

MPE TEST REPORT

Applicant MeiG Smart Technology Co., Ltd

FCC ID 2APJ4-SLM750V

Product SLM750

Brand MEIGLink

Model SLM750

Report No. R1908A0527-M1V1

Issue Date November 6, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC 47 CFR Part 1 1.1310**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Yu Wang

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

Report No.: R1908A0527-M1V1

1	Tes	t Laboratoryt	. 3
	1.1	Notes of the Test Report	3
		Test facility	
	1.3	Testing Location	. 4
	1.4	Laboratory Environment	4
2	Des	scription of Equipment under Test	. 5
3	Max	ximum conducted output power (measured) and antenna Gain	6
4	Tes	t Result	۶

MPE Test Report

MPE Test Report No.: R1908A0527-M1V1

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

MPE Test Report No.: R1908A0527-M1V1

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C		
Relative humidity	Min. = 30%, Max. = 70%		
Ground system resistance	< 0.5 Ω		
Analaiant maissa is also should an alfanor dun	and law and in according to with many improved of atom decide		

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Description of Equipment under Test

Client Information

Applicant	MeiG Smart Technology Co., Ltd		
Applicant address	3F,No.88,Qinjiang Road, Xuhui District,Shanghai,China		
Manufacturer	MeiG Smart Technology Co., Ltd		
Manufacturer address	3F,No.88,Qinjiang Road, Xuhui District,Shanghai,China		

General Technologies

Model	SLM750		
IMEI	863879041726491		
Hardware Version	SLM750-V_MB_V1.00		
Software Version	SLM750-V_2.0.2D_EQ100		
Date of Testing:	September 4, 2019 ~ September 24, 2019		

Maximum conducted output power (measured) and antenna Gain

The numeric gain (G) of the antenna with a gain specified in dB is determined by Numeric gain (G)=10^(antenna gain/10)

Band			Burst Turn up Power(dBm)	Division Factors (dB)	Time-Averaged Tune up Power (dBm)
	GSM		32.34	-9.03	23.31
	GPRS	1 Txslot	32.50	-9.03	23.47
GSM 850		2 Txslots	32.43	-6.02	26.41
		3 Txslots	32.31	-4.26	28.05
		4 Txslots	32.20	-3.01	29.19
	GSM		31.65	-9.03	22.62
	GPRS -	1 Txslot	31.72	-9.03	22.69
GSM 1900		2 Txslots	31.65	-6.02	25.63
		3 Txslots	31.58	-4.26	27.32
		4 Txslots	32.33	-3.01	29.32

Note:

Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

3Txslots = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4Txslots = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

Dand	Maximum Conducted Output Power		Antenna Gain	Numeric gain
Band	(dBm)	(mW)	(dBi)	
GSM 850	29.19	829.851	1.8	1.514
GSM 1900	29.32	855.067	2.5	1.778
CDMA BC0	24.00	251.189	1.8	1.514
CDMA BC1	24.00	251.189	2.5	1.778
WCDMA II	25.00	316.228	2.5	1.778
WCDMA IV	25.00	316.228	2.5	1.778
WCDMA V	25.00	316.228	1.8	1.514
LTE Band 2	25.70	371.535	2.5	1.778
LTE Band 4	25.70	371.535	2.5	1.778
LTE Band 5	25.70	371.535	1.8	1.514
LTE Band 12	25.70	371.535	1.8	1.514
LTE Band 13	25.70	371.535	1.8	1.514
LTE Band 17	25.70	371.535	1.8	1.514
LTE Band 25	25.70	371.535	2.5	1.778
LTE Band 26(part 22)	25.70	371.535	1.8	1.514
LTE Band 26(part 90)	25.70	371.535	1.8	1.514
LTE Band 41	25.70	467.735	3.9	2.455

Test Result

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure (MPE) are as following

TABLE 1 – LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength	Strength		255 153
Article of	(V/m)	(AVm)	(mW/cm2)	(minutes)
	(A) Limits for Occi	upational/Controlle	d Exposures	
0.3-3.0	614	1.63	*(100)	6
3-30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B)	Limits for General	Population/Uncont	rolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.

Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

MPE Test Report No.: R1908A0527-M1V1

The maximum permissible exposure for 300~1500 MHz is f/1500, for 1500~100,000MHz is 1.0.So

Band	The maximum permissible exposure
GSM850	0.55mW/cm2
GSM1900	1.0mW/cm2
CDMA BC0	0.55mW/cm2
CDMA BC1	1.0mW/cm2
WCDMA II	1.0mW/cm2
WCDMA IV	1.0mW/cm2
WCDMA V	0.55mW/cm2
LTE Band 2	1.0mW/cm2
LTE Band 4	1.0mW/cm2
LTE Band 5	0.55mW/cm2
LTE Band 12	0.47mW/cm2
LTE Band 13	0.52mW/cm2
LTE Band 17	0.53mW/cm2
LTE Band 25	1.0mW/cm2
LTE Band 26(part 22)	0.54mW/cm2
LTE Band 26(part 90)	0.54mW/cm2
LTE Band 41	1.0mW/cm2

MPE Test Report Report No.: R1908A0527-M1V1

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided. This calculation is based on the conducted power, considering maximum power and antenna gain. The formula shown in KDB 447498 D01 is used in the calculation.

Equation from KDB 447498 D01 General RF Exposure Guidance v06 (10/23/2015) is:

S= PG /
$$4 \square R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm = limit for MPE)

Band	PG (mW)	Test Result (mW/cm ²)	Limit Value (mW/cm ²)	Conclusion
GSM850	1256.030	0.250	0.550	Pass
GSM1900	1520.548	0.303	1.000	Pass
CDMA BC0	380.189	0.076	0.550	Pass
CDMA BC1	446.684	0.089	1.000	Pass
WCDMA II	562.341	0.112	1.000	Pass
WCDMA IV	562.341	0.112	1.000	Pass
WCDMA V	478.630	0.095	0.550	Pass
LTE Band 2	660.693	0.131	1.000	Pass
LTE Band 4	660.693	0.131	1.000	Pass
LTE Band 5	562.341	0.112	0.550	Pass
LTE Band 12	562.341	0.112	0.470	Pass
LTE Band 13	562.341	0.112	0.520	Pass
LTE Band 17	562.341	0.112	0.530	Pass
LTE Band 25	660.693	0.131	1.000	Pass
LTE Band 26(part 22)	562.341	0.112	0.540	Pass
LTE Band 26(part 90)	562.341	0.112	0.540	Pass
LTE Band 41	1148.154	0.228	1.000	Pass
Note: R = 20cm				

 Π = 3.1416

Note: For transmitters, minimum separation distance is 20cm, even if calculations indicate MPE distance is less.