

Maximum Permissible Exposure

RF Exposure Limit

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the Environmental of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time	
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm ²)	(Minutes)	
(A) Limits for occupational / Contral Exposure					
30 - 300	61.4	0.163	1	6	
300 - 1500			F/300	6	
1500 - 100000			5	6	
(B) Limits for General Population / Uncontrolled Exposure					
30 - 300	27.5	0.073	0.2	30	
300 - 1500			F/1500	30	
1500 - 100000			1	30	

F = Frequency (MHz)

Friis formula

Friis transmission formula : Pd = (Pout * G) / (4 * π * r^2)

 $r = \sqrt{((Pout * G) / 4 * \pi * Pd))}$

Where

Pd = Power density in mW/cm²

Pout = Output power to antenna in mW

G = Gain of antenna in linear scale

 π = 3.1416

r = Distance between observation point center of the radiator in cm

Pd is the limit of MPE, 1 mW/cm². If we know the Maximum Gain of the antenna and the total power input to the antenna, through the calculation, we will know the Maximum distance r where the MPE limit is reached and Power density at prediction frequency.

Test Report No.: NK-23-E-0655

FCC Certification

Test Result:

The maximum antenna gain is **0.5 dBi or 1.12 (Numeric)**.

Maximum peak output power at antenna input terminal: 18.50 (dBm)

Maximum peak output power at antenna input terminal: 70.79 (mW)

Antenna gain(Peak): 0.500 (dBi)

Maximum antenna gain: 1.12 (numeric)

Prediction distance: 20 (cm)

Prediction frequency: 2462 (MHz)

MPE limit for uncontrolled exposure at prediction frequency: 1 (mW/cm^2)

Power density at prediction frequency: 0.015803 (mW/cm^2)

Test result: PASS

Radiation Hazard

Probe Location	Maximum Leakage [mW/Cm2]	Limit [mW/Cm2]		
Α	0.10	1.00		
В	0.10	1.00		
С	0.05	1.00		
D	0.10	1.00		
E	0.10	1.00		
F	0.05	1.00		

Input Power Measurement

Operation mode	P rated (W)	P (W)	dP (%)	Required dP (%)
Power Input	1 700	1 901	1.05	+ 15 %

Output Power Measurement

Quantity of	Mass of the	Ambient	Initial	Final	Heating	Power
Water	container	temperature	temperature	temperature	time	output
[ml]	[g]	[°C]	[℃]	[℃]	[s]	[W]
1 000	421	21.8	10.0	19.7	42	955

Formula:

$$P = \frac{4.187 \times m_w \times (T_1 - T_0) + 0.55 \times m_c \times (T_1 - T_A)}{t}$$

NOTE:

P is the microwave power output (W)

 $m_{\rm w}$ is the mass of the water (g)

 m_c is the mass of the container (g)

 T_A is the ambient temperature ($^{\circ}$)

 T_0 is the initial temperature of the water ($^{\circ}$ C)

 T_1 is the final temperature of the water ($^{\circ}$ C)

t is the heating time (s), excluding the magnetron filament heating-up time.