

RF TEST REPORT

Applicant	MeiG Smart Technology Co., Ltd
FCC ID	2APJ4-SLM336Q
Product	LTE Cat1 Module
Brand	MEIGLink
Model	SLM336Q
Report No.	R2407A0777-R4V3
Issue Date	August 26, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2023)/FCC CFR 47 Part 90R (2023). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd. Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	t Laboratory	5				
1.1.	Notes of the Test Report	5				
1.2.	Test Facility5					
1.3.	Testing Location	. 5				
2. Ger	neral Description of Equipment Under Test	6				
2.1.	Applicant and Manufacturer Information	6				
2.2.	General Information	6				
3. Арр	lied Standards	7				
4. Tes	t Configuration	8				
5. Tes	t Case	9				
5.1.	RF Power Output and Effective Radiated Power	9				
5.2.	Occupied Bandwidth	10				
5.3.	Band Edge Compliance	11				
5.4.	Peak-to-Average Power Ratio (PAPR)	13				
5.5.	Frequency Stability	14				
5.6.	Spurious Emissions at Antenna Terminals	16				
5.7.	Radiated Spurious Emission	18				
6. Tes	t Result	.21				
6.1.	RF Power Output and Effective Radiated Power	21				
6.2.	Occupied Bandwidth	23				
6.3.	Band Edge Compliance	26				
6.4.	Peak-to-Average Power Ratio (PAPR)	28				
6.5.	Frequency Stability	29				
6.6.	Spurious Emissions at Antenna Terminals	30				
6.7.	Radiated Spurious Emission	31				
7. Mai	n Test Instruments	.32				
ANNEX	ANNEX A: The EUT Appearance					
ANNEX	ANNEX B: Test Setup Photos					

RF Test Report

Version	Revision Description	Issue Date			
Rev.0	Initial issue of report.	August 7, 2024			
Rev.1	Update data.	August 21, 2024			
Rev.2	Update description.	August 26, 2024			
Rev.3	Update description. August 26, 2024				
Note: This	Note: This revised report (Report No.: R2407A0777-R4V3) supersedes and replaces the				
previously issued report (Report No.: R2407A0777-R4V2). Please discard or destroy the					
previously issued report and dispose of it accordingly.					

RF Test Report	
-----------------------	--

No.	Test Case	Clause in FCC rules	Verdict		
1	RF power output and Effective Radiated Power	2.1046/90.635 (b)/ 90.542	PASS		
2	Occupied Bandwidth	2.1049/ 90.209	PASS		
3	Emission Masks	2.1051 / 90.543	PASS		
4	Peak-to-Average Power Ratio	KDB 971168 D01(5.7)	PASS		
5	Frequency Stability	90.539 (c)	PASS		
6	Spurious Emissions at Antenna Terminals	90.543 (e)	PASS		
7	Radiated Spurious Emission90.543 (e)PASS		PASS		
Date of T	Date of Testing: July 8, 2024 ~ July 23, 2024				
Date of S	Date of Sample Received: July 4, 2024				
Note: PA	Note: PASS: The EUT complies with the essential requirements in the standard.				
FAIL: The EUT does not comply with the essential requirements in the standard.					
All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai)					
Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were					
not taken into account and are published for informational purposes only.					

Summary of Measurement Results

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of Eurofins TA

Technology (Shanghai) Co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:	Eurofins TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	https://www.eurofins.com/electrical-and-electronics
E-mail:	Kain.Xu@cpt.eurofinscn.com

2. General Description of Equipment Under Test

Applicant	MeiG Smart Technology Co., Ltd		
Applicant address	2nd Floor,Office Building,No.5 Lingxia Road,Fenghuang,Fuyong		
Applicant address	Street,Bao'an District,Shenzhen, China.		
Manufacturer	MeiG Smart Technology Co., Ltd		
	2nd Floor,Office Building,No.5 Lingxia Road,Fenghuang,Fuyong		
Manufacturer address	Street,Bao'an District,Shenzhen, China.		

2.1. Applicant and Manufacturer Information

2.2. General Information

EUT Description					
Model	SLM336Q				
SN	Conducted M33		36QA1AHE013000171		
SIN	Radiated	M33	36QA1AHE013000107		
Hardware Version	SLM336QA1A_N	1B_V	1.01		
Software Version	V08				
Power Supply	External power	suppl	У		
Antenna Type	External Antenn	а			
Antenna Gain	3.5dBi				
Test Mode(s)	LTE Band 14				
Test Modulation	QPSK, 16QAM;				
Channel Bandwidth	Band		QPSK	16QAM	
	LTE Band 14		5/10MHz	5MHz	
Maximum E.R.P.	24.35 dBm				
Rated Power Supply Voltage	3.8V				
Operating Voltage	Minimum: 3.5V	Ма	aximum: 4.2V		
Operating Temperature	Lowest: -35°C	Hi	ghest: +75°C		
Testing Temperature	Lowest: -30°C	Hi	ghest: +50°C		
Operating Frequency	Band Tx (MHz) Rx (MH		Rx (MHz)		
Range(s)	LTE Band 14		788 ~ 798	758 ~ 768	
Auxiliary Test Equipment					
Mother board	Manufacturer: MeiG Smart Technology Co., Ltd Model: /				
Note: 1. The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the applicant.					

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards: FCC CFR 47 Part 90R (2023) FCC 47 CFR Part 2 (2023)

Reference standard: ANSI C63.26-2015

KDB 971168 D01 Power Meas License Digital Systems v03r01

4. Test Configuration

RF Test Report

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (vertical), lie-down position (horizontal). The worst emission was found in stand-up position (vertical)

All mode and data rates and positions were investigated. The following testing in LTE is set based on the maximum RF Output Power.

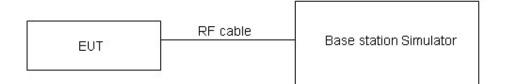
Test items	Band (MI	width Hz)	Modulation		dulation RB			Test Channel		
	5	10	QPSK	16QAM	1	50%	100%	L	М	Η
RF Power Output										
and Effective	0	0	0	0	0	0	0	0	0	0
Radiated Power										
Occupied	0	0	0	0			0	0	0	0
Bandwidth	0	0	0	0	-	-	0	0	0	0
Band Edge	0	0	0	0	0		0	0		0
Compliance	0	0	0	0	0	-	0	0	-	0
Peak-to-Average	0	0	0	0			0	0	0	0
Power Ratio	0	0	0	0	-	-	0	0	0	0
Frequency Stability	0	0	0	0	0	-	-	-	0	-
Spurious										
Emissions at	0	0	0	-	0	-	-	0	0	0
Antenna Terminals										
Radiated Spurious	0	0	0		0				0	
Emission	0		0	-	0	-	-	-	0	-
Note	1. The mark "O" means that this configuration is chosen for testing.									
NOLE	2. The mark "-" means that this configuration is not testing.									

Test modes are chosen as the worst case configuration below for LTE Band 14

5. Test Case

5.1. RF Power Output and Effective Radiated Power

Ambient Condition


Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Methods of Measurement

During the process of the testing, The EUT was connected to the Base Station Simulator with a known loss. The EUT is controlled by the Base Station Simulator test set to ensure max power transmission with proper modulation.

ERP can then be calculated as follows: EIRP (dBm) = Output Power (dBm) + Antenna Gain (dBi) EIRP (dBm) = ERP (dBm) + 2.15 (dB.)

Test Setup

Limits

Part 90.635 (b) the maximum output power of the transmitter for mobile stations is 100 watts.

90.542(7) Portable stations (hand-held devices) transmitting in the 758-768 MHz band and the 788-798 MHz band are limited to 3 watts ERP.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U= 0.4 dB for RF power output, k = 2, U= 1.19 dB for ERP.

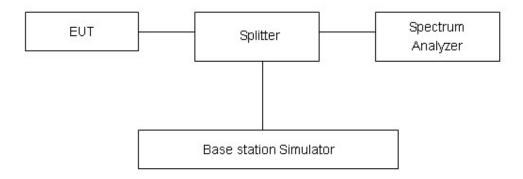
Test Results

Refer to the section 6.1 of this report for test data.

5.2. Occupied Bandwidth

Ambient Condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa


Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer.

RBW is set to \geq 1%EBW, VBW is set to 3x RBW.

99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

No specific occupied bandwidth requirements in part 2.1049.

Part 90.209 (a) Each authorization issued to a station licensed under this part will show an emission designator representing the class of emission authorized. The designator will be prefixed by a specified necessary bandwidth. This number does not necessarily indicate the bandwidth occupied by the emission at any instant. In those cases where part 2.202 of this chapter does not provide a formula for the computation of necessary bandwidth, the occupied bandwidth, as defined in part 2 of this chapter, may be used in lieu of the necessary bandwidth.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 624Hz.

Test Results

Refer to the section 6.2 of this report for test data.

5.3. Band Edge Compliance

Ambient Condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

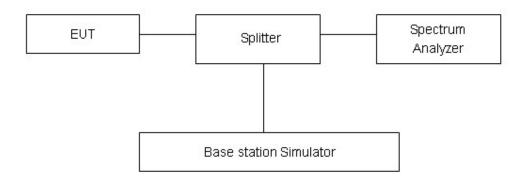
Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The band edge of the lowest and highest channels were measured.

The testing follows KDB 971168 v03r01 Section 6.0

1. The EUT was connected to spectrum analyzer and system simulator via a power divider.

2. The band edges of low and high channels for the highest RF powers were measured.


RBW is set to \geq 1%EBW, VBW is set to 3x RBW.

3. Set spectrum analyzer with RMS detector.

4. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5. Checked that all the results comply with the emission limit line.

Test Setup

Limits

90.543 Emission limitations (e) For operations in the 758-768 MHz and the 788-798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.

RF Test Report

Report No.: R2407A0777-R4V3

(2) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

(3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.

(4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(5) Compliance with the provisions of paragraph (e)(3) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of 30 kHz may be employed.

(f) For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Measurement Uncertainty

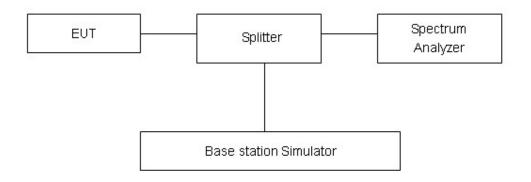
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U=0.684dB.

Test Results

Refer to the section 6.3 of this report for test data.

5.4. Peak-to-Average Power Ratio (PAPR)

Ambient Condition


Temperature	Relative humidity	Pressure				
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa				

Methods of Measurement

Measure the total peak power and record as P_{Pk} . And measure the total average power and record as P_{Avg} . Both the peak and average power levels must be expressed in the same logarithmic units (*e.g.*, dBm). Determine the PAPR from:

 $PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm).$

Test Setup

Limits

In measuring transmissions in this band using an average power technique, the peakto-average ratio (PAR) of the transmission may not exceed 13 dB in 24.232(d).

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U= 0.4 dB.

Test Results

Refer to the section 6.4 of this report for test data.

5.5. Frequency Stability

Ambient Condition

Temperature	Relative humidity	Pressure				
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa				

Method of Measurement

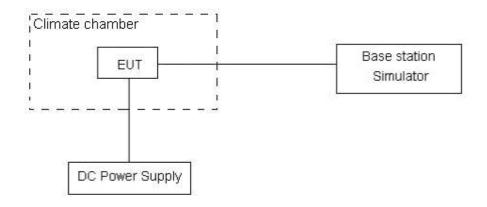
1. Frequency Stability (Temperature Variation)

The temperature inside the climate chamber is varied from -30°C to +55°C in 10°C step size, (1) With all power removed, the temperature was decreased to 0°C and permitted to stabilize for three hours.

(2) Measure the carrier frequency with the test equipment in a "call mode". These measurements should be made within 1 minute of powering up the mobile station, to prevent significant self warming.

(3) Repeat the above measurements at 10°C increments from -30°C to +55°C. Allow at least 1.5 hours at each temperature, un-powered, before making measurements.

2. Frequency Stability (Voltage Variation)


The frequency stability shall be measured with variation of primary supply voltage as follows:

Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried,

battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

This transceiver is specified to operate with an input voltage of between 3.5 V and 4.2 V, with a nominal voltage of 3.8V.

Test Setup

RF Test Report

Limits

90.539 (c) The frequency stability of mobile, portable, and control transmitters operating in the narrowband segment must be 400 parts per billion or better when AFC is locked to the base station. When AFC is not locked to the base station, the frequency stability must be at least 1.0 ppm for 6.25 kHz, 1.5 ppm for 12.5 kHz (2 channel aggregate), and 2.5 ppm for 25 kHz (4 channel aggregate).

Measurement Uncertainty

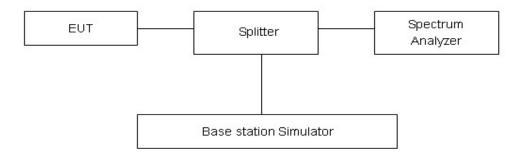
The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 3, U = 0.01 ppm.

Test Results

Refer to the section 6.5 of this report for test data.

5.6. Spurious Emissions at Antenna Terminals

Ambient Condition


Temperature	Relative humidity	Pressure		
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa		

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The measurement is carried out using a spectrum analyzer. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW 1MHz and VBW 3MHz, Sweep is set to ATUO.

Of those disturbances below (limit - 20 dB), the mark is not required for the EUT.

Test Setup

Limits

90.543 Emission limitations (e) For operations in the 758-768 MHz and the 788-798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.

(2) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

(3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.

(4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

RF Test Report

Report No.: R2407A0777-R4V3

(5) Compliance with the provisions of paragraph (e)(3) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of 30 kHz may be employed.

(f) For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
100kHz-1GHz	0.684 dB
1GHz-12.75GHz	1.407 dB

Test Results

Refer to the section 6.6 of this report for test data.

5.7. Radiated Spurious Emission

Ambient Condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Method of Measurement

1. The testing follows FCC KDB 971168 D01 v03r01 Section 5.8 and ANSI C63.26.

2. Above 30MHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC' s permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360° , and the receive antenna height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°.

3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=100KHz, VBW=300KHz for all frequency, and the maximum value of the receiver should be recorded as (Pr).

5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

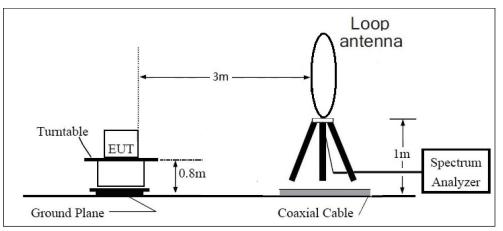
7. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

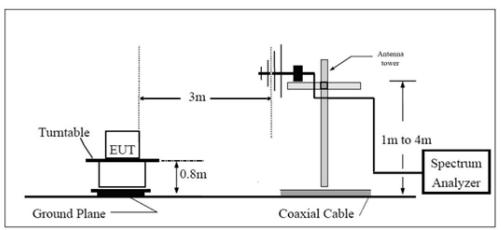
The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl + Ga

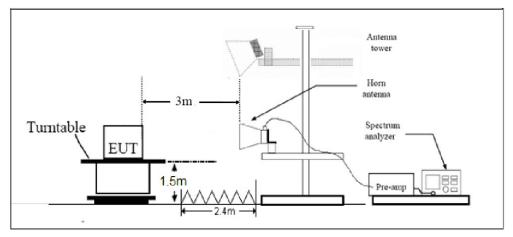
8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.


RF Test Report

Report No.: R2407A0777-R4V3


The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration.

Test Setup


9KHz ~ 30MHz

30MHz~~~ 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

🔅 eurofins

RF Test Report

Limits

90.543 Emission limitations (e) For operations in the 758-768 MHz and the 788-798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.

(2) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

(3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.

(4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(5) Compliance with the provisions of paragraph (e)(3) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of 30 kHz may be employed.

(f) For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U= 3.55 dB.

Test Results

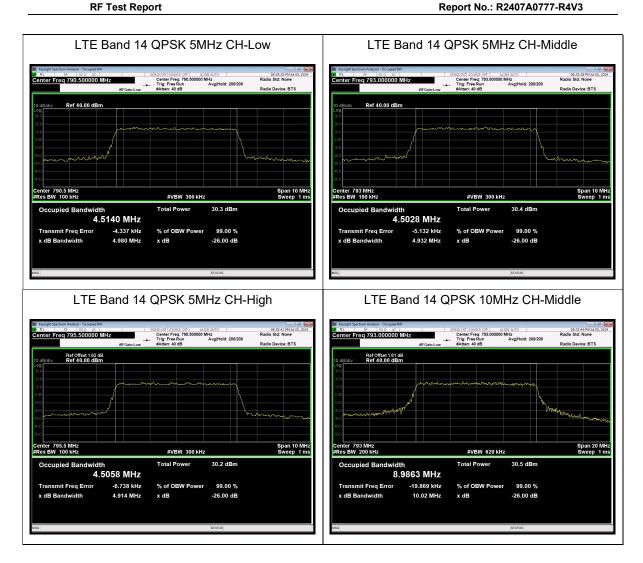
Refer to the section 6.7 of this report for test data.

6. Test Result

LTE Band 14										
Bandwidth (MHz)	UL Channel	RB Size	RB Position	Modulation	Power (dBm)	ERP (dBm)				
5	23305	1	#0	QPSK	22.72	24.07				
5	23305	1	#Mid	QPSK	22.68	24.03				
5	23305	1	#Max	QPSK	22.68	24.03				
5	23305	12	#0	QPSK	21.99	23.34				
5	23305	12	#Mid	QPSK	21.99	23.34				
5	23305	12	#Max	QPSK	21.83	23.18				
5	23305	25	#0	QPSK	21.93	23.28				
5	23330	1	#0	QPSK	22.84	24.19				
5	23330	1	#Mid	QPSK	22.81	24.16				
5	23330	1	#Max	QPSK	22.52	23.87				
5	23330	12	#0	QPSK	21.92	23.27				
5	23330	12	#Mid	QPSK	21.93	23.28				
5	23330	12	#Max	QPSK	21.76	23.11				
5	23330	25	#0	QPSK	21.86	23.21				
5	23355	1	#0	QPSK	22.77	24.12				
5	23355	1	#Mid	QPSK	22.48	23.83				
5	23355	1	#Max	QPSK	22.45	23.80				
5	23355	12	#0	QPSK	21.67	23.02				
5	23355	12	#Mid	QPSK	21.68	23.03				
5	23355	12	#Max	QPSK	21.54	22.89				
5	23355	25	#0	QPSK	21.60	22.95				
10	23330	1	#0	QPSK	23.00	24.35				
10	23330	1	#Mid	QPSK	22.79	24.14				
10	23330	1	#Max	QPSK	22.60	23.95				
10	23330	25	#0	QPSK	22.10	23.45				
10	23330	25	#Mid	QPSK	22.11	23.46				
10	23330	25	#Max	QPSK	21.79	23.14				
10	23330	50	#0	QPSK	21.95	23.30				
5	23305	1	#0	16QAM	22.13	23.48				
5	23305	1	#Mid	16QAM	22.08	23.43				
5	23305	1	#Max	16QAM	22.05	23.40				
5	23305	12	#0	16QAM	21.21	22.56				
5	23305	12	#Mid	16QAM	21.21	22.56				
5	23305	12	#Max	16QAM	21.07	22.42				
5	23305	25	#0	16QAM	21.16	22.51				

6.1. RF Power Output and Effective Radiated Power

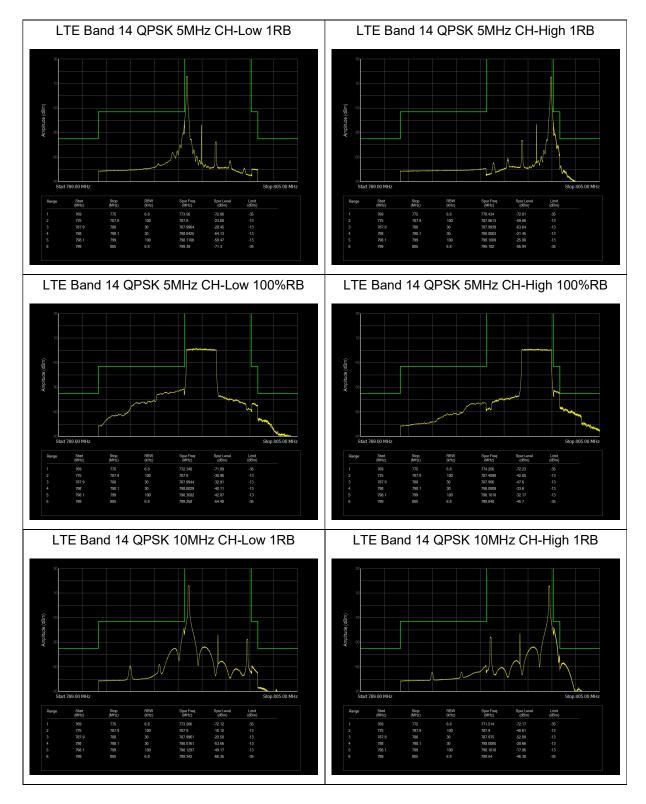
RF Test Rep	ort				Report No.: R2	2407A0777-R4V	3
5	23330	1	#0	16QAM	22.26	23.61	
5	23330	1	#Mid	16QAM	22.25	23.60	
5	23330	1	#Max	16QAM	21.97	23.32	
5	23330	12	#0	16QAM	21.24	22.59	
5	23330	12	#Mid	16QAM	21.25	22.60	
5	23330	12	#Max	16QAM	21.09	22.44	
5	23330	25	#0	16QAM	21.03	22.38	
5	23355	1	#0	16QAM	22.32	23.67	
5	23355	1	#Mid	16QAM	22.00	23.35	
5	23355	1	#Max	16QAM	22.02	23.37	
5	23355	12	#0	16QAM	20.88	22.23	
5	23355	12	#Mid	16QAM	20.89	22.24	
5	23355	12	#Max	16QAM	20.74	22.09	
5	23355	25	#0	16QAM	20.77	22.12	


RF Test Report

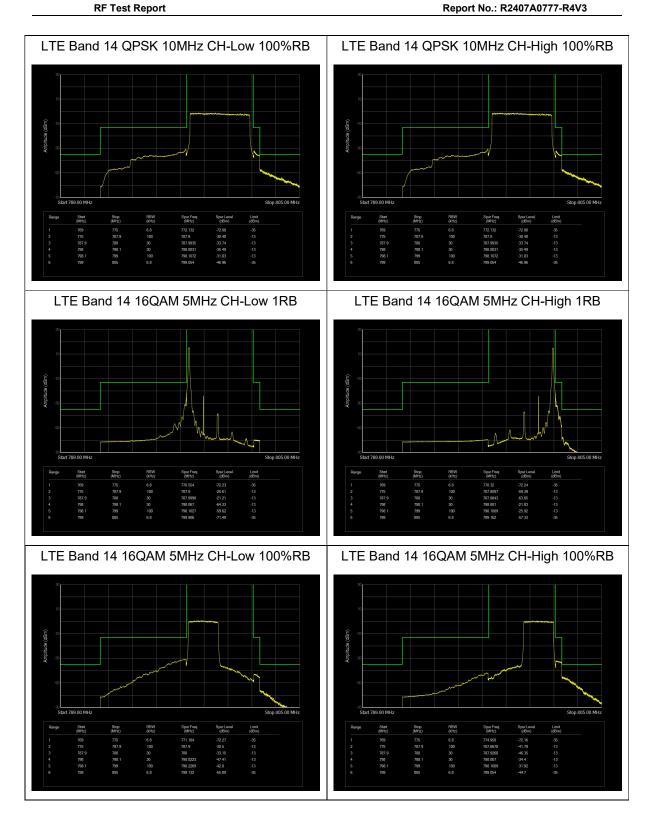
6.2. Occupied Bandwidth

	LTE Band 14								
RB Modulation	Modulation	Bandwidth	Channel	Frequency	99% Power	-26dBc			
	moudiation	(MHz)		(MHz)	Bandwidth (MHz)	Bandwidth (MHz)			
	QPSK	QPSK 5	23305	790.5	4.514	4.980			
			23330	793	4.503	4.932			
			23355	795.5	4.506	4.914			
100%		10	23330	793	8.986	10.02			
		5	23305	790.5	4.498	4.881			
16Q	16QAM		23330	793	4.498	4.912			
			23355	795.5	4.513	4.917			

Report No.: R2407A0777-R4V3



LTE Band 14	LTE Ba	and 14 10	6QAM 5MH	Hz CH-M	iddle		
Ref Offset 16 dB 800	→ Trip Free Run Avg Hold: 200200	Contraction of Action 0.02711 IPM And 2024 Radio Stat. None Radio Device: BTS	In a constraint balance documents Center Freq 793.000000 M Center Freq 793.00000 M Center Freq 793.00000000 M Center Freq 793.00000 M Center Freq 793.00000 M	#IFGain:Low	Contor Erec: 792 000000 M	n euro Hz Avgilfeld: 200/200	In the field of the second sec
Center 790.5 MHz #Res BW 100 kHz	#VBW 300 kHz	Span 10 MHz Sweep 1 ms	Center 793 MHz #Res BW 100 kHz		#VBW 300 kHz		Span 10 MHz Sweep 1 ms
Occupied Bandwidth 4.4980 MHz Transmit Freq Error - 988 Hz x dB Bandwidth 4.881 MHz	Total Power 29.6 dBm % of OBW Power 99.00 % x dB -26.00 dB		Occupied Bandwidth 4.4 Transmit Freq Error x dB Bandwidth	1 1979 MHz -7.644 kHz 4.912 MHz	Total Power % of OBW Power x dB	29.8 dBm 99.00 % -26.00 dB	
MSG	STATUS		MSG			STATUS	
Iterapht/sectores/Analyser-Oncoded 100 Iterapht/sectores/Analyser-Oncoded 100 Office State Center Freq 795.500000 MHz ##Galaxies ##Galaxies Ref office ##Galaxies Iterapht Ref office ##Galaxies Ref office ##Galaxies ##Galaxies Ref office ##Ga	**************************************	igh Correspondence Radio Device: BTS Radio Device: BTS Span 10 MHz Sweep 1 ms					
Occupied Bandwidth 4.5128 MHz	Total Power 29.4 dBm						
Transmit Freq Error -11.670 kHz	% of OBW Power 99.00 %						
x dB Bandwidth 4.917 MHz	x dB -26.00 dB						
MSG	STATUS						

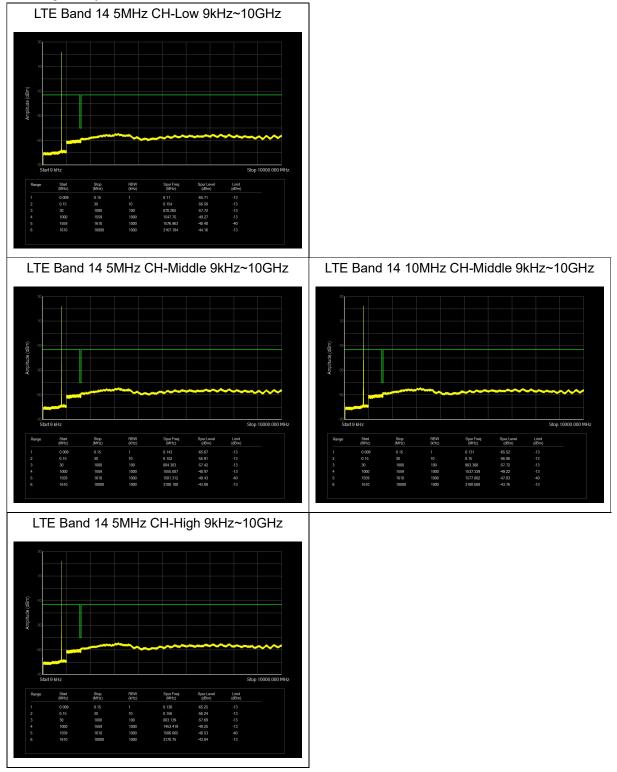

Report No.: R2407A0777-R4V3

RF Test Report

6.3. Band Edge Compliance

Report No.: R2407A0777-R4V3

6.4. Peak-to-Average Power Ratio (PAPR)


	LTE Band 14								
Modulation	Bandwidth (MHz)	Channel	Frequency (MHz)	PAPR (dB)					
		23305	790.5	5.23					
QPSK	5	23330	793	5.36					
QFSK		n	23355	795.5	5.48				
	10	23330	793	5.44					
		23305	790.5	5.83					
16QAM	5	23330	793	6.04					
		23355	795.5	6.26					

6.5. Frequency Stability

LTE Band 14							
Condition BANDWIDTH 5MHz		Freq.Error (Hz)	Freq.Error (Hz)	Frequency Stability (ppm)	Frequency Stability (ppm)	Verdict	
Temperature	Voltage	16QAM	QPSK	16QAM	QPSK		
Normal (25°C)	Voltage	13.44	1.75	0.01762	0.00230	PASS	
Extreme (50°C)		6.86	14.79	0.00899	0.00230	PASS	
Extreme (40°C)		3.31	15.88	0.00434	0.02081	PASS	
Extreme (30°C)		17.49	2.98	0.02292	0.00391	PASS	
Extreme (20°C)		1.06	2.07	0.00139	0.00271	PASS	
Extreme (10°C)	Normal	13.95	9.33	0.01829	0.01223	PASS	
Extreme (0°C)		15.69	12.97	0.02057	0.01700	PASS	
Extreme (-10°C)		10.20	2.51	0.01337	0.00328	PASS	
Extreme (-20°C)	-	6.64	17.37	0.00871	0.02276	PASS	
Extreme (-30°C)		14.23	3.70	0.01866	0.00485	PASS	
05%	LV	10.75	9.97	0.01409	0.01307	PASS	
25 ℃	HV	2.13	2.39	0.00279	0.00313	PASS	
Condition		Freq	Error	Frequency			
BANDWIDTH	10MHz	(۲	lz)	Stability (ppm)		Verdict	
Temperature	Voltage	QP	SK	QPSK			
Normal (25°C)		16	.15	0.02116		PASS	
Extreme (50°C)		3.	83	0.00)502	PASS	
Extreme (40°C)		8.	48	0.01	111	PASS	
Extreme (30°C)		2.	42	0.00	0.00318		
Extreme (20°C)	Normal	1.	30	0.00)170	PASS	
Extreme (10°C)	Normai	12	.68	0.01	662	PASS	
Extreme (0°C)		12	.29	0.01	610	PASS	
Extreme (-10°C)		11	.90	0.01	559	PASS	
Extreme (-20°C)		11	.24	0.01	473	PASS	
Extreme (-30°C)		7.	19	0.00	PASS		
25 ℃	LV		.11		456	PASS	
200	HV	1.	50	0.00)196	PASS	

6.6. Spurious Emissions at Antenna Terminals

If disturbances were found more than 20dB below limit line, the mark is not required for the EUT. The signal beyond the limit is carrier.

6.7. Radiated Spurious Emission

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report.

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	Result Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1581.00	-61.57	1.70	8.70	Vertical	-54.57	-40.00	14.57	64
Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	Result Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
3	2371.50	-57.92	2.30	12.00	Vertical	-50.37	-13.00	37.37	154
4	3163.20	-57.80	2.30	13.10	Vertical	-49.15	-13.00	36.15	37
5	3954.20	-49.62	2.90	12.50	Vertical	-42.17	-13.00	29.17	25
6	4745.00	-58.68	3.10	12.50	Vertical	-51.43	-13.00	38.43	297
7	5533.50	-62.38	3.30	12.50	Vertical	-55.33	-13.00	42.33	36
8	6324.00	-59.09	3.80	11.50	Vertical	-53.54	-13.00	40.54	154
9	7114.50	-57.01	4.20	11.80	Vertical	-51.56	-13.00	38.56	27
10	7905.00	-56.58	4.40	12.30	Vertical	-50.83	-13.00	37.83	67
	•				s level is no mor		e floor.		

LTE Band 14 QPSK 5MHz CH- Middle, RB 1

2. The worst emission was found in the antenna is Vertical position.

LTE Band 14 QPSK 10MHz CH-Middle, RB 1

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	Result Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1576.00	-61.52	1.70	8.70	Vertical	-54.52	-40.00	14.52	57
Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	Result Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
3	2364.00	-56.50	2.30	12.00	Vertical	-48.95	-13.00	35.95	297
4	3154.30	-58.78	2.30	13.10	Vertical	-50.13	-13.00	37.13	48
5	3943.10	-49.89	2.90	12.50	Vertical	-42.44	-13.00	29.44	92
6	4731.70	-59.23	3.10	12.50	Vertical	-51.98	-13.00	38.98	29
7	5516.00	-62.65	3.30	12.50	Vertical	-55.60	-13.00	42.60	38
8	6304.00	-59.23	3.80	11.50	Vertical	-53.68	-13.00	40.68	29
9	7092.00	-57.55	4.20	11.80	Vertical	-52.10	-13.00	39.10	94
10	7880.00	-56.18	4.40	12.30	Vertical	-50.43	-13.00	37.43	21
Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. 2. The worst emission was found in the antenna is Vertical position									

2. The worst emission was found in the antenna is Vertical position.

7. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date						
Climate Chamber	WEISS	VT 4002	58226119450 010	2024-05-07	2025-05-06						
Wireless Communication Tester	R&S	CMW500	150415	2024-05-07	2025-05-06						
Spectrum Analyzer	Keysight	N9020A	MY50510203	2024-05-07	2025-05-06						
DC Power Supply	UNI-T	UTP1310+ C220795889		2024-05-08	2025-05-07						
Radiated Spurious Emission											
Spectrum Analyzer	R&S	FSV30	100815	2023-12-05	2024-12-04						
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2023-04-16	2026-04-15						
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	391	2022-09-29	2025-09-28						
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	1439	2024-07-06	2027-07-05						
Horn Antenna	SCHWARZBECK	BBHA 9120D	1594	2023-12-05	2026-12-04						
Horn Antenna	SCHWARZBECK	BBHA 9120D	01799	2022-09-01	2025-08-31						
Software	R&S	EMC32	10.35.10	/	/						

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

****** END OF REPORT ******