FCC Part 95 Rules Test Report

Report No.:AGC05067190403FE10

FCC ID : MMAT18

PRODUCT DESIGNATION: Two way Radio

BRAND NAME : Midland

MODEL NAME : T19VP, T18

APPLICANT: Midland Radio Corporation

DATE OF ISSUE : June 19, 2019

STANDARD(S) : FCC Part 95 Rules

REPORT VERSION: V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.:AGC05067190403FE10 Page 2 of 47

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	June 19, 2019	Valid	Initial release

Page 3 of 47

VERIFICATION OF COMPLIANCE

Applicant	Midland Radio Corporation		
Address	900 Parretta Drive Kansas City Missouri United States 64120-2134		
manufacturer	Midland Radio Corporation		
Address	5900 Parretta Drive Kansas City Missouri United States 64120-2134		
Factory	Midland Radio Corporation		
Address	5900 Parretta Drive Kansas City Missouri United States 64120-2134		
Product Designation:	Two way Radio		
Brand Name:	Midland		
Test Model	T19VP		
Serial Model	T18		
Difference Description	T18 does not have speaker / microphone jack and battery charging jack		
Date of Test:	May 10, 2019~June 17, 2019		

WE HEREBY CERTIFY THAT:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part 95 requirements. The test results of this report relate only to the tested sample identified in this report.

Tested By

Calvin Liu(Liu Junchen) June 19, 2019

Reviewed By

Max Zhang(Zhang Yi) June 19, 2019

Approved By

Forrest Lei(Lei Yonggang)
Authorized Officer

June 19, 2019

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION 1.2 RELATED SUBMITTAL(S) / GRANT (S) 1.3 TEST METHODOLOGY 1.4 TEST FACILITY 1.5 SPECIAL ACCESSORIES 1.6 EQUIPMENT MODIFICATIONS 2. SYSTEM TEST CONFIGURATION	8
2.1EUT CONFIGURATION	
2.2 EUT EXERCISE	
3. SUMMARY OF TEST RESULTS	10
4. DESCRIPTION OF TEST MODES	13
5. FREQUENCY TOLERANCE	14
5.1 PROVISIONS APPLICABLE	14
6. EMISSION BANDWIDTH	16
6.1 PROVISIONS APPLICABLE	17 17
7. UNWANTED RADIATION	21
7.1 PROVISIONS APPLICABLE 7.2 MEASUREMENT PROCEDURE 7.3 TEST SETUP BLOCK DIAGRAM 7.4 MEASUREMENT RESULTS: 7.5 EMISSION MASK PLOT	21 22 23
8. MAXIMUMN TRANSMITTER POWER	31
8.1 PROVISIONS APPLICABLE	31

·	C05067190403FE10 Page 5 of 47
9. MODULATION CHARACTERISTICS	34
9.1 PROVISIONS APPLICABLE	34
9.2 MEASUREMENT METHOD	34
9.3 MEASUREMENT RESULT	35
APPENDIX I: PHOTOGRAPHS OF SETUP	38
APPENDIX II: EXTERNAL VIEW OF EUT	40

Report No.:AGC05067190403FE10 Page 6 of 47

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a Portable FRS Radiodesigned for voice communication. It is designed by way of utilizing the FM modulation achieves the system operating.

A major technical description of EUT is described as following:

A major technical description of EOT is described as following.				
Product Designation	Portable FRS			
Test Model	T19VP			
Hardware Version	T18-19-V1.0			
Software Version	V1.0			
Modulation	FM			
Channel Separation	12.5KHz			
Emission Type	11K0F3E			
Emission Bandwidth	10.489KHz			
Maximum Transmitter Power	26.35dBm			
Rated Output power	0.5W (It was fixed by the manufacturer, any individual can't arbitrarily change it.)			
Antenna Designation	Inseparable			
Antenna Gain	1.5dBi			
Power Supply	DC 3.6V (3*1.2V by Ni-MH battery)			
Limiting Voltage	DC 3.06V-4.14V			
Operation Frequency Range and Channel	FRS: 462.5500MHz -462.7250MHz, 467.5625 MHz-467.7125 MHz 462.5625MHz -462.7125MHz Test Channel :4, 11 and 19 channel			
Frequency Tolerance	1.079ppm			

Page 7 of 47

Channel List:

The FRS is allotted 22 channels, each having a channel bandwidth of 12.5 kHz. All of the FRS channels are also allotted to the General Mobile Radio Service (GMRS) on a shared basis. The FRS channel center frequencies are set forth in the following table:

	Operation Frequency Each of Channel						
FRS		FRS		FRS			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	462.5625 MHz	8	467.5625 MHz	15	462.5500 MHz		
2	462.5875 MHz	9	467.5875 MHz	16	462.5750 MHz		
3	462.6125 MHz	10	467.6125 MHz	17	462.6000 MHz		
4	462.6375 MHz	11	467.6375 MHz	18	462.6250 MHz		
5	462.6625 MHz	12	467.6625 MHz	19	462.6500 MHz		
6	462.6875 MHz	13	467.6875 MHz	20	462.6750 MHz		
7	462.7125 MHz	14	467.7125 MHz	21	462.7000 MHz		
					462.7250 MHz		

Page 8 of 47

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: **MMAT18**, filing to comply with the FCC Part 95 requirements.

1.3 TEST METHODOLOGY.

The radiated emission testing was performed according to the procedures of TIA/EIA 603.

1.4 TEST FACILITY

Test Site Attestation of Global Compliance (Shenzhen) Co., Ltd			
Location	I-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,China		
Designation Number	CN1259		
FCC Test Firm Registration Number	975832		
A2LA Cert. No.	5054.02		
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA		

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 9 of 47

2. SYSTEM TEST CONFIGURATION

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Page 10 of 47

2.4 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

EUT

Table 2-1 Equipment Used in Tested System

Item	Equipment	Model No.	Identifier	Note
1	Two way Radio	dio T19VP FCC ID: MMAT18		EUT
2	Back clip	N/A	N/A	Accessory
3	Battery	N/A	DC 1.2V 600mAh	Accessory

3. SUMMARY OF TEST RESULTS

FCC 47 CFR Part 95 Test Cases					
Test Item	Test Method	Result			
Maximum Transmitter Power	FCC 47 CFR Part 95.567 FCC 47 CFR Part 2.1046(a)	ANSI/TIA-603-E-2016	PASS		
Modulation Limit	FCC 47 CFR Part 95.575 FCC 47 CFR Part 2.1047(a)(b)	ANSI/TIA-603-E-2016	PASS		
Audio Frequency Response	FCC 47 CFR Part 95.575 FCC 47 CFR Part 2.1047(a)	ANSI/TIA-603-E-2016	PASS		
Emission Bandwidth	FCC 47 CFR Part 95.573	ANSI/TIA-603-E-2016	PASS		
Emission Mask	FCC 47 CFR Part 95.579	ANSI/TIA-603-E-2016	PASS		
Transmitter Radiated Spurious Emission	FCC 47 CFR Part 95.579	ANSI/TIA-603-E-2016	PASS		
Spurious Emission On Antenna Port	FCC 47 CFR Part 95.579	ANSI/TIA-603-E-2016	N/A Note 1,		
Frequency Stability	FCC 47 CFR Part 95.565 FCC 47 CFR Part 2.1055 (a)(1)	ANSI/TIA-603-E-2016	PASS		

Note:

- 1) N/A: In this whole report not application.
- 2) The EUT is Integral Antenna.

LIST OF EQUIPMENTS USED

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2018	Jun. 11, 2019
TEST RECEIVER	R&S	ESCI	10096	Jun. 10, 2019	Jun. 09, 2020
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.18, 2018	Sep.17, 2019
preamplifier	ChengYi	EMC184045SE	980508	Oct.31, 2018	Oct 30, 2019
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun. 12, 2018	Jun. 11, 2019
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun. 10, 2019	Jun. 09, 2020
HORN ANTENNA	EM	EM-AH-10180	/	Mar.01, 2018	Feb.29, 2020
SIGNAL GENERATOR	AGILENT	E4421B	122501288	May. 15, 2018	May. 14, 2019
SIGNAL GENERATOR	AGILENT	E4421B	122501288	May. 13, 2019	May. 12, 2020
SIGNAL GENERATOR	R&S	SMT03	A0304261	Jun. 12, 2018	Jun. 11, 2019
SIGNAL GENERATOR	R&S	SMT03	A0304261	Jun. 10, 2019	Jun. 09, 2020
ANTENNA	SCHWARZBECK	VULB9168	VULB9168-494	Jan. 09, 2019	Jan. 08, 2020
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.26, 2018	Sep.25, 2019
Modulation Domain Analyzer	HP	53310A	3121A02467	Nov. 01, 2018	Oct. 31, 2019
Small environmental tester	ESPEC	SH-242		Feb. 25, 2019	Feb. 24, 2020
RF Communication Test Set	HP	8920B		Jun. 12, 2018	Jun. 11, 2019
RF Communication Test Set	HP	8920B		Jun. 10, 2019	Jun. 09, 2020

Page 12 of 47

Attenuator	Weinachel Corp	58-30-33	ML030	Jun. 12, 2018	Jun.11 , 2019
Attenuator	Weinachel Corp	58-30-33	ML030	Jun. 10, 2019	Jun. 09, 2020
Vector Analyzer	Agilent	E4440A		Mar. 01, 2018	Feb. 28, 2019
Vector Analyzer	Agilent	E4440A		Feb. 27, 2019	Feb. 26, 2020
RF Cable	R&S	1#		Each time	N/A

Note: 8920B can generate audio modulation frequency.

Page 13 of 47

4. DESCRIPTION OF TEST MODES

RF TEST MODES

The EUT (Two way Radio) has been tested under normal operating condition. (FRS TX) are chosen for testing at each channel separation.

No.	TEST MODES	CHANNEL SEPARATION
1	FRS TX	12.5 KHz

Note:1. Only the result of the worst case was recorded in the report.

- 2. The manufacturer provides the laboratory with a temporary external antenna connection for conducting measurements.
- 3. The prototype program has been modulated by the manufacturer and can be directly debugged into the prototype.

Page 14 of 47

5. FREQUENCY TOLERANCE

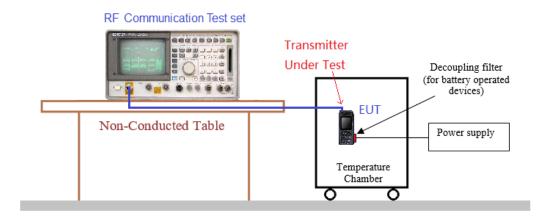
5.1 PROVISIONS APPLICABLE

Standard Applicable [Part 95.565]The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

FCC Part 95.565,

FRS: The carrier frequency tolerance shall be better than ±2.5 ppm.

5.2 MEASUREMENT PROCEDURE


5.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz.Record this frequency as reference frequency.
- 3. Set the temperature of chamber to 50° C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10℃ decreased per stage until the lowest temperature -30℃ is measured, record all measured frequencies on each temperature step.

5.2.2 Frequency stability versus input voltage

- 1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15° C to 25° C. Otherwise, an environment chamber set for a temperature of 20° C shall be used. The EUT shall be powered by DC 3.6V.
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

5.3 TEST SETUP BLOCK DIAGRAM

5.3 TEST RESULT

(1) Frequency stability versus input voltage (Supply nominal voltage is 3.60V)-0.5W

Environment	Power	Reference Frequency			Limit:	
	(V)	462.6375MHz	462.6500MHz	467.6375 MHz	ppm	
50	DC 3.60	0.522	0.653	0.943		
40	DC 3.60	0.708	1.010	1.059		
30	DC 3.60	1.079	0.924	0.859		
20	DC 3.60	0.935	0.998	0.826	±2.5for	
10	DC 3.60	1.065	1.000	0.908	FRS	
0	DC 3.60	1.008	0.613	0.843	FKS	
-10	DC 3.60	0.633	0.888	0.533		
-20	DC 3.60	0.894	0.616	0.836		
-30	DC 3.60	1.058	0.634	0.701		
Result		Pass				

(2) Frequency stability versus input voltage (Battery Fully Charged voltage is 4.14V)-0.5W

(=)	Trequency stability release input vehage (Butter) i any enarged vehage is in ivy stati							
Environment	Power	Ro	eference Frequency		Limit:			
Town o red (9C)	(V)	462.6375MHz	462.6500MHz	467.6375 MHz	ppm			
50	DC 4.14	0.951	0.735	0.853				
40	DC 4.14	0.717	0.936	0.805				
30	DC 4.14	0.642	0.437	0.830				
20	DC 4.14	0.820	0.968	0.873	±2.5for			
10	DC 4.14	0.865	0.337	0.723	FRS			
0	DC 4.14	0.966	0.734	0.549	FKS			
-10	DC 4.14	0.532	0.369	0.412				
-20	DC 4.14	0.701	0.463	0.940				
-30	DC 4.14	0.569	0.623	0.760				
Result			Pass					

(2) Frequency stability versus input voltage (Battery limiting voltage is 3.06V)-0.5W

Environment	Power	R	Reference Frequency			
Temperature(°C)	(V)	462.6375MHz	462.6500MHz	467.6375 MHz	ppm	
50	DC 3.06	0.684	0.653	0.907		
40	DC 3.06	0.723	0.801	0.873		
30	DC 3.06	1.058	0.875	0.920		
20	DC 3.06	0.513	0.992	0.629	±2.5for	
10	DC 3.06	0.506	0.865	0.754	FRS	
0	DC 3.06	0.638	0.998	1.006	FKS	
-10	DC 3.06	0.737	0.783	1.033		
-20	DC 3.06	0.564	0.580	0.964		
-30	DC 3.06	0.619	0.907	0.752		
Result			Pass			

Note: Battery terminal voltage is declared and specified by the manufacturer.

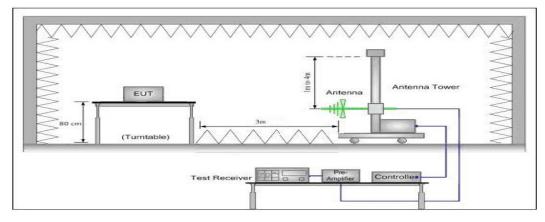
Page 17 of 47

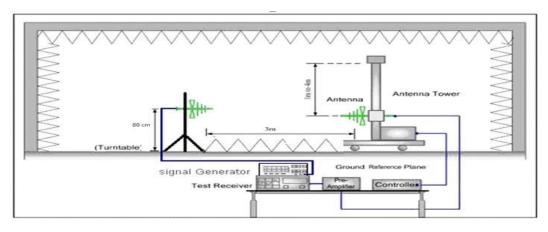
6. EMISSION BANDWIDTH

6.1 PROVISIONS APPLICABLE

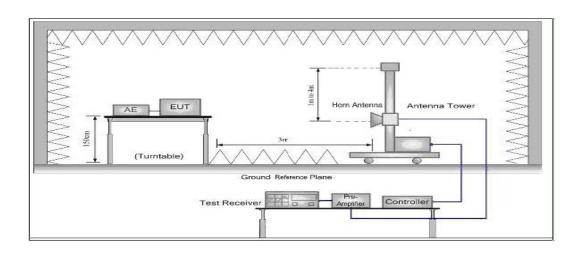
FCC Part 95.573: FRS: The authorized bandwidth for an FRS unit is 12.5 kHz.

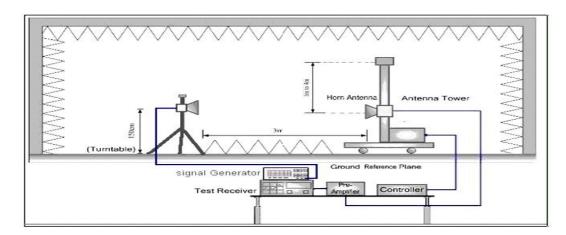
Occupied Bandwidth (Section 2.1049, 95.573): The EUT was connected to the audio signal generator and the spectrum analyzer via the main RF connector, and through an appropriate attenuator. The EUT was controlled to transmit its maximum power. Then the bandwidth of 99% power can be measured by the spectrum analyzer.


6.2 MEASUREMENT PROCEDURE


- 1). The EUT was modulated by 2.5 KHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing).
 - 2). Set SPA Center Frequency = fundamental frequency, RBW=300Hz.VBW= 1KHz, Span =50 KHz.
 - 3). Set SPA Max hold. Mark peak, -26 dB.

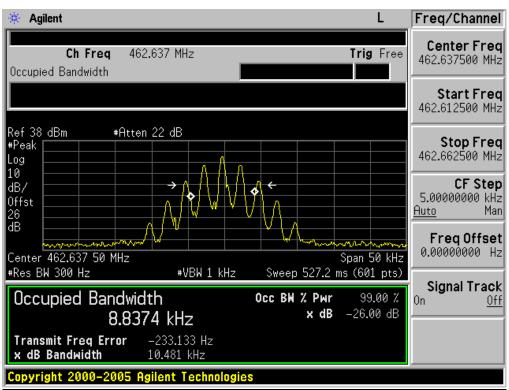
6.3 TEST SETUP BLOCK DIAGRAM

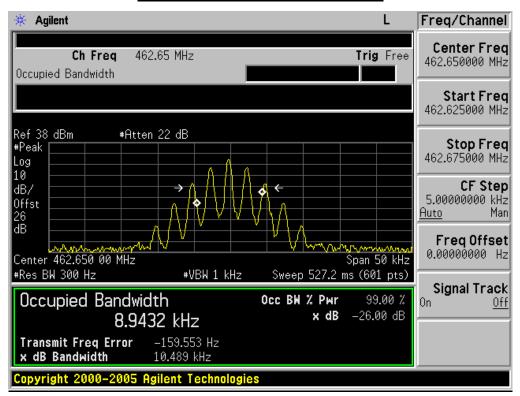

Radiation method:


Radiated Below1GHz

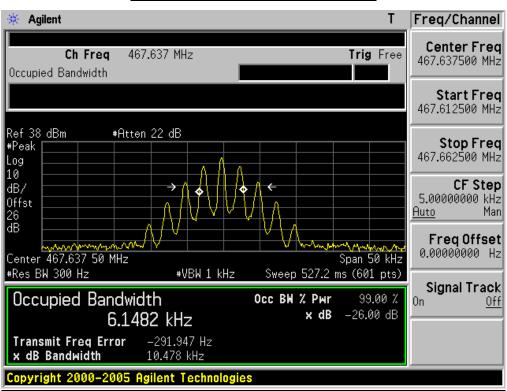


Radiated Above 1 GHz


Conduction method:


6.4 MEASUREMENT RESULT

26 dB Bandwidth Measurement Result-0.5W						
Operating Frequency	12.5 KHz Channel Separation					
Operating Frequency	Test Data	Limits	Result			
462.6375MHz	10.481 KHz	12.5 KHz	Pass			
462.6500MHz	10.489 KHz	12.5 KHz	Pass			
467.6375MHz	10.478 KHz	12.5 KHz	Pass			


Occupied bandwidth of 462.6375MHz

Occupied bandwidth of 462.6500MHz

Occupied bandwidth of 467.6375MHz

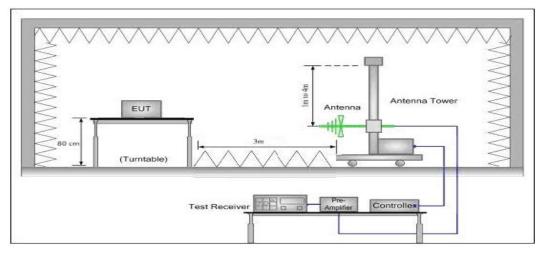
Page 21 of 47

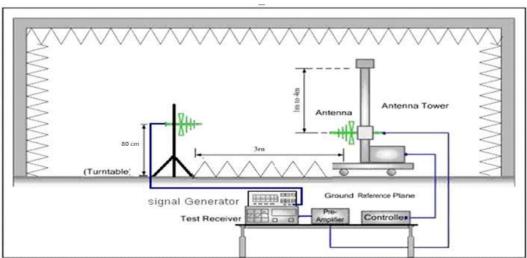
7. UNWANTED RADIATION

7.1 PROVISIONS APPLICABLE

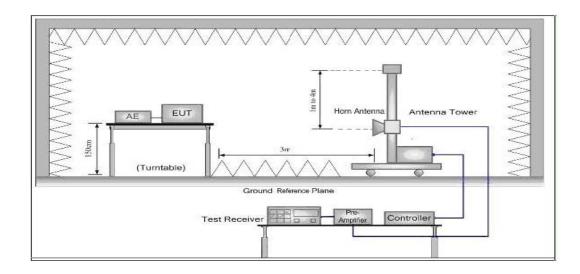
Standard Applicable [FCC Part 95.579]

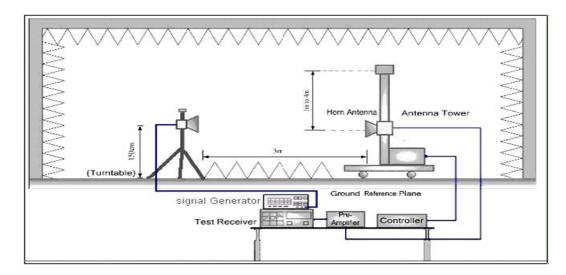
According to FCC section 95.579, the unwanted emission should be attenuated below TP by at least 43+10 log(Transmit Power) dB.


7.2 MEASUREMENT PROCEDURE


- (1)On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- (2)The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.
- (3)The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- (4) The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- (5) The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
- (6)The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- (7)The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
- (8) The maximum signal level detected by the measuring receiver shall be noted.
- (9) The measurement shall be repeated with the test antenna set to horizontal polarization.
- (10) Replace the antenna with a proper Antenna (substitution antenna).
- (11) The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
- (12) The substitution antenna shall be connected to a calibrated signal generator.
- (13)If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- (14)The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- (15)The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- (16)The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- (17) The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

7.3 TEST SETUP BLOCK DIAGRAM


SUBSTITUTION METHOD: (Radiated Emissions)


Radiated Below1GHz

Radiated Above 1 GHz

7.4 MEASUREMENT RESULTS:

the unwanted emission should be attenuated below TP by at least 43+10 log(Transmit Power) dB

Limit: At least 43+10 log (P) =43+10log (0.5) =40.01 (dBc) 26.99-40.01≈-13dBm

Measurement Result for 12.5 KHz Channel Separation @ 462.6375MHz-0.5W

Emission Frequency (MHz)	Ant. Polarity(H/H)	Measurement Result (dBm)	Limit (dBm)	Result(P/F)
462.638	Н	0		pass
925.275	Н	-38.4	-13	pass
1387.91	Н	-39.5	-13	pass
1850.550	Н	-40.6	-13	pass
2313.188	Н	-43.1	-13	pass
2775.825	Н	-44.9	-13	pass
3238.463	Н	-46.5	-13	pass
3701.100	Н	-48.1	-13	pass
4163.738	Н	-49.3	-13	pass
4626.375	Н	-50.3	-13	pass

Emission Frequency (MHz)	Ant. Polarity(H/H)	Measurement Result (dBm)	Limit (dBm)	Result(P/F)
462.638	V	0		pass
925.275	V	-37.7	-13	pass
1387.91	V	-38.4	-13	pass
1850.550	V	-40.5	-13	pass
2313.188	V	-41.1	-13	pass
2775.825	V	-44.3	-13	pass
3238.463	V	-46.9	-13	pass
3701.100	V	-47.4	-13	pass
4163.738	V	-48.6	-13	pass
4626.375	V	-50.6	-13	pass

Measurement Result for 12.5 KHz Channel Separation @ 462.6500MHz-0.5W

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result (dBm)	Limit (dBm)	Result(P/F)
462.650	Н	0		pass
925.300	Н	-38.6	-13	pass
1387.950	Н	-39.4	-13	pass
1850.600	Н	-41.3	-13	pass
2313.250	Н	-42.9	-13	pass
2775.900	Н	-44.6	-13	pass
3238.550	Н	-45.3	-13	pass
3701.200	Н	-47.4	-13	pass
4163.850	Н	-50.6	-13	pass
4626.500	Н	-51.4	-13	pass

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result (dBm)	Limit (dBm)	Result(P/F)
462.650	V	0		pass
925.300	V	-35.6	-13	pass
1387.950	V	-36.7	-13	pass
1850.600	V	-37.9	-13	pass
2313.250	V	-41.1	-13	pass
2775.900	V	-43.1	-13	pass
3238.550	V	-45.7	-13	pass
3701.200	V	-48.6	-13	pass
4163.850	V	-49.3	-13	pass
4626.500	V	-52.3	-13	pass

Measurement Result for 12.5 KHz Channel Separation @ 467.6375MHz-0.5W

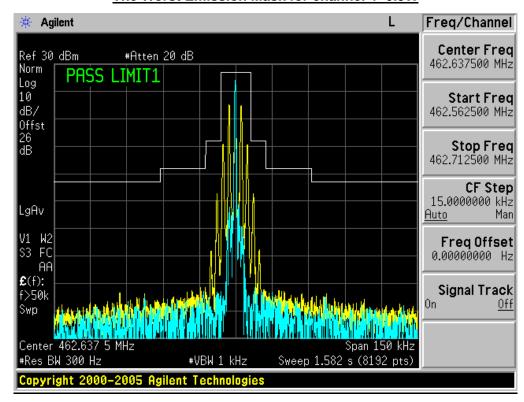
Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result (dBm)	Limit (dBm)	Result(P/F)
467.638	Н	0		pass
935.275	Н	-37.4	-13	pass
1402.913	Н	-38.2	-13	pass
1870.550	Н	-40.1	-13	pass
2338.188	Н	-42.3	-13	pass
2805.825	Н	-43.9	-13	pass
3273.463	Н	-45.4	-13	pass
3741.100	Н	-47.7	-13	pass
4208.738	Н	-50.3	-13	pass
4676.375	Н	-51.1	-13	pass

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result (dBm)	Limit (dBm)	Result(P/F)
467.638	V	0		pass
935.275	V	-37.4	-13	pass
1402.913	V	-38.2	-13	pass
1870.550	V	-40.3	-13	pass
2338.188	V	-42.6	-13	pass
2805.825	V	-44.1	-13	pass
3273.463	V	-46.6	-13	pass
3741.100	V	-48.5	-13	pass
4208.738	V	-51.9	-13	pass
4676.375	V	-52.7	-13	pass

Page 27 of 47

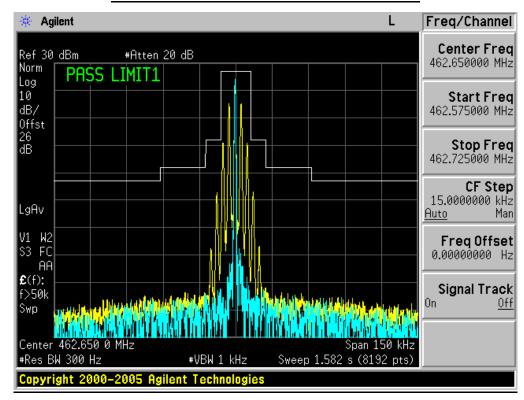
7.5 EMISSION MASK PLOT

Standard Applicable [FCC Part 95.579] FRS: Unwanted emissions shall be attenuated below the unmodulated carrier power in accordance with the following:

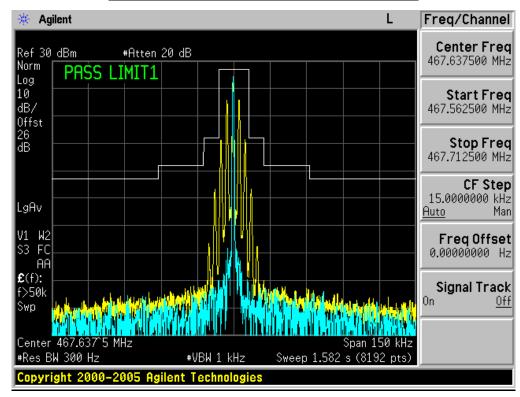

- (1) At least 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50 %up to and including 100% of the authorized bandwidth.
- (2) At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100 % up to and including 250 % of the authorized bandwidth.
- (3) At least 43 + 10 log10 (T) dB on any frequency removed from the center of the authorized bandwidth by more than 250 %.

The detailed procedure employed for Emission Mask measurements are specified as following:

- The transmitter shall be modulated by a 2.5 kHz audio signal,
- The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz.


Channel 4:

The Worst Emission Mask for channel 4 -0.5W


CHANNEL 11:

The Worst Emission Mask for channel 11-0.5W

CHANNEL 19:

The Worst Emission Mask for channel 19-0.5W

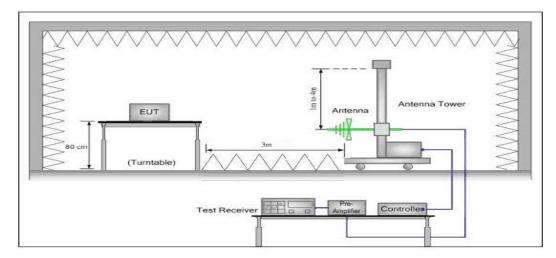
Page 31 of 47

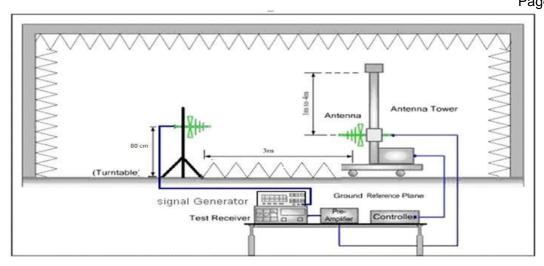
8. MAXIMUMN TRANSMITTER POWER 8.1 PROVISIONS APPLICABLE

Per FCC §2.1046 and §95.567(h): Maximum ERP is dependent upon the station's antenna HAAT and required service area.

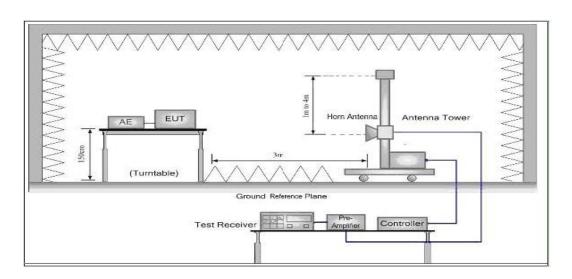
FCC Part 95.567 For FRS

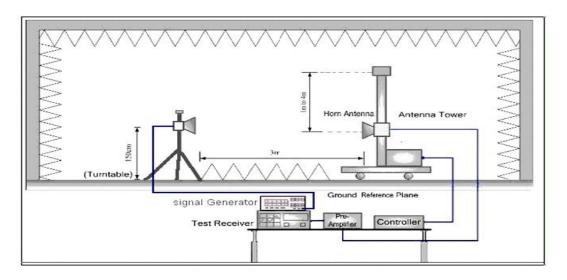
Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.


8.2 TEST PROCEDURE


- (1) The spectrum setting for Equivalent Isotropically Radiated Power (EIRP) is RBW = 100 kHz, VBW = 300 kHz. Detector Mode is RMS.
- (2) In the semi-anechoic chamber, setup as illustrated above the EUT placed on the 1.5m height of Turn Table, rotated the table 45 degree each interval to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power for each degree interval. The "Read Value" is the spectrum reading of maximum power value.
- (3) The substitution antenna is substituted for EUT at the same position and signals generator (S.G) export the CW signal to the substitution antenna via a TX cable. The receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum radiation power. Record the power level of maximum radiation power from spectrum. So, the Measured substitution value = Ref level of S.G
- + TX cables loss Substituted Antenna Gain

8.3 TEST CONFIGURATION


Effective Radiated Power


Radiated Below1GHz

Radiated Above 1 GHz

Page 33 of 47

8.4 TEST RESULT

The maximum Power (CP) for UHF is

Analog: 0.5W for 12.5 KHz Channel Separation

Calculation Formula: CP = R + A + L

* Note:

CP: The final Conducted Power

R: The reading value from spectrum analyzer A: The attenuation value of the used attenuator

L: The loss of all connection cables

ERP RESULT:

	Reading			Cable		Emission		
Frequency	Level	Antenna	S.G.	Loss	Ant.Gain	Level	Limit	Margin
(MHz)	(dBuv/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
			Frequen	cy: 462.63	75MHz			
462.6375	117.51	V	20.13	0.38	6.60	26.35	33.01	6.66
462.6375	117.43	Н	20.05	0.38	6.60	26.27	33.01	6.74
			Frequenc	cy: 462.65	00MHz			
462.6500	117.48	V	20.10	0.38	6.60	26.32	33.01	6.69
462.6500	117.40	Н	20.02	0.38	6.60	26.24	33.01	6.77
Frequency: 467.6375MHz								
467.6375	117.45	V	20.07	0.38	6.60	26.29	26.99	0.70
467.6375	117.29	Н	19.91	0.38	6.60	26.13	26.99	0.86

Page 34 of 47

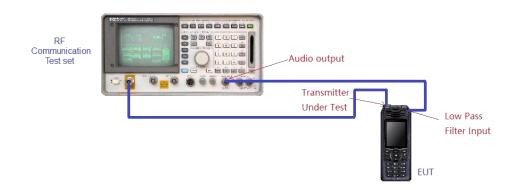
9. MODULATION CHARACTERISTICS 9.1 PROVISIONS APPLICABLE

According to [FCC Part 95.575, Part 2.1047(a)], for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

Part 95.575 A FRS unit that transmits emission type F3E must not exceed a peak frequency deviation of plus orminus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz.

Part 2.1047(a) A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing thefrequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shallbe submitted.

9.2 MEASUREMENT METHOD

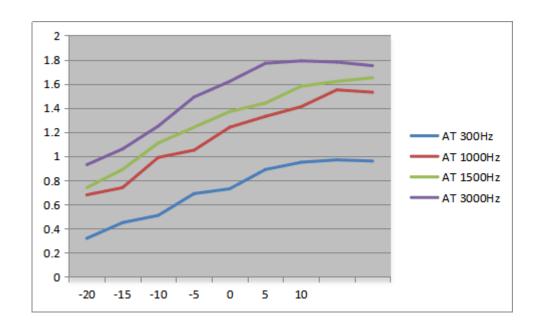

9.2.1 Modulation Limit

- (1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from −20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- (2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

9.2.2 Audio Frequency Response

Personal Radio Service stations that transmit voice emissions may also transmit audible or subaudible tones or other signals for the purpose of selective calling and/or receiver squelch activation. These tones and signals are ancillary to voice communications and are considered to be included within the voice emission types, e.g., A3E, F3E, and G3E.

- (a) Tones that are audible (having a frequency higher than 300 Hertz), must last no longer than 15 seconds at one time.
- (b) Tones that are subaudible (having a frequency of 300 Hertz or less), may be transmitted continuously during a communication session.
 - (1). Configure the EUT as shown in figure 1.
 - (2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).
 - (3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.
 - (4). Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 KHz reference).



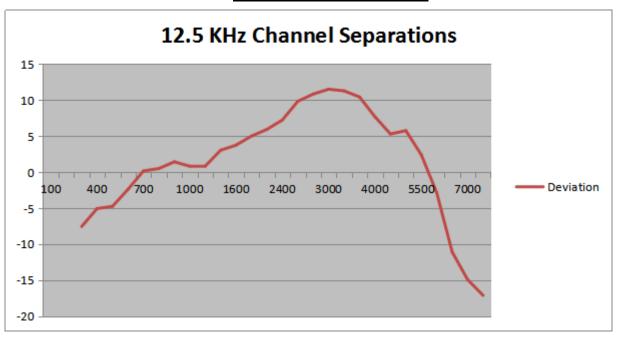
9.3 MEASUREMENT RESULT

TEST CHANNEL: 4
(A). MODULATION LIMIT:

462.6375MHz @ 12.5 KHz Channel Separations-0.5W

Modulation Level (dB)	Peak Freq. Deviation At 300 Hz	Peak Freq. Deviation At 1000 Hz	Peak Freq. Deviation At 1500 Hz	Peak Freq. Deviation At 3000 Hz
-20	0.32	0.68	0.74	0.93
-15	0.45	0.74	0.89	1.06
-10	0.51	0.99	1.11	1.25
-5	0.69	1.05	1.24	1.49
0	0.73	1.24	1.37	1.62
+5	0.89	1.33	1.44	1.77
+10	0.95	1.41	1.58	1.79
+15	0.97	1.55	1.62	1.78
+20	0.96	1.53	1.65	1.75

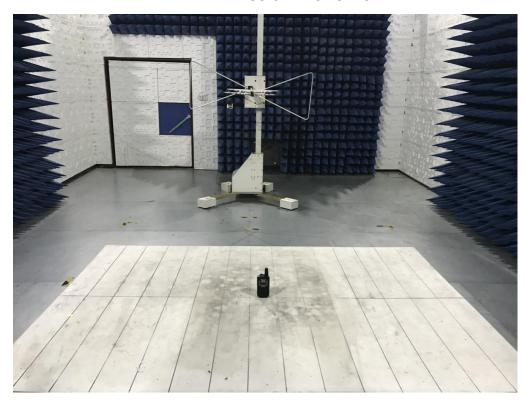
Note: All the modes had been tested, but only the worst data recorded in the report.


Report No.:AGC05067190403FE10 Page 36 of 47

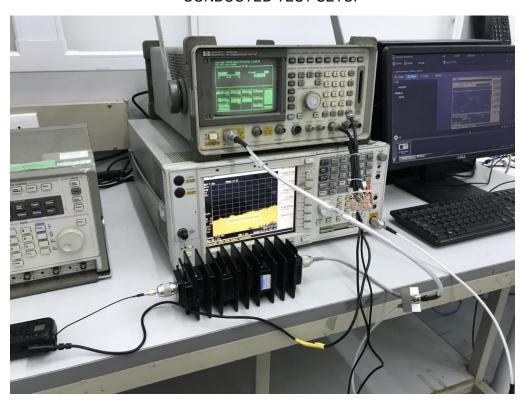
(B). AUDIO FREQUENCY RESPONSE:

462.6375MHz @ 12.5 KHz Channel Separations-0.5W

402.0375MH2 @ 12:5 KH2 Chaimer Separations-0.5W Audio Frequency				
Frequency (Hz)	Deviation (KHz)	Response(dB)		
100				
200				
300	0.21	-7.54		
400	0.28	-5.04		
500	0.29	-4.73		
600	0.38	-2.38		
700	0.51	0.17		
800	0.53	0.51		
900	0.59	1.44		
1000	0.55	0.83		
1200	0.55	0.83		
1400	0.71	3.05		
1600	0.77	3.75		
1800	0.89	5.01		
2000	0.99	5.93		
2400	1.15	7.23		
2500	1.55	9.83		
2800	1.74	10.83		
3000	1.88	11.50		
3200	1.83	11.27		
3600	1.66	10.42		
4000	1.21	7.68		
4500	0.92	5.30		
5000	0.97	5.76		
5500	0.66	2.41		
6000	0.36	-2.85		
6500	0.36	-11.06		
7000	0.09	-14.89		
7500	0.07	-17.08		
9000				
10000				
14000				
18000				
20000				
30000				


Frequency Response Result

Note: All the modes had been tested, but only the worst data recorded in the report.


APPENDIX I: PHOTOGRAPHS OF SETUP

RADIATED EMISSION TEST SETUP

CONDUCTED TEST SETUP

Page 40 of 47

APPENDIX II: EXTERNAL VIEW OF EUT

TOTAL VIEW OF EUT

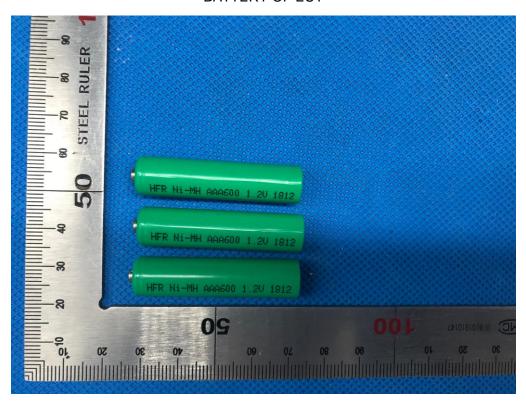
TOP VIEW OF EUT

BOTTOM VIEW OF EUT

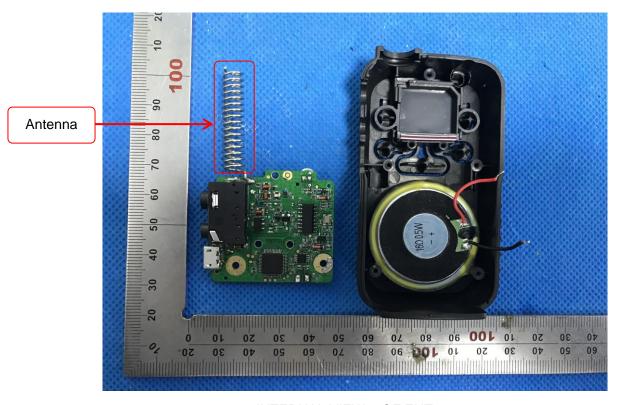
FRONT VIEW OF EUT

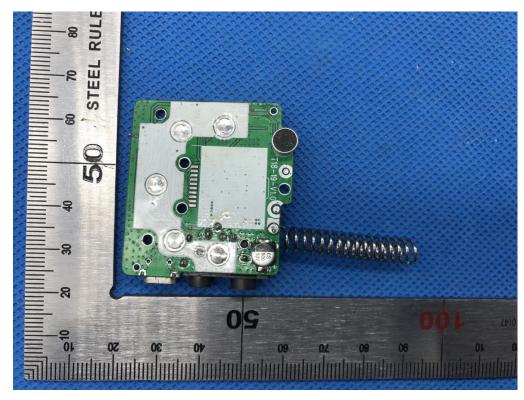
BACK VIEW OF EUT

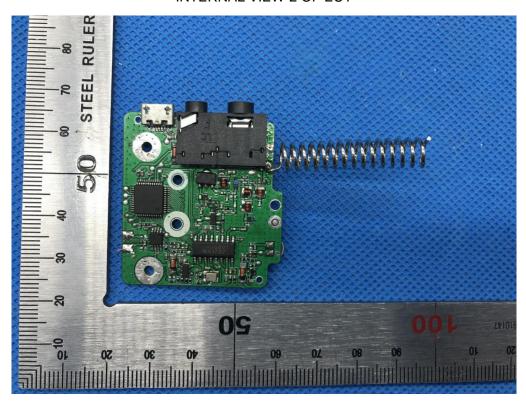
LEFT VIEW OF EUT

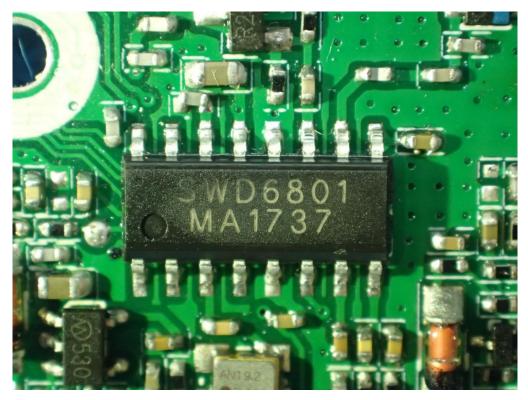

RIGHT VIEW OF EUT

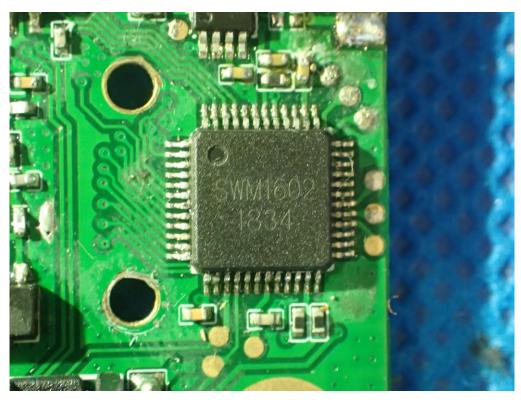
OPEN VIEW-1 OF EUT


BATTERY OF EUT


OPEN VIEW-2 OF EUT


OPEN VIEW-3 OF EUT


INTERNAL VIEW-1 OF EUT


INTERNAL VIEW-2 OF EUT

INTERNAL VIEW-3 OF EUT

INTERNAL VIEW-4 OF EUT

----END OF REPORT----