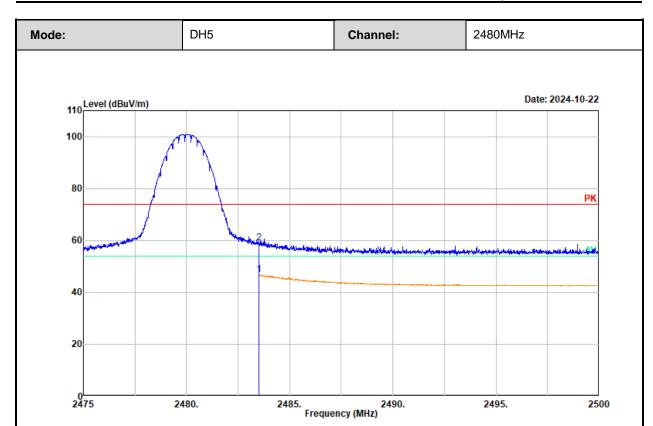
Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$

2480.

Tested by : Bard Huang Polarization : horizontal Remark : DH5 high channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)		Over Limit (dB)	Detector
1	2483.504	42.73	7.02	49.75	54.00	-4.25	Average
2	2483.504	55.91	7.02	62.93	74.00	-11.07	Peak

2485. Frequency (MHz)

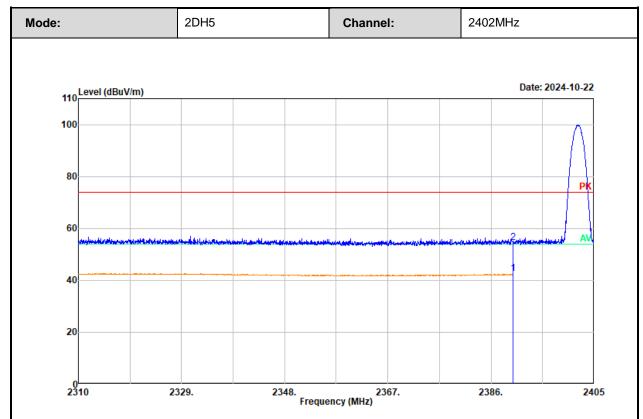

2490.

2495.

2500

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

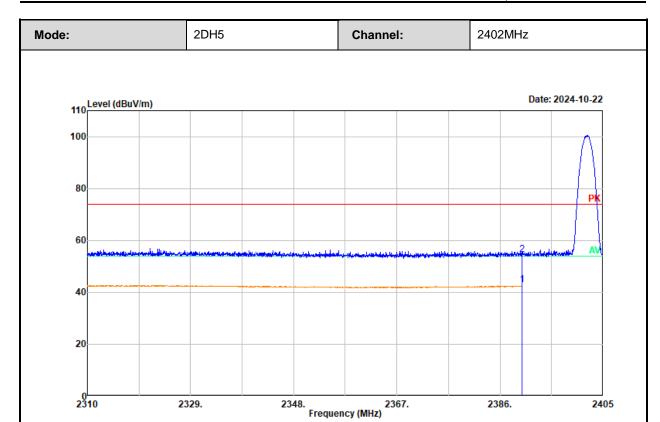
Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$


Tested by : Bard Huang Polarization : vertical

Remark : DH5 high channel

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1	2483.504	39.86	7.02	46.88	54.00	-7.12	Average
2	2483.504	52.14	7.02	59.16	74.00	-14.84	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain


Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$

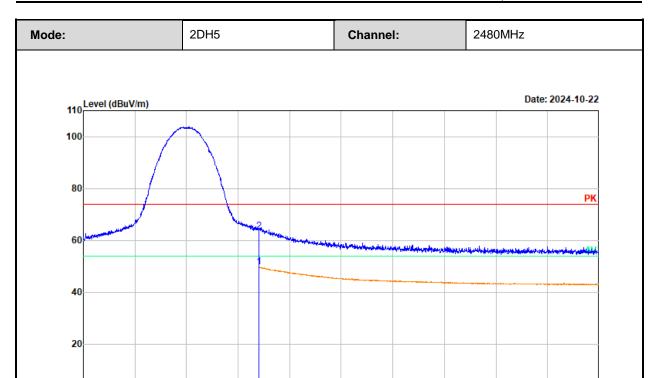
Tested by : Bard Huang Polarization : horizontal Remark : 2DH5 low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2389.982	35.74	6.82	42.56	54.00	-11.44	Average
2	2389.982	47.72	6.82	54.54	74.00	-19.46	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$

Tested by : Bard Huang Polarization : vertical


Remark : 2DH5 low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)		Over Limit (dB)	Detector
1	2389.982	35.96	6.82	42.78	54.00	-11.22	Average
2	2389.982	47.83	6.82	54.65	74.00	-19.35	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

2475

Environment : 22.8℃/59%R.H./100.7kPa

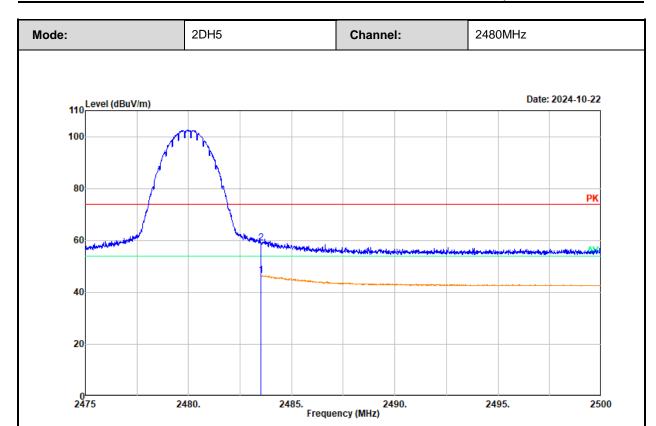
2480.

Tested by : Bard Huang
Polarization : horizontal
Remark : 2DH5 high channel

--No. Frequency Reading Factor Result Limit Over Limit Detector (MHz) (dBμV) (dBμV) (dBμV/m) (dBμV/m) (dBμV/m) (dBμ

1 2483.504 42.68 7.02 49.70 54.00 -4.30 Average 2 2483.504 56.54 7.02 63.56 74.00 -10.44 Peak

2485. Frequency (MHz)


2490.

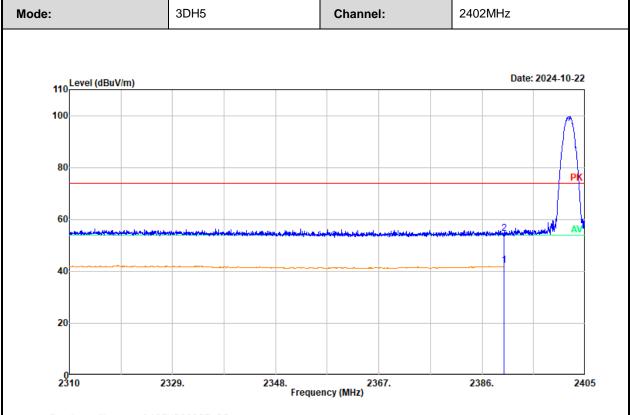
2495.

2500

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$

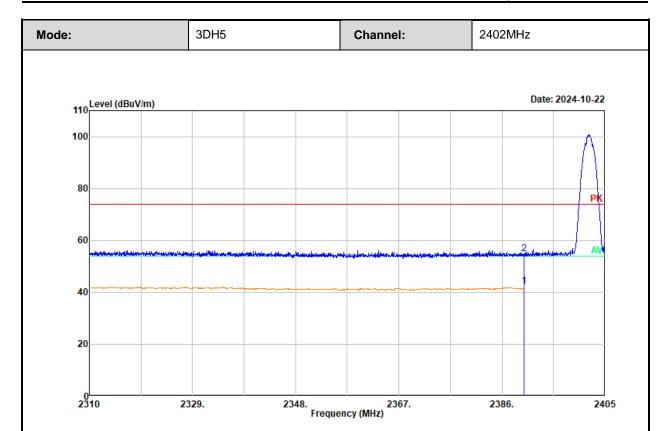
Tested by : Bard Huang Polarization : vertical


Remark : 2DH5 high channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2483.504	39.50	7.02	46.52	54.00	-7.48	Average
2	2483.504	51.92	7.02	58.94	74.00	-15.06	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

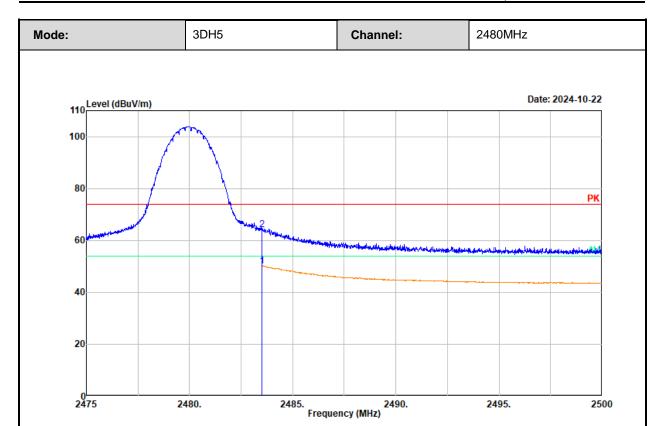

Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$

Tested by : Bard Huang Polarization : horizontal Remark : 3DH5 low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2389.982	35.44	6.82	42.26	54.00	-11.74	Average
2	2389.982	47.63	6.82	54.45	74.00	-19.55	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$

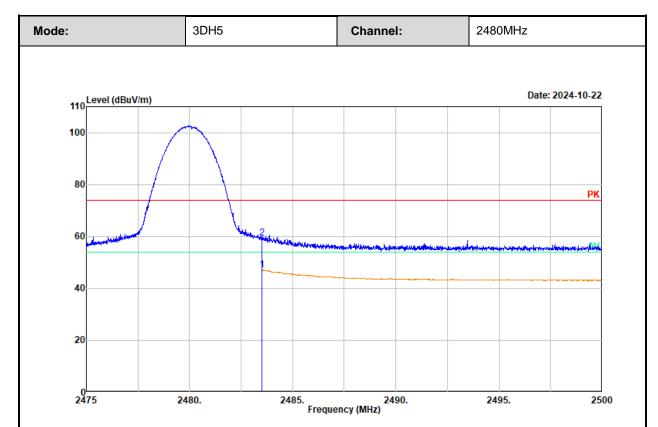

Tested by : Bard Huang Polarization : vertical

Remark : 3DH5 low channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	2389.982 2389.982	35.62 48.15	6.82 6.82	42.44 54.97	54.00 74.00	-11.56 -19.03	Average Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$


Tested by : Bard Huang Polarization : horizontal

Remark : 3DH5 high channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1	2483.504	43.19	7.02	50.21	54.00	-3.79	Average
2	2483.504	56.96	7.02	63.98	74.00	-10.02	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Environment : $22.8\,^{\circ}\text{C}/59\%\text{R.H.}/100.7\text{kPa}$

Tested by : Bard Huang Polarization : vertical

Remark : 3DH5 high channel

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1	2483.504	40.02	7.02	47.04	54.00	-6.96	Average
2	2483.504	52.39	7.02	59.41	74.00	-14.59	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

3.5 RF Conducted Test Data

Test Date:	2024-10-28~2024-12-12	Test By:	Ryan Zhang			
Environment condition:	Temperature: 25.3~25.4°C; Relative Humidity:45~47%;					
Livilonment condition.	ATM Pressure: 100.4~101.1kPa					

3.5.1 20 dB Emission Bandwidth

Mode	Channel	Result (MHz)	Verdict
	Low	0.937	Pass
DH5	Middle	0.940	Pass
	High	0.937	Pass
	Low	1.303	Pass
2DH5	Middle	1.303	Pass
	High	1.300	Pass
3DH5	Low	1.276	Pass
	Middle	1.279	Pass
	High	1.276	Pass

3.5.2 99% Occupied Bandwidth

Mode	Channel	99% OBW (MHz)	
	Low	0.819	
DH5	Middle	0.822	
	High	0.822	
2DH5	Low	1.170	
	Middle	1.173	
	High	1.173	
3DH5	Low	1.158	
	Middle	1.161	
	High	1.158	

Report Template: TR-4-E-006/V1.1 Page 48 of 64

3.5.3 Maximum Conducted Peak Output Power

Mode	Channel	Result (dBm)	Limit (dBm)	Verdict
	Low	1.68	21.00	Pass
DH5	Middle	0.68	21.00	Pass
	High	0.29	21.00	Pass
2DH5	Low	3.91	21.00	Pass
	Middle	2.98	21.00	Pass
	High	2.55	21.00	Pass
3DH5	Low	4.38	21.00	Pass
	Middle	3.39	21.00	Pass
	High	3.01	21.00	Pass

3.5.4 Channel separation

Mode	Channel	Result (MHz)	Limit (MHz)	Verdict
DH5	Low	1.002	0.869	Pass
	Middle	1.041	0.869	Pass
	High	0.999	0.867	Pass

Note: only GFSK mode was tested as EDR($\pi/4$ -DQPSK/8DPSK) mode has same channel plan

3.5.5 Number of hopping Frequency

Mode	Channel	Result	Limit	Verdict
DH5	Hopping	79	15	Pass
2DH5	Hopping	79	15	Pass
3DH5	Hopping	79	15	Pass

Report Template: TR-4-E-006/V1.1 Page 49 of 64

3.5.6 Time of occupancy (dwell time)

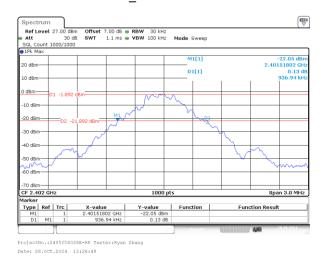
Mode	Channel	Pulse width (ms)	Dwell time (s)	Limit (s)	Verdict
DH5	Hopping	0.384	0.123	0.400	Pass
DH3	Hopping	1.649	0.264	0.400	Pass
DH5	Hopping	2.903	0.310	0.400	Pass
2DH5	Hopping	0.398	0.127	0.400	Pass
2DH3	Hopping	1.658	0.265	0.400	Pass
2DH5	Hopping	2.913	0.311	0.400	Pass
3DH5	Hopping	0.397	0.127	0.400	Pass
3DH3	Hopping	1.658	0.265	0.400	Pass
3DH5	Hopping	2.913	0.311	0.400	Pass

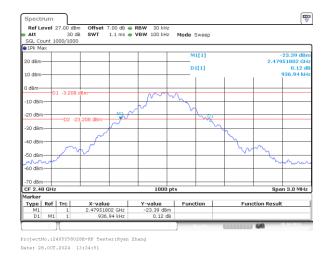
Note:

DH1/2DH1/3DH1:Dwell time=Pulse width (ms) \times (1600/2/79) \times 31.6 s DH3/2DH3/3DH3:Dwell time=Pulse width (ms) \times (1600/4/79) \times 31.6 s DH5/2DH5/3DH5:Dwell time=Pulse width (ms) \times (1600/6/79) \times 31.6 s

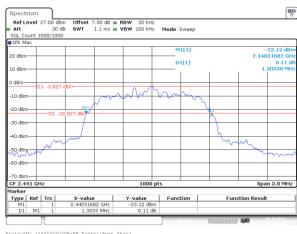
3.5.7 100 kHz Bandwidth of Frequency Band Edge

Mode	Channel	Result (dB)	Limit (dB)	Verdict
	Low	49.27	20.00	Pass
	High	51.77	20.00	Pass
DH5	Hopping_Lower	52.72	20.00	Pass
	Hopping_Upper	51.85	20.00	Pass
2DH5	Low	50.07	20.00	Pass
	High	51.53	20.00	Pass
	Hopping_Lower	53.45	20.00	Pass
	Hopping_Upper	50.96	20.00	Pass
3DH5	Low	50.24	20.00	Pass
	High	51.80	20.00	Pass
	Hopping_Lower	52.32	20.00	Pass
	Hopping_Upper	50.88	20.00	Pass

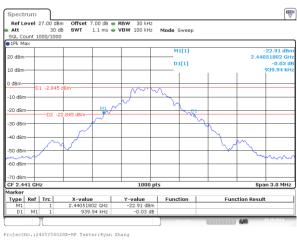

Report Template: TR-4-E-006/V1.1 Page 50 of 64


Test Plots:

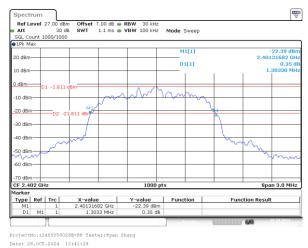
20 dB Emission Bandwidth:


DH5 Low 0.937MHz

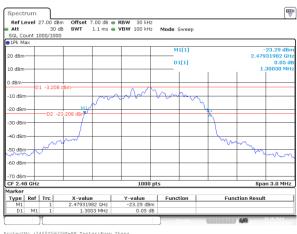
DH5_High 0.937MHz



2DH5_Middle 1.303MHz

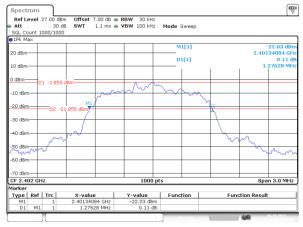

Date: 28.0CT.2024 13:46:10

DH5_Middle 0.940MHz

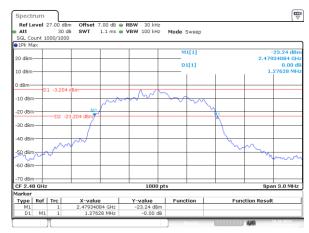


Date: 28.0CT.2024 13:31:45

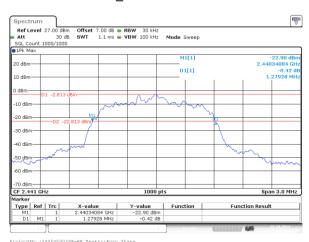
2DH5_Low 1.303MHz


2DH5_High 1.300MHz

Date: 28.0CT.2024 13:49:57



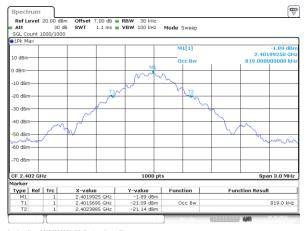
3DH5 Low 1.276MHz


ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 13:54:58

3DH5_High 1.276MHz

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 14:05:29

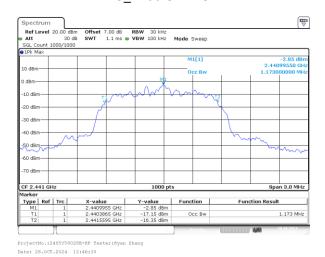
3DH5_Middle 1.279MHz



Date: 28.0CT.2024 14:01:25

99% Occupied Bandwidth:

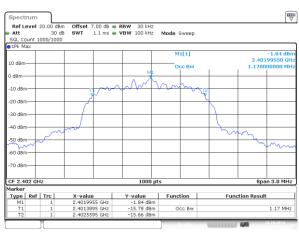
DH5_Low 0.819MHz



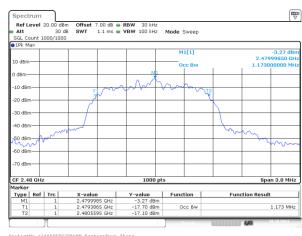
ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 13:28:55

DH5_High 0.822MHz

2DH5_Middle 1.173MHz

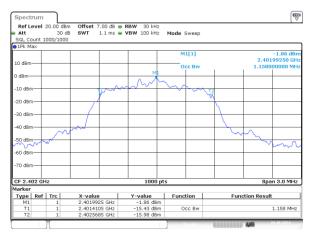


DH5_Middle 0.822MHz

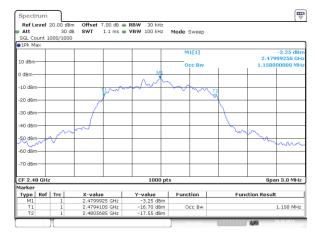

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 13:32:05

2DH5_Low 1.170MHz

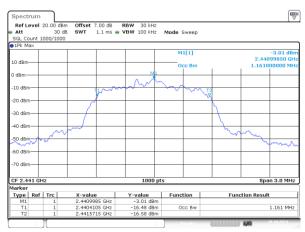
ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 13:43:35


2DH5_High 1.173MHz

ProjectNo.:2405Y58028E-RF T Date: 28.0CT.2024 13:51:40



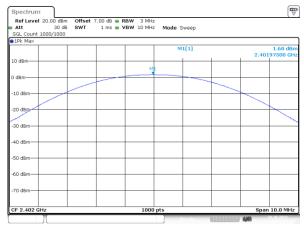
3DH5 Low 1.158MHz


ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 13:57:03

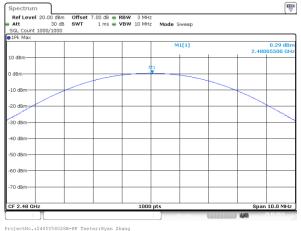
3DH5_High 1.158MHz

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 14:07:12

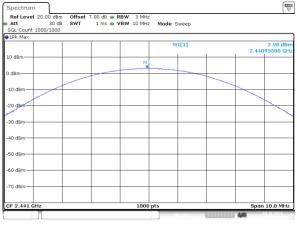
3DH5_Middle 1.161MHz



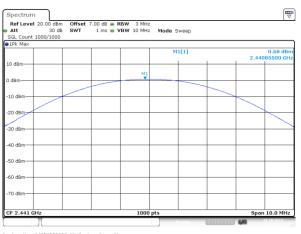
ProjectNo.:2405Y58028E-RF Tester:Ryan Zh Date: 28.0CT.2024 14:01:45


Maximum Conducted Peak Output Power:

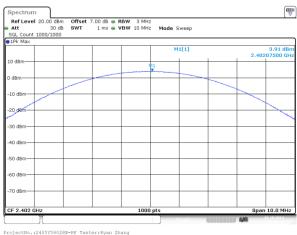
DH5_Low 1.68dBm


ProjectNo.:2405Y58028E-RF Te Date: 28.0CT.2024 13:29:39

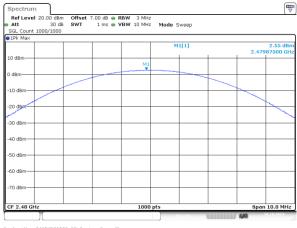
DH5_High 0.29dBm


Date: 28.0CT.2024 13:37:47

2DH5_Middle 2.98dBm

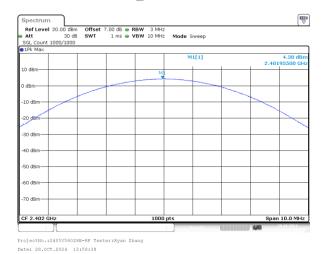

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 13:47:48

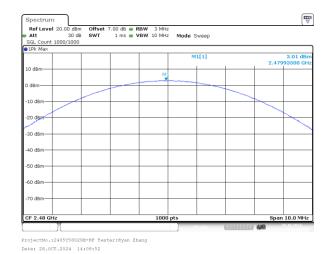
DH5_Middle 0.68dBm

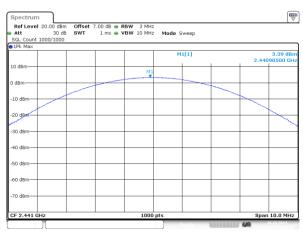

Date: 28.0CT.2024 13:33:19

2DH5_Low 3.91dBm

Date: 28.0CT.2024 13:44:19

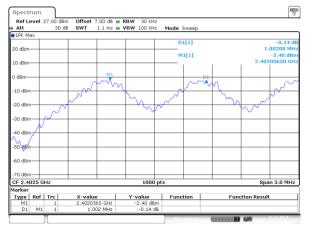

2DH5_High 2.55dBm


ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 13:53:22

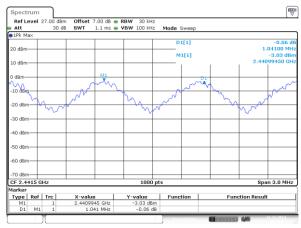

3DH5_Low 4.38dBm

3DH5_High 3.01dBm

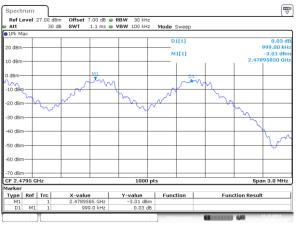
3DH5_Middle 3.39dBm



ProjectNo.:2405Y58028E-RF Tester:Ryan Zhar Date: 28.0CT.2024 14:03:18


Channel separation:

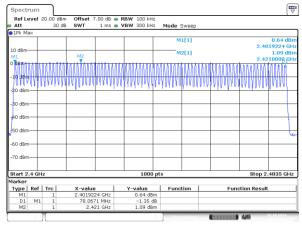
DH5_Low


ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 12.DEC.2024 18:04:42

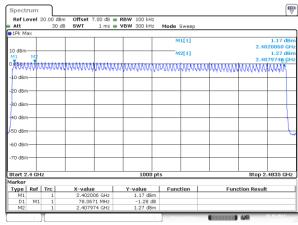
DH5_Middle

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 12.DEC.2024 18:20:03

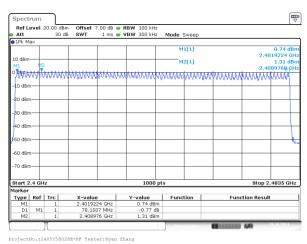
DH5_High


ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang

Date: 12.DEC.2024 18:09:22


Number of hopping Frequency

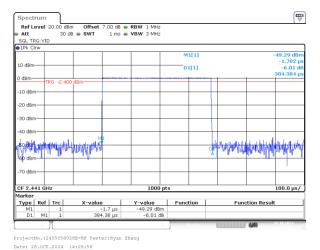
DH5_Hopping 79


ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 14:11:13

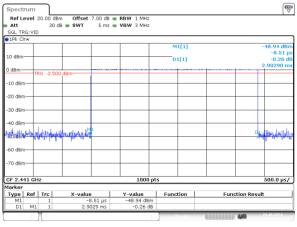
3DH5_Hopping 79

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang

2DH5_Hopping 79

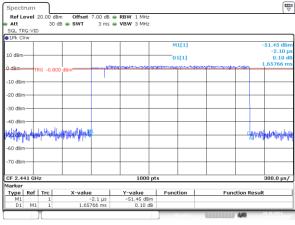


Date: 28.0CT.2024 14:13:27

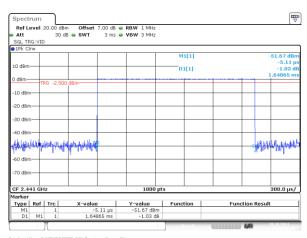


Time of occupancy (dwell time)

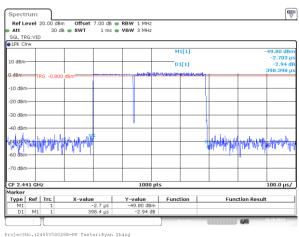
DH5_Hopping 0.384ms



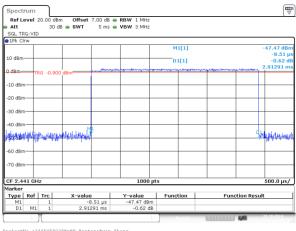
DH5_Hopping 2.903ms


ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 14:30:16

2DH3_Hopping 1.658ms

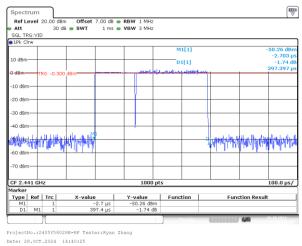

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 14:31:52

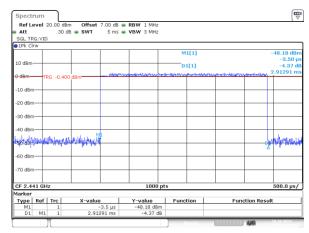
DH3_Hopping 1.649ms



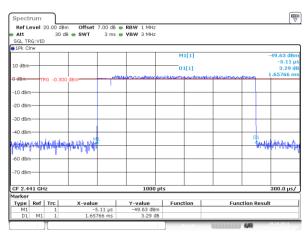
ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 14:29:39

2DH5_Hopping 0.398ms


2DH5_Hopping 2.913ms


ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 14:32:31

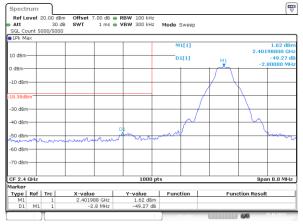
3DH5_Hopping 0.397ms



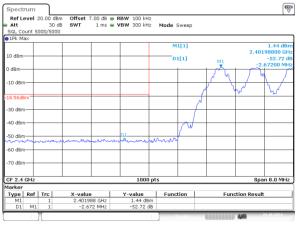
3DH5_Hopping 2.913ms

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 14:34:33

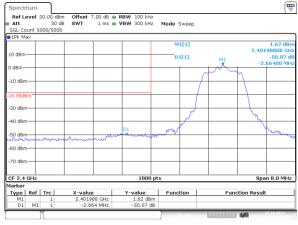
3DH3_Hopping 1.658ms



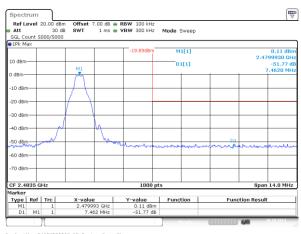
Date: 28.0CT.2024 14:33:53


100kHz Bandwidth of Frequency Band Edge:

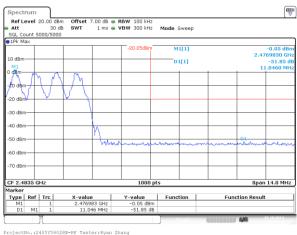
DH5_Low 49.27dB


ProjectNo.:2405Y58028E-RF Te Date: 28.0CT.2024 13:28:34

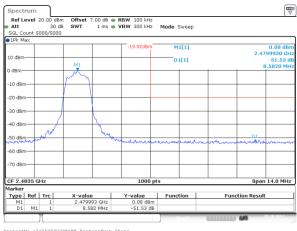
DH5_Hopping_Lower 52.72dB


ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 14:26:11

2DH5_Low 50.07dB

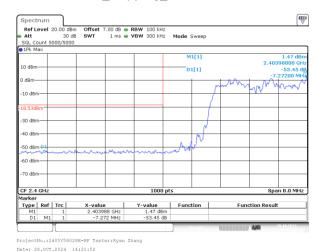

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 13:43:13

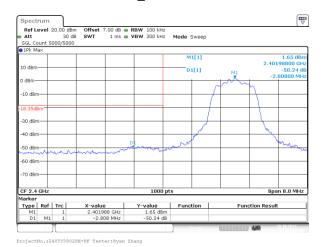
DH5_High 51.77dB

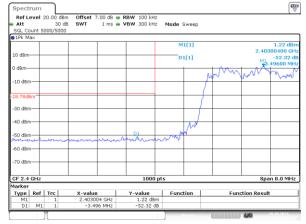


Date: 28.0CT.2024 13:36:14

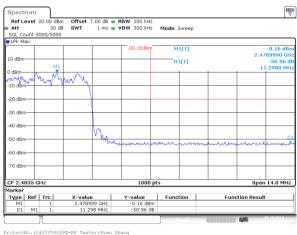
DH5_Hopping_Upper 51.85dB


2DH5_High 51.53dB

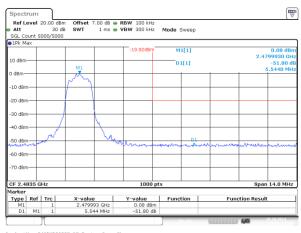

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang Date: 28.0CT.2024 13:51:20


2DH5_Hopping_Lower 53.45dB

3DH5_Low 50.24dB



3DH5_Hopping_Lower 52.32dB


Date: 28.0CT.2024 14:18:10

2DH5_Hopping_Upper 50.96dB

Date: 28.0CT.2024 14:23:27

3DH5_High 51.80dB

ProjectNo.:2405Y58028E-RF Tester:Ryan Zhang

3DH5_Hopping_Upper 50.88dB

Date: 28.0CT.2024 14:19:36

4 Test Setup Photo

Please refer to the attachment 2405Y58028E Test Setup photo.

5 E.U.T Photo

Please refer to the attachment 2405Y58028E External photo and 2405Y58028E Internal photo.

---End of Report---