

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST REPORT FCC Rules and Regulations Part PART 15.249

Report Reference No...... CTA25022401502

FCC ID...... 2BNX9-MY-K79

Compiled by

(position+printed name+signature.. File administrators Joan Wu

Supervised by

(position+printed name+signature.. Project Engineer Zoey Cao

Approved by

(position+printed name+signature.. RF Manager Eric Wang

Date of issue...... Mar. 01, 2025

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... HuNan FuYao Electronic Technology Co., Ltd

Address Steel Market 1-20 # 113, TianXin District, ChangSha City, HuNan

Province, China

Standard FCC Rules and Regulations PART 15.249

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Wireless mechanical keyboard

Trade Mark MMViCTY

Manufacturer HuNan FuYao Electronic Technology Co., Ltd

Model/Type reference..... MY-K79

Listed ModelsN/A

Modulation GFSK

Frequency......2402-2480MHz

Ratings DC 3.7V From battery and DC 5.0V From external circuit

Result.....PASS

Page 2 of 24 Report No.: CTA25022401502

TEST REPORT

Wireless mechanical keyboard Equipment under Test

Model /Type MY-K79

Listed Models N/A

Applicant HuNan FuYao Electronic Technology Co., Ltd

Address Steel Market 1-20 # 113, TianXin District, ChangSha City, HuNan

Province, China

HuNan FuYao Electronic Technology Co., Ltd Manufacturer

Address Steel Market 1-20 # 113, TianXin District, ChangSha City, HuNan

Province, China

Province, China	
TESI"	
CIA	
Test Result:	PASS
rest Result.	FASS

The test report merely corresponds to the test sample.

it is not polaboratory. It is not permitted to copy extracts of these test result without the written permission of the test CTA TESTING

Page 3 of 24 Report No.: CTA25022401502

Contents

1100	Contents TEST STANDARDS TEST STANDARDS	
1:	TEST STANDARDS	<u>4</u>
_		.5T\\\`
<u>2.</u>	<u>.SUMMARY</u>	<u>5</u>
2.1	. General Remarks	5
2.1		5. (
2.3		5
2.4	- 117	5
2.5		5
2.6		6
2.7		6
2.8		6
	CIA	•
<u>3.</u>	TEST ENVIRONMENT	<u>7</u>
		7 7 7 7
3.1	Address of the test laboratory	7 CTA 7
3.2	2. Test Facility	7
3.3	B. Environmental conditions	7
3.4	I. Summary of measurement results	8
3.5	. 11.7	8
3.6	6. Equipments Used during the Test	8
4.	TEST CONDITIONS AND RESULTS	<u> 10</u>
	J TATES	
	4.1. AC Power Conducted Emission	10
	4.2. Radiated Emission and Band Edges	13
	4.1. AC Power Conducted Emission	20
	4.4. Antenna Requirement	22
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	<u> 23</u>
EST		
<u>6.</u>	TEST PHOTOS OF THE EUT	24
	CTA TESTING	

Report No.: CTA25022401502 Page 4 of 24

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

Page 5 of 24 Report No.: CTA25022401502

2. SUMMARY

2.1. General Remarks

2.1. General Remarks			
Date of receipt of test sample		Feb. 24, 2025	ESTING
Testing commenced on		Feb. 24, 2025	CTATE
Testing concluded on	:	Mar. 01, 2025	

	STING
Name of EUT	Wireless mechanical keyboard
Model Number	MY-K79
Power Rating	DC 3.7V From battery and DC 5.0V From external circuit
Hardware version:	V1.0
Software version:	V1.0
Sample ID:	CTA250224015-1# (Engineer sample) CTA250224015-2# (Normal sample)
Operation frequency	2402-2480MHz
Modulation	GFSK
Antenna Type	PCB antenna
Antenna Gain	1.18 dBi

2.3. Equipment Under Test

Power supply system utilised

Power supply system utilis	sea		CTA	TES
Power supply voltage	:	O 230V / 50 Hz	○ 120V	/ / 60Hz
		○ 12 V DC	○ 24 V	DC
		Other (specified in	blank below)	
DC 3.7	V From	battery and DC 5.0V	From external circu	<u>uit</u>

2.4. Short description of the Equipment under Test (EUT)

This is a Wireless mechanical keyboard.

For more details, refer to the user's manual of the EUT.

2.5. FIIT configuration

2.5. EUT configuration

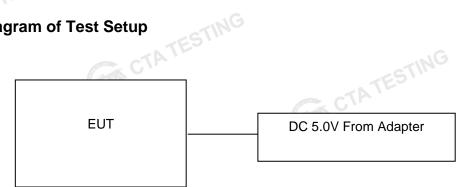
The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

○ - supplied by the lab Model: EP-TA20CBC ○ Adapter Input: AC 100-240V 50/60Hz Output: DC 5V 2A CTATESTING

Page 6 of 24 Report No.: CTA25022401502

2.6. EUT operation mode


The Applicant use Key to control the EUT for staying in continuous transmitting and receiving mode for testing .There is 40 channels provided to the EUT. Channel Low, Mid and High was selected to test.

Operation Frequency:

	- 1				
		annel	Freq	uency (MHz)	
		00		2402	
		01		2404	
		02	The same of the sa	2406	-TA"
					W.
		19		2440	
		16		:	
CIL		37		2476	
7		38	. C.	2478	
		39		2480	
	Test frequency:		CTATES	-eT	ING
	Channel	Frequency (MHz)	j	CTATEST	
C	Low	2402			
G	Mid	2440			
	High	2480			

Channel	Frequency (MHz)
Low	2402
Mid	2440
High	2480

2.7. Block Diagram of Test Setup

2.8. Modifications

CTATESTING CTA TESTING No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	23 ° C
Humidity:	48 %
-ING	
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

9	
Temperature:	24 ° C
C	
Humidity:	45 %
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	C C
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar
C.	TESTING
	CIL

Page 8 of 24 Report No.: CTA25022401502

3.4. Summary of measurement results

FCC PART 15.249		
FCC Part 15.249(a)	Field Strength of Fundamental	PASS
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.209	Band edge	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.203	Antenna Requirement	PASS

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

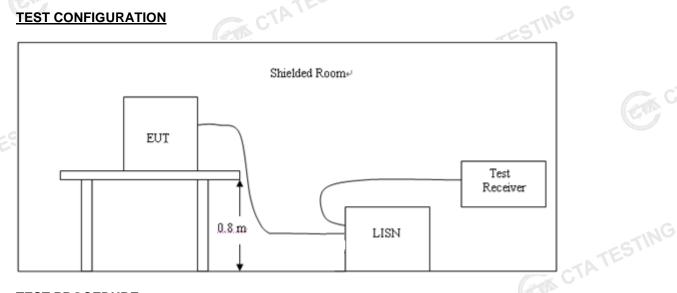
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	1	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence aliz CTATESTINI level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer Model No.		Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02

			CVA			TESI"
∆G	Report No.: CTA2502	22401502			Page	e 9 of 24
10	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
75	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
CTATE	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
8	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
1G	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
CTATE	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
CAL	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
'					CT	A
G						

Page 10 of 24 Report No.: CTA25022401502

4. TEST CONDITIONS AND RESULTS

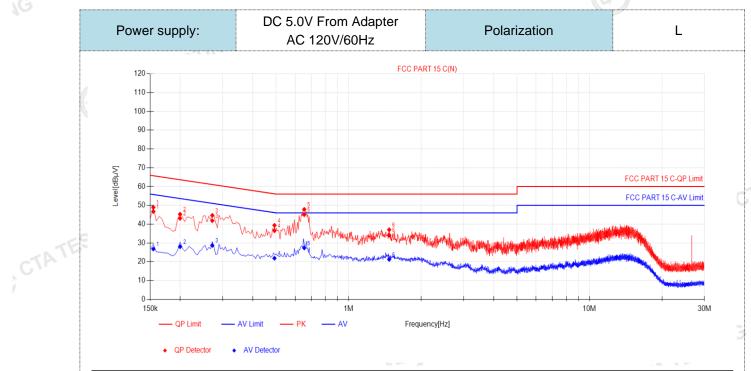
4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

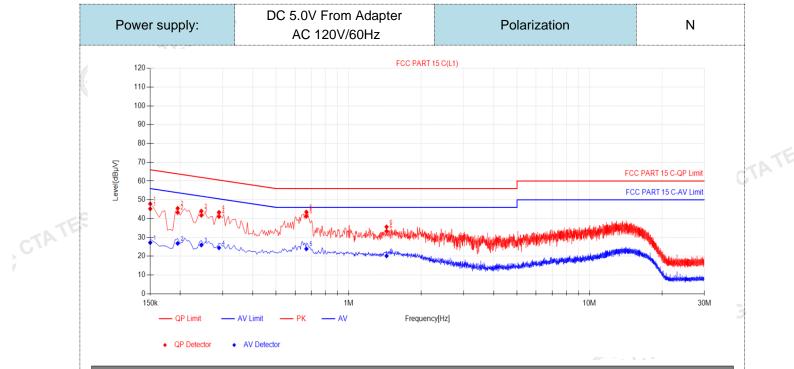

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)
Frequency range (wiriz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the frequency	ency.	

TEST RESULTS

- All modes of GFSK were tested at Low, Middle, and High channel; only the worst result of GFSK CH19 was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result CTATE! of 120 VAC, 60 Hz was reported as below:.

Report No.: CTA25022401502 Page 11 of 24



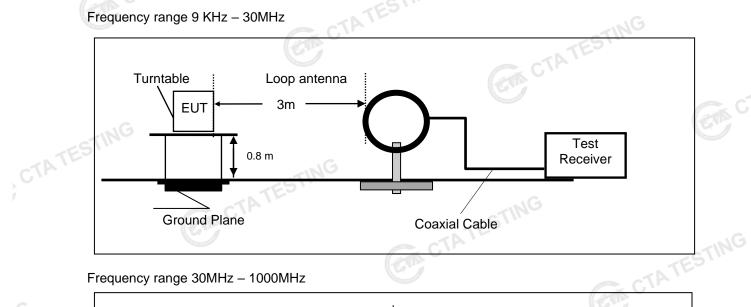
Fir	Final Data List											
NO	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.1545	10.00	36.73	46.73	65.75	19.02	16.78	26.78	55.75	28.97	PASS	
2	0.1995	9.95	33.11	43.06	63.63	20.57	18.06	28.01	53.63	25.62	PASS	
3	0.2715	9.95	31.90	41.85	61.07	19.22	18.74	28.69	51.07	22.38	PASS	
4	0.492	10.00	26.54	36.54	56.13	19.59	11.88	21.88	46.13	24.25	PASS	
5	0.654	10.10	34.96	45.06	56.00	10.94	17.25	27.35	46.00	18.65	PASS	
6	1.473	10.14	24.06	34.20	56.00	21.80	11.13	21.27	46.00	24.73	PASS	
2). Fa	Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dBμV) - QP Value (dBμV)											
٥, ٩	i waigiii(ub)	- Q1 LIII	int (abp v	, QI VC	iluc (ubp	v <i>j</i>						

CON CTATE

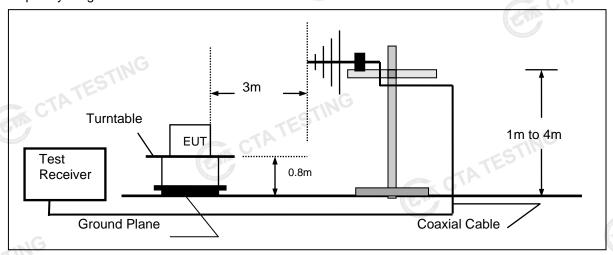
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
-A 4). $AVMargin(dB) = AV Limit (dB\mu V) - AV Value (dB\mu V)$

Report No.: CTA25022401502 Page 12 of 24

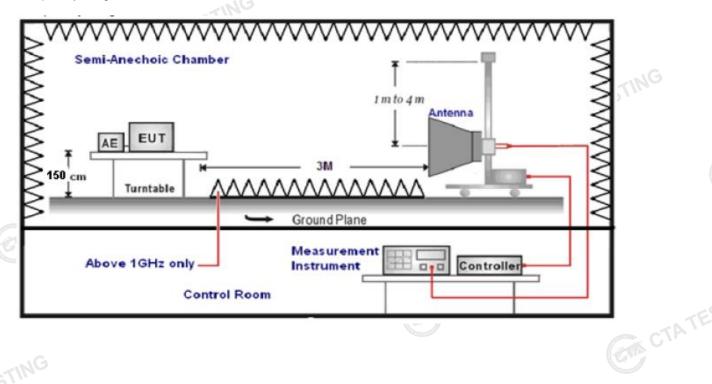
Final Data List													
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dΒμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
	1	0.15	9.87	35.36	45.23	66.00	20.77	17.38	27.25	56.00	28.75	PASS	
	2	0.195	10.08	33.17	43.25	63.82	20.57	16.75	26.83	53.82	26.99	PASS	
	3	0.2445	9.95	31.82	41.77	61.94	20.17	16.00	25.95	51.94	25.99	PASS	
	4	0.2895	9.95	31.15	41.10	60.54	19.44	14.52	24.47	50.54	26.07	PASS	
	5	0.6675	9.95	31.32	41.27	56.00	14.73	13.96	23.91	46.00	22.09	PASS	
	6	1.437	9.90	23.46	33.36	56.00	22.64	10.28	20.18	46.00	25.82	PASS	
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dBµV) - QP Value (dBµV)										TATE			
4). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV)													

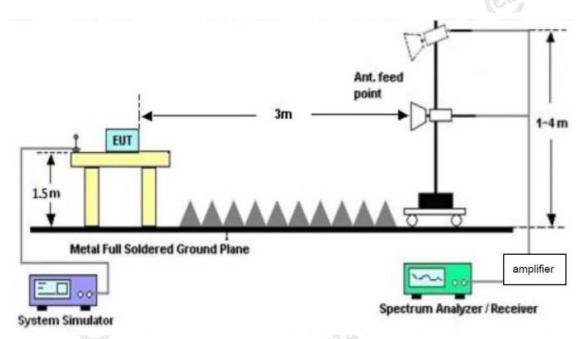

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATE CTA TESTING

Report No.: CTA25022401502 Page 13 of 24


4.2. Radiated Emission and Band Edges

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 26MHz and maximum operation frequency was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
CIL	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	-65/11

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	:NG	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	STILL	AG = Amplifier Gain
AF = Antenna Factor	TEG	· Ca

Transd=AF +CL-AG

RADIATION LIMIT

According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed 94dBµV/m (50mV/m):

Page 15 of 24 Report No.: CTA25022401502

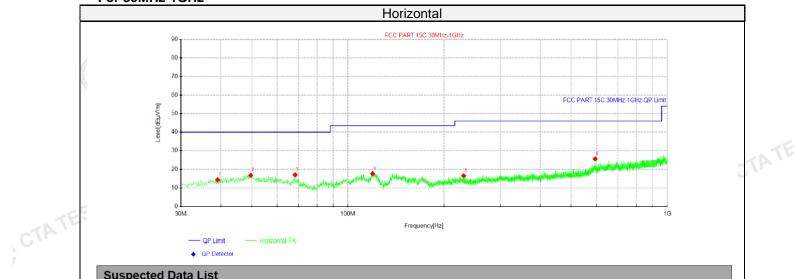
FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits

	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
CTATE	88-216	3,NG	43.5	150
	216-960	3	46.0	200
,	Above 960	CTP 3	54.0	500

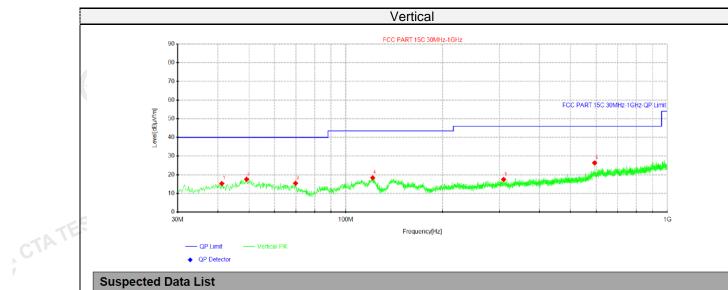
TEST RESULTS


Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. GFSK were tested at Low, Middle, and High channel and recorded worst mode at the High channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Page 16 of 24 Report No.: CTA25022401502

For 30MHz-1GHz


Suspe	Suspected Data List										
NIC	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevity		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	39.0938	26.64	14.37	-12.27	40.00	25.63	200	214	Horizontal		
2	49.6425	27.97	16.80	-11.17	40.00	23.20	100	202	Horizontal		
3	68.315	31.50	17.06	-14.44	40.00	22.94	100	247	Horizontal		
4	119.482	31.50	17.66	-13.84	43.50	25.84	200	318	Horizontal		
5	230.305	28.98	16.54	-12.44	46.00	29.46	100	318	Horizontal		
6	594.055	31.76	25.58	-6.18	46.00	20.42	100	104	Horizontal		

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) CTATESTING

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: CTA25022401502 Page 17 of 24

CTATE

Suspe	Suspected Data List										
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovity		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	41.155	27.13	15.30	-11.83	40.00	24.70	200	205	Vertical		
2	49.1575	28.78	17.59	-11.19	40.00	22.41	100	298	Vertical		
3	69.77	30.09	15.44	-14.65	40.00	24.56	100	334	Vertical		
4	121.18	32.72	18.37	-14.35	43.50	25.13	200	350	Vertical		
5	309.602	28.38	17.50	-10.88	46.00	28.50	100	205	Vertical		
6	594.055	32.55	26.37	-6.18	46.00	19.63	100	229	Vertical		

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) CTATESTING

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Report No.: CTA25022401502

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	ncy(MHz)	:	24	02	Polarity:		Н	ORIZONTA	۱L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2402.00	87.36	PK	114.00	26.64	98.64	27.47	3.43	42.18	-11.28
2402.00	80.98	AV	94.00	13.02	92.26	27.47	3.43	42.18	-11.28
4804.00	49.27	PK	74.00	24.73	53.54	32.33	5.12	41.72	-4.27
4804.00	39.55	AV	54.00	14.45	43.82	32.33	5.12	41.72	-4.27
7206.00	50.19	PK	74.00	23.81	50.71	36.6	6.49	43.61	-0.52
7206.00	37.07	AV	54.00	16.93	37.59	36.6	6.49	43.61	-0.52
G									G.

G									
Freque	ncy(MHz)	:	24	02	Pola	arity:	VERTICAL		
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2402.00	85.93	PK	114.00	28.07	97.21	27.47	3.43	42.18	-11.28
2402.00	78.75	AV	94.00	15.25	90.03	27.47	3.43	42.18	-11.28
4804.00	47.13	PK	74.00	26.87	51.40	32.33	5.12	41.72	-4.27
4804.00	38.64	AV	54.00	15.36	42.91	32.33	5.12	41.72	-4.27
7206.00	48.30	PK	74.00	25.70	48.82	36.6	6.49	43.61	-0.52
7206.00	35.67	AV	54.00	18.33	36.19	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	24	40	Pola	arity:	Н	۱L	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2440.00	86.92	PK	114.00	27.08	98.17	27.52	3.45	42.22	-11.25
2440.00	79.17	AV	94.00	14.83	90.42	27.52	3.45	942.22	-11.25
4880.00	49.71	PK	74.00	24.29	53.59	32.6	5.34	41.82	-3.88
4880.00	40.84	AV	54.00	13.16	44.72	32.6	5.34	41.82	-3.88
7320.00	50.99	PK	74.00	23.01	51.10	36.8	6.81	43.72	-0.11
7320.00	36.38	ΑV	54.00	17.62	36.49	36.8	6.81	43.72	-0.11

Freque	ncy(MHz)	:	24	40	Pola	arity:			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2440.00	85.65	PK	114.00	28.35	96.90	27.52	3.45	42.22	-11.25
2440.00	78.76	AV	94.00	15.24	90.01	27.52	3.45	42.22	-11.25
4880.00	48.07	PK	74.00	25.93	51.95	32.6	5.34	41.82	-3.88
4880.00	38.90	AV	54.00	15.10	42.78	32.6	5.34	41.82	-3.88
7320.00	49.33	PK	74.00	24.67	49.44	36.8	6.81	43.72	-0.11
7320.00	35.20	AV	54.00	18.80	35.31	36.8	6.81	43.72	-0.11

Freque	ncy(MHz)):	24	80	Pola	rity:	Н	۱L		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2480.00	86.30	PK	114.00	27.70	96.41	27.7	4.47	42.28	-10.11	
2480.00	80.15	AV	94.00	13.85	90.26	27.7	4.47	42.28	-10.11	
4960.00	49.46	PK	74.00	24.54	52.54	32.73	5.66	41.47	-3.08	
4960.00	40.73	AV	54.00	13.27	43.81	32.73	5.66	41.47	-3.08	
7440.00	49.41	PK	74.00	24.59	48.96	37.04	7.25	43.84	0.45	
7440.00	36.71	AV	54.00	17.29	36.26	37.04	7.25	43.84	0.45	

A TESTING

Report No.: CTA25022401502 Page 19 of 24

Frequei	ncy(MHz)	:	24	80	Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2480.00	85.03	PK	114.00	28.97	95.14	27.7	4.47	42.28	-10.11
2480.00	77.85	AV	94.00	16.15	87.96	27.7	4.47	42.28	-10.11
4960.00	47.28	PK	74.00	26.72	50.36	32.73	5.66	41.47	-3.08
4960.00	39.63	AV	54.00	14.37	42.71	32.73	5.66	41.47	-3.08
7440.00	49.71	PK	74.00	24.29	49.26	37.04	7.25	43.84	0.45
7440.00	36.88	AV	54.00	17.12	36.43	37.04	7.25	43.84	0.45
REMARKS: 1. 2. 3.	Correction	n Factor (dB	/m) =Raw Value (d /m) = Antenna Fac /alue- Emission lev	tor (dB/m)+Cable		re-amplifier			CTP CTP

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	ORIZONTA	\L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.97	PK	74.00	12.03	72.39	27.42	4.31	42.15	-10.42
2390.00	44.18	AV	54.00	9.82	54.60	27.42	4.31	42.15	-10.42
2400.00	63.24	PK	74.00	10.76	73.67	27.43	4.31	42.17	-10.43
2400.00	56.33	AV	54.00	-2.33	66.76	27.43	4.31	42.17	-10.43
Freque	ncy(MHz)	:	24	.02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.54	PK	74.00	13.46	70.96	27.42	4.31	42.15	-10.42
2390.00	42.12	AV	54.00	11.88	52.54	27.42	4.31	42.15	-10.42
2400.00	60.68	PK	74.00	13.32	71.11	27.43	4.31	42.17	-10.43
2400.00	54.20	AV	54.00	-0.20	64.63	27.43	4.31	42.17	-10.43
Freque	ncy(MHz)	:	24	80	Polarity:		Н	ORIZONTA	NL
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	61.17	PK	74.00	12.83	71.28	27.7	4.47	42.28	-10.11
2483.50	42.52	AV	54.00	11.48	52.63	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	arity:	VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	59.61	PK	74.00	14.39	69.72	27.7	4.47	42.28	-10.11
2483.50	40.98	AV	54.00	13.02	51.09	27.7	4.47	42.28	-10.11

Note:

- Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor. 1)
- Margin value = Limits-Emission level. 2)
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit. 4)
- RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV 5) CTATESTING value.

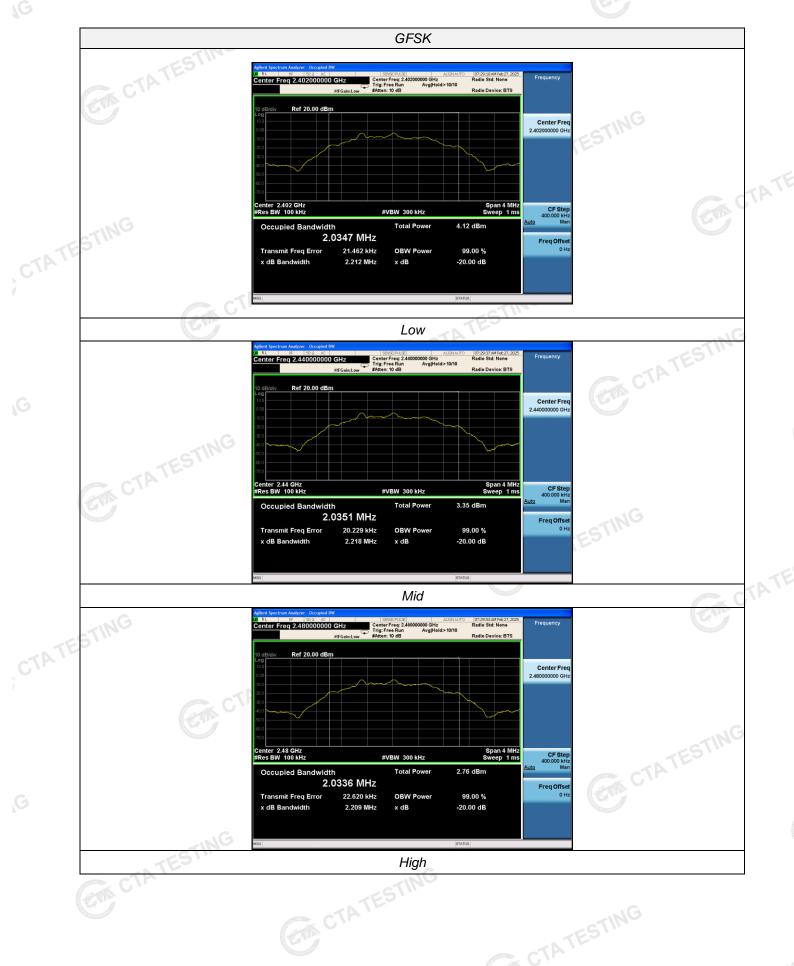
Page 20 of 24 Report No.: CTA25022401502

4.3. 20dB Bandwidth Measurement

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 300KHz VBW.


The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus CTATESTING 20dB.

LIMIT

TEST RESULTS

<u>LIMIT</u> N/A	CV	CTATE		
TEST RESULTS			CTAT	
Modulation	Channel Channel	20dB bandwidth (MHz)	Result	
CTATE	Low	2.212		
GFSK	Mid	2.218	PASS	
	High	2.209	TING	
Note: 1.The test res	sults including the ca	ble loss.	CTATES.	

Report No.: CTA25022401502 Page 21 of 24

CTATESTING

Page 22 of 24 Report No.: CTA25022401502

4.4. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than CTATE 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

The maximum gain of antenna was 1.18 dBi.

Remark:The antenna Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES

Report No.: CTA25022401502 Page 23 of 24

5. Test Setup Photos of the EUT

TATESTING

Report No.: CTA25022401502 Page 24 of 24

6. Test Photos of the EUT

Reference to the test report No. CTA25022401501.
.....End of Report......