

TEST REPORT

FCC ID: 2AXYP-OTW-630-R

Product: True Wireless Earbuds

Model No.: OTW-630

Trade Mark: oraimo

Report No.: WSCT-ANAB-R&E241200080A-LE

Issued Date: 13 January 2025

WSET

Issued for:

WSE

ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 W5 C SHAN MEI STREET FOTAN NT HONGKONG

WSET

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China 5/

TEL: +86-755-26996192

FAX: +86-755-86376605

WSCI

WSET

WSLT

Note: This report shall not be reproduced except in full, without the written approval of World Standardization Certification Testing Group (Shenzhen) Co., Ltd. This document may be altered or revised by World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

深圳世标检测认证股份有限公司

Page 1 of 50

W5C1

WSCT

ac-MRA

Malalalala

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E241200080A-LE

TABLE OF CONTENTS

\ /	WSET WSET WSET	WSET
1.	Test Certification	3
2.	Test Result Summary	4
W5 5 3.	EUT Description WSET WSET WSET	5
4.	Genera Information	6
	4.1. TEST ENVIRONMENT AND MODE	6
	4.2. DESCRIPTION OF SUPPORT UNITS	4W5 ET
5.	Facilities and Accreditations	7
	5.1. FACILITIES	7
WSET	5.2. ACCREDITATIONS	7
	5.3. MEASUREMENT UNCERTAINTY	8
	5.4. MEASUREMENT INSTRUMENTS	9
6.	Test Results and Measurement Data	. 10'5 ET
\sim	6.1. Antenna requirement	10
	6.2. CONDUCTED EMISSION	11
WSET	6.3. CONDUCTED OUTPUT POWER	13
	6.4. EMISSION BANDWIDTH	18
	6.5. Power Spectral Density	23
	6.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	25 5 [7
	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	39
WSET	WSET WSET WSET WSET	

W5E1 WSEI WSE WSET

WSET WSET WSET WS ET

FAX: 0086-755-86376605

Page 2 of 50

WSET

WSET

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

Report No.: WSCT-ANAB-R&E241200080A-LE

Test Certification

Product:

True Wireless Earbuds

Model No.:

Applicant:

OTW-630

Trade Mark:

oraimo

ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

W5E7

19-25 SHAN MEI STREET FOTAN NT HONGKONG

Manufacturer:

ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

19-25 SHAN MEI STREET FOTAN NT HONGKONG

Date of Test:

15 December 2024 to 13 January 2025

Applicable

FCC CFR Title 47 Part 15 Subpart C Section 15.247

KDB 558074 D01 DTS Meas Guidance v04 Standards:

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

WSE

Tested By:

(Wang Xiang)

Checked By:

(Chen Xu)

Approved By:

W5CT

(Li Huaibi)

WSCT

深圳世标检测认证股份有限公司

W5 C1

Page 3 of 50

W5 ET

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E241200080A-LE

Test Result Summary 2.

/14// / / / / / / / / / / / / / / / / /		THE PERSON NAMED IN	HALL TO
Requirement	CFR 47 Section	Result	1613
Antenna requirement	§15.203/§15.247 (c)	PASS	
AC Power Line Conducted Emission	\\ \qq	NA WS ET	
Conducted Peak Output W5.77 Power W5.7	§15.247 (b)(3) §2.1046	W5 PASS	W5C
6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS	ı.
Power Spectral Density	§15.247 (e)	PASS	
Band Edge	1§5.247(d) §2.1051, §2.1057	PASS	WSE
Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	
	Antenna requirement AC Power Line Conducted Emission Conducted Peak Output Power 6dB Emission Bandwidth Power Spectral Density Band Edge	Antenna requirement §15.203/§15.247 (c) AC Power Line Conducted Emission §15.207 Conducted Peak Output §15.247 (b)(3) §2.1046 6dB Emission Bandwidth §15.247 (a)(2) §2.1049 Power Spectral Density §15.247 (e) Band Edge §2.1051, §2.1057 Spurious Emission	Antenna requirement §15.203/§15.247 (c) PASS AC Power Line Conducted Emission S15.207 Conducted Peak Output \$15.247 (b)(3) PASS Power \$2.1046 6dB Emission Bandwidth \$15.247 (a)(2) PASS Power Spectral Density \$15.247 (e) PASS Band Edge \$2.1051, §2.1057 Spurious Emission PASS

Note:

WSET

W5 C

NSC.

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

WSE WSE WSE WSE

WSET

WSET NSCT WSET WSE

Page 4 of 50

WSET

WSCT

4W5

Malalalala

ANAB
ANSI National Accreditation Board
A C C R E D I T E D

WSE

W5 E

W5E7

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E241200080A-LE

3. EUT Description

	Product Name:	True Wireless Earbuds 7	V5ET
/	Model :	OTW-630	
-	Trade Mark:	oraimo	
	Operation Frequency:	2402MHz~2480MHz	
	Channel Separation:	2MHz	X
	Number of Channel:	407 WSET WSET	V5 ET
1	Modulation Technology:	GFSK	
	Antenna Type:	PIFA Antenna	
	Antenna Gain:	1.33dBi	
	Operating Voltage	Li-ion Battery:ZWD14280PV 650mAh 3.8V 2.47Wh Button Type Lithium Ion Cell:CH1254AA	VSET
		3.85V 76mAh 0.2926Wh	
1	Remark:	N/A.	

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0.	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	X		X		X		X
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark: Channel 0, 19 & 39 have been tested.							

WSCT WSCT WSCT WSCT

WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET WSET

DD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Stydot, Bao'an District, Shenzhen City, Guangdong Province. Chini EL: 0086-755-26996192 26998053 26998144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

ict-cert.com Http://www.wsct-cert.com World Standard ration Cert

深圳世标检测认证股份有限公司
World Standard ration Certification & Testing Group (Shenzhen) Co., Li

W5C1

letiber of the Wac i Group (Wac i an)

WSET

WSE

,

WSET

Report No.: WSCT-ANAB-R&E241200080A-LE

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

A STATE OF THE PARTY OF THE PAR	Equipment	Model No.	Serial No.	FCC ID	Trade Name
	Adapter	XCU32	\rightarrow	1	× /

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

WS ET WS ET

WSET

W5ET

WSET

VSET WSE

WSET

AWS ET

D: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi L: 0086-755-26996192 28996053 26996144 FAX: 0086-755-88376605 E-mail: fenghing.wang@wsct-cert.com Http://www.wsct-cert.com

□ 深圳世标检测从证股份有限公司

World Standard Intro Certification & Testing Group (Shenzhen Co. Lit

W5ET

5. Facilities and Accreditations

5.1. Facilities

WSCT WSCT

AWS CT

All measurement facilities used to collect the measurement data are located at World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2.ACCREDITATIONS

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB). Certification Number: AT-3951

WSG	WS	WS	ET W	SET	WSET
WSET	WSET	WSCI	WSET	WSET	
WST	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$		X	WSET
WSIG	WSET	WSGT	WSET	WSCT	,
WST	$\langle \rangle$	$\langle \hspace{0.1cm} \rangle$		X	WSET
WSET	WSEE	WSLI	WSLI	WSET	,
WST	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$		\times	Test of
WSET	WSET	WSET	WSET	SET Confidence W.S.	Shenzhen,

VSET W.

WSCI

WSLT

Report No.: WSCT-ANAB-R&E241200080A-LE

WSET

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	No.	Item	MU	
WSET	1	Power Spectral Density	±3.2dB	
	2	Duty Cycle and Tx-Sequence and Tx-Gap	±1%	X
	3 _{W5} C	Medium Utilisation Factor W5 [7]	±1.3%	W5 ET
\sim	4	Occupied Channel Bandwidth	±2.4%	
	5	Transmitter Unwanted Emission in the out-of Band	±1.3%	
AWSET	6	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%	
	7	Receiver Spurious Emissions	±2.5%	X
	8W5E	Conducted Emission Test W5 77 W5	±3.2dB	WSET
\times	9	RF power, conducted	±0.16dB	
	10	Spurious emissions, conducted	±0.21dB	
WSET	11	All emissions, radiated(<1GHz)	±4.7dB	
	12	All emissions, radiated(>1GHz)	±4.7dB	\times
	13/5/	Temperature W5 [7] W5 [7] W5	±0.5°C	WSET
X	14	Humidity	±2.0%	

/W-7-7-7	W-7-47	W-7-7-7	W-7-7	<i>67.47</i>
X	X	X		\times
W5 ET	WSET	WSET	WSET	WSET
WSET	WSLIT	WSET	WSET W	507

W5 CT

ac-MRA

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

Report No.: WSCT-ANAB-R&E241200080A-LE

5.4.MEASUREMENT INSTRUMENTS

	J.T. WILAGUILL		<u></u>				
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	'S E
	Test software	-	EZ-EMC	CON-03A	-	X	
7	Test software		MTS8310	WSFT	- /-	15/7	
_	EMI Test Receiver	R&S	ESCI	100005	11/05/2024	11/04/2025	
	LISN	AFJ	LS16	16010222119	11/05/2024	11/04/2025	\times
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2024	11/04/2025	75 E
	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2024	11/04/2025	
Ť	Coaxial cable	Megalon	LMR400	N/A	11/05/2024	11/04/2025	
	GPIB cable	Megalon	GPIB	N/A	11/05/2024	11/04/2025	
	Spectrum Analyzer	R&S	FSU	100114	11/05/2024	11/04/2025	\nearrow
	Pre Amplifier	H.P.CT	HP8447E 57	2945A02715	11/05/2024	11/04/2025	75 E
/	Pre-Amplifier	CDSI	PAP-1G18-38	_	11/05/2024	11/04/2025	
	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	11/05/2024	11/04/2025	
Į	9*6*6 Anechoic	ET V	VSET .	WSET	11/05/2024	11/04/2025	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2024	11/04/2025	X
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2024	11/04/2025	/5/L
,	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2024	11/04/2025	خلت
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
J	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2024	11/04/2025	X
	Loop Antenna	EMCO	6502W5/	00042960	11/05/2024	11/04/2025	75 E
1	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2024	11/04/2025	
\	Power meter	Anritsu	ML2487A	6K00003613	11/05/2024	11/04/2025	
ý	Power sensor	Anritsu	MX248XD	WESTER	11/05/2024	11/04/2025	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2024	11/04/2025	X

Report No.: WSCT-ANAB-R&E241200080A-LE

Test Results and Measurement Data 6.

6.1. Antenna requirement

W5 E T

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a PIFA Antenna. it meets the standards, and the best case gain of the antenna is 1.33dBi.

Please refer to the attachment "OTW-630(R) Internal Photo" for the antenna location

Page 10 of 50

Report No.: WSCT-ANAB-R&E241200080A-LE

6.2. Conducted Emission

6.2.1. Test Specification

9.	2.1. Test Specification		
X	Test Requirement:	FCC Part15 C Section 15.207	
WSET	Test Method:	ANSI C63.10:2014 W5 [7] W5 [7]	
	Frequency Range:	150 kHz to 30 MHz	\times
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto	WSET
WSET	Limits:	Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50	
	X	Reference Plane	X
	WSET WSE	40cm LISN	WSET
WSET	Test Setup:	Remark E.U.T Adapter Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	WSIT
\times	Test Mode:	Charging + Transmitting Mode	
WSET	WSET	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 	\times
	WSET	2. The peripheral devices are also connected to the main	The same of the sa
WSG	Test Procedure:	power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum	
	WSET	conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement.	testa
\sim	Test Result:	N/A	o Grombi &

Report No.: WSCT-ANAB-R&E241200080A-LE

6.2.2. EUT OPERATING CONDITIONS

The EUT is working in the Normal link mode. All modes have been tested and normal link mode is

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

Test data:

Note: EUT is powered by batteries and cannot transmit normally while charging. This project does not require testing

WSEI	WSCT	WSET	WSET	W5CT	,
W	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.2cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	$\langle \times$	
WSGI	WSIII	WSET	WSLIT	WSET	/
W/S	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.2cm} \rangle$	$\langle \hspace{0.1cm} \rangle$	$\langle \times$	_
WSIGI	WSET	WSCI	WSLT	WSET	/
WZS	$\langle \ \ \ \ \ \rangle$	$\langle \rangle$	$\langle \ \ \rangle$	$\langle \times$	_
WSGI	WSEI	WSET	WSLI	WSET	_
WS	$\langle \hspace{0.1cm} \rangle$	$\langle \rangle$	$\langle \hspace{0.2cm} \rangle$		
X				WSET Shenzalo	

Page 12 of 50

Report No.: WSCT-ANAB-R&E241200080A-LE

6.3. Conducted Output Power

6.3.1. Test Specification 5.5.7

WSET

IWSET

WSET

\ /			
X	Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
WSET	Test Method:	KDB558074 W5 [T] W5 [T]	
	Limit:	30dBm	\times
	Test Setup:		WSET
		Spectrum Analyzer EUT	
WSET	Test Mode:	Refer to item 4.1	
		 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: 	WSLET
WSET	Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. 	
		e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak	WSET
X	Test Result:	amplitude level. PASS	
ATTEN	THE PARTY OF THE P	Annual Annual	

	WSDT	WSCI	WSCT	WSET	WSET
Wister		$\langle \ \ \rangle$		ET WS	
11-19		110			

4W5LT

WSET

WSET

WSET

WSCT Shenzing Original Shenzing Origin Shenzing Origina Shenzing Origina Shenzing Origina Shenzing Ori

WSET WS

AWSET

DD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. Chin EL: 0088-755-26996192 26998053 26998144 FAX: 0086-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard ration Certification& Testin

stoup (WSCT an)

Page 13 of 50

M/C

WSET

Report No.: WSCT-ANAB-R&E241200080A-LE

W5 CT

6.3.2. Test Data

WSEI

WSE

BLE 1M				
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result	
Lowest	8.01	30.00	PASS	
Middle	8.07	30.00	PASS	
Highest	7.59	30.00	PASS	
	Lowest Middle	Test channel Maximum Conducted Output Power (dBm) Lowest 8.01 Middle 8.07	Test channel Maximum Conducted Output Power (dBm) Limit (dBm) Lowest 8.01 30.00 Middle 8.07 30.00	

	A CONTRACTOR OF THE CONTRACTOR	And the second s			
7	BLE 2M				
	Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result	
1	Lowest	8.07	30.00	PASS	
	Middle	8.07	30.00	PASS	
	Highest	7.56	30.00	PASS	

Test plots as follows:

11-1-1	11-1-1	12.5	1156	17-1-1

WS TO

|--|

			/		
1	MARKET	1777-17-18-18-18-18-18-18-18-18-18-18-18-18-18-	ATTICAL CONTRACTOR OF THE PARTY	A CONTRACTOR OF THE PARTY OF TH	Marie Cont.
1	WSIT	W-57 FT	WSET	WSTER	WSTET

WSET	WSET	WSET	WSET	acations Testion
				Catal Sal

WSET

Page 14 of 50

W5C1

Report No.: WSCT-ANAB-R&E241200080A-LE

ADD: Building A-8, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0088-755-26996192 26998053 26998144 FAX: 0088-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

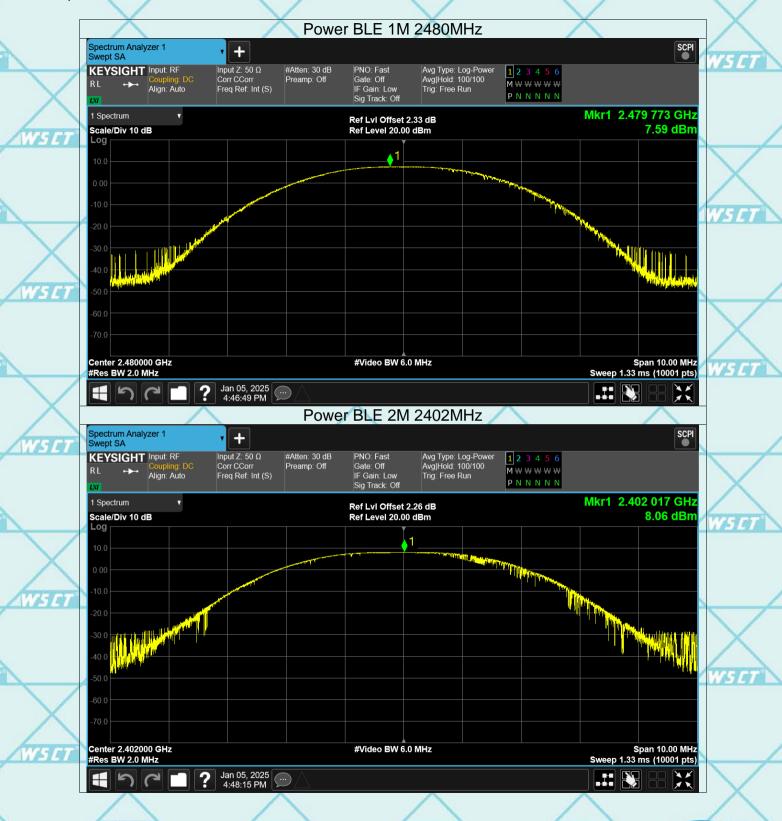
深圳世标检测认证股份有限公司
World Standard Pation Certification& Testing Group(Shenzhen) Co.,Li

WSEI

Page 15 of 50

CFT WSFT

WSET



W5 CI

Report No.: WSCT-ANAB-R&E241200080A-LE

ADD: Building A-8, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China. TEL: 0086-755-26996192 26998053 26998144 FAX: 0086-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

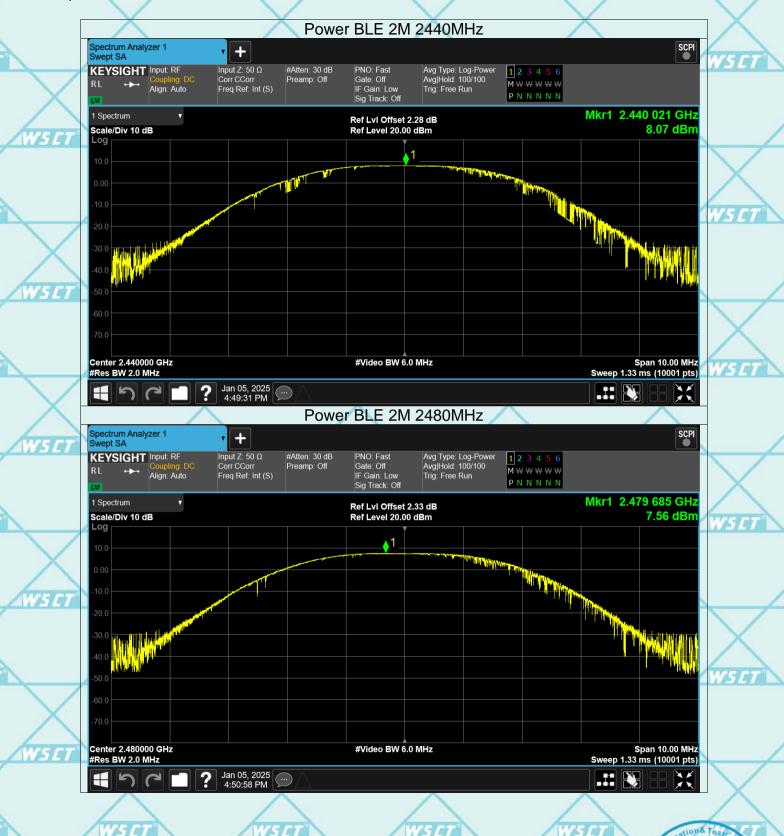
深圳世标检测认证股份有限公司
World Standard Fation Certification& Testing Group(Shenzhen) Co.,Li

WSE

ations Tes

Page 16 of 50

Page 16



W5 CI

ANSI National Accreditation Board
A C C R E D I T E D

ESQUECTORS
TESTING LABORATORY

Report No.: WSCT-ANAB-R&E241200080A-LE

深圳世标检测认证股份有限公司
World Standard Intion Certification& Testing Group(Sherizhen)Co.,Ltd

WSE

6.4. Emission Bandwidth

6.4.1. Test Specification

W5 CT

· /			
X	Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
5 <i>ET</i>	Test Method:	KDB558074 W5 [7]	
	Limit:	>500kHz	\times
	Test Setup:		VS ET
X		Spectrum Analyzer EUT	
SET	Test Mode:	Refer to item 4.1	
			VSET
517	Test Procedure:	3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must	
		be greater than 500 kHz. 4. Measure and record the results in the test report.	\checkmark
	Test Result:	PASS	\triangle
	WATE	WSI	F7-7-1

WSET

W5 E7 WSET WSET WSET

WSE

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E241200080A-LE

6.4.2. Test data

BLE 1M

Test channel

Lowest

Middle

Highest

WSET

The state of the s			WEST
6dB Emission B	Bandwidth (kHz)		1,4-4.
mode	Limit	Result	
03	>500k	WSET	
08	>500k	PASS	
08	>500k		\wedge

BLE 2M

BT LE mo

0.503

0.508

0.508

-		6dB Emission I	Bandwidth (kHz)	
Test channel		BT LE mode	Limit	Result
1	Lowest	0.642	>500k	WSCT
	Middle	0.816	>500k	PASS
	Highest	0.665	>500k	

Test plots as follows:

1	WSET	W/5	<i>[T</i>]	WSET	W51	7	WSIT
_							

WSET	W5	7	WSET	WSET	WSCT

WSET	WSET	WSET	WSET	WSIT

WSET	WSET	WSET	WSLT	WSET
------	------	------	------	------

			/		
1	MARKET	1777-17-18-18-18-18-18-18-18-18-18-18-18-18-18-	ATTICAL CONTRACTOR OF THE PARTY	A CONTRACTOR OF THE PARTY OF TH	Marie Cont.
1	WSIT	W-57 FT	WSET	WSTER	WSTET

WSET	WSET	WSET	WSET	scations Testion
				Sell Sell

Page 19 of 50

W5E1

ANSI National Accreditation Board
A C C R E D I T E D

SOUTH OF THE STATE OF THE ST

Report No.: WSCT-ANAB-R&E241200080A-LE

Shiyan Street, Bao'an District, Shenzhen City, Guang

FAX: 0086-755-86376605

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue.

TEL: 0088-755-26996192 26996053 26998144

Member of the WSCT Group (WSCT SA)

深圳世标检测认证股份有限公司

YOM #

ANSI National Accreditation Board
A C C R E D I T E D

SOLICE ROSS
TESTING LABORATORY

Report No.: WSCT-ANAB-R&E241200080A-LE

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China. TEL: 0086-755-26996192 26998053 26998144 FAX: 0086-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

深圳世标检测从证股份有限公司
World Standard rotton Certification & Testing Group (Shenzhen) Co.,Ltd.

15 4

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.
TEL: 0088-755-26996192 26996053 26998144 FAX: 0086-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

深圳世标检测从证股份有限公司
World Standard rotton Certification & Testing Group (Shenzhen) Co.,Ltd.

15 E

WSCT

Report No.: WSCT-ANAB-R&E241200080A-LE

6.5. Power Spectral Density

6.5.1. Test Specification

	WSIT	T WSTT WSTT	WSET
egreen	Test Requirement:	FCC Part15 C Section 15.247 (e)	
\wedge	Test Method:	KDB558074	
VS ET	Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.	
	Test Setup:		WSET
X		Spectrum Analyzer EUT	
	Test Mode:	Refer to item 4.1	
NSET.	Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 	WSCT
	Test Result:	PASS	X
,			

WSET WSET WSET W5 C1

W5CT

WSET

Page 23 of 50

Report No.: WSCT-ANAB-R&E241200080A-LE

WSET

6.5.2. Test data

Test plots as follows:

WSE

WSET

W5ET

	Test channel	Power Spectral Density (dBm/3kHz)					
	rest chamber	BLE 1M	Limit	Result			
/	Lowest	-2.11	8 dBm/3kHz				
7	Middle	W-1.96	8 dBm/3kHz	PASS			
	Highest	-2.47	8 dBm/3kHz		\times		

_	Test channel	Power Spectral Density (dBm/3kHz)						
	rest chamilei	BLE 2M	Limit	Result				
	Lowest	-2.25	8 dBm/3kHz					
	Middle	W-2.2	8 dBm/3kHz	PASS				
	Highest	-2.75	8 dBm/3kHz					

					P
	V		~	V	
- X			\sim	X	
/ \		Control of the Contro	/ >		
		\ /			

A		Array .	free-	Array .	(married)
	W-7-5-7	WSET	WSIT	WSET	WSCT

WSET	WSET	WSET	WSET	WSET"
------	------	------	------	-------

		/			
1	Mary many	TO THE RESERVE TO THE	A CONTRACTOR OF THE PARTY OF TH		Marie Cont.
	WSET	WS FT	WSET	WST	WSTET

WSET WSET WSET WSET WSET

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

TEL: 0088-755-26996192 26998053-26998144 FAX: 0098-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

ma. 深圳世标检测认证股份有限公司 om World Standard ration Certification & Testing

WSET

Member of the WSCT Group (WSCT SA)

Page 24 of 50

WSET

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.
TEL: 0088-755-26996192 26996053 28998144 FAX: 0088-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

深圳世标检测认证股份有限公司
World Standard Enting Coupt Shenzhen Co., Ltd

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26998053 26998144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Intro Certification & Testing Group (Sherizhen Co., Ltd

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0088-755-26996192 26996053 26898144 FAX: 0086-755-86376605 Member of the WSCT Group (WSCT SA) Page 27 of 50

MON # 深圳世标检测认证股份有限公司

15 E

Report No.: WSCT-ANAB-R&E241200080A-LE

6.6. Conducted Band Edge and Spurious Emission Measurement

6.6.1. Test Specification

6.	6.1. Test Specification	T WSET	WSET	AWS ET
\times	Test Requirement:	FCC Part15 C Section 15.247 (d)		
WSET	Test Method:	KDB558074		
WSIET	Limit:	In any 100 kHz bandwidth of frequency band, the emission non-restricted bands shall be a 30dB relative to the maximum RF conducted measurement which fall in the restricted band 15.205(a), must also comply well limits specified in Section 15.205.	ions which fall in the attenuated at least 20 dB attenuated at least 20 dB at PSD level in 100 kHz by and radiated emissions ads, as defined in Section with the radiated emission	WSCT
	Test Setup:	Spectrum Analyzer	EUT	WSET
\vee	Test Mode:	Refer to item 4.1		
WSITE	Test Procedure:	 The RF output of EUT was canalyzer by RF cable and a was compensated to the resmeasurement. Set to the maximum power set. EUT transmit continuously. Set RBW = 100 kHz, VBW=3 Unwanted Emissions measurement bandwidth outside of the austhall be attenuated by at least maximum in-band peak PSI maximum peak conducted of used. If the transmitter compower limits based on the use a time interval, the attenuate paragraph shall be 30 dB in 15.247(d). Measure and record the resurt against the limit line in the construction. 	setting and enable the setting and enable the allowed in any 100 kHz athorized frequency band ast 20 dB relative to the D level in 100 kHz when output power procedure is plies with the conducted se of RMS averaging over ion required under this astead of 20 dB per allts in the test report.	WSLT
	Test Result:	PASS	X	X
	, ,	/ /		-/

W5C

AWSET 1

WSE

WSET

AWS FT

DD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. Chin EL: 0088-755-26996192 26996053 26998144 FAX: 0086-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Intro Certification & Testing Group (Sheruhen Co., Lit

Page 28 of 50

WSOT

WSCT

W5C1

Report No.: WSCT-ANAB-R&E241200080A-LE

Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue. TEL: 0088-755-26996192 26996053 26998144 FAX: 0086-755-86376605

40M # 深圳世标绘测认证股份有限公司

Page 29 of 50

15 4

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0088-755-28996192 28998053 28998144 FAX: 0088-755-88376805 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Fation Certification& Testing Group(Shenzhen) Co., Ltd.

ations Tes

Page 30 of 50

WATER

WSET

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue TEL: 0088-755-26996192 26996053 26998144 FAX: 0086-755-86376605

OM # 深圳世标检测认证股份有限公司

ations Tes

Report No.: WSCT-ANAB-R&E241200080A-LE

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0086-755-28996192 28996053 26998144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Fation Certification& Testing Group(Shenzhen) Co.,Li

Page 32 of 50

WSET

WSET

W51

WSE

Page 3

FAX: 0086-755-86376605

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

TEL: 0088-755-26996192 26996053 26998144

Member of the WSCT Group (WSCT SA)

Page 33 of 50

hiyan Street, Bao'an District, Shenzhen City, Guar

SET WSET

深圳世标检测认证股份有限公司

HOM #

Report No.: WSCT-ANAB-R&E241200080A-LE

Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue. TEL: 0088-755-26996192 26996053 26998144 FAX: 0086-755-86376605

40M # 深圳世标绘测认证股份有限公司

Member of the WSCT Group (WSCT SA)

Page 34 of 50

ANSI National Accreditation Board
A C C R E D I T E D

SOLITOR TO STATE TO

Report No.: WSCT-ANAB-R&E241200080A-LE

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.
TEL: 0088-755-26996192 26996053 26998144 FAX: 0088-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

深圳世标检测认证股份有限公司 World Standard sation Certification & Testing Group(Shenzhen) Co., Ltd.

Report No.: WSCT-ANAB-R&E241200080A-LE

ADD: Building A.B., Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.
TEL: 0088-755-26996192 26998053 26998144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测从证股份有限公司
World Standard Entire Centification& Testing Group(Shenzhen) Co., Liv

ations Tes

WSCT

Member of the WSCT Group (WSCT SA)

Page 36 of 50

Report No.: WSCT-ANAB-R&E241200080A-LE

Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue. TEL: 0088-755-26996192 26996053 26998144 FAX: 0086-755-86376605

YOM # 深圳世标检测认证股份有限公司

Member of the WSCT Group (WSCT SA)

Page 37 of 50

ations Tes

Report No.: WSCT-ANAB-R&E241200080A-LE

ADD: Building A-8, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China. TEL: 0088-755-26996192 26996053 26998144 FAX: 0086-755-88376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

深圳世标检测从证股份有限公司
World Standard Fation Certification& Testing Group(Shenzhen) Co.,Lit

ations Tes

Report No.: WSCT-ANAB-R&E241200080A-LE

6.7. Radiated Spurious Emission Measurement

	6.7.1.	Test S	pecification	NS BU
--	--------	--------	--------------	-------

WSET

1W5*LT*

WS CT

6.	7.1. Test Specification		WSL)		/ 11/-7	7/1	\leftarrow	WSLI
X	Test Requirement:	FCC Part15	C Sectio	n 15.209			X	
WSET	Test Method:	ANSI C63.10):2014	WSE			WSTT	,
	Frequency Range:	9 kHz to 25 (GHz		1	/		
	Measurement Distance:	3 m	X					X
	Antenna Polarization:	Horizontal &	Vertical		WS			WSLT
	Operation mode:	Refer to item	4.1				\vee	
		Frequency	Detector		VBW		Remark	
WSET	W5CT	9kHz- 150kHz 150kHz-	Quasi-pea Quasi-pea	J. J. April 11 PM 1	1kHz 30kHz		i-peak Value i-peak Value	/
	Receiver Setup:	30MHz						
		30MHz-1GHz	Quasi-pea Peak	ak 100KHz 1MHz	300KHz 3MHz		i-peak Value eak Value	
	WSET	Above 1GHz	Peak	1MHz	10Hz	THE R. P. LEWIS CO., LANSING, MICH.	rage Value	WSET
$\overline{}$				EVIZ				
X	×	Frequen	су	Field Stre (microvolts			asurement nce (meters)	
		0.009-0.4	190	2400/F(I		2.010.	300	
WSET	WSET	0.490-1.7		24000/F(KHz)	_/	30	
		1.705-3		30			30	\/
	X	30-88		100			3	X
	Limit:	88-216 216-96		150 200		_	3	
	WSDI	Above 9		500			3	WSET
			<u></u> 1	\/				
X	X		Fie	eld Strength	Measure	ment	X	
		Frequency		rovolts/meter)	Distan		Detector	
WSET	W5LT	/W4741	((meter	s)	WATER	/
		Above 1GHz		500 5000	3		Average Peak	
	\sim		-X	3000			1 Can	
	WSET WSET	For radiated	emission	ns below 30)MHz	-		WSET
		Di	stance = 3m			Compu	ıter	
		+	-					
WSLT	WSET		1 (() [Pre -	Amplifier		
TIP I THE	Test setup:	EUT		\forall			_ '	
	\sim		Turn table					\times
						Receiver		
	WSET WSET		George	und Plane			cations	Testing C
\ /			Grot	and Fidile			V.º	188

D: Building A.-B. Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guai

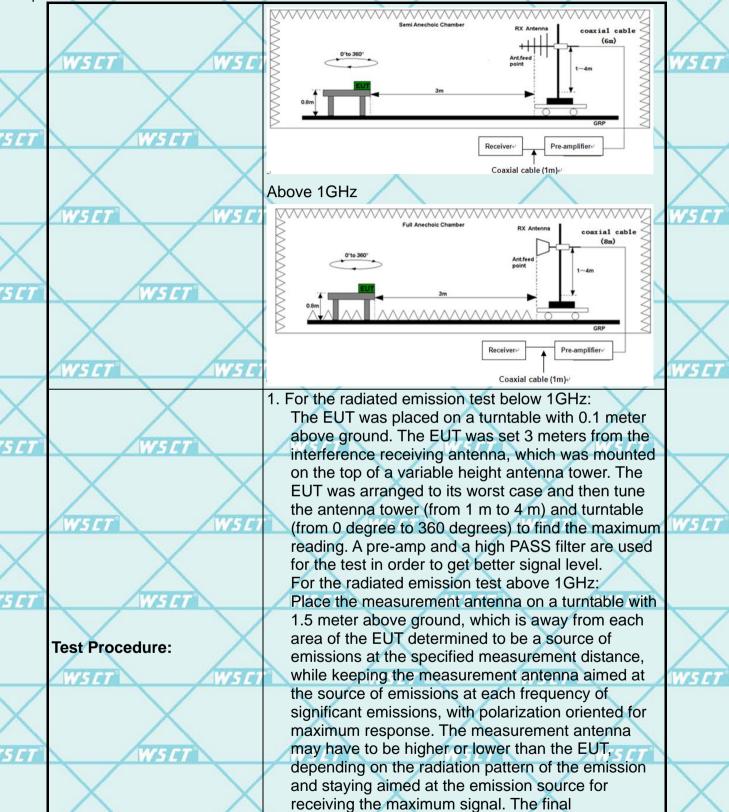
深圳世标检测认证股份有限公司
World Standard: Intro Certifications Testing Group(Shenzhers)Co

Page 39 of 50

30MHz to 1GHz

VV/S/F

WALE



Report No.: WSCT-ANAB-R&E241200080A-LE

W5ET

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin.
EL: 0088-755-26996192-26996053-26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标绘测认证股份有限公司 ** 01

measurement antenna elevation shall be that which

antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 my/s

maximizes the emissions. The measurement

above the ground or reference ground plane.

Repo	rt No.: WSCT-ANAB-R&E241200080	A-LE	
	X	Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level	1
	August Au	3. For measurement below 1GHz, If the emission level	/
$\overline{}$	WSET WSE	of the EUT measured by the peak detector is 3 dB	1
		lower than the applicable limit, the peak emission	
		level will be reported. Otherwise, the emission	
_	· /	measurement will be repeated using the quasi-peak	
W5ET	W5CT	detector and reported.	
		4. Use the following spectrum analyzer settings:	
		(1) Span shall wide enough to fully capture the	1
		emission being measured;	_
	WS	(2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW;	1
		Sweep = auto; Detector function = peak; Trace =	
		max hold;	
		(3) Set RBW = 1 MHz, VBW= 3MHz for f	
WSET	WSGT	for peak measurement.	_
		For average measurement: VBW = 10 Hz, when	
		duty cycle is no less than 98 percent. VBW ≥ 1/T,	/
	WSET WSE	when duty cycle is less than 98 percent where T is	17
		the minimum transmission duration over which the	L.R
\sim	\vee	transmitter is on and is transmitting at its maximum	
		power control level for the tested mode of operation.	
WSET	Test mode:	Refer to section 4.1 for details	
	Test results:	PASS	1

Note: Freq. = Emission frequency in MHz Reading level (dBµV) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB) Limit (dB μ V) = Limit stated in standard Margin (dB) = Level (dB μ V) – Limits (dB μ V)

WSET

WSET NSET WSET

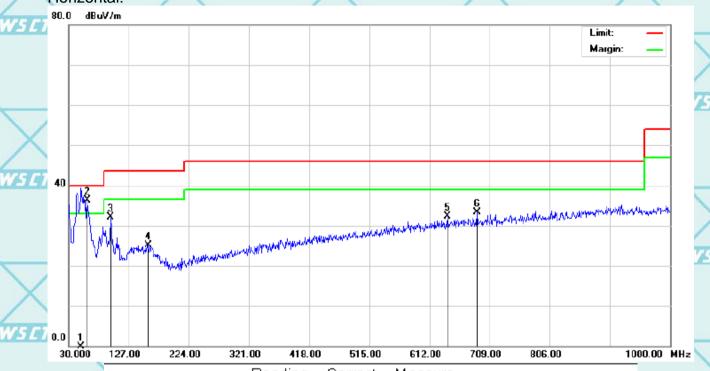
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Ave

FAX: 0086-755-86376605

深圳世标检测认证股份有限公司

Page 41 of 50

Report No.: WSCT-ANAB-R&E241200080A-LE


WSET

6.7.2. Test Data(Worst case)

Please refer to following diagram for individual

Below 1GHz

The worst mode is BLE Low Channel Horizontal:

/	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
9			MHz	dBu∀	dΒ	dBuV/m	dBuV/m	dΒ	Detector	
	1		50.3700	2.14	-2.14	0.00	40.00	-40.00	QP	<
	2	*	60.0700	39.08	-2.82	36.26	40.00	-3.74	QP	
	3		97.9000	37.80	-5.68	32.12	43.50	-11.38	QP	L
>	4		158.0399	26.87	-1.73	25.14	43.50	-18.36	QP	
	5		641.1000	27.64	4.57	32.21	46.00	-13.79	QP	
7	6		688.6300	28.10	5.16	33.26	46.00	-12.74	QP	

WSET WSET WSET WSET

W5ET W

WSET

W5 ET

W5CT

WSET

4W5ET

WSET

WSET

深圳世标检测认证股份有限公司 World Standard Intron Certification & 7

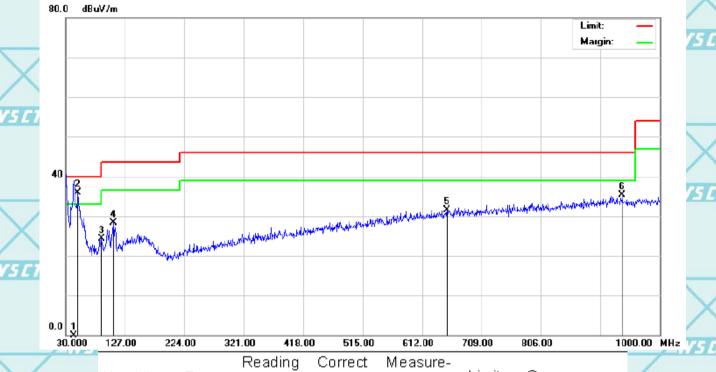
正股份有限公司 A/AOM # PAT

TEL: 0088-755-26996192 26996053 26998144

Page 42 of 50

WSI

WSET



Report No.: WSCT-ANAB-R&E241200080A-LE Vertical:

WSET 1

	No.	Mk.	Freq.	Reading Level	Factor	measure- ment	Limit	Over	
			MHz	dBu∀	dΒ	dBuV/m	dBuV/m	dΒ	Detector
	1		43.5800	1.88	-1.88	0.00	40.00	-40.00	QP
>	2	*	50.3700	38.10	-2.14	35.96	40.00	-4.04	QP
	3		88.2000	30.54	-6.23	24.31	43.50	-19.19	QP
2	4		108.5700	33.10	-4.74	28.36	43.50	-15.14	QP
	5		652.7400	26.68	4.80	31.48	46.00	-14.52	QP
	6		938.8900	27.22	8.06	35.28	46.00	-10.72	QP

Note1:

Freq. = Emission frequency in MHz

Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) - Limits (dB μ V)

MICET

AWSET

WSET

WSET

VALCET

WE FT

WEFT

WSCT OF THE PARTY OF THE PARTY

WSET

4W5 ET

MICET

深圳世标检测认证股份有限公司
World Standard ration Certification & Testing Group (Shenz

L: 0088-755-26996192 26996053 26998144 FAX: 0088-755-86376605 E-mail: fengbing .wang@wsct-cert.com

Page 43 of 50

STT W

WSET

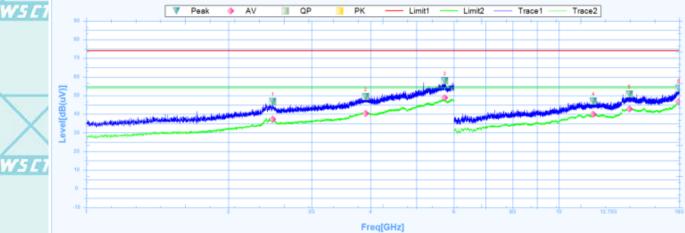
WSET

W5ET

Report No.: WSCT-ANAB-R&E241200080A-LE

WSET

Above 1GHz


Note 1: The marked spikes near 2400 MHz with circle should be ignored because they are Fundamental

Note 2: The spurious above 18G is noise only, do not show on the report.

Low channel: 2402MHz

Horizontal:

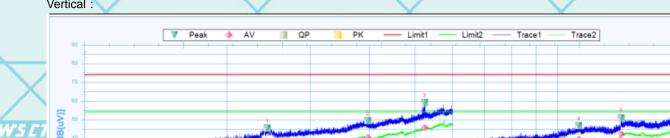
W5 C

	Susputed Data List													
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict			
r.	1	2480.6250	46.73	27.53	19.2	74	-27.27	360.1	Horizontal	PK	Pass			
U	1	2480.6250	37.2	27.53	9.67	54	-16.8	360.1	Horizontal	AV	Pass			
	2	3903.7500	49.35	29.47	19.88	74	-24.65	360.1	Horizontal	PK	Pass			
	2	3903.7500	40.38	29.47	10.91	54	-13.62	360.1	Horizontal	AV	Pass			
	3	5738.7500	57.88	32.38	25.5	74	-16.12	109.3	Horizontal	PK	Pass			
	3	5738.7500	48.79	32.38	16.41	54	-5.21	109.3	Horizontal	AV	Pass			
,	4	11839.5000	46.94	16.33	30.61	74	-27.06	22.6	Horizontal	PK	Pass			
1	4	11839.5000	39.83	16.33	23.5	54	-14.17	22.6	Horizontal	AV	Pass			
	5	14115.0000	50.68	19.01	31.67	74	-23.32	359.5	Horizontal	PK	Pass			
,	5	14115.0000	42.77	19.01	23.76	54	-11.23	359.5	Horizontal	AV	Pass			
4	6	17968.5000	53.81	23.71	30.1	74	-20.19	252.1	Horizontal	PK	Pass			
	6	17968.5000	46.89	23.71	23.18	54	-7.11	252.1	Horizontal	AV	Pass			

NSET WSET

Page 44 of 50

WSET



Report No.: WSCT-ANAB-R&E241200080A-LE

WSCT

Vertical:

WSET 1

Freq[GHz]

W5 E

W5E

Ξ	Suspu	uted Data Lis	it								
,	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2437.5000	45.43	27.39	18.04	74	-28.57	60.3	Vertical	PK	Pass
	1	2437.5000	37.3	27.39	9.91	54	-16.7	60.3	Vertical	AV	Pass
	2	3971.8750	49.47	29.63	19.84	74	-24.53	334.1	Vertical	PK	Pass
1	2	3971.8750	40.4	29.63	10.77	54	-13.6	334.1	Vertical	AV	Pass
	3	5241.8750	59.1	31.79	27.31	74	-14.9	114.2	Vertical	PK	Pass
1	3	5241.8750	45.78	31.79	13.99	54	-8.22	114.2	Vertical	AV	Pass
ì	4	11104.5000	46.73	15.87	30.86	74	-27.27	177.9	Vertical	PK	Pass
	4	11104.5000	39.47	15.87	23.6	54	-14.53	177.9	Vertical	AV	Pass
	5	13629.0000	51.03	18.06	32.97	74	-22.97	287.8	Vertical	PK	Pass
	5	13629.0000	42.35	18.06	24.29	54	-11.65	287.8	Vertical	AV	Pass
	6	17842.5000	53.48	22.89	30.59	74	-20.52	358.9	Vertical	PK	Pass
	6	17842.5000	46.29	22.89	23.4	54	-7.71	358.9	Vertical	AV	Pass

WSET WSE WSE WSET

WSET WSET WS CT WSEI

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Ave

WSET

深圳世标绘测认证股份有限公司

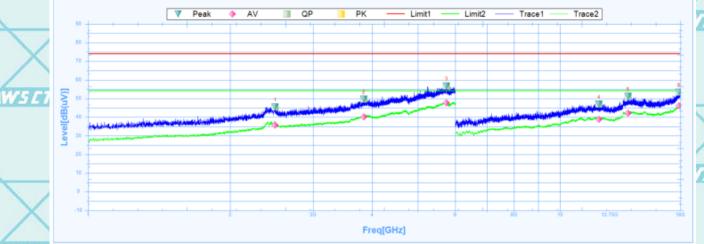
FAX: 0086-755-86376605 Member of the WSCT Group (WSCT SA)

Page 45 of 50

WSET

W5 E1

W5ET


WSET

Report No.: WSCT-ANAB-R&E241200080A-LE

Middle channel: 2440MHz

Horizontal:

W5C

WSE

I	Suspu	Susputed Data List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict		
	1	2491.8750	45.45	27.57	17.88	74	-28.55	190.6	Horizontal	PK	Pass		
	1	2491.8750	35.7	27.57	8.13	54	-18.3	190.6	Horizontal	AV	Pass		
1	2	3838.1250	49.59	29.31	20.28	74	-24.41	331.6	Horizontal	PK	Pass		
	2	3838.1250	40.15	29.31	10.84	54	-13.85	331.6	Horizontal	AV	Pass		
1	3	5750.0000	56.79	32.4	24.39	74	-17.21	360.1	Horizontal	PK	Pass		
	3	5750.0000	47.74	32.4	15.34	54	-6.26	360.1	Horizontal	AV	Pass		
	4	12100.5000	46.96	16.68	30.28	74	-27.04	100.2	Horizontal	PK	Pass		
	4	12100.5000	38.84	16.68	22.16	54	-15.16	100.2	Horizontal	AV	Pass		
	5	13941.0000	51.23	18.95	32.28	74	-22.77	346.3	Horizontal	PK	Pass		
	5	13941.0000	42.23	18.95	23.28	54	-11.77	346.3	Horizontal	AV	Pass		
	6	17887.5000	53.48	23.18	30.3	74	-20.52	241.2	Horizontal	PK	Pass		
,	6	17887.5000	46.22	23.18	23.04	54	-7.78	241.2	Horizontal	AV	Pass		

WSET WSE WSE WSET

WSET WSET WS ET WSE

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Ave FAX: 0086-755-86376605

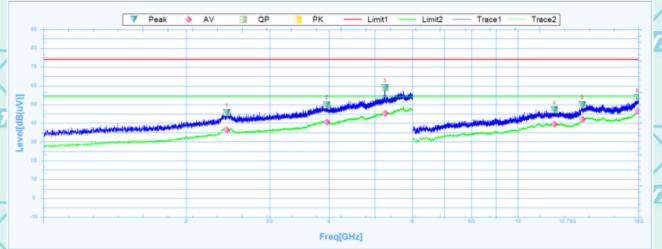
深圳世标检测认证股份有限公司

W5E7

Page 46 of 50

W5 []

WSET



Report No.: WSCT-ANAB-R&E241200080A-LE

WSCT

TESTING LABORATORY Certificate Number : AT-3951

Vertical:

WSET 1

W5 E

W5E

-	Suspu	ited Data Lis	it								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2433.1250	45.6	27.37	18.23	74	-28.4	92.6	Vertical	PK	Pass
	1	2433.1250	36.37	27.37	9	54	-17.63	92.6	Vertical	AV	Pass
	2	3959.3750	49.76	29.6	20.16	74	-24.24	17.3	Vertical	PK	Pass
1	2	3959.3750	40.51	29.6	10.91	54	-13.49	17.3	Vertical	AV	Pass
	3	5248.7500	58.83	31.8	27.03	74	-15.17	360	Vertical	PK	Pass
1	3	5248.7500	45.14	31.8	13.34	54	-8.86	360	Vertical	AV	Pass
J	4	11958.0000	47.12	16.7	30.42	74	-26.88	279.4	Vertical	PK	Pass
-	4	11958.0000	39.56	16.7	22.86	54	-14.44	279.4	Vertical	AV	Pass
	5	13684.5000	49.84	18.21	31.63	74	-24.16	230.5	Vertical	PK	Pass
	5	13684.5000	42.06	18.21	23.85	54	-11.94	230.5	Vertical	AV	Pass
	6	17913.0000	53.54	23.34	30.2	74	-20.46	359.5	Vertical	PK	Pass
	6	17913.0000	46.3	23.34	22.96	54	-7.7	359.5	Vertical	AV	Pass

WSET WSE WSE WSET

WSET WSET WS CT WSE

WSCT

FAX: 0086-755-86376605

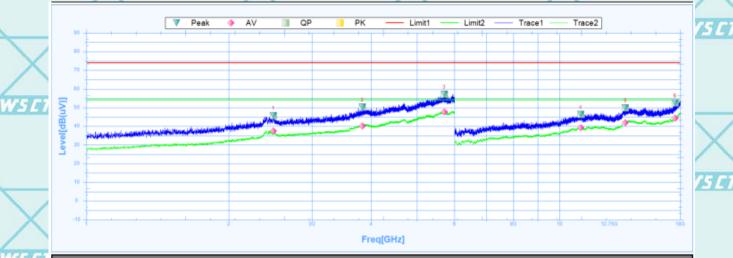
深圳世标绘测认证股份有限公司

Page 47 of 50

WSET

W5C1

W5ET



Report No.: WSCT-ANAB-R&E241200080A-LE

High channel: 2480MHz

Horizontal:

W5 CT

WSET

W5 C

WSE

Susputed Data List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2483.1250	45.79	27.54	18.25	74	-28.21	13.4	Horizontal	PK	Pass
	1	2483.1250	37.41	27.54	9.87	54	-16.59	13.4	Horizontal	AV	Pass
1	2	3833.1250	50.35	29.3	21.05	74	-23.65	68.6	Horizontal	PK	Pass
	2	3833.1250	40.11	29.3	10.81	54	-13.89	68.6	Horizontal	AV	Pass
1	3	5706.8750	57.06	32.33	24.73	74	-16.94	360	Horizontal	PK	Pass
7	3	5706.8750	47.65	32.33	15.32	54	-6.35	360	Horizontal	AV	Pass
4	4	11092.5000	46.42	15.89	30.53	74	-27.58	0	Horizontal	PK	Pass
	4	11092.5000	39.22	15.89	23.33	54	-14.78	0	Horizontal	AV	Pass
	5	13788.0000	49.84	18.51	31.33	74	-24.16	328.5	Horizontal	PK	Pass
	5	13788.0000	41.84	18.51	23.33	54	-12.16	328.5	Horizontal	AV	Pass
	6	17553.0000	52.55	20.97	31.58	74	-21.45	234.1	Horizontal	PK	Pass
,	6	17553.0000	44.31	20.97	23.34	54	-9.69	234.1	Horizontal	AV	Pass

WSET WSE WSE WSET

WSET WSET WS CT WSE

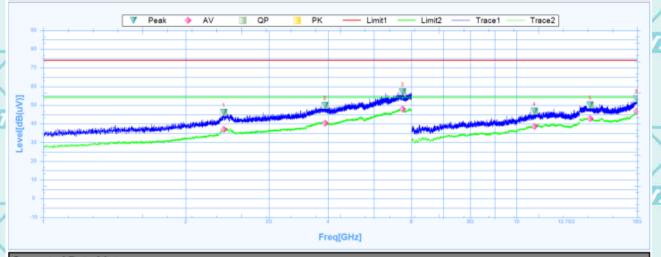
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Ave FAX: 0086-755-86376605

深圳世标绘测认证股份有限公司

W5E7

Page 48 of 50

W5 E1



Report No.: WSCT-ANAB-R&E241200080A-LE

WSET

Vertical:

,	Susputed Data List													
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict			
	1	2405.6250	46.13	27.28	18.85	74	-27.87	2.1	Vertical	PK	Pass			
	1	2405.6250	37.08	27.28	9.8	54	-16.92	2.1	Vertical	AV	Pass			
	2	3939.3750	49.81	29.55	20.26	74	-24.19	203.7	Vertical	PK	Pass			
1	2	3939.3750	40.37	29.55	10.82	54	-13.63	203.7	Vertical	AV	Pass			
	3	5745.0000	57.17	32.39	24.78	74	-16.83	244.4	Vertical	PK	Pass			
1	3	5745.0000	47.97	32.39	15.58	54	-6.03	244.4	Vertical	AV	Pass			
7	4	10908.0000	46.83	15.1	31.73	74	-27.17	287.8	Vertical	PK	Pass			
1	4	10908.0000	38.66	15.1	23.56	54	-15.34	287.8	Vertical	AV	Pass			
	5	14314.5000	50.14	18.8	31.34	74	-23.86	224.4	Vertical	PK	Pass			
	5	14314.5000	42.78	18.8	23.98	54	-11.22	224.4	Vertical	AV	Pass			
	6	17965.5000	53.51	23.68	29.83	74	-20.49	63	Vertical	PK	Pass			
	6	17965.5000	46.69	23.68	23.01	54	-7.31	63	Vertical	AV	Pass			

Note:

- All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- Emission Level= Reading Level+Probe Factor +Cable Loss.

FAX: 0086-755-86376605

Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

	WS ET	VSET W	500	WSET	WSET
\times	\times	\times	\times	\times	
WSET	WSET	WSEI	WSEI	WSET	
	$\overline{}$		$\overline{}$		
	WSET	VSLT W.	5LT	WS ET	liona Tasting C. de
\mathcal{X}	X	X	X	rdizatio	/SCT Shenzh
WSLT	WSET	WSET	WSET	THE STATE OF THE S	3
ADD: Building A-B Baoli'an	Industrial Park No 58 and 60 Tangtou Avenue	Shivan Street Bao'an District Shanzhen City (Guanadana Province China	140	M M DITION

Member of the WSCT Group (WSCT

Page 49 of 50

W5ET

W5C1

Report No.: WSCT-ANAB-R&E241200080A-LE

6.7.3. Restricted Bands Requirements

Test result for GESK Mode (the worst case)

	rest result it	est result for Gran Mode (the Worst case)					Some	and the same of th
	Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
\	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
Ţ	Low Channel							
L	2390	67.13	-8.76	58.37	74	-15.63	Ŧ	PK
	2390	50.76	-8.76	42.00	54	-12.00	н	AV
	2390	65.51	-8.73	56.78	74	-17.22	V	PK
	2390	47.47	-8.73	38.74	54	-15.26	V 5	AV
1	High Channel							/
\	2483.5	65.72	-8.76	56.96	74	-17.04	Н	PK
Ť	2483.5	45.28	-8.76	36.52	54	-17.48	Τ	AV
	2483.5	66.61	-8.17	58.44	74	-15.56	V	PK
	2483.5	45.51	-8.17	37.34	54	-16.66	V	AV
Note: Freq. – Emission frequency in MHz								

Note: Freq. = Emission frequency in MHz

Reading level (dB μ V) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Level (dB μ V) – Limits (dB μ V)

*****END OF REPORT****

WSE7 WSEI WS ET WSET

NS ET VS CT WS E1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Ave

FAX: 0086-755-86376605 Member of the WSCT Group (WSCT SA)

深圳世标检测认证股份有限公司

Page 50 of 50

WSE

W5 CI