Radio Test Report

Report No.:STS2408061W03

Issued for

Shenzhen Buzz Tech CO.,LTD

10th Floor, Guang Chang Bldg,74#, BaoMin 1st Rd, Bao An, Shenzhen, Guangdong, China

Product Name:	Smart watch
Brand Name:	N/A
Model Name:	P111
Series Model(s):	P140, P141, P142, P143, P144, P145, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, P45Pro, P45
FCC ID:	2AGFWP111

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Test Standards:

FCC Part15.247

TEST REPORT

Applicant's Name:	Shenzhen Buzz Tech CO.,LTD
Address	10th Floor, Guang Chang Bldg,74#, BaoMin 1st Rd, Bao An, Shenzhen, Guangdong, China
Manufacturer's Name:	Shenzhen Buzz Tech CO.,LTD
Address:	10th Floor, Guang Chang Bldg,74#, BaoMin 1st Rd, Bao An, Shenzhen, Guangdong, China
Product Description	
Product Name:	Smart watch
Brand Name:	N/A
Model Name	
Series Model(s):	P140, P141, P142, P143, P144, P145, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, P45Pro, P45
Test Standards:	FCC Part15.247
Test Procedure:	ANSI C63.10-2020

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

 Date of Test
 :

 Date of receipt of test item
 :

 Date (s) of performance of tests
 :

 Date of Issue
 :

 Test Result
 :

 Pass

Testing Engineer

Jann Bu

(Aaron Bu)

Technical Manager

(Tony Liu)

ESTING API

Authorized Signatory :

(Bovey Yang)

howy

Table of Contents

Table of Contents	
Table of Contents	
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.6 EQUIPMENTS LIST	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 TEST PROCEDURE	14
3.3 TEST SETUP	14
3.4 EUT OPERATING CONDITIONS	14
3.5 TEST RESULTS	15
4. RADIATED EMISSION MEASUREMENT	17
4.1 RADIATED EMISSION LIMITS	17
4.2 TEST PROCEDURE	19
4.3 TEST SETUP	20
4.4 EUT OPERATING CONDITIONS	20
4.5 FIELD STRENGTH CALCULATION	21
4.6 TEST RESULTS	22
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	35
5.1 LIMIT	35
5.2 TEST PROCEDURE	35
5.3 TEST SETUP	35
5.4 EUT OPERATION CONDITIONS	35
5.5 TEST RESULTS	35
6. POWER SPECTRAL DENSITY TEST	36
6.1 LIMIT	36
6.2 TEST PROCEDURE	36
6.3 TEST SETUP	36

Table of Contents

Table of Contents	
6.4 EUT OPERATION CONDITIONS	36
6.5 TEST RESULTS	36
7. BANDWIDTH TEST	37
7.1 LIMIT	37
7.2 TEST PROCEDURE	37
7.3 TEST SETUP	37
7.4 EUT OPERATION CONDITIONS	37
7.5 TEST RESULTS	37
8. PEAK OUTPUT POWER TEST	38
8.1 LIMIT	38
8.2 TEST PROCEDURE	38
8.3 TEST SETUP	39
8.4 EUT OPERATION CONDITIONS	39
8.5 TEST RESULTS	39
9. ANTENNA REQUIREMENT	40
9.1 STANDARD REQUIREMENT	40
9.2 EUT ANTENNA	40
APPENDIX 1-TEST DATA	41
1. DUTY CYCLE	41
2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER	45
3. MAXIMUM PEAK CONDUCTED OUTPUT POWER	49
46DB BANDWIDTH	53
5. MAXIMUM POWER SPECTRAL DENSITY LEVEL	57
6. BAND EDGE	61
7. CONDUCTED RF SPURIOUS EMISSION	66
APPENDIX 2- EUT TEST PHOTO	73

Page 5 of 73

Report No.: STS2408061W03

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	10 Sept. 2024	STS2408061W03	ALL	Initial Issue
			2	9

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)(3)	Output Power	PASS		
15.209	Radiated Spurious Emission	PASS	/	
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	-	
15.247 (e)	Power Spectral Density	PASS		
15.205	Restricted bands of operation	PASS		
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS		
15.203	Antenna Requirement	PASS		

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2020.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A

Page 7 of 73

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty		
1	RF output power, conducted	±0.755dB		
2	Unwanted Emissions, conducted	±2.874dB		
3	All emissions, radiated 9K-30MHz	±3.80dB		
4	All emissions, radiated 30M-1GHz	±4.18dB		
5	All emissions, radiated 1G-6GHz	±4.90dB		
6	All emissions, radiated>6G	±5.24dB		
7	Conducted Emission (9KHz-150KHz) ±2			
8	Conducted Emission (150KHz-30MHz) ±2.			
9	Occupied Channel Bandwidth ±3.5%			
10	Power Spectral Density, conducted ±1.245dB			
11	Duty Cycle ±3.2%			

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

	P			
Product Name	Smart watch			
Brand Name	N/A	5		
Model Name	P111			
Series Model(s)		P140, P141, P142, P143, P144, P145, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, P45Pro, P45		
Model Difference	Strap, color, model	name is different		
	The EUT is a Smart	watch		
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	GFSK		
	Radio Technology:	BLE		
Product Description	Bluetooth			
· · · · · · · · · · · · · · · · · · ·	Configuration:	LE(Support 1M PHY,2M PHY)		
	Number Of Channel:	40		
	Antenna Type:	Monopole		
	Antenna Gain (dBi)	2.89dBi		
Channel List	Please refer to the N	Note 3.		
Rating	Input: DC 5V 130m/	Ah		
Battery	Rated Voltage:3.7V Charge Limit Voltage:4.2V Capacity: 175mAh			
Hardware version number	T3672-V1.0			
Software version number	V1.0			
Connecting I/O Port(s)	Please refer to the Note 1.			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1M PHY /GFSK
Mode 2	TX CH19(2440MHz)	1M PHY /GFSK
Mode 3	TX CH39(2480MHz)	1M PHY /GFSK

Worst Mode	Description	Data/Modulation
Mode 4	TX CH00(2402MHz)	2M PHY /GFSK
Mode 5	TX CH19(2440MHz)	2M PHY /GFSK
Mode 6	TX CH39(2480MHz)	2M PHY /GFSK

Note:

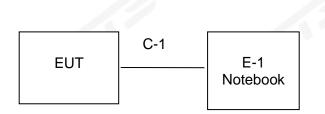
(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

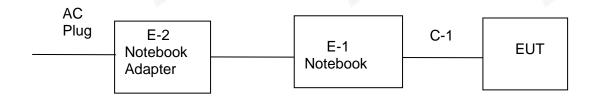
(3) The battery is fully-charged during the radited and RF conducted test.

For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 7 : Keeping BT TX


2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.


RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
BLE(With 2M	BLE_1M PHY	GFSK	2.89	Default	RTLBTAPP
PHY)	BLE_2M PHY	GFSK	2.89	Default	RILDIAFF

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

		N	lecessary accessories	3	
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A

		1.	Support units		
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-2	Notebook Adapter	LENOVO	ADLX45DLC3A	N/A	N/A
E-1	Notebook	LENOVO	Think Pad E470	N/A	N/A
C-1	USB Cable	HUA WEI	N/A	150cm	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in $\[$ ^{Γ} Length $\]$ column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

	RF Rad	iation Test Equipmen	t		
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2024.02.23	2025.02.22
Pre-Amplifier(1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2023.09.26	2024.09.25
Pre-Amplifier(18G-40GHz)	SKET	LNPA_1840-50	SK2018101801	2024.02.23	2025.02.22
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2025.02.27
Bilog Antenna	TESEQ	CBL6111D	34678	2022.09.30	2024.09.29
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.24	2025.09.23
Horn Antenna	A-INFOMW	LB-180400-KF	J211020657	2023.10.10	2025.10.09
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A
Signal Analyzer	R&S	FSV 40-N	101823	2023.09.26	2024.09.25
Switch Control Box	N/A	N/A	N/A	N/A	N/A
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A
Turn Table	MF	SC100_1	60531	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2023.09.26	2024.09.25
Test SW	EZ-EMC		Ver.STSLAB-03/	A1 RE	
	Condu	ction Test equipment			
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2023.09.25	2024.09.24
Limtter	CYBERTEK	EM5010	N/A	2023.09.25	2024.09.24
LISN	R&S	ENV216	101242	2023.09.25	2024.09.24
LISN	EMCO	3810/2NM	23625	2023.09.25	2024.09.24
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Test SW	EZ-EMC		Ver.STSLAB-03/	A1 CE	
10	RF	Connected Test			
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Signal Analyzer	Agilent	N9020A	MY51510623	2024.02.23	2025.02.22
Power detector group	Keysight	NW2021031	N/A	2023.09.26	2024.09.25
Switch control box	MW	MW100-RFCB	N/A	N/A	N/A
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Test SW	MW		MTS 8310_2.0	0.0.0	

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

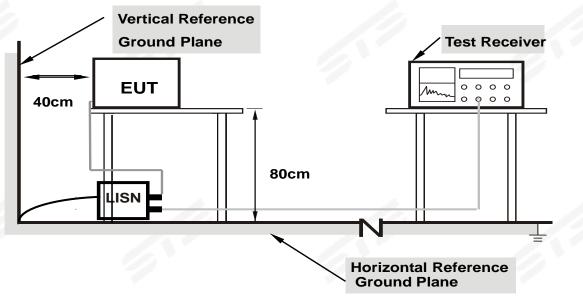
	Conducted Emiss	ion limit (dBuV)
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

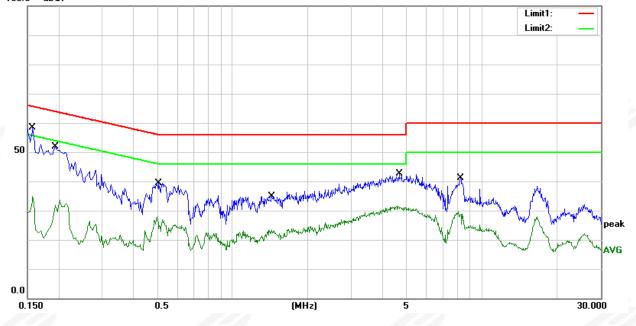
3.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

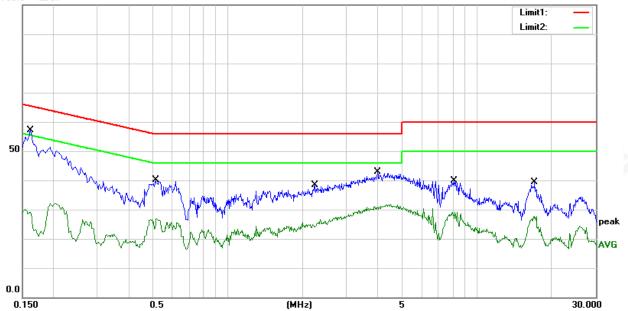

3.5 TEST RESULTS

Temperature:	25.1(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 7	9	9

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1580	38.55	19.78	58.33	65.57	-7.24	QP
2	0.1580	15.16	19.78	34.94	55.57	-20.63	AVG
3	0.1940	32.18	19.77	51.95	63.86	-11.91	QP
4	0.1940	13.88	19.77	33.65	53.86	-20.21	AVG
5	0.5060	19.43	20.00	39.43	56.00	-16.57	QP
6	0.5060	7.88	20.00	27.88	46.00	-18.12	AVG
7	1.4380	15.02	19.78	34.80	56.00	-21.20	QP
8	1.4380	3.61	19.78	23.39	46.00	-22.61	AVG
9	4.6660	22.77	19.83	42.60	56.00	-13.40	QP
10	4.6660	11.85	19.83	31.68	46.00	-14.32	AVG
11	8.2220	21.11	20.04	41.15	60.00	-18.85	QP
12	8.2220	9.66	20.04	29.70	50.00	-20.30	AVG

Remark:

All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)
 100.0 dBuV


Page 16 of 73

Report No.: STS2408061W03

Temperature:	25.1(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 7		17
		100	100

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1620	37.42	19.77	57.19	65.36	-8.17	QP
2	0.1620	12.28	19.77	32.05	55.36	-23.31	AVG
3	0.5140	20.23	19.95	40.18	56.00	-15.82	QP
4	0.5140	6.93	19.95	26.88	46.00	-19.12	AVG
5	2.2380	18.45	19.89	38.34	56.00	-17.66	QP
6	2.2380	6.83	19.89	26.72	46.00	-19.28	AVG
7	3.9860	22.95	19.95	42.90	56.00	-13.10	QP
8	3.9860	11.86	19.95	31.81	46.00	-14.19	AVG
9	8.1100	19.96	19.91	39.87	60.00	-20.13	QP
10	8.1100	9.25	19.91	29.16	50.00	-20.84	AVG
11	17.0580	18.98	20.35	39.33	60.00	-20.67	QP
12	17.0580	7.40	20.35	27.75	50.00	-22.25	AVG

- All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)
 100.0 dBuV

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2020 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)				
FREQUENCY (MHz)	PEAK	AVERAGE			
Above 1000	74	54			
Notes:					
(1) The limit for radiated te	est was performed according	to FCC PART 15C.			
(2) The tighter limit applies	at the hand edges				

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1 m		

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

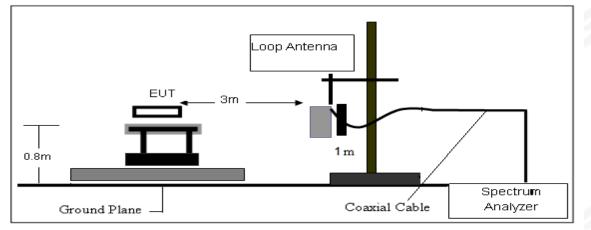
1		
Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted	120 KHz / 300 KHz	
band)		

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)
band)	1 MHz/1/T MHz(AVG)
r Restricted band	

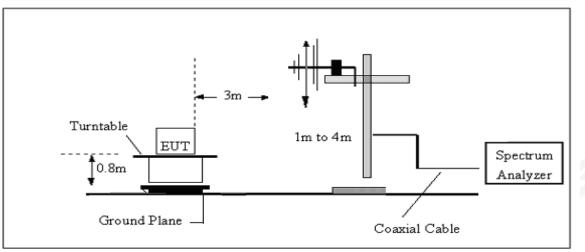
	Spectrum Parameter	Setting	
	Detector	Peak/AV	
Ċ	Start/Stop Frequency	Lower Band Edge: 2310 to 2410 MHz	
		Upper Band Edge: 2475 to 2500 MHz	
		1 MHz / 3 MHz(Peak)	
	RB / VB	1 MHz/1/T MHz(AVG)	

Receiver Parameter	Setting	
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP	
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV	
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP	

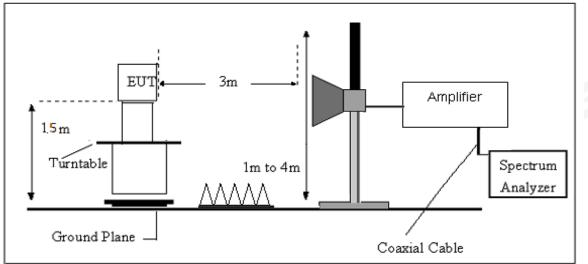
4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

^{4.4} EUT OPERATING CONDITIONS Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.6 TEST RESULTS

(Between 9KHz – 30 MHz)

· · · · · · · · · · · · · · · · · · ·			
Temperature:	23.4(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.7V	Polarization:	- //
Test Mode:	TX Mode	1	

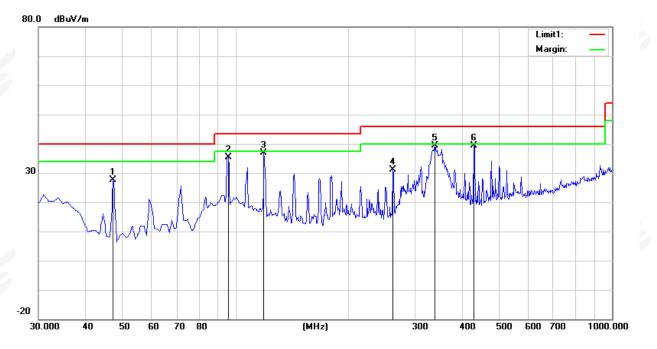
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.


(30MHz -1000MHz)

1M PHY

Temperature:	23.4(C)	Relative Humidity:	60%RH		
Test Voltage:	DC 3.7V	Phase:	Horizontal		
Test Mode:	Mode 1/2/3 (Mode 2 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	47.4600	49.54	-21.92	27.62	40.00	-12.38	peak
2	95.9600	55.99	-20.67	35.32	43.50	-8.18	peak
3	119.2400	55.33	-18.38	36.95	43.50	-6.55	peak
4	262.8000	46.01	-14.76	31.25	46.00	-14.75	peak
5	339.4300	52.76	-13.43	39.33	46.00	-6.67	peak
6	430.6100	49.62	-10.14	39.48	46.00	-6.52	peak

- Margin = Result (Result = Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.

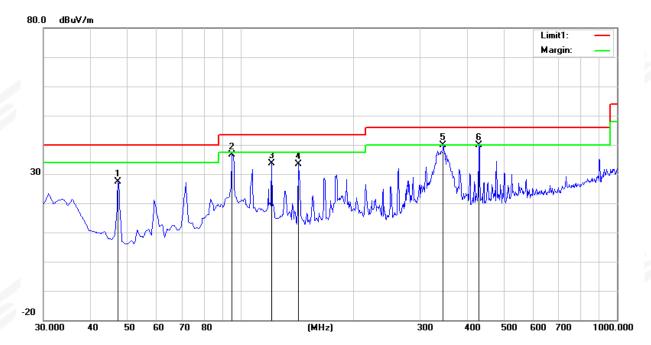


Report No.: STS2408061W03

Temperature:	23.4(C)	Relative Humidity:	60%RH	
Test Voltage:	DC 3.7V	Phase:	Vertical	
Test Mode:	Mode 1/2/3 (Mode 2 worst mode)			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	47.10	-13.35	33.75	40.00	-6.25	peak
2	71.7100	55.43	-24.56	30.87	40.00	-9.13	peak
3	95.9600	54.87	-20.67	34.20	43.50	-9.30	peak
4	119.2400	51.05	-18.38	32.67	43.50	-10.83	peak
5	339.4300	49.64	-13.43	36.21	46.00	-9.79	peak
6	431.5800	44.50	-10.13	34.37	46.00	-11.63	peak

- Margin = Result (Result = Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain 2.
- 3. All modes have been tested, only show the worst case.

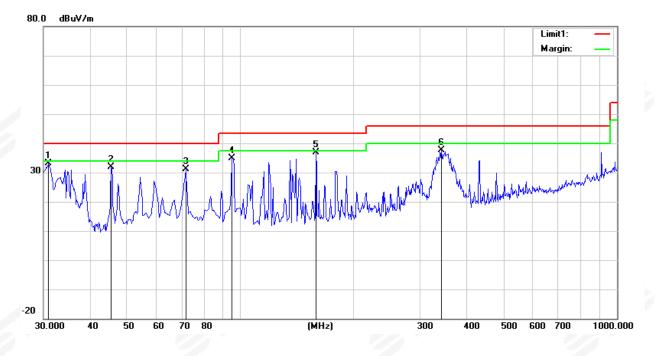


2M PHY

Temperature:	23.4(C)	Relative Humidity:	60%RH					
Test Voltage:	DC 3.7V	Phase:	Horizontal					
Test Mode:	st Mode: Mode 4/5/6(Mode 5 worst mode)							

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	47.4600	49.31	-21.92	27.39	40.00	-12.61	peak
2	94.9900	57.40	-20.78	36.62	43.50	-6.88	peak
3	121.1800	51.92	-18.32	33.60	43.50	-9.90	peak
4	142.5200	51.64	-18.18	33.46	43.50	-10.04	peak
5	346.2200	52.97	-13.19	39.78	46.00	-6.22	peak
6	430.6100	49.95	-10.14	39.81	46.00	-6.19	peak

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.



Report No.: STS2408061W03

Temperature:	23.4(C)	Relative Humidity:	60%RH				
Test Voltage:	DC 3.7V	Phase:	Vertical				
Test Mode:	Mode 4/5/6(Mode 5 worst mo	Mode 4/5/6(Mode 5 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	46.43	-13.35	33.08	40.00	-6.92	peak
2	45.5200	52.73	-20.91	31.82	40.00	-8.18	peak
3	71.7100	55.58	-24.56	31.02	40.00	-8.98	peak
4	94.9900	55.60	-20.78	34.82	43.50	-8.68	peak
5	159.0100	55.54	-18.77	36.77	43.50	-6.73	peak
6	342.3400	51.03	-13.33	37.70	46.00	-8.30	peak

- 1. Margin = Result (Result = Reading + Factor)–Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.

(1GHz-25GHz) Spurious emission Requirements

1M PHY GFSK

					GI ON	L				
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
	•			Low Cł	hannel (GFSK/	2402 MHz)				- -
3264.78	61.70	44.70	6.70	28.20	-9.80	51.90	74.00	-22.10	PK	Vertical
3264.78	51.22	44.70	6.70	28.20	-9.80	41.42	54.00	-12.58	AV	Vertical
3264.67	60.88	44.70	6.70	28.20	-9.80	51.08	74.00	-22.92	PK	Horizontal
3264.67	51.14	44.70	6.70	28.20	-9.80	41.34	54.00	-12.66	AV	Horizontal
4804.47	58.37	44.20	9.04	31.60	-3.56	54.81	74.00	-19.19	PK	Vertical
4804.47	50.28	44.20	9.04	31.60	-3.56	46.72	54.00	-7.28	AV	Vertical
4804.56	58.56	44.20	9.04	31.60	-3.56	55.00	74.00	-19.00	PK	Horizontal
4804.56	50.02	44.20	9.04	31.60	-3.56	46.46	54.00	-7.54	AV	Horizontal
5359.71	48.78	44.20	9.86	32.00	-2.34	46.43	74.00	-27.57	PK	Vertical
5359.71	39.33	44.20	9.86	32.00	-2.34	36.99	54.00	-17.01	AV	Vertical
5359.82	48.46	44.20	9.86	32.00	-2.34	46.12	74.00	-27.88	PK	Horizontal
5359.82	38.63	44.20	9.86	32.00	-2.34	36.28	54.00	-17.72	AV	Horizontal
7205.93	54.12	43.50	11.40	35.50	3.40	57.52	74.00	-16.48	PK	Vertical
7205.93	43.56	43.50	11.40	35.50	3.40	46.96	54.00	-7.04	AV	Vertical
7205.74	53.64	43.50	11.40	35.50	3.40	57.04	74.00	-16.96	PK	Horizontal
7205.74	43.84	43.50	11.40	35.50	3.40	47.24	54.00	-6.76	AV	Horizontal
	•	•	•	Middle 0	Channel (GFSK	(/2440 MHz)	•	•	•	
3262.99	62.32	44.70	6.70	28.20	-9.80	52.52	74.00	-21.48	PK	Vertical
3262.99	51.23	44.70	6.70	28.20	-9.80	41.43	54.00	-12.57	AV	Vertical
3262.97	61.50	44.70	6.70	28.20	-9.80	51.70	74.00	-22.30	PK	Horizontal
3262.97	50.02	44.70	6.70	28.20	-9.80	40.22	54.00	-13.78	AV	Horizontal
4879.93	59.58	44.20	9.04	31.60	-3.56	56.02	74.00	-17.98	PK	Vertical
4879.93	49.97	44.20	9.04	31.60	-3.56	46.41	54.00	-7.59	AV	Vertical
4880.04	59.58	44.20	9.04	31.60	-3.56	56.02	74.00	-17.98	PK	Horizontal
4880.04	50.02	44.20	9.04	31.60	-3.56	46.46	54.00	-7.54	AV	Horizontal
5357.31	49.00	44.20	9.86	32.00	-2.34	46.66	74.00	-27.34	PK	Vertical
5357.31	39.32	44.20	9.86	32.00	-2.34	36.97	54.00	-17.03	AV	Vertical
5357.39	48.06	44.20	9.86	32.00	-2.34	45.71	74.00	-28.29	PK	Horizontal
5356.97	38.91	44.20	9.86	32.00	-2.34	36.57	54.00	-17.43	AV	Horizontal
7320.85	54.29	43.50	11.40	35.50	3.40	57.69	74.00	-16.31	PK	Vertical
7320.85	44.77	43.50	11.40	35.50	3.40	48.17	54.00	-5.83	AV	Vertical
7320.55	53.99	43.50	11.40	35.50	3.40	57.39	74.00	-16.61	PK	Horizontal
7320.55	43.51	43.50	11.40	35.50	3.40	46.91	54.00	-7.09	AV	Horizontal

Report No.: STS2408061W03

				High Cha	nnel (GFSK/	2480 MHz)				
3264.81	61.71	44.70	6.70	28.20	-9.80	51.91	74.00	-22.09	PK	Vertical
3264.81	50.45	44.70	6.70	28.20	-9.80	40.65	54.00	-13.35	AV	Vertical
3264.68	61.27	44.70	6.70	28.20	-9.80	51.47	74.00	-22.53	PK	Horizontal
3264.68	51.24	44.70	6.70	28.20	-9.80	41.44	54.00	-12.56	AV	Horizontal
4960.42	59.43	44.20	9.04	31.60	-3.56	55.87	74.00	-18.13	PK	Vertical
4960.42	50.14	44.20	9.04	31.60	-3.56	46.58	54.00	-7.42	AV	Vertical
4960.54	58.31	44.20	9.04	31.60	-3.56	54.75	74.00	-19.25	PK	Horizontal
4960.54	49.40	44.20	9.04	31.60	-3.56	45.84	54.00	-8.16	AV	Horizontal
5359.61	48.77	44.20	9.86	32.00	-2.34	46.43	74.00	-27.57	PK	Vertical
5359.61	40.20	44.20	9.86	32.00	-2.34	37.86	54.00	-16.14	AV	Vertical
5359.86	47.22	44.20	9.86	32.00	-2.34	44.88	74.00	-29.12	PK	Horizontal
5359.86	38.37	44.20	9.86	32.00	-2.34	36.02	54.00	-17.98	AV	Horizontal
7439.88	54.06	43.50	11.40	35.50	3.40	57.46	74.00	-16.54	PK	Vertical
7439.88	44.28	43.50	11.40	35.50	3.40	47.68	54.00	-6.32	AV	Vertical
7439.79	54.19	43.50	11.40	35.50	3.40	57.59	74.00	-16.41	PK	Horizontal
7439.79	43.92	43.50	11.40	35.50	3.40	47.32	54.00	-6.68	AV	Horizontal

Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor.

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

2M PHY GFSK

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	1
				Low Ch	nannel (GFSK/	2402 MHz)	•		dia.	
3264.83	62.15	44.70	6.70	28.20	-9.80	52.35	74.00	-21.65	PK	Vertical
3264.83	50.66	44.70	6.70	28.20	-9.80	40.86	54.00	-13.14	AV	Vertical
3264.85	60.88	44.70	6.70	28.20	-9.80	51.08	74.00	-22.92	PK	Horizontal
3264.85	49.89	44.70	6.70	28.20	-9.80	40.09	54.00	-13.91	AV	Horizontal
4804.53	58.15	44.20	9.04	31.60	-3.56	54.59	74.00	-19.41	PK	Vertical
4804.53	50.20	44.20	9.04	31.60	-3.56	46.64	54.00	-7.36	AV	Vertical
4804.46	58.37	44.20	9.04	31.60	-3.56	54.81	74.00	-19.19	PK	Horizontal
4804.46	50.59	44.20	9.04	31.60	-3.56	47.03	54.00	-6.97	AV	Horizontal
5359.72	48.87	44.20	9.86	32.00	-2.34	46.53	74.00	-27.47	PK	Vertical
5359.72	40.22	44.20	9.86	32.00	-2.34	37.87	54.00	-16.13	AV	Vertical
5359.83	47.22	44.20	9.86	32.00	-2.34	44.88	74.00	-29.12	PK	Horizontal
5359.83	38.70	44.20	9.86	32.00	-2.34	36.36	54.00	-17.64	AV	Horizontal
7205.91	53.92	43.50	11.40	35.50	3.40	57.32	74.00	-16.68	PK	Vertical
7205.91	44.93	43.50	11.40	35.50	3.40	48.33	54.00	-5.67	AV	Vertical
7205.85	53.85	43.50	11.40	35.50	3.40	57.25	74.00	-16.75	PK	Horizontal
7205.85	44.22	43.50	11.40	35.50	3.40	47.62	54.00	-6.38	AV	Horizontal
	•	•	•	Middle C	Channel (GFSK	/2440 MHz)	•	•		•
3262.99	61.96	44.70	6.70	28.20	-9.80	52.16	74.00	-21.84	PK	Vertical
3262.99	51.23	44.70	6.70	28.20	-9.80	41.43	54.00	-12.57	AV	Vertical
3263.12	60.97	44.70	6.70	28.20	-9.80	51.17	74.00	-22.83	PK	Horizontal
3263.12	50.39	44.70	6.70	28.20	-9.80	40.59	54.00	-13.41	AV	Horizontal
4880.11	58.67	44.20	9.04	31.60	-3.56	55.11	74.00	-18.89	PK	Vertical
4880.11	50.00	44.20	9.04	31.60	-3.56	46.44	54.00	-7.56	AV	Vertical
4880.13	58.13	44.20	9.04	31.60	-3.56	54.57	74.00	-19.43	PK	Horizontal
4880.13	49.79	44.20	9.04	31.60	-3.56	46.23	54.00	-7.77	AV	Horizontal
5357.23	48.80	44.20	9.86	32.00	-2.34	46.46	74.00	-27.54	PK	Vertical
5357.23	40.08	44.20	9.86	32.00	-2.34	37.73	54.00	-16.27	AV	Vertical
5357.39	47.98	44.20	9.86	32.00	-2.34	45.64	74.00	-28.36	PK	Horizontal
5357.05	38.42	44.20	9.86	32.00	-2.34	36.07	54.00	-17.93	AV	Horizontal
7320.85	54.21	43.50	11.40	35.50	3.40	57.61	74.00	-16.39	PK	Vertical
7320.85	44.55	43.50	11.40	35.50	3.40	47.95	54.00	-6.05	AV	Vertical
7320.43	54.66	43.50	11.40	35.50	3.40	58.06	74.00	-15.94	PK	Horizontal
7320.43	43.62	43.50	11.40	35.50	3.40	47.02	54.00	-6.98	AV	Horizontal

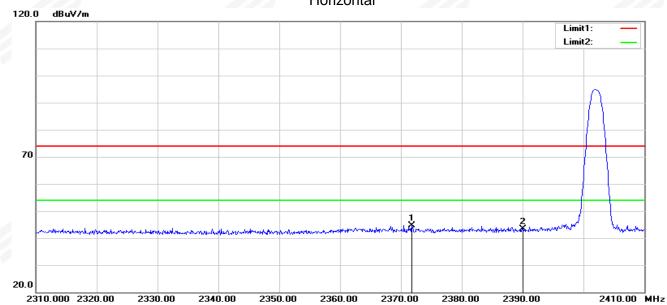
Report No.: STS2408061W03

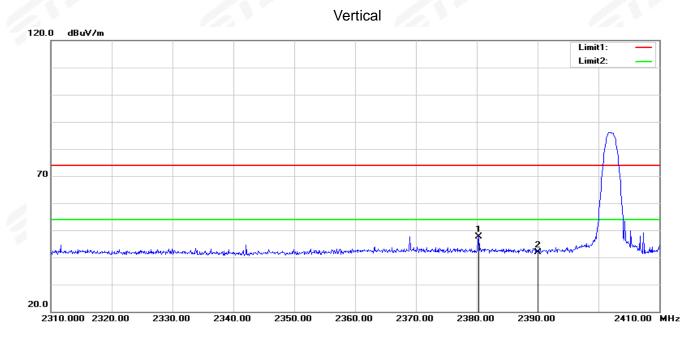
				High Char	nnel (GFSK/	2480 MHz)				
3264.68	61.83	44.70	6.70	28.20	-9.80	52.03	74.00	-21.97	PK	Vertical
3264.68	51.21	44.70	6.70	28.20	-9.80	41.41	54.00	-12.59	AV	Vertical
3264.59	61.09	44.70	6.70	28.20	-9.80	51.29	74.00	-22.71	PK	Horizontal
3264.59	51.32	44.70	6.70	28.20	-9.80	41.52	54.00	-12.48	AV	Horizontal
4960.42	58.18	44.20	9.04	31.60	-3.56	54.62	74.00	-19.38	PK	Vertical
4960.42	49.98	44.20	9.04	31.60	-3.56	46.42	54.00	-7.58	AV	Vertical
4960.43	58.55	44.20	9.04	31.60	-3.56	54.99	74.00	-19.01	PK	Horizontal
4960.43	49.62	44.20	9.04	31.60	-3.56	46.06	54.00	-7.94	AV	Horizontal
5359.69	48.61	44.20	9.86	32.00	-2.34	46.26	74.00	-27.74	PK	Vertical
5359.69	39.89	44.20	9.86	32.00	-2.34	37.54	54.00	-16.46	AV	Vertical
5359.80	48.34	44.20	9.86	32.00	-2.34	46.00	74.00	-28.00	PK	Horizontal
5359.80	38.64	44.20	9.86	32.00	-2.34	36.29	54.00	-17.71	AV	Horizontal
7439.72	54.14	43.50	11.40	35.50	3.40	57.54	74.00	-16.46	PK	Vertical
7439.72	44.50	43.50	11.40	35.50	3.40	47.90	54.00	-6.10	AV	Vertical
7439.84	54.10	43.50	11.40	35.50	3.40	57.50	74.00	-16.50	PK	Horizontal
7439.84	43.77	43.50	11.40	35.50	3.40	47.17	54.00	-6.83	AV	Horizontal

Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

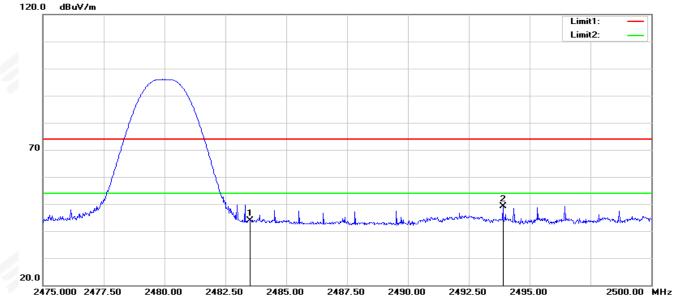
Emission Level = Reading + Factor.


2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

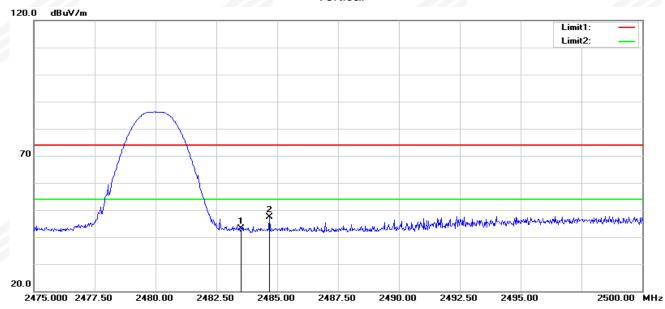


4.6 TEST RESULTS (Restricted Bands Requirements)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2371.800	40.57	4.06	44.63	74.00	-29.37	peak
2	2390.000	38.96	4.34	43.30	74.00	-30.70	peak



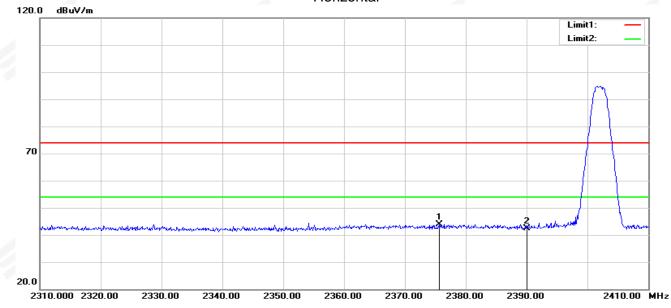
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2380.300	43.41	4.19	47.60	74.00	-26.40	peak
2	2390.000	37.64	4.34	41.98	74.00	-32.02	peak



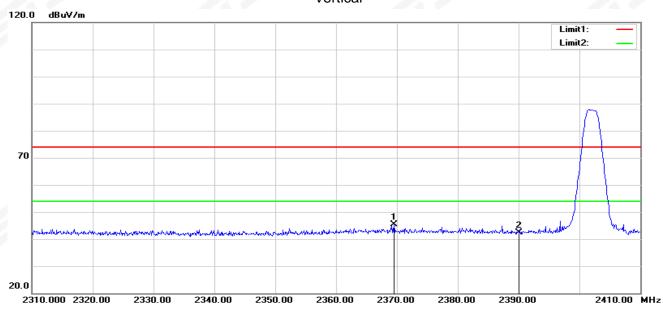
Page 32 of 73

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	39.34	4.60	43.94	74.00	-30.06	peak
2	2493.900	44.62	4.63	49.25	74.00	-24.75	peak


	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
Γ		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2483.500	38.44	4.60	43.04	74.00	-30.96	peak
	2	2484.675	42.72	4.61	47.33	74.00	-26.67	peak

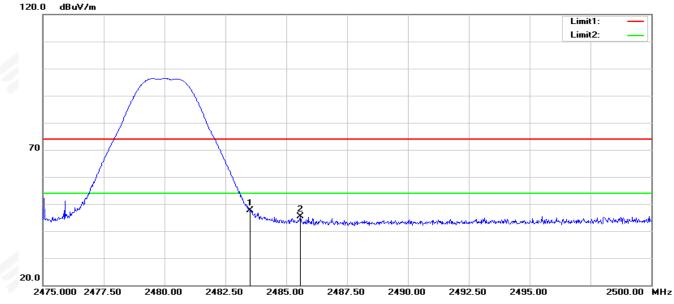
Vertical



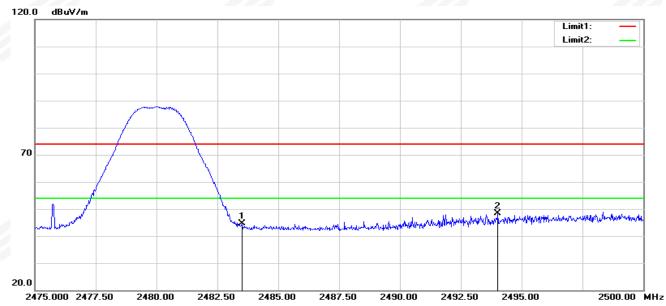
Page 33 of 73

2M PHY GFSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2375.600	39.80	4.13	43.93	74.00	-30.07	peak
2	2390.000	37.94	4.34	42.28	74.00	-31.72	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2369.500	41.41	4.04	45.45	74.00	-28.55	peak
2	2390.000	38.14	4.34	42.48	74.00	-31.52	peak

Vertical



Page 34 of 73

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	43.08	4.60	47.68	74.00	-26.32	peak
2	2485.575	40.65	4.61	45.26	74.00	-28.74	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	40.09	4.60	44.69	74.00	-29.31	peak
2	2494.025	43.65	4.63	48.28	74.00	-25.72	peak
		18					1.50

Vertical

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Stort/Stop Fraguenov	Lower Band Edge: 2300 – 2407 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

5.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

	FCC Part 15.247,Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result						
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS						

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

6.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

7.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

		14 C				
FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS		

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the averaging conducted output powe r of a DTS EUT.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, foll owed by duty cycle correction. The procedure for this method is as follows:

a) Measure the duty cycle D of the transmitter output signal as described in 11.6.

b) Set span to at least 1.5 times the OBW.

c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.

d) Set VBW \geq [3 × RBW].

e) Number of points in sweep \geq [2 × span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so th at narrowband signals are not lost between frequency bins.)

f) Sweep time = auto.

g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector modeh) Do not use sweep triggering. Allow the sweep to "free run."

i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of trac es to be averaged shall be increased above 100 as needed such that the average accurately re presents the true average over the ON and OFF periods of the transmitter.

j) Compute power by integrating the spectrum across the OBW of the signal using the instrument 's band power measurement function with band limits set equal to the OBW band edges. If the in strument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average o ver both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

Maximum peak conducted output power

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span \geq [3 \times RBW].

d) Sweep time = No faster than coupled (auto) time.


e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

8.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

8.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

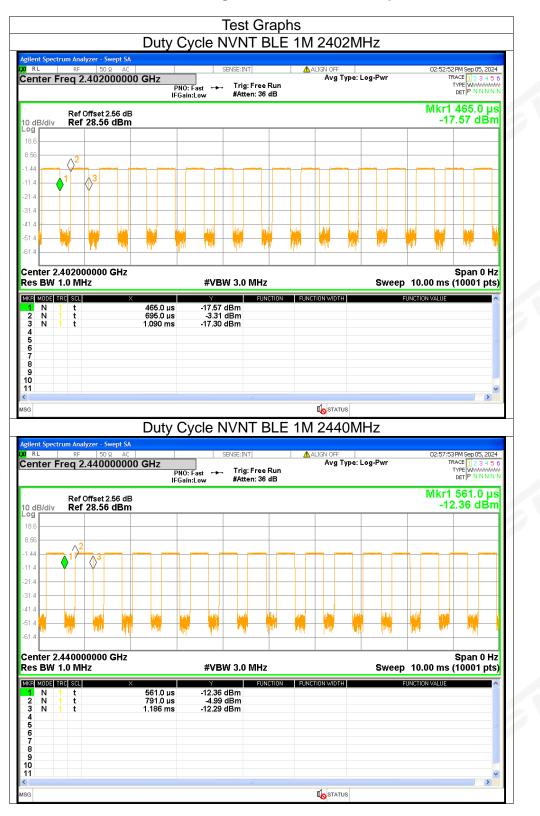
9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

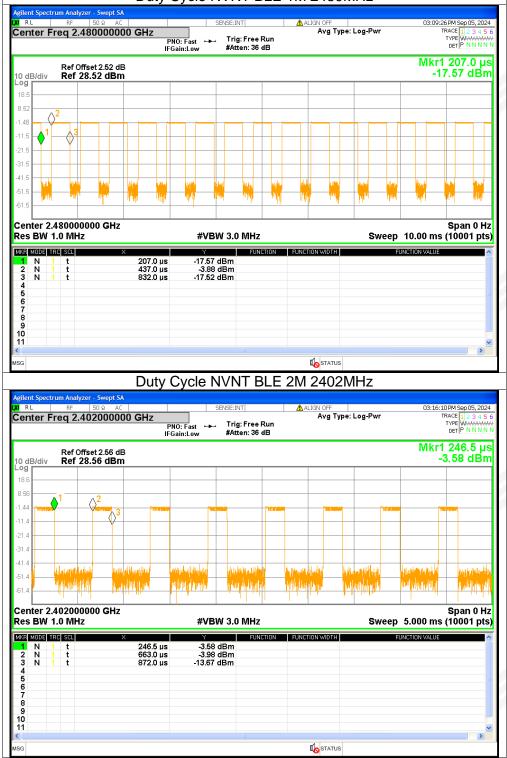
9.2 EUT ANTENNA

The EUT antenna is Monopole Antenna. It comply with the standard requirement.

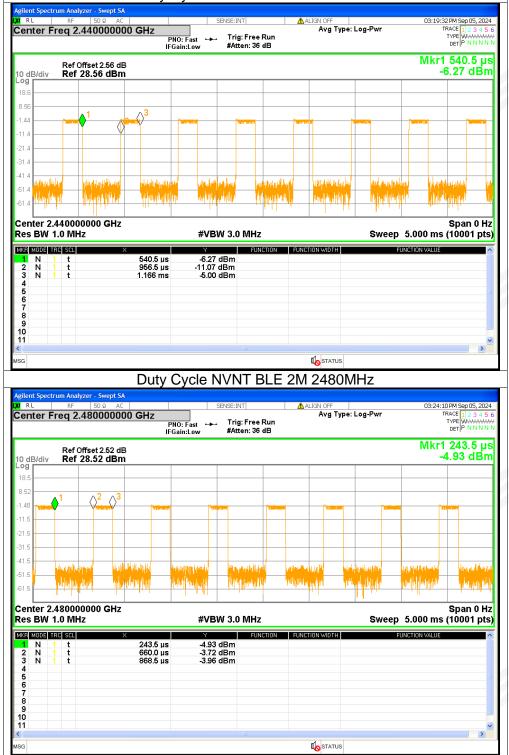


1. Duty Cycle

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	63.2	1.99	2.53
NVNT	BLE 1M	2440	63.2	1.99	2.53
NVNT	BLE 1M	2480	63.2	1.99	2.53
NVNT	BLE 2M	2402	33.41	4.76	4.78
NVNT	BLE 2M	2440	33.44	4.76	4.78
NVNT	BLE 2M	2480	33.36	4.77	4.8



Page 42 of 73


Duty Cycle NVNT BLE 1M 2480MHz

Duty Cycle NVNT BLE 2M 2440MHz

ly -

2. Maximum Average Conducted Output Power

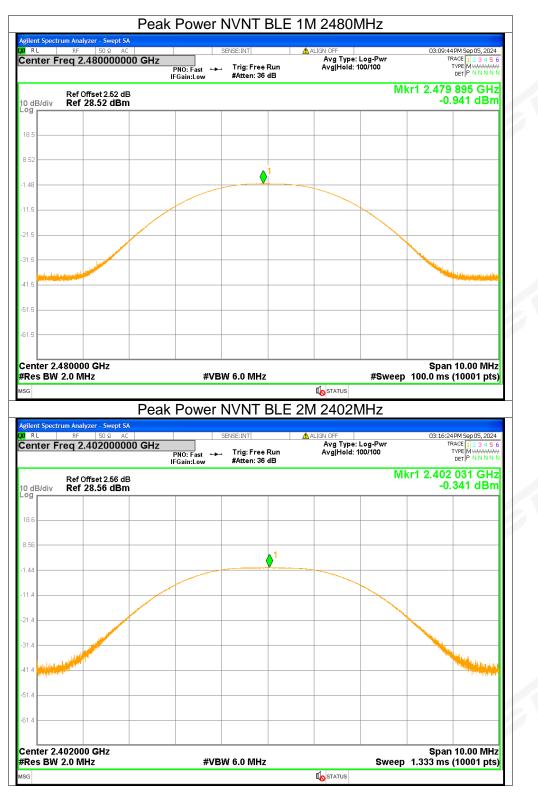
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	-2.94	1.99	-0.95	<=30	Pass
NVNT	BLE 1M	2440	-2.79	1.99	-0.8	<=30	Pass
NVNT	BLE 1M	2480	-3.38	1.99	-1.39	<=30	Pass
NVNT	BLE 2M	2402	-5.62	4.76	-0.86	<=30	Pass
NVNT	BLE 2M	2440	-5.48	4.76	-0.72	<=30	Pass
NVNT	BLE 2M	2480	-6.09	4.77	-1.32	<=30	Pass

Average Power NVNT BLE 1M 2480MHz B L 03:10:02 PM Sep 05, 2 Radio Std: None Center Freq: 2.480000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB Center Freq 2.480000000 GHz #IFGain:Low Radio Device: BTS Ref Offset 2.52 dB Ref 22.52 dBm 10 dB/div og. 5 .48 WWWWW Center 2.48 GHz Res BW 18 kHz Span 2 MHz VBW 180 kHz #Sweep 100 ms **Channel Power Power Spectral Density** -3.38 dBm / 1 MHz -63.38 dBm /Hz **I**STATUS Average Power NVNT BLE 2M 2402MHz B I 41 PM Sep 05 Center Freq: 2.402000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freg 2.402000000 GHz Radio Std: None Avg|Hold: 100/100 Radio Device: BTS #IEGain:Low Ref Offset 2.56 dB Ref 22.56 dBm 10 dB/div .og 5 Center 2.402 GHz Res BW 47 kHz Span 5 MHz VBW 470 kHz #Sweep 100 ms **Channel Power Power Spectral Density** -5.62 dBm / 2 MHz -68.63 dBm /Hz

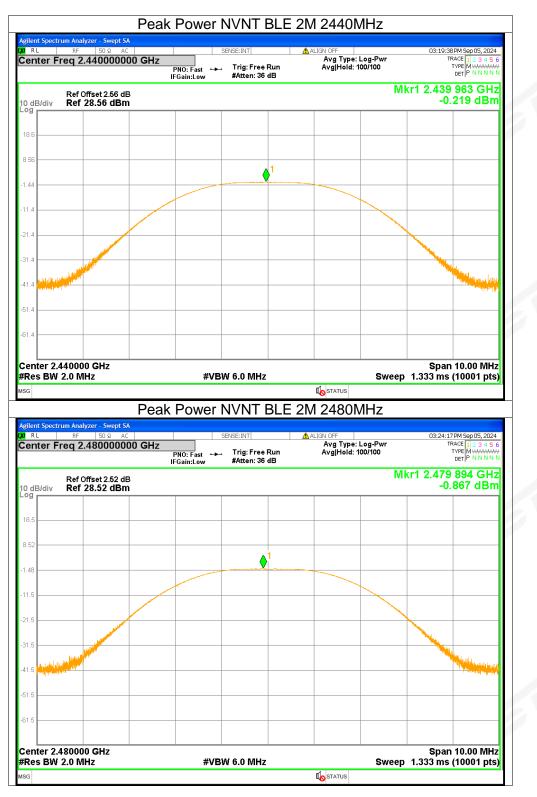
ISTATUS

3. Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	-0.47	<=30	Pass
NVNT	BLE 1M	2440	-0.31	<=30	Pass
NVNT	BLE 1M	2480	-0.94	<=30	Pass
NVNT	BLE 2M	2402	-0.34	<=30	Pass
NVNT	BLE 2M	2440	-0.22	<=30	Pass
NVNT	BLE 2M	2480	-0.87	<=30	Pass

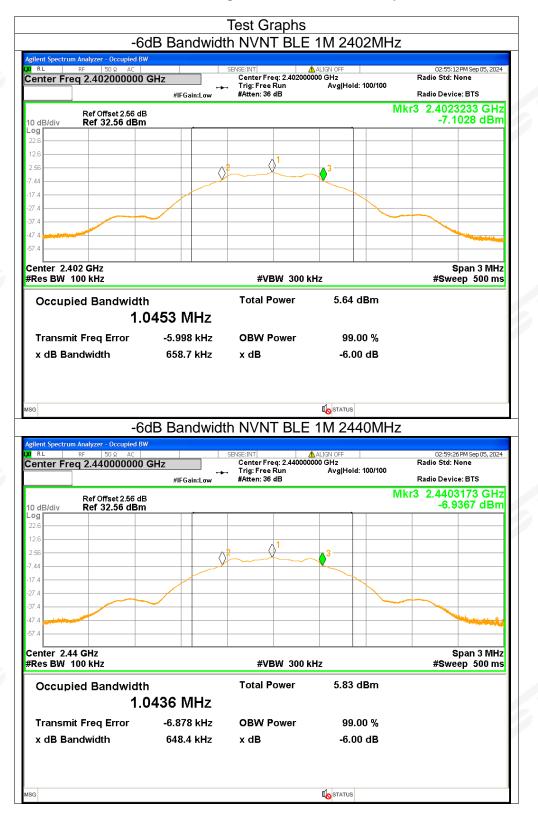


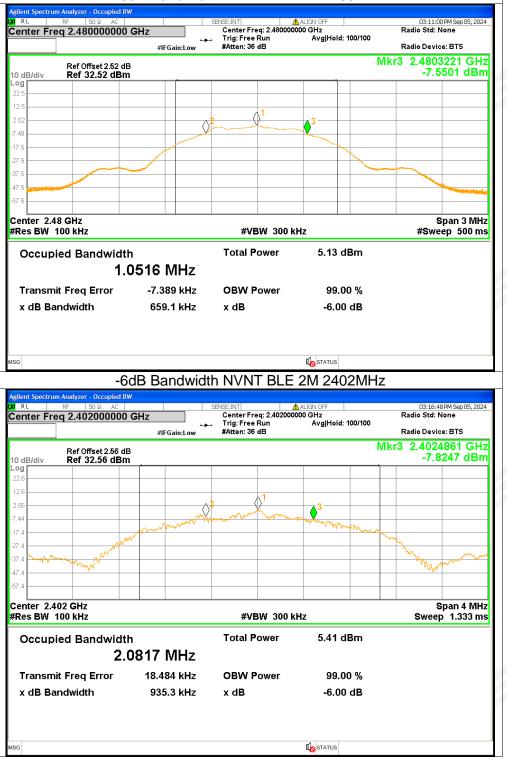
Page 50 of 73

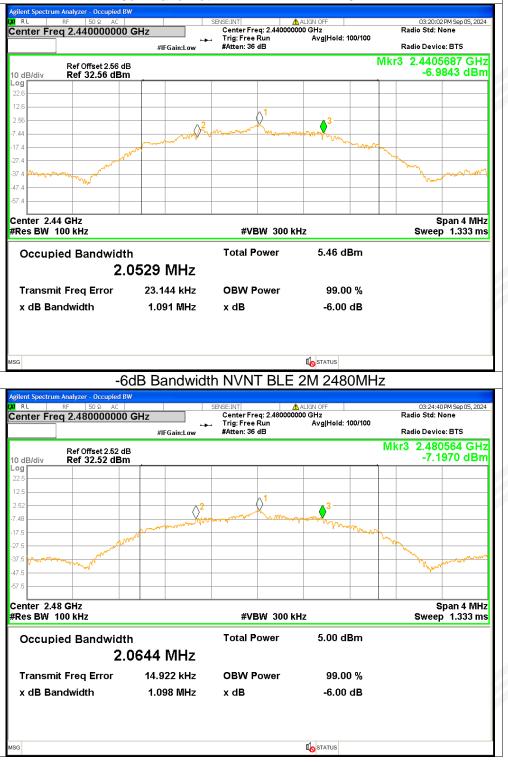

ß

4. -6dB Bandwidth

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	0.6587	>=0.5	Pass
NVNT	BLE 1M	2440	0.6484	>=0.5	Pass
NVNT	BLE 1M	2480	0.6591	>=0.5	Pass
NVNT	BLE 2M	2402	0.9353	>=0.5	Pass
NVNT	BLE 2M	2440	1.091	>=0.5	Pass
NVNT	BLE 2M	2480	1.0981	>=0.5	Pass





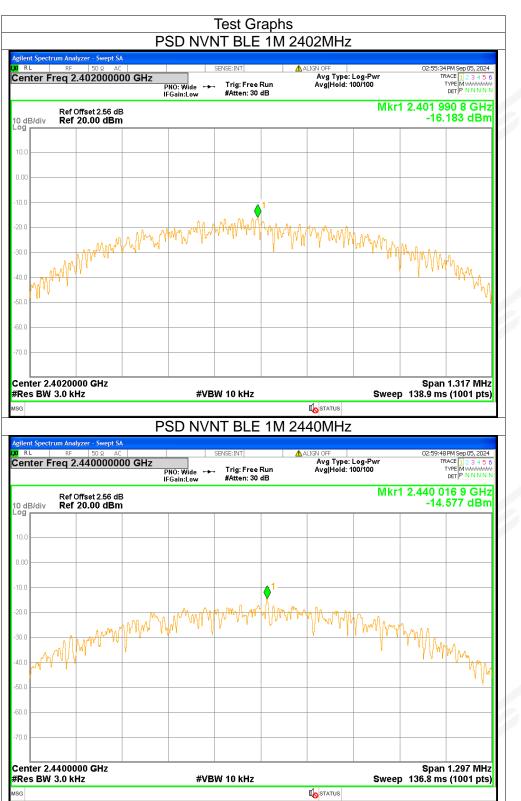


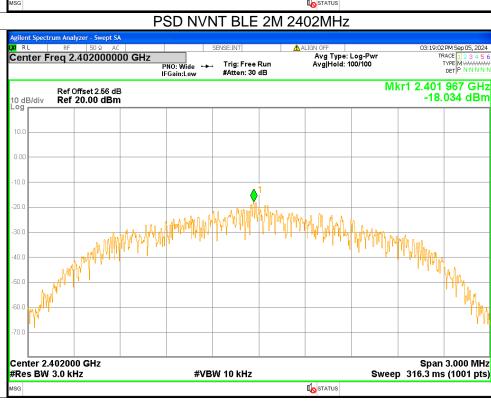
-6dB Bandwidth NVNT BLE 1M 2480MHz

-6dB Bandwidth NVNT BLE 2M 2440MHz

5. Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-16.18	<=8	Pass
NVNT	BLE 1M	2440	-14.58	<=8	Pass
NVNT	BLE 1M	2480	-16.18	<=8	Pass
NVNT	BLE 2M	2402	-18.03	<=8	Pass
NVNT	BLE 2M	2440	-17.92	<=8	Pass
NVNT	BLE 2M	2480	-18.52	<=8	Pass




Page 58 of 73

PSD NVNT BLE 1M 2480MHz D3:11:22 PM Sep TRACE 1 TYPE M DET P B L Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide 🔸 Mkr1 2.480 009 2 GHz Ref Offset 2.52 dB Ref 20.00 dBm -16.177 dBm 10 dB/div 0.0 0 20.0 እለለል ጣ ለሌሌ a when 30. Thry 40 r 50.0 50 Center 2.4800000 GHz Span 1.318 MHz #VBW 10 kHz Sweep 139.0 ms (1001 pts) #Res BW 3.0 kHz **I**STATUS SG PSD NVNT BLE 2M 2402MHz ilent Spectrum Analyzer - Swept S/ R L 03:19:02 PM 9 IZ PM SEP 05, 2024 IRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P N N N N Avg Type: Log-Pwi Avg|Hold: 100/100 PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 967 GHz Ref Offset 2.56 dB Ref 20.00 dBm -18.034 dBm

PSD NVNT BLE 2M 2440MHz R L Center Freq 2.440000000 GHz TYPE M Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide 🔸 Mkr1 2.439 964 GHz Ref Offset 2.56 dB Ref 20.00 dBm -17.916 dBm 10 dB/div 0.0 ٥ 20.0 Allan 30. 4N (50.0 60.0 Center 2.440000 GHz Span 3.000 MHz #VBW 10 kHz Sweep 316.3 ms (1001 pts) #Res BW 3.0 kHz **I**STATUS SG PSD NVNT BLE 2M 2480MHz ilent Spectrum Analyzer - Swept S R L 13·26·49 PM Center Freg 2.480000000 GHz Avg Type: Log-Pwi Avg|Hold: 100/100 PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 979 GHz Ref Offset 2.52 dB Ref 20.00 dBm -18.519 dBm 10 dB/div n n 10.0 20. ANIM 30. LANDMINT 40.0 50. Center 2.480000 GHz Span 3.000 MHz #VBW 10 kHz #Res BW 3.0 kHz Sweep 316.3 ms (1001 pts) **I**STATUS SG

6. Band Edge

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-49.4	<=-20	Pass
NVNT	BLE 1M	2480	-49.59	<=-20	Pass
NVNT	BLE 2M	2402	-34.84	<=-20	Pass
NVNT	BLE 2M	2480	-49.27	<=-20	Pass

Page 62 of 73

Test Graphs Band Edge NVNT BLE 1M 2402MHz Ref Center Freq 2.402000000 GHz Avg Type: Log-Pw Avg|Hold: 100/100 TRACE Trig: Free Run #Atten: 36 dB DET P N N N N PNO: Wide IFGain:Low ------Mkr1 2.402 008 GHz Ref Offset 2.56 dB Ref 28.56 dBm -0.694 dBm 10 dB/div .44 31. 41 mannah www. Carmonanow Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz **STATUS** Band Edge NVNT BLE 1M 2402MHz Emission Swept SA RL 43 PM Sep 05, 2024 Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 TRACE PNO: Fast + Trig: Free Run #Atten: 36 dB TYPE MWWWWW DET P N N N N Mkr1 2.402 0 GHz -0.631 dBm Ref Offset 2.56 dB Ref 28.56 dBm 0 dB(dis 8.5 .4 41 $\langle \rangle$ Start 2.30600 GHz #Res BW 100 kHz Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz MKR MODE TRC SCL EUNCTION VALUE FUNCTION FUNCTION WIDTH -0.631 dBm -52.588 dBm -52.588 dBm -50.092 dBm 2.402 0 GHz 2.400 0 GHz 2.400 0 GHz 2.399 8 GHz N N N 2 3 4 5 6 7 8 9 10 **I**STATUS

RL RF Rter Freq 2.48	0000000 GHz	PNO: Wide ↔ IFGain:Low	. Trig: Free Run #Atten: 36 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TY	CE 1 2 3 4 5 6 PE M MAAAAAAA ET P N N N N N
	et 2.52 dB 52 dBm				Mkr1 2.480 (-1.0)08 GHz 82 dBm
.5						
52						
8			m			
5				L		
5						
.5		M		m -		
5						
5		- ann		- Wata		
whywy	Arra And have	~~~		and the strather	hunn	mand
5						
nter 2.480000 G	Hz				Span 8	.000 MHz
es BW 100 kHz	Hz	#VB	W 300 kHz		Span 8 eep 1.000 ms (.000 MHz (1001 pts)
es BW 100 kHz					eep 1.000 ms (
es BW 100 kHz	Band Ed				eep 1.000 ms (
es BW 100 kHz ent Spectrum Analyzer RL RF	Band Ed	ge NVN1		480MHz Emiss	eep 1.000 ms (iON 03:11:31Pl	(1001 pts) M Sep 05, 2024
es BW 100 kHz ent Spectrum Analyzer RL RF	Band Ed	ge NVN1	T BLE 1M 2	480MHz Emiss	eep 1.000 ms (iON 03:11:31P	(1001 pts)
es BW 100 kHz	Band Ed		FBLE 1M 2 SENSE:INT . Trig: Free Run	480MHz Emiss	eep 1.000 ms (ON 03:11:31P TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	MSep 05, 2024 E 12 3 4 5 6 MMMMMM ET P NNN F 0 1 GHz
es BW 100 kHz ent Spectrum Analyzer RL RF Inter Freq 2.52 Ref Offs dB/div Ref 28.	Band Ed - swept SA 50 Q AC 6000000 GHz		FBLE 1M 2 SENSE:INT . Trig: Free Run	480MHz Emiss	eep 1.000 ms (ON 03:11:31P TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	MSep 05, 2024 E 12345 6 MMMMMM ET P N N N P
es BW 100 kHz ent Spectrum Analyzer RL RF inter Freq 2.52 Ref Offs dB/div Ref 28. g	Band Ed		FBLE 1M 2 SENSE:INT . Trig: Free Run	480MHz Emiss	eep 1.000 ms (ON 03:11:31P TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	MSep 05, 2024 E 12 3 4 5 6 MMMMMM ET P NNN F 0 1 GHz
ent Spectrum Analyzer RL RF Inter Freq 2.52	Band Ed		FBLE 1M 2 SENSE:INT . Trig: Free Run	480MHz Emiss	eep 1.000 ms (ON 03:11:31P TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	MSep 05, 2024 E 12 3 4 5 6 MMMMMM ET P NNN F 0 1 GHz
es BW 100 kHz ent Spectrum Analyzer RL RF inter Freq 2.52 Ref Offs dB/div Ref 28.	Band Ed		FBLE 1M 2 SENSE:INT . Trig: Free Run	480MHz Emiss	eep 1.000 ms (ON 03:11:31P TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	(1001 pts) MSep05, 2024 Et 12 3 4 5 6 FE/M MMM CT P NNNN O 1 GHz 71 dBm
ent Spectrum Analyzer RL RF Inter Freq 2.52	Band Ed		FBLE 1M 2 SENSE:INT . Trig: Free Run	480MHz Emiss	eep 1.000 ms (ON 03:11:31P TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	MSep 05, 2024 E 12 3 4 5 6 MMMMMM ET P NNN F 0 1 GHz
ent Spectrum Analyzer RL RF nter Freq 2.52	Band Ed		FBLE 1M 2 SENSE:INT . Trig: Free Run	480MHz Emiss	eep 1.000 ms (ON 03:11:31P TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	(1001 pts) MSep05, 2024 Et 12 3 4 5 6 FE/M MMM CT P NNNN O 1 GHz 71 dBm
es BW 100 kHz	Band Ed		FBLE 1M 2 SENSE:INT . Trig: Free Run	480MHz Emiss	eep 1.000 ms (ON 03:11:31P TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	(1001 pts) MSep05, 2024 Et 12 3 4 5 6 FE/M MMM CT P NNNN O 1 GHz 71 dBm
es BW 100 kHz	Band Ed		F BLE 1M 2 SENSE:INT . Trig: Free Run #Atten: 36 dB	480MHz Emiss	eep 1.000 ms (ON 03:11:31P TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	(1001 pts) MSep05, 2024 Et 12 3 4 5 6 FE/M MMM CT P NNNN O 1 GHz 71 dBm
Ref Offs dB/div Ref 28.	Band Ed	ge NVNT	SENSE:INT . Trig: Free Run #Atten: 36 dB	€ STATUS 2480MHz Emiss ALIGN OFF Avg Type: Log-Pwr Avg]Hold: 100/100	eep 1.000 ms (iON 03:11:31P TRA TRA TY 0 Mkr1 2.48 -2.1	(1001 pts) MSep05, 2024 EF [1 2 3 4 5 6 EF [1 2 3 4 5 6 MSep05, 2024 EF [1 2 3 4 5 6 EF [1 2 3 4 5 6 MSEp05, 2024 EF [1 2 3 4 5 6 EF [1 2 4 5
es BW 100 kHz	Band Ed	ge NVNT	F BLE 1M 2 SENSE:INT • Trig: Free Run #Atten: 36 dB •	ALIGN OFF Avg Type: Log-Pwr AvgHold: 100/100	eep 1.000 ms ((1001 pts) MSep05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 4 4 5 Construction of the second of the se
es BW 100 kHz	Band Ed - Swept SA 50 0 AC 6000000 GHz et 2.52 dB 52 dBm 	ge NVNT	F BLE 1M 2 SENSE:INT . Trig: Free Run #Atten: 36 dB	€ STATUS 2480MHz Emiss ALIGN OFF Avg Type: Log-Pwr Avg]Hold: 100/100	eep 1.000 ms (iON 03:11:31P TRA TRA TY 0 Mkr1 2.48 -2.1	(1001 pts) MSep05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 4 4 5 Construction of the second of the se
es BW 100 kHz ent Spectrum Analyzer RL RF Inter Freq 2.52 GB/div Ref 28. GB/div R	Band Ed	ge NVN7 PRO: Fast FGain:Low #VB #VB - 2	FBLE 1M 2 SENSE:INT . Trig: Free Run #Atten: 36 dB	ALIGN OFF Avg Type: Log-Pwr AvgHold: 100/100	eep 1.000 ms ((1001 pts) MSep05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 4 4 5 Construction of the second of the se
es BW 100 kHz ent Spectrum Analyzer RL RF inter Freq 2.52 dB/div Ref 28. dB/	Band Ed - Swept SA 50 Q AC 6000000 GHz et 2.52 dB 52 dBm 	ge NVN1 PRO: Fast → IFGain:Low #VB #VB 12 -2.171 12 -52.476 12 -53.738	FBLE 1M 2 SENSE:INT . Trig: Free Run #Atten: 36 dB	ALIGN OFF Avg Type: Log-Pwr AvgHold: 100/100	eep 1.000 ms ((1001 pts) MSep05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 4 4 5 Construction of the second of the se
es BW 100 kHz	Band Ed - Swept SA 50 Q AC 6000000 GHz et 2.52 dB 52 dBm 	ge NVN1 PRO: Fast → IFGain:Low #VB #VB 12 -2.171 12 -52.476 12 -53.738	FBLE 1M 2 SENSE:INT . Trig: Free Run #Atten: 36 dB	ALIGN OFF Avg Type: Log-Pwr AvgHold: 100/100	eep 1.000 ms ((1001 pts) MSep05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 3 4 5 6 MSEP05, 2024 EF [12 3 4 5 6 EF [12 4 4 5 Construction of the second of the se

Page 64 of 73

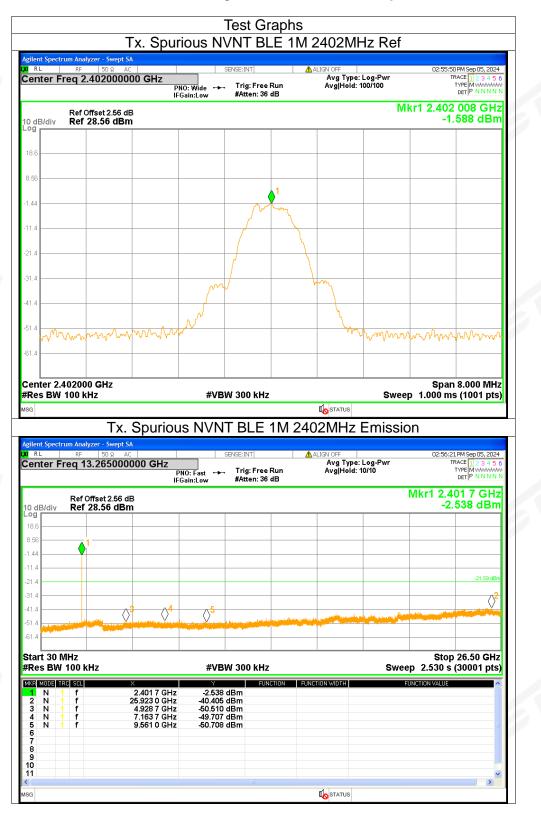
Band Edge NVNT BLE 2M 2402MHz Ref 03:17:21 PM Sep 05, 202 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N B L 6ep 05, 2024 Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 36 dB PNO: Wide 🔸 Mkr1 2.401 992 GHz Ref Offset 2.56 dB Ref 28.56 dBm -1.541 dBm 10 dB/div 1.4 41. mmmmm Center 2.402000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz **I**STATUS SG Band Edge NVNT BLE 2M 2402MHz Emission ectrum Analyzer - Swept SA 03:17:23 PM Sep 05, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N R L Center Freg 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.401 5 GHz Ref Offset 2 56 dB -5.204 dBm 10 dB/div Ref 28.56 dBm 1.4/ $\langle \rangle$ 41. mound with the sales marthand 61. Start 2.30600 GHz Stop 2.40600 GHz #VBW 300 kHz #Res BW 100 kHz Sweep 9.600 ms (1001 pts) MKR MODE TRC SCL FUNCTION W VALUE 2.401 5 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz -5.204 dBm -36.380 dBm -36.380 dBm -36.380 dBm N N N 2 3 4 5 6 7 8 9 10 11 **I**STATUS SG

Page 65 of 73

Band Edge NVNT BLE 2M 2480MHz Ref 15 PM Sep 05 TRACE 1 2 TYPE MWM DET P N I R L ep 05, 2024 Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 36 dB PNO: Wide 🔸 Mkr1 2.479 976 GHz Ref Offset 2.52 dB Ref 28.52 dBm -2.702 dBm 10 dB/div 1 48 ~ 1000 31 41.5 howwwww www.www.w Center 2.480000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz **I**STATUS SG Band Edge NVNT BLE 2M 2480MHz Emission ilent Spectrum Analyzer - Swept SA 03:25:16 PM Sep 05, R L RACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N I Center Freq 2.526000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.479 8 GHz Ref Offset 2 52 dB -5.214 dBm 10 dB/div Ref 28.52 dBm 18.: 1.48 41. $\langle \rangle^{2} \langle$ Martin and the for the property have Start 2.47600 GHz Stop 2.57600 GHz #VBW 300 kHz #Res BW 100 kHz Sweep 9.600 ms (1001 pts) MKR MODE TRC SCL FUNCTION V ION VALUE -5.214 dBm -54.144 dBm -56.103 dBm -51.975 dBm 2.479 8 GHz 2.483 5 GHz 2.500 0 GHz 2.486 1 GHz N N N 2 3 4 5 6 7 8 9 10 11 **I**STATUS SG

7. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-38.81	<=-20	Pass
NVNT	BLE 1M	2440	-39.08	<=-20	Pass
NVNT	BLE 1M	2480	-38.25	<=-20	Pass
NVNT	BLE 2M	2402	-38.81	<=-20	Pass
NVNT	BLE 2M	2440	-37.59	<=-20	Pass
NVNT	BLE 2M	2480	-38.41	<=-20	Pass



Page 67 of 73

54 PM Sep 05 TRACE 1 2 TYPE M +++ DET P N I R L ep 05, 2024 Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.440 000 GHz Ref Offset 2.56 dB Ref 28.56 dBm -0.661 dBm 10 dB/div **≬**¹ 1.4 41. monthan my home why have Center 2.440000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz **I**STATUS ISG Tx. Spurious NVNT BLE 1M 2440MHz Emission ilent Spectrum Analyzer - Swept SA R L 3-00-25 PM 9 TYPE N N N N N Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.439 7 GHz Ref Offset 2 56 dB -1.255 dBm 10 dB/div Ref 28.56 dBm 1.4 -20.66 di $\langle\rangle^4$ $\langle\rangle^{5}$ $\langle \rangle$ Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (30001 pts) MKR MODE TRC SCL FUNCTION WIDTH TION VALUE JNCTION * 2.439 7 GHz 26.225 6 GHz 5.009 9 GHz 7.235 1 GHz 9.771 8 GHz -1.255 dBm -39.740 dBm -49.668 dBm -49.484 dBm -50.224 dBm 1 N N N N N 2 3 4 5 6 7 8 9 10 11 > **I**STATUS SG

Tx. Spurious NVNT BLE 1M 2440MHz Ref

Tx. Spurious NVNT BLE 1M 2480MHz Ref J3:11:38 PM Sep TRACE 12:3 TYPE MW DET P N R L 6ep 05, 2024 Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.480 008 GHz Ref Offset 2.52 dB Ref 28.52 dBm -1.948 dBm 10 dB/div 1 48 31 41.5 mon mon mon mon when have some share Center 2.480000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz **I**STATUS ISG Tx. Spurious NVNT BLE 1M 2480MHz Emission ilent Spectrum Analyzer - Swept SA 03:12:08 PM Sep 05, R L TYPE N N N N N Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.480 2 GHz Ref Offset 2 52 dB -2.010 dBm 10 dB/div Ref 28.52 dBm 18.: 1.48 $\langle \rangle^2$ 41. \bigcirc $\langle \rangle$ $\langle \rangle$ Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (30001 pts) MKR MODE TRC SCL FUNCTION WIDTH TION VALUE JNCTION 2.480 2 GHz 25.652 1 GHz 4.954 3 GHz 7.576 6 GHz 10.111 5 GHz -2.010 dBm -40.205 dBm -50.200 dBm -50.622 dBm -51.004 dBm 1 N N N N N 2 3 4 5 6 7 8 9 10 11 > **I**STATUS SG

J3:17:28 PM Sep TRACE 12:3 TYPE M DET P N DET P N R L 6ep 05, 2024 Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.402 024 GHz Ref Offset 2.56 dB Ref 28.56 dBm -1.088 dBm 10 dB/div 1.4 ~m nh 41. Mymmm monorman Center 2.402000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz **I**STATUS ISG Tx. Spurious NVNT BLE 2M 2402MHz Emission ilent Spectrum Analyzer - Swept SA 03:17:58 PM Sep 05, R L TYPE N N N N N Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.401 7 GHz Ref Offset 2 56 dB -4.819 dBm 10 dB/div Ref 28.56 dBm 1.4 -21.09 dE $\langle \rangle^2$ $\langle\rangle^4$ 41 $\langle\rangle^{5}$ $\langle \rangle$ 61 Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (30001 pts) MKR MODE TRC SCL FUNCTION WIDTH ION VALUE INCTION -4.819 dBm -39.904 dBm -50.456 dBm -49.191 dBm -50.011 dBm * 2.401 7 GHz 25.682 1 GHz 4.894 3 GHz 7.166 3 GHz 9.541 6 GHz 1 N N N N N 2 3 4 5 6 7 8 9 10 11 **I**STATUS SG

Tx. Spurious NVNT BLE 2M 2402MHz Ref

37 PM Sep 05 TRACE 1 2 TYPE MWA DET P N I R L ep 05, 2024 Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.440 000 GHz Ref Offset 2.56 dB Ref 28.56 dBm -1.564 dBm 10 dB/div 1.4 Λ_{Λ} Mr Sm 41. mannon m may have Center 2.440000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz **I**STATUS ISG Tx. Spurious NVNT BLE 2M 2440MHz Emission ilent Spectrum Analyzer - Swept SA 03:21:07 PM Sep 05, R L TYPE MWWWWW DET P N N N N Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.439 7 GHz Ref Offset 2 56 dB -1.352 dBm 10 dB/div Ref 28.56 dBm 1.4 21.56 d _____**2**____ $\Diamond^{\mathbf{5}}$ $\langle \rangle$ $\langle \rangle$ Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (30001 pts) MKR MODE TRC SCL FUNCTION WIDTH TION VALUE JNCTION -1.352 dBm -39.152 dBm -49.928 dBm -50.061 dBm -50.450 dBm 2.439 7 GHz 25.652 1 GHz 4.879 3 GHz 7.456 6 GHz 9.677 4 GHz 1 N N N N N 2 3 4 5 6 7 8 9 10 11 > **I**STATUS SG

Tx. Spurious NVNT BLE 2M 2440MHz Ref

22 PM Sep 05 TRACE 1 2 TYPE M +++ DET P N I R L ep 05, 2024 Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 36 dB PNO: Wide ↔ IFGain:Low Mkr1 2.480 016 GHz Ref Offset 2.52 dB Ref 28.52 dBm -1.187 dBm 10 dB/div 1 48 31 41.5 www.www.www.www. marthan Center 2.480000 GHz Span 8.000 MHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) #Res BW 100 kHz **I**STATUS ISG Tx. Spurious NVNT BLE 2M 2480MHz Emission ilent Spectrum Analyzer - Swept SA R L 52 PM Sep 05 TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N 1 Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 36 dB Mkr1 2.480 2 GHz Ref Offset 2 52 dB -5.421 dBm 10 dB/div Ref 28.52 dBm 18.: 1.48 -21.19 di $\langle \rangle^2$ \bigcirc 41. \Diamond^{5} $\langle \rangle$ 61. Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (30001 pts) MKR MODE TRC SCL FUNCTION WIDTH TION VALUE JNCTION -5.421 dBm -39.603 dBm -50.590 dBm -49.914 dBm -50.695 dBm 2.480 2 GHz 25.717 4 GHz 4.951 7 GHz 7.379 0 GHz 10.060 4 GHz 1 N N N N N 2 3 4 5 6 7 8 9 10 11 **I**STATUS SG

Tx. Spurious NVNT BLE 2M 2480MHz Ref

APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * END OF THE REPORT * * * *