

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202503-0095-163

Page: 1 of 9

Maximum Permissible Exposure Evaluation

FCC ID: 2A8EM-READ

Report No.		TBR-C-202503-0095-163			
Applicant		Bigme Cloud Literacy Technology Co., Ltd.			
Equipment Under Te	est (El	T)			
EUT Name		Al Reader			
Model No.		Read			
Series Model No.	<u> </u>	Read Lite, Read Pro, Read Plus, Read Max, Read SE, Read Ultra, Read Color Lite, Read Color Pro, Read Color Plus, Read Color Max, Read Color SE, Read Color Ultra			
Brand Name	17	Bigme			
Sample ID		HC-C-202503-0095-13-01-1#&HC-C-202503-0095-13-01-2#			
Receipt Date	-	: 2025-03-20			
Test Date	11	2025-03-20 to 2025-04-07			
Issue Date		2025-04-08			
Standards	11 53	FCC Part 2.1093			
Test Method	:	KDB 447498 D01 General RF Exposure Guidance v06			
Conclusions	3	PASS			
		In the configuration tested, the EUT complied with the standards specified above.			
Test By	3 1	: Livy zhang			
Reviewed By		: Wade LV S : WAN SU Wan Su			
Approved By		: INAN SU Wan Su			

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202503-0095-163
Page: 2 of 9

CONTENTS

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	
	1.2 General Description of EUT (Equipment Under Test)	4
2.	MEASUREMENT UNCERTAINTY	5
3.	TEST FACILITY	6
4.	SAR TEST EXCLUSION CALCULATIONS	7

Report No.: TBR-C-202503-0095-163
Page: 3 of 9

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202503-0095-163	Rev.01	Initial issue of report	2025-04-08
WORN CONTRACTOR			W OBD
WORTH THE	On the		400
(100)			M33
1033	William .		(100)
			3) 7
			WORT
MODE			
THE CHILD			6 (133)
	4057		
OUD TO			
	OWN TO SERVICE STATE OF THE PERSON OF THE PE		

Page: 4 of 9

1. General Information about EUT

1.1 Client Information

Applicant		Bigme Cloud Literacy Technology Co., Ltd.		
Address : 01 18F., COFCO PROPERTY TOWER, BAOMIN NO.1RD., BAO AN 3RD DISTRICT, SHENZHEN, CHINA		01 18F., COFCO PROPERTY TOWER, BAOMIN NO.1RD., BAO AN 3RD DISTRICT, SHENZHEN, CHINA		
Manufacturer	facturer : Bigme Cloud Literacy Technology Co., Ltd.			
Address: 01 18F., COFCO PROPERTY TOWER, BAOMIN NO.1RD., BAO AN 3RD DISTRICT, SHENZHEN, CHINA		01 18F., COFCO PROPERTY TOWER, BAOMIN NO.1RD., BAO AN 3RD DISTRICT, SHENZHEN, CHINA		

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Al Reader					
Models No.		Read, Read Lite, Read Pro, Read Plus, Read Max, Read SE, Read Ultra, Read Color Lite, Read Color Pro, Read Color Plus, Read Color Max, Read Color SE, Read Color Ultra					
Model Different	•		All these models are identical in the same PCB, layout and electrical circuit, the only difference is model name.				
Product Description		Operation Frequency:	Bluetooth V4.0: 2402MHz~2480MHz 802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz				
		Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK 802.11b: DSSS (DQPSK, DBPSK, CCK) 802.11g: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11n: OFDM (BPSK, QPSK,16QAM, 64QAM)				
		Antenna Gain:	2.91dBi FPC Antenna				
Power Rating	:	Input: DC 5V/2A DC 3.7V 1300mAh 4.8	Input: DC 5V/2A DC 3.7V 1300mAh 4.81Wh Rechargeable Li-ion battery				
Software Version							
Hardware Version		V1.1					

Remark: The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Page: 5 of 9

2. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted	Level Accuracy: Above 1000MHz	±0.95 dB
Power Spectral Density- Conducted	Level Accuracy: Above 1000MHz	±3dB
Occupied Bandwidth	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±3.8%
Unwanted Emission- Conducted	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±2.72 dB
Temperature	18	±0.6°C
Humidity		±4%
Supply voltages		±2%
Time	1	±4%

Page: 6 of 9

3. Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Page: 7 of 9

4. SAR Test Exclusion Calculations

4.1 FCC: According to KDB447498 D01 v06 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies v06.

- (1) Clause 4.3: General SAR test reduction and exclusion guidance Sub clause 4.31: Standalone SAR test exclusion considerations
 - 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6GHz at test separation distance≤5 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 3.0 for 1-q SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 7.5.0 for 10-g SAR

4.2 Summary simultaneous transmission for SAR Exclusion

The SAR exemption limits outlined in clause 4.3.2(b) of KDB 447498 have been derived based on an approximate SAR value of 0.4 W/kg using half-wave dipole antennas Footnote 1. As such, when simultaneous transmitter SAR evaluations include transmitters that have been exempt from routine SAR evaluation, the SAR must be estimating based on the ratio between the maximum tune-up tolerance limit of the transmitter that has been exempt and the exemption limit at the specific distance and frequency for that transmitter. This ratio must be multiplied by 0.4 W/kg (2.0 W/kg for controlled use and 1.0 W/kg for limb worn devices) in order to calculate the estimated SAR level.

The estimate SAR value is calculated based the following equation:

(maximum power level including tune-up tolerance for transmitter A / maximum power level of exemption at the same frequency and distance) * 0.4W/kg

- 1) [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f_{(GHz)}}/x$] W/kg, for test separation distances ≤ 50 mm;
 - where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.
- 2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the *test separation distance* is > 50 mm.³⁷

The [\sum of (the highest measured or estimated SAR for each standalone antenna configuration, adjusted for maximum tune-up tolerance) / 1.6 W/kg] + [\sum of MPE ratios] is \leq 1.0.

The SAR to peak location separation ratios of all simultaneously transmitting antenna pairs operating in portable device exposure conditions are all ≤ 0.04 , and the [\sum of MPE ratios] is ≤ 1.0 .

Report No.: TBR-C-202503-0095-163
Page: 8 of 9

4.3 Calculation:

Test sepa	ration: 5mm					
		В	luetooth Mode (GFSK)		MARKET	
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	3.023	3±1	4	2.512	0.779	3.0
2.441	3.075	3±1	4	2.512	0.785	3.0
2.480	2.936	2±1	3	1.995	0.628	3.0
AURT	CHI.	Blue	tooth Mode (Pi/4-DQPS	K)	THE	~ W
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	4.623	4±1	5	3.162	0.980	3.0
2.441	4.808	4±1	5	3.162	0.988	3.0
2.480	4.73	4±1	5	3.162	0.996	3.0
		Blu	uetooth Mode (8-DPSK)	100		Carry !
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	5.292	5±1	6	3.981	1.234	3.0
2.441	5.564	5±1	6	3.981	1.244	3.0
2.480	5.542	5±1	6	3.981	1.254	3.0

Test separation: 5mm							
	THE STATE OF THE S		Bluetooth LE 1M			611	
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value	
2.402	7.170	7±1	8	6.31	1.956	3.0	
2.440	7.328	7±1	8	6.31	1.971	3.0	
2.480	7.265	7±1	8	6.31	1.987	3.0	

Page: 9 of 9

Test sepa	ration: 5mm					
	2.0	WILLIAM !	802.11b			
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshole Value
2.412	8.28	8±1	9	7.943	2.467	3.0
2.437	8.13	8±1	9	7.943	2.480	3.0
2.462	7.60	7±1	8	6.31	1.980	3.0
			802.11g	3 110		
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshole Value
2.412	7.98	7±1	8	6.31	1.960	3.0
2.437	7.46	7±1	8	6.31	1.970	3.0
2.462	7.03	7±1	8	6.31	1.980	3.0
A HIV			802.11n(HT20)	MILLER	Alk Oran	-
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshol Value
2.412	7.84	7±1	8	6.31	1.960	3.0
2.437	7.36	7±1	8	6.31	1.970	3.0
2.462	6.93	6±1	7	5.012	1.573	3.0
MILLER	A W		802.11n(HT40)	13	11100	
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshol Value
2.422	7.78	7±1	8	6.31	1.964	3.0
2.437	7.40	7±1	8	6.31	1.970	3.0
2.452	7.20	7±1	8	6.31	1.976	3.0

The measurement results comply with the FCC Limit per 47 CFR 2.1093 for the uncontrolled RF Exposure and SAR Exclusion Threshold per KDB447498 D01 ν 06.

----END OF THE REPORT----

