

2019.10.16

# **TEST REPORT**

## of

FCC Part 15 Subpart C §15.247 RSS-247 Issue 2, RSS-Gen Issue 5

## FCC ID: TQ8-DA330G5AN IC Certification: 5074A-DA330G5KN

| Murp                                | hy K  | im                                                                                                                                                                   |  |  |  |  |
|-------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Tested By:                          |       | Date: 2019.10.16                                                                                                                                                     |  |  |  |  |
| In the configuration tested, the EL | JT co | omplied with the standards specified above.                                                                                                                          |  |  |  |  |
| Date of Issue                       | :     | 2019.10.16                                                                                                                                                           |  |  |  |  |
| Date of Test(s)                     | :     | 2019.09.02 ~ 2019.10.10                                                                                                                                              |  |  |  |  |
| Date of Receipt                     | :     | 2019.08.31                                                                                                                                                           |  |  |  |  |
| Manufacturer                        | :     | Hyundai Mobis Co., Ltd.                                                                                                                                              |  |  |  |  |
| Applicant                           | :     | Hyundai Mobis Co., Ltd.                                                                                                                                              |  |  |  |  |
| IC Variant Model Name               | :     | DT330G5KN                                                                                                                                                            |  |  |  |  |
| FCC Variant Model<br>Names          | :     | DA331G5AN, DA330G5EG, DA331G5EG,<br>DA330G5EP, DA331G5EP, DA332G5EP,<br>DT330G5AN, DA330G5GG, DA331G5GG,<br>DA330G5GN, DA330G5GL, DA330G5MG,<br>DA332G5EG, DA330G5FN |  |  |  |  |
| IC Model Name                       | :     | DA330G5KN                                                                                                                                                            |  |  |  |  |
| FCC Model Name                      | :     | DA330G5AN                                                                                                                                                            |  |  |  |  |
| Equipment Under Test                | :     | DISPLAY CAR SYSTEM                                                                                                                                                   |  |  |  |  |

Technical Manager:

Date: **Jungmin Yang** 

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm x 297 mm)



## **INDEX**

| Table of Contents                                                          | Page |
|----------------------------------------------------------------------------|------|
| 1. General Information                                                     | 3    |
| 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission | 11   |
| 3. 20 dB Bandwidth & 99 % Bandwidth                                        | 38   |
| 4. Maximum Peak Conducted Output Power                                     | 50   |
| 5. Carrier Frequency Separation                                            | 52   |
| 6. Number of Hopping Frequencies                                           | 56   |
| 7. Time of Occupancy(Dwell Time)                                           | 60   |
| 8. Antenna Requirement                                                     | 74   |



## **1. General Information**

## 1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a>. Phone No. : +82 31 688 0901 Fax No. : +82 31 688 0921

## 1.2. Details of Applicant

| Applicant      | : | Hyundai Mobis Co., Ltd.                                  |
|----------------|---|----------------------------------------------------------|
| Address        | : | 203, Teheran-ro, Gangnam-gu, Seoul, South Korea, 135-977 |
| Contact Person | : | Choe, Seung-hoon                                         |
| Phone No.      | : | +82 31 260 0098                                          |

## 1.3. Details of Manufacturer

| Company | : | Same as applicant |
|---------|---|-------------------|
| Address | : | Same as applicant |

## **1.4. Description of EUT**

| Kind of Product         | DISPLAY CAR SYSTEM                                                                                                                                       |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC Model Name          | DA330G5AN                                                                                                                                                |
| IC Model Name           | DA330G5KN                                                                                                                                                |
| FCC Variant Model Names | DA331G5AN, DA330G5EG, DA331G5EG, DA330G5EP, DA331G5EP, DA332G5EP, DT330G5AN, DA330G5GG, DA331G5GG, DA330G5GN, DA330G5GL, DA330G5MG, DA332G5EG, DA330G5FN |
| IC Variant Model Name   | DT330G5KN                                                                                                                                                |
| Power Supply            | DC 14.4 V                                                                                                                                                |
| Frequency Range         | 2 402 M₂ ~ 2 480 M₂ (Bluetooth)                                                                                                                          |
| Modulation Technique    | GFSK, π/4DQPSK, 8DPSK                                                                                                                                    |
| Number of Channels      | 79 channels (Bluetooth)                                                                                                                                  |
| Antenna Type            | Pattern antenna                                                                                                                                          |
| Antenna Gain            | -0.18 dB i                                                                                                                                               |

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>



## 1.5. Test Equipment List

| Equipment                   | Manufacturer                   | Model                                | S/N                       | Cal. Date     | Cal.<br>Interval | Cal. Due      |
|-----------------------------|--------------------------------|--------------------------------------|---------------------------|---------------|------------------|---------------|
| Signal Generator            | R&S                            | SMR40                                | 100272                    | Jun. 07, 2019 | Annual           | Jun. 07, 2020 |
| Signal Generator            | R&S                            | SMBV100A                             | 255834                    | Jun. 10, 2019 | Annual           | Jun. 10, 2020 |
| Spectrum Analyzer           | R&S                            | FSV30                                | 103210                    | Dec. 05, 2018 | Annual           | Dec. 05, 2019 |
| Spectrum Analyzer           | Agilent                        | N9030A                               | US51350132                | Sep. 11, 2019 | Annual           | Sep. 11, 2020 |
| Bluetooth Tester            | TESCOM                         | TC-3000C                             | 3000C000296               | Jun. 05, 2019 | Annual           | Jun. 05, 2020 |
| Directional Coupler         | KRYTAR                         | 152613                               | 122660                    | Jun. 12, 2019 | Annual           | Jun. 12, 2020 |
| High Pass Filter            | Wainwright Instrument<br>GmbH  | WHK3.0/18G-10SS                      | 344                       | May 21, 2019  | Annual           | May 21, 2020  |
| High Pass Filter            | Wainwright Instrument<br>GmbH  | WHNX7.5/26.5G-6SS                    | 15                        | Jun. 05, 2019 | Annual           | Jun. 05, 2020 |
| Low Pass Filter             | Mini-Circuits                  | NLP-1200+                            | V 8979400903-2            | Feb. 19, 2019 | Annual           | Feb. 19, 2020 |
| Power Sensor                | R&S                            | NRP-Z81                              | 100748                    | Jun. 05, 2019 | Annual           | Jun. 05, 2020 |
| DC Power Supply             | R&S                            | HMP2020                              | 019258024                 | Nov. 06, 2018 | Annual           | Nov. 06, 2019 |
| Preamplifier                | H.P.                           | 8447F                                | 2944A03909                | Aug. 07, 2019 | Annual           | Aug. 07, 2020 |
| Signal Conditioning<br>Unit | R&S                            | SCU-18                               | 10117                     | Jun. 12, 2019 | Annual           | Jun. 12, 2020 |
| Preamplifier                | MITEQ Inc.                     | JS44-18004000-35-8P                  | 1546891                   | May 13, 2019  | Annual           | May 13, 2020  |
| Loop Antenna                | Schwarzbeck<br>Mess-Elektronik | FMZB 1519                            | 1519-039                  | Aug. 22, 2019 | Biennial         | Aug. 22, 2021 |
| Bilog Antenna               | Schwarzbeck<br>Mess-Elektronik | VULB 9163                            | 396                       | Mar. 21, 2019 | Biennial         | Mar. 21, 2021 |
| Horn Antenna                | R&S                            | HF906                                | 100326                    | Feb. 14, 2018 | Biennial         | Feb. 14, 2020 |
| Horn Antenna                | Schwarzbeck<br>Mess-Elektronik | BBHA 9170                            | BBHA9170431               | Sep. 10, 2018 | Biennial         | Sep. 10, 2020 |
| Test Receiver               | R&S                            | ESU26                                | 100109                    | Jan. 31, 2019 | Annual           | Jan. 31, 2020 |
| Turn Table                  | Innco systems GmbH             | DS 1200 S                            | N/A                       | N.C.R.        | N/A              | N.C.R.        |
| Controller                  | Innco systems GmbH             | CONTROLLER<br>CO3000-4P              | CO3000/963/383<br>30516/L | N.C.R.        | N/A              | N.C.R.        |
| Antenna Mast                | Innco systems GmbH             | MA4640-XP-ET                         | MA4640/536/383<br>30516/L | N.C.R.        | N/A              | N.C.R.        |
| Anechoic Chamber            | SY Corporation                 | L × W × H<br>(9.6 m × 6.4 m × 6.6 m) | N/A                       | N.C.R.        | N/A              | N.C.R.        |
| Coaxial Cable               | SUCOFLEX                       | 104 (3 m)                            | MY3258414                 | Jul. 20, 2019 | Semi-<br>annual  | Jan. 20, 2020 |
| Coaxial Cable               | SUCOFLEX                       | 104 (10 m)                           | MY3145814                 | Jul. 20, 2019 | Semi-<br>annual  | Jan. 20, 2020 |
| Coaxial Cable               | Rosenberger                    | LA1-C006-1500                        | 131014 01/20              | Aug. 23, 2019 | Semi-<br>annual  | Feb. 23, 2020 |
| Coaxial Cable               | Rosenberger                    | LA1-C006-1500                        | 131014 05/20              | Aug. 23, 2019 | Semi-<br>annual  | Feb. 23, 2020 |
| Coaxial Cable               | Rosenberger                    | LA1-C006-1500                        | 131014 10/20              | Aug. 23, 2019 | Semi-<br>annual  | Feb. 23, 2020 |



## 1.6. Declaration by the Manufacturer

- Adaptive Frequency Hopping is supported and use at least 20 channels.

## 1.7. Information about the FHSS characteristics:

#### 1.7.1. Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

#### 1.7.2. Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

#### 1.7.3. Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

#### 1.7.4. System Receiver Input Bandwidth

Each channel bandwidth is 1 Mtz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

#### 1.7.5. Equipment Description

15.247(a)(1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr A4(210 mm × 297 mm)

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



## 1.8. Summary of Test Results

The EUT has been tested according to the following specifications:

| APPLIED STANDARD: FCC Part15 Subpart C, RSS-247 Issue 2, RSS-Gen Issue 5 |                                                     |                                                                            |          |  |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|----------|--|--|--|
| Section in FCC                                                           | Section in IC                                       | Test Item                                                                  | Result   |  |  |  |
| 15.205(a)<br>15.209<br>15.247(d)                                         | RSS-247 Issue 2<br>5.5<br>RSS-Gen Issue 5<br>8.9    | Transmitter Radiated Spurious Emissions<br>and Conducted Spurious Emission | Complied |  |  |  |
| 15.247(a)(1)                                                             | RSS-247 Issue 2<br>5.1(b)<br>RSS-Gen Issue 5<br>6.7 | 20 dB Bandwidth and 99 % Bandwidth                                         | Complied |  |  |  |
| 15.247(b)(1)                                                             | RSS-247 Issue 2<br>5.1(b)<br>5.4(b)                 | Maximum Peak Conducted Output Power                                        | Complied |  |  |  |
| 15.247(a)(1)                                                             | RSS-247 Issue 2<br>5.1(b)                           | Carrier Frequency Separation                                               | Complied |  |  |  |
| 15.247(a)(1)(iii)                                                        | RSS-247 Issue 2<br>5.1(d)                           | Number of Hopping Frequencies                                              | Complied |  |  |  |
| 15.247(a)(1)(iii)                                                        | RSS-247 Issue 2<br>5.1(d)                           | Time of Occupancy<br>(Dwell Time)                                          | Complied |  |  |  |



## **1.9. Information of Variant Models**

| Model Names       |       | Description |           |     |              |    |     |       |         |                |          |
|-------------------|-------|-------------|-----------|-----|--------------|----|-----|-------|---------|----------------|----------|
|                   | Model | Names       | Frequency | RDS | BT,<br>Wi-Fi | HD | DAB | AA/CP | SXM/LTE | Rear<br>Camera | AMP      |
| Basic             | FCC   | DA330G5AN   | A2        | Х   | 0            | 0  | Х   | 0     | Х       | 0              | Internal |
| Models            | IC    | DA330G5KN   | A2        | Х   | 0            | 0  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA331G5AN   | A2        | Х   | 0            | 0  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA330G5EG   | A1        | Х   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA331G5EG   | A1        | 0   | 0            | Х  | 0   | 0     | Х       | 0              | Internal |
|                   |       | DA330G5EP   | A8        | Х   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA331G5EP   | A8        | 0   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA332G5EP   | A8        | 0   | 0            | Х  | 0   | 0     | Х       | 0              | Internal |
|                   | FCC   | DT330G5AN   | A2        | Х   | 0            | 0  | Х   | 0     | 0       | 0              | Internal |
| Variant<br>Models |       | DA330G5GG   | A1        | Х   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA331G5GG   | A1        | 0   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA330G5GN   | A2        | Х   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA330G5GL   | A5        | Х   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA330G5MG   | A1        | Х   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA332G5EG   | A1        | 0   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   |       | DA330G5FN   | A2        | Х   | 0            | Х  | Х   | 0     | Х       | 0              | Internal |
|                   | IC    | DT330G5KN   | A2        | Х   | 0            | 0  | Х   | 0     | 0       | 0              | Internal |

\* AA: Google Android Auto

\* CP: Apple Car Play



## 1.10. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedure for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 15.247 Meas Guidance v05r02 were used in the measurement of the DUT.

## 1.11. Sample Calculation

Where relevant, the following sample calculation is provided:

#### 1.11.1. Conducted Test

Offset value (dB) = Directional coupler (dB) + Cable loss (dB)

#### 1.11.2. Radiation Test

Field strength level ( $dB\mu N/m$ ) = Measured level ( $dB\mu N$ ) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB)

## 1.12. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Parameter                          | Uncertainty      |
|------------------------------------|------------------|
| RF Output Power                    | <b>± 0.40</b> dB |
| Occupied Bandwidth                 | ± 9.66 kHz       |
| Conducted Spurious Emission        | <b>± 0.76</b> dB |
| Radiated Emission, 9 kHz to 30 MHz | <b>± 3.59</b> dB |
| Radiated Emission, below 1 GHz     | <b>± 5.88</b> dB |
| Radiated Emission, above 1 GHz     | <b>± 5.94</b> dB |

Uncertainty figures are valid to a confidence level of 95 %.

#### 1.13. Test Report Revision

| Revision | Report Number Date of Issue |            | Description                               |  |
|----------|-----------------------------|------------|-------------------------------------------|--|
| 0        | F690501/RF-RTL014424        | 2019.10.11 | Initial                                   |  |
| 1        | F690501/RF-RTL014424-1      | 2019.10.16 | Revised the Information of variant Models |  |

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



## 1.14. Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

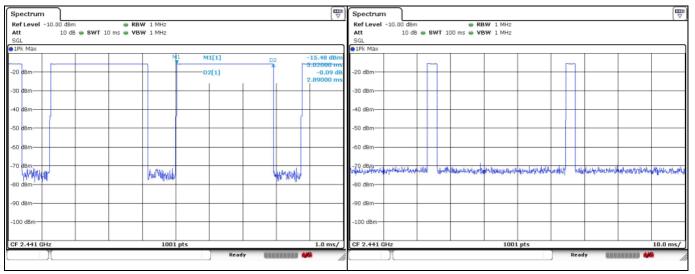
| Operation<br>Mode | Data Rate<br>(Mbps) | Channel | Frequency<br>(⊮⊉) | RF Output Power<br>(dB m) |  |
|-------------------|---------------------|---------|-------------------|---------------------------|--|
|                   |                     | Low     | 2 402             | 0.29                      |  |
| GFSK              | 1                   | Middle  | 2 441             | 1.13                      |  |
|                   |                     | High    | 2 480             | <u>1.15</u>               |  |
|                   |                     | Low     | 2 402             | -2.33                     |  |
| π/4DQPSK          | 2                   | Middle  | 2 441             | -1.48                     |  |
|                   |                     | High    | 2 480             | <u>-1.28</u>              |  |
|                   |                     | Low     | 2 402             | -2.12                     |  |
| 8DPSK             | 3                   | Middle  | 2 441             | -1.11                     |  |
|                   |                     | High    | 2 480             | <u>-0.88</u>              |  |

#### Note:

1. For transmitter radiated spurious emissions, conducted spurious emission, carrier frequency separation and number of hopping frequencies, GFSK / DH5 and 8DPSK / 3DH5 are tested as worst condition.

2. For 20 dB bandwidth and maximum peak conducted output power, GFSK / DH5, π/4DQPSK / 2DH5 and 8DPSK / 3DH5 are tested as worst condition.


3. For Time of Occupancy, GFSK / DH1, DH3, DH5 and 8DPSK / 3DH1, 3DH3, 3DH5 are tested as worst condition.




## 1.15. Duty Cycle Correction Factor of EUT

According to KDB 558074 D01 15.247 Meas Guidance v05r02, 9, as a "duty cycle correction factor", pulse averaging with 20 log (worst case dwell time / 100 ms) has to be used for average result.

#### DH5 on time (One Pulse) Plot on Channel 39





In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed;

the period to have DH5 packet completing one hopping sequence is 2.89 ms x 20 channels = 57.80 ms

There cannot be 2 complete hopping sequences within 100 ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.80 ms] = 2 hops

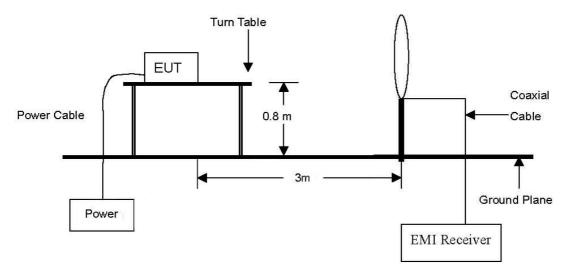
Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

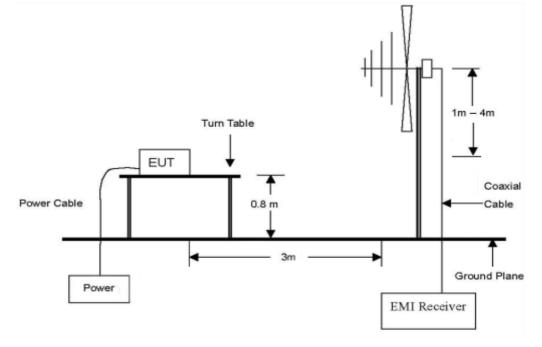
Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time:

20 x log (5.78 ms/100 ms) = -24.76 dB

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



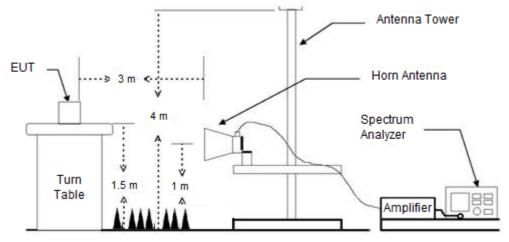

## 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission


## 2.1. Test Setup

## 2.1.1. Transmitter Radiated Spurious Emissions

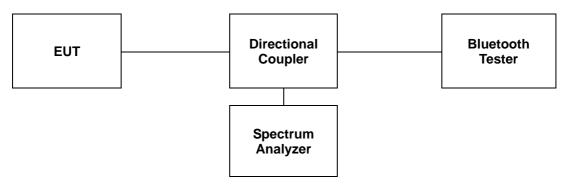
The diagram below shows the test setup that is utilized to make the measurements for emission from 9  $\,\rm klt$  to 30  $\,\rm Mk$ 




The diagram below shows the test setup that is utilized to make the measurements for emission from 30  $\,\rm Mz$  to 1  $\,\rm Gz$ 








The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 GHz to the 10<sup>th</sup> harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.





## 2.1.2. Conducted Spurious Emissions



## 2.2. Limit

#### 2.2.1. FCC

According to \$15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section \$15.209(a) is not required. In addition, radiated emission limits specified in section \$15.209(a) (see \$15.205(c)).

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(쌘) | Field Strength<br>(µN/m) | Measurement Distance<br>(Meters) |
|------------------|--------------------------|----------------------------------|
| 0.009-0.490      | 2 400/F(klz)             | 300                              |
| 0.490-1.705      | 24 000/F(kHz)            | 30                               |
| 1.705-30.0       | 30                       | 30                               |
| 30-88            | 100**                    | 3                                |
| 88-216           | 150**                    | 3                                |
| 216-960          | 200**                    | 3                                |
| Above 960        | 500                      | 3                                |

\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.



#### 2.2.2. IC

According to RSS-247 Issue 2, 5.5, in any 100 kt/z bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kt/z bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

According to RSS-Gen Issue 5, 8.9, except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

| Frequency (ﷺ) | Field Strength ( <i>µ</i> V/m at 3 m) |
|---------------|---------------------------------------|
| 30-88         | 100                                   |
| 88-216        | 150                                   |
| 216-960       | 200                                   |
| Above 960     | 500                                   |

#### Table 5 – General Field Strength Limits at frequencies above 30 Mb

#### Table 6 – General Field Strength Limits at frequencies below 30 Mb

| Frequency            | Magnetic Field Strength<br>(H-Field)<br>(µA/m) | Measurement Distance<br>(meters) |
|----------------------|------------------------------------------------|----------------------------------|
| 9-490 kHz 1          | 6.37/F (F in kl₂)                              | 300                              |
| <b>490-1 705</b> kHz | 63.7/F (F in k⊞)                               | 30                               |
| 1.705-30 Mz          | 0.08                                           | 30                               |

**Note<sup>1</sup>:** The emission limits for the ranges 9-90 klz and 110-490 klz are based on measurements employing a linear average detector.



## 2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013.

#### 2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

#### 2.3.2. Test Procedures for emission from above 30 $\ensuremath{\mathbb{M}}$

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meter above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### Note;

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. For frequency above 1 GHz, set spectrum analyzer detector to peak, and resolution bandwidth is 1 MHz and video bandwidth is 3 MHz.
- 3. Definition of DUT Axis.
  - Definition of the test orthogonal plan for EUT was described in the test setup photo. The test orthogonal plan of EUT is X axis during radiation test.

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>



## 2.3.3. Test Procedures for Conducted Spurious Emissions

#### 2.3.3.1. Band-edge Compliance of RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation. RBW  $\geq$  100 kHz VBW = 300 kHz Sweep = auto Detector function = peak Trace = max hold

#### 2.3.3.2. Spurious RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. RBW = 1 Mz VBW = 3 MzSweep = auto Detector function = peak Trace = max hold

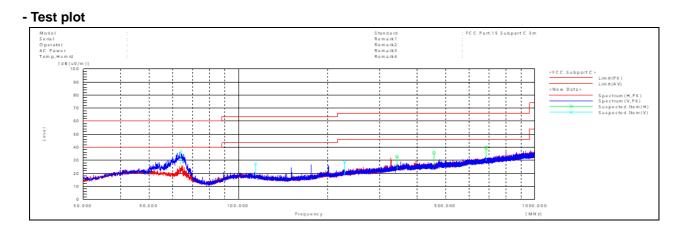
#### 2.3.3.3. TDF function

- For plots showing conducted spurious emissions from 9  $kl_2$  to 25  $Gl_2$ , all path loss of wide frequency range was investigated and compensated to spectrum analyzer as TDF function. So, the reading values shown in plots were final result.



## 2.4. Test Results

| Ambient temperature | : | (23 - | <b>⊾ 1)</b> ℃ |
|---------------------|---|-------|---------------|
| Relative humidity   | : | 47    | % R.H.        |


#### 2.4.1. Radiated Spurious Emission below 1 000 Mb

The frequency spectrum from 9 kltz to 1 000 Mtz was investigated. All reading values are peak values.

| Radi              | Radiated Emissions |                |      | Correctio    | n Factors        | Total              | Lim               | Limit          |  |
|-------------------|--------------------|----------------|------|--------------|------------------|--------------------|-------------------|----------------|--|
| Frequency<br>(Mb) | Reading<br>(dBµV)  | Detect<br>Mode | Pol. | AF<br>(dB/m) | AMP + CL<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |
| 63.95             | 46.40              | Peak           | V    | 16.82        | -26.32           | 36.90              | 40.00             | 3.10           |  |
| 114.27            | 37.10              | Peak           | V    | 16.17        | -25.51           | 27.76              | 43.50             | 15.74          |  |
| 228.57            | 35.90              | Peak           | V    | 17.67        | -25.46           | 28.11              | 46.00             | 17.89          |  |
| 342.87            | 36.30              | Peak           | Н    | 22.84        | -25.20           | 33.94              | 46.00             | 12.06          |  |
| 457.12            | 38.50              | Peak           | Н    | 21.94        | -25.09           | 35.35              | 46.00             | 10.65          |  |
| 685.72            | 37.90              | Peak           | н    | 25.41        | -23.50           | 39.81              | 46.00             | 6.19           |  |
| Above<br>700.00   | Not<br>detected    | -              | -    | -            | -                | -                  | -                 | -              |  |

#### Remark;

- 1. Spurious emissions for all channels and modes were investigated and almost the same below 1 GHz.
- 2. Reported spurious emissions are in BDR / DH5 / High channel as worst case among other modes.
- Radiated spurious emission measurement as below.
   (Actual = Reading + AF + AMP + CL)
- 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.



The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)



#### 2.4.2. Radiated Spurious Emission above 1 000 Mb

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak values.

#### **Operating Mode: GFSK (1 Mbps)**

A. Low Channel (2 402 Mb)

| Radia            | Radiated Emissions |                |      | Corr         | ection Fac | tors       | Total              | Total Limit       |                |
|------------------|--------------------|----------------|------|--------------|------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(쌘) | Reading<br>(dBµN)  | Detect<br>Mode | Pol. | AF<br>(dB/m) | CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| *2 310.00        | 24.72              | Peak           | н    | 27.82        | 8.07       | -          | 60.61              | 74.00             | 13.39          |
| *2 310.00        | -                  | -              | -    | -            | -          | -24.76     | 35.85              | 54.00             | 18.15          |
| *2 323.21        | 26.64              | Peak           | н    | 27.85        | 8.10       | -          | 62.59              | 74.00             | 11.41          |
| *2 323.21        | -                  | -              | -    | -            | -          | -24.76     | 37.83              | 54.00             | 16.17          |
| *2 390.00        | 24.66              | Peak           | н    | 27.98        | 8.22       | -          | 60.86              | 74.00             | 13.14          |
| *2 390.00        | -                  | -              | -    | -            | -          | -24.76     | 36.10              | 54.00             | 17.90          |

| Radiated Emissions |                   | Ant.           | Corr | <b>Correction Factors</b> |                |                   | Limit              |                   |                |
|--------------------|-------------------|----------------|------|---------------------------|----------------|-------------------|--------------------|-------------------|----------------|
| Frequency<br>(Mb)  | Reading<br>(dBµV) | Detect<br>Mode | Pol. | AF<br>(dB/m)              | AMP+CL<br>(dB) | <b>DF</b><br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -    | -                         | -              | -                 | -                  | -                 | -              |

B. Middle Channel (2 441 Mtz)

| Radiated Emissions |                   | Ant.           | Corr | ection Fact  | tors           | Total      | Lim                | it                |                |
|--------------------|-------------------|----------------|------|--------------|----------------|------------|--------------------|-------------------|----------------|
| Frequency<br>(Mb)  | Reading<br>(dBµN) | Detect<br>Mode | Pol. | AF<br>(dB/m) | AMP+CL<br>(dB) | DF<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -    | -            | -              | -          | -                  | -                 | -              |

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>



#### C. High Channel (2 480 Mz)

| Radia             | Radiated Emissions |                |      | Corr         | ection Fac | tors              | Total              | Total Limit       |                |
|-------------------|--------------------|----------------|------|--------------|------------|-------------------|--------------------|-------------------|----------------|
| Frequency<br>(Mb) | Reading<br>(dBµN)  | Detect<br>Mode | Pol. | AF<br>(dB/m) | CL<br>(dB) | <b>DF</b><br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| *2 483.50         | 25.72              | Peak           | н    | 28.00        | 8.37       | -                 | 62.09              | 74.00             | 11.91          |
| *2 483.50         | -                  | -              | -    | -            | -          | -24.76            | 37.33              | 54.00             | 16.67          |
| *2 488.60         | 26.84              | Peak           | н    | 28.00        | 8.38       | -                 | 63.22              | 74.00             | 10.78          |
| *2 488.60         | -                  | -              | -    | -            | -          | -24.76            | 38.46              | 54.00             | 15.54          |
| *2 500.00         | 26.59              | Peak           | н    | 28.00        | 8.38       | -                 | 62.97              | 74.00             | 11.03          |
| *2 500.00         | -                  | -              | -    | -            | -          | -24.76            | 38.21              | 54.00             | 15.79          |

| Radiated Emissions |                   | Ant.           | Corr | Correction Factors |                |                   | Lim                | it                |                |
|--------------------|-------------------|----------------|------|--------------------|----------------|-------------------|--------------------|-------------------|----------------|
| Frequency<br>(畑)   | Reading<br>(dBµV) | Detect<br>Mode | Pol. | AF<br>(dB/m)       | AMP+CL<br>(dB) | <b>DF</b><br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -    | -                  | -              | -                 | -                  | -                 | -              |



#### **Operating Mode: 8DPSK (3 Mbps)**

A. Low Channel (2 402 Mb)

| Radia            | Radiated Emissions |                |      | Corr         | ection Fac | tors              | Total              | Total Limit       |                |
|------------------|--------------------|----------------|------|--------------|------------|-------------------|--------------------|-------------------|----------------|
| Frequency<br>(畑) | Reading<br>(dBµN)  | Detect<br>Mode | Pol. | AF<br>(dB/m) | CL<br>(dB) | <b>DF</b><br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| *2 310.00        | 23.48              | Peak           | н    | 27.82        | 8.07       | -                 | 59.37              | 74.00             | 14.63          |
| *2 310.00        | -                  | -              | -    | -            | -          | -24.76            | 34.61              | 54.00             | 19.39          |
| *2 365.78        | 26.44              | Peak           | н    | 27.93        | 8.19       | -                 | 62.56              | 74.00             | 11.44          |
| *2 365.78        | -                  | -              | -    | -            | -          | -24.76            | 37.80              | 54.00             | 16.20          |
| *2 390.00        | 24.78              | Peak           | н    | 27.98        | 8.22       | -                 | 60.98              | 74.00             | 13.02          |
| *2 390.00        | -                  | -              | -    | -            | -          | -24.76            | 36.22              | 54.00             | 17.78          |

| Radiated Emissions |                   | Ant.           | Corr | Correction Factors |                | Total             | Lim                | it                |                |
|--------------------|-------------------|----------------|------|--------------------|----------------|-------------------|--------------------|-------------------|----------------|
| Frequency<br>(Mb)  | Reading<br>(dBµV) | Detect<br>Mode | Pol. | AF<br>(dB/m)       | AMP+CL<br>(dB) | <b>DF</b><br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -    | -                  | -              | -                 | -                  | -                 | -              |

B. Middle Channel (2 441 Mtz)

| Radiated Emissions |                   | Ant.           | Corr | ection Fact  | ors            | Total             | Lim                | it                |                |
|--------------------|-------------------|----------------|------|--------------|----------------|-------------------|--------------------|-------------------|----------------|
| Frequency<br>(Mb)  | Reading<br>(dBµN) | Detect<br>Mode | Pol. | AF<br>(dB/m) | AMP+CL<br>(dB) | <b>DF</b><br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -    | -            | -              | -                 | -                  | -                 | -              |



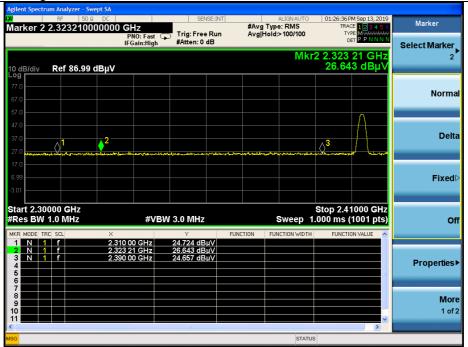
#### C. High Channel (2 480 Mz)

| Radiated Emissions |                   | Ant.           | <b>Correction Factors</b> |              |            | Total             | Limit              |                   |                |
|--------------------|-------------------|----------------|---------------------------|--------------|------------|-------------------|--------------------|-------------------|----------------|
| Frequency<br>(Mb)  | Reading<br>(dBµN) | Detect<br>Mode | Pol.                      | AF<br>(dB/m) | CL<br>(dB) | <b>DF</b><br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| *2 483.50          | 25.34             | Peak           | н                         | 28.00        | 8.37       | -                 | 61.71              | 74.00             | 12.29          |
| *2 483.50          | -                 | -              | -                         | -            | -          | -24.76            | 36.95              | 54.00             | 17.05          |
| *2 484.87          | 26.21             | Peak           | н                         | 28.00        | 8.37       | -                 | 62.58              | 74.00             | 11.42          |
| *2 484.87          | -                 | -              | -                         | -            | -          | -24.76            | 37.82              | 54.00             | 16.18          |
| *2 500.00          | 25.31             | Peak           | н                         | 28.00        | 8.38       | -                 | 61.69              | 74.00             | 12.31          |
| *2 500.00          | -                 | -              | -                         | -            | -          | -24.76            | 36.93              | 54.00             | 17.07          |

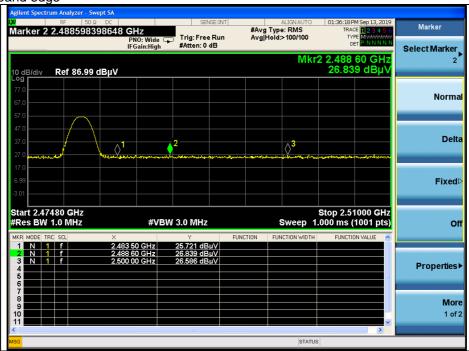
| Radiated Emissions |                   | Ant.           | <b>Correction Factors</b> |              |                | Total             | Limit              |                   |                |
|--------------------|-------------------|----------------|---------------------------|--------------|----------------|-------------------|--------------------|-------------------|----------------|
| Frequency<br>(Mz)  | Reading<br>(dBµN) | Detect<br>Mode | Pol.                      | AF<br>(dB/m) | AMP+CL<br>(dB) | <b>DF</b><br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |
| Above<br>1 000.00  | Not<br>detected   | -              | -                         | -            | -              | -                 | -                  | -                 | -              |

#### Remark;

- 1. "\*" means the restricted band.
- 2. Measuring frequencies from 1  $\mathbb{G}_{\mathbb{Z}}$  to the 10<sup>th</sup> harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 № were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + CL + (DF) or Reading + AF + AMP + CL + (DF).
- 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.
- 6. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.


The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.




#### - Test plots

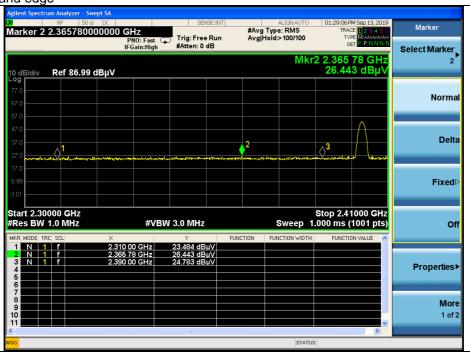
#### **Operating Mode: GFSK (1 Mbps)**

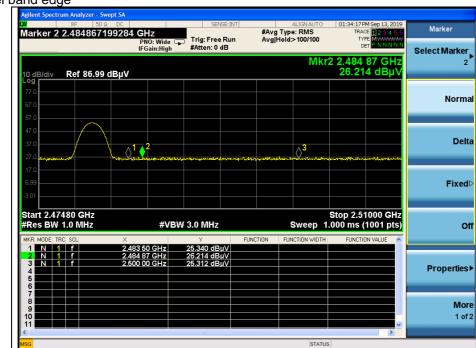
Low channel band edge



#### High channel band edge




The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.


SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr A4(210 mm × 297 mm)



#### **Operating Mode: 8DPSK (3 Mbps)**

#### Low channel band edge





#### High channel band edge

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

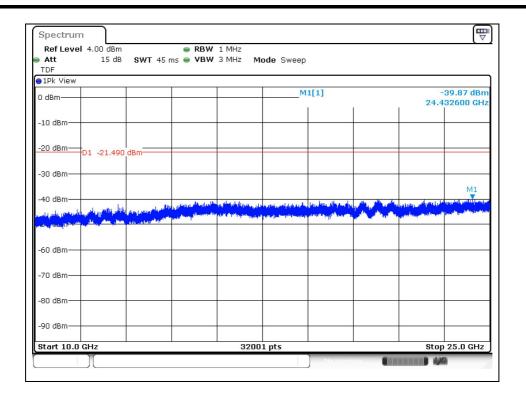
SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr A4(210 mm × 297 mm)



#### 2.4.3. Spurious RF Conducted Emissions

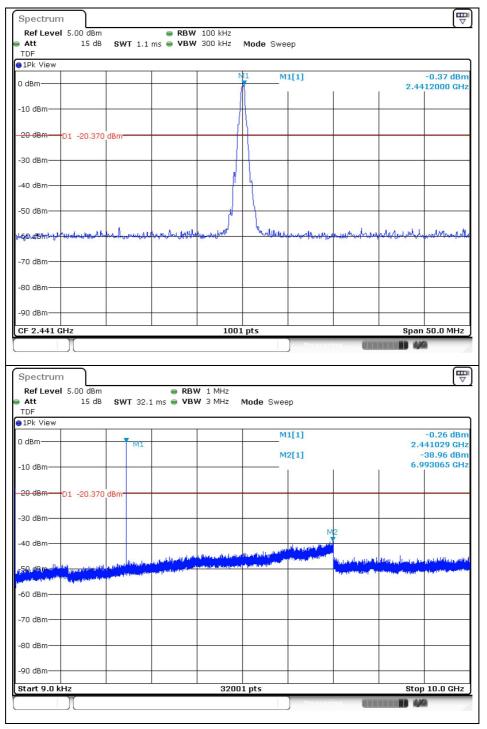
#### **Operating Mode: GFSK (1 Mbps)**

Low channel

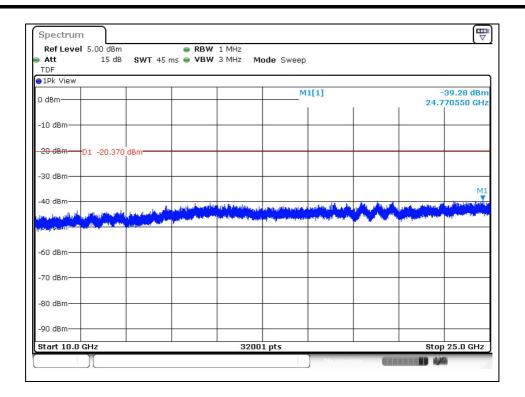

| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level 3.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı 🖷                      | RBW 100 kHz               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ( ~ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 🛢 Att 15 de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | VBW 300 kHz Ma            | ode Sweep          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TDF<br>1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 1                         | M1[1]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -1.49 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                           | M2[1]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 21500 GHz<br>60.98 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.39                    | 00000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>-20 dBm</u> D1 -21.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 dBm                    |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | - f h                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Ma                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1×60-dBm 4++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mate and market sources  | anone way and             | have and have been | and the states of the states o | when the and the second | the even of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CF 2.402 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 1001 pt                   | 5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span                    | 50.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Marker<br>Type   Ref   Trc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X-value                  | Y-value                   | Function           | Eu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inction Result          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.40215 GHz              | -1.49 dBm                 | T unction          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | incloir Result          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.39 GHz                 |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M3 1<br>M4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3999021 GHz<br>2.4 GHz |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,4 GHz                  | -30,22 UBIII              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44                      | • ///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                        | RBW 1 MHz                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | (The second seco |
| RefLevel 4.00 dBm<br>Att 15 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 <b>SWT</b> 32.1 ms     | RBW 1 MHz<br>VBW 3 MHz Mo | de Sweep           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ref Level 4.00 dBm<br>Att 15 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                           | de Sweep           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ref Level 4.00 dBm<br>Att 15 dE<br>TDF<br>1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                           | de Sweep<br>M1[1]  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -1.13 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ref Level 4.00 dBm<br>Att 15 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                           | M1[1]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ref Level 4.00 dBm<br>Att 15 dE<br>TDF<br>1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 SWT 32.1 ms ●          |                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | (∇)<br>-1.13 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ref Level     4.00 dBm       Att     15 dB       TDF     1Pk View       0 dBm     0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 SWT 32.1 ms ●          |                           | M1[1]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level     4.00 dBm       Att     15 dB       TDF     1Pk View       0 dBm     0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SWT 32.1 ms              |                           | M1[1]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 de           TDF         15 de           1Pk View         0 dBm           -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SWT 32.1 ms              |                           | M1[1]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 dB           TDF         15 dB           1Pk View         0 dBm           -10 dBm         -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                       | SWT 32.1 ms              |                           | M1[1]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 de           TDF         15 de           1Pk View         0 dBm           -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SWT 32.1 ms              |                           | M1[1]<br>M2[1]     | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 dB           TDF         15 dB           TDF         0 dBm           -10 dBm         -10 dBm           -20 dBm         D1 -21.49           -30 dBm         -40 dBm                                                                                                                                                                                                                                                                                                                                                                      | SWT 32.1 ms              |                           | M1[1]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 de           TDF         15 de           1Pk View         0 dBm           -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SWT 32.1 ms              |                           | M1[1]<br>M2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 dB           TDF         15 dB           TDF         15 dB           TDF         10 dBm           -10 dBm         -10 dBm           -20 dBm         01 -21.49           -30 dBm         -30 dBm                                                                                                                                                                                                                                                                                                                                         | SWT 32.1 ms              |                           | M1[1]<br>M2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 de           TDF         15 de           1Pk View         0 dBm           -10 dBm         -0           -20 dBm         -01 -21.49           -30 dBm         -40 dBm                                                                                                                                                                                                                                                                                                                                                                     | SWT 32.1 ms              |                           | M1[1]<br>M2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 dB           TDF         15 dB           TDF         12 dB           10 dBm         -10 dBm           -20 dBm         01 -21.49           -30 dBm         -21.49           -30 dBm         01 -21.49                                                                                                                                                                                                                                                                                                                                    | SWT 32.1 ms              |                           | M1[1]<br>M2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 de           TDF         15 de           TDF         15 de           TDF         10 dBm           -10 dBm         -10 dBm           -20 dBm         D1 -21.49           -30 dBm         -40 dBm           -60 dBm         -10 dBm           -70 dBm         -70 dBm                                                                                                                                                                                                                                                                     | SWT 32.1 ms              |                           | M1[1]<br>M2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 dB           TDF         15 dB           TDF         12 dB           0 dBm         0 dBm           -10 dBm         0 dBm           -20 dBm         D1 -21.49           -30 dBm         01 -21.49           -30 dBm         01 -21.49           -60 dBm         00 -00 -00 -00 -00 -00 -00 -00 -00 -00                                                                                                                                                                                                                                   | SWT 32.1 ms              |                           | M1[1]<br>M2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 de           TDF         15 de           TDF         15 de           TDF         10 dBm           -10 dBm         -10 dBm           -20 dBm         D1 -21.49           -30 dBm         -40 dBm           -60 dBm         -10 dBm           -70 dBm         -70 dBm                                                                                                                                                                                                                                                                     | SWT 32.1 ms              |                           | M1[1]<br>M2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                     | -1.13 dBm<br>02279 GHz<br>39.90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ref Level         4.00 dBm           Att         15 dB           TDF         15 dB           TDF         15 dB           TDF         10 dBm           -10 dBm         01 -21.49           -30 dBm         01 -21.49           -70 dBm         01 -21.49           -80 dBm         01 -21.49           -90 dBm         01 -21.49 | SWT 32.1 ms              | VBW 3 MHz Mo              | M1[1]<br>M2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4<br>-<br>6.9         | -1.13 dBm<br>02279 GHz<br>39.90 dBm<br>21193 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ref Level         4.00 dBm           Att         15 dB           TDF         15 dB           TDF         15 dB           TDF         10 dBm           -10 dBm         -0           -20 dBm         D1 -21.49           -30 dBm         -0           -40 dBm         -0           -50 dBm         -0           -60 dBm         -0           -70 dBm         -0           -80 dBm         -0                                                                                                                                                                                                  | SWT 32.1 ms              |                           | M1[1]<br>M2[1]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4<br>-<br>6.9         | -1.13 dBm<br>02279 GHz<br>39.90 dBm<br>21193 GHz L., Huy blue<br>0., Huy blue<br>10.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

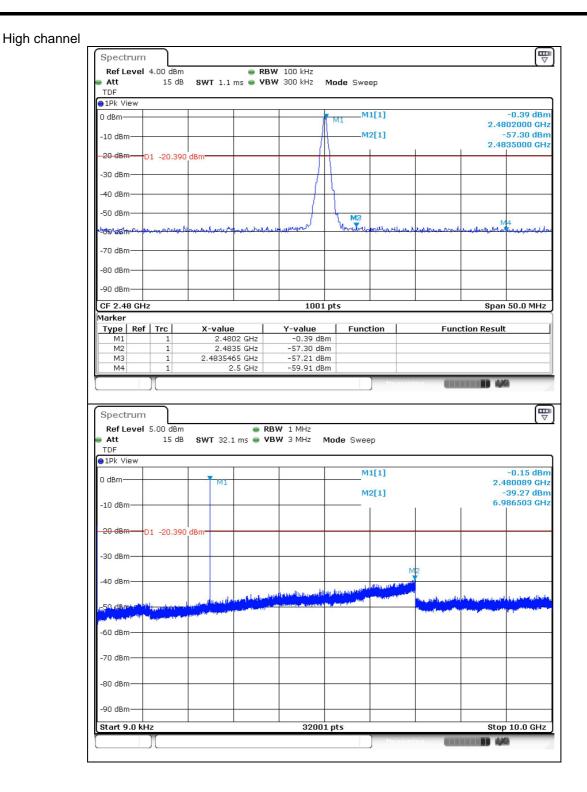
 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr


 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

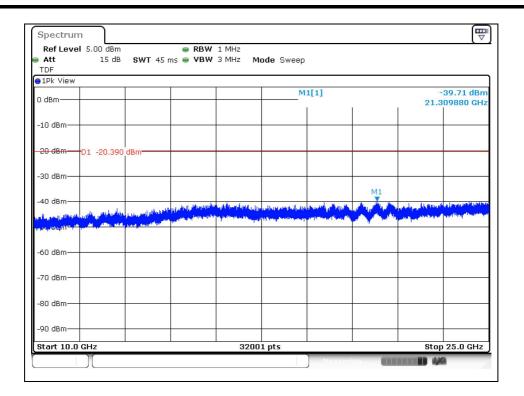








#### Middle channel

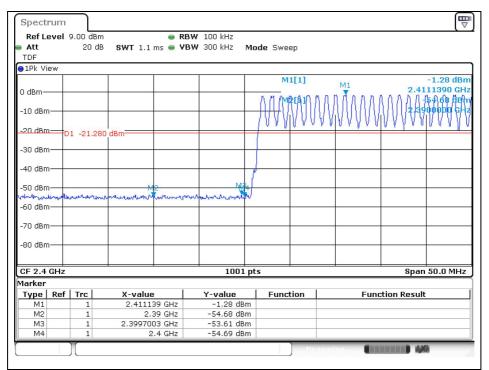




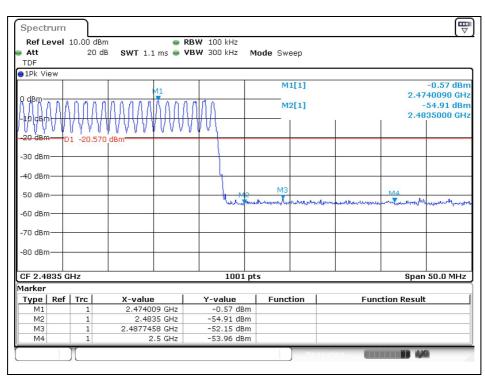








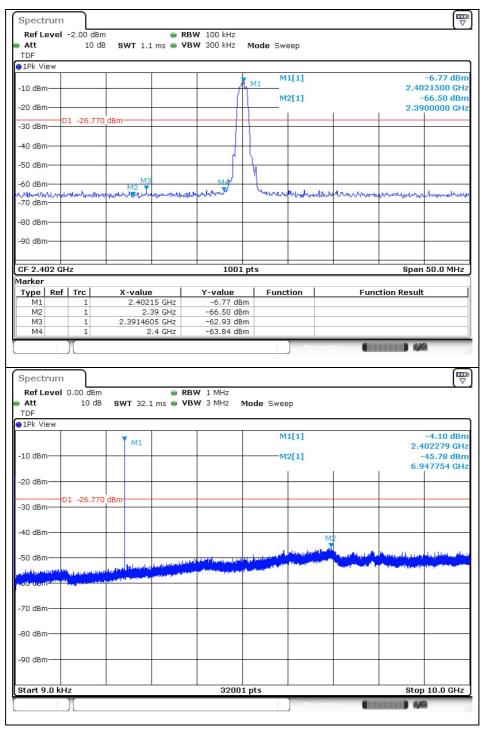

#### Band edge compliance with hopping enabled

#### Low channel



#### High channel

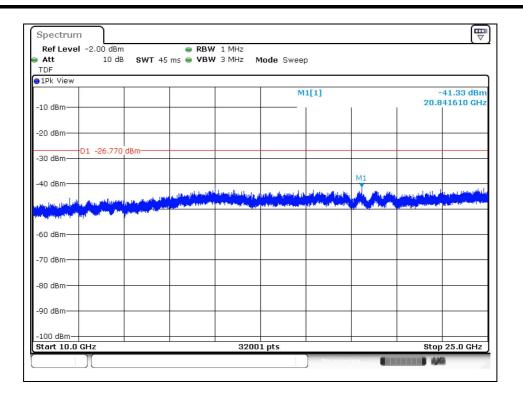




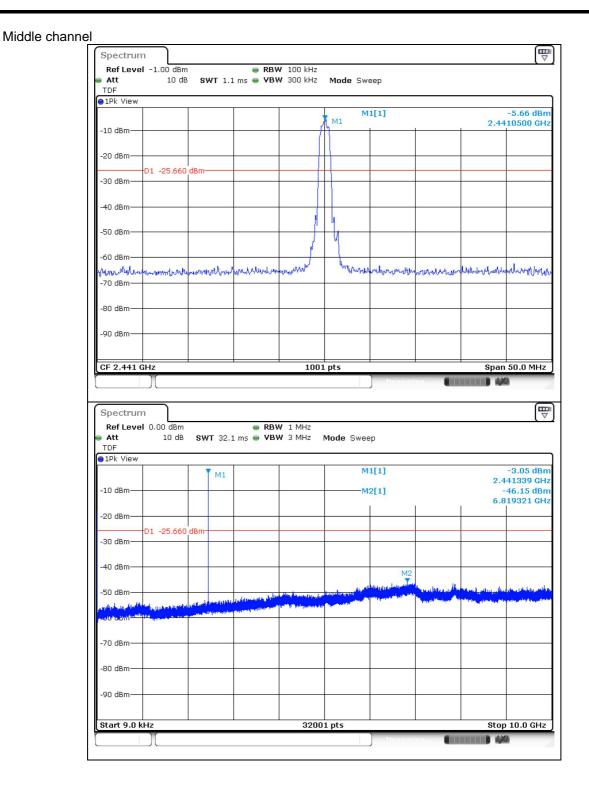

74

#### Report Number: F690501/RF-RTL014424-1

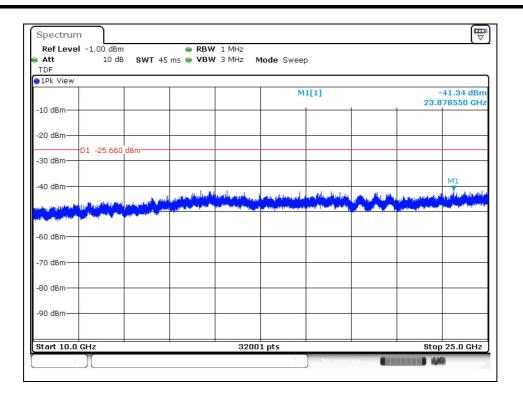
#### **Operating Mode: 8DPSK (3 Mbps)**


#### Low channel

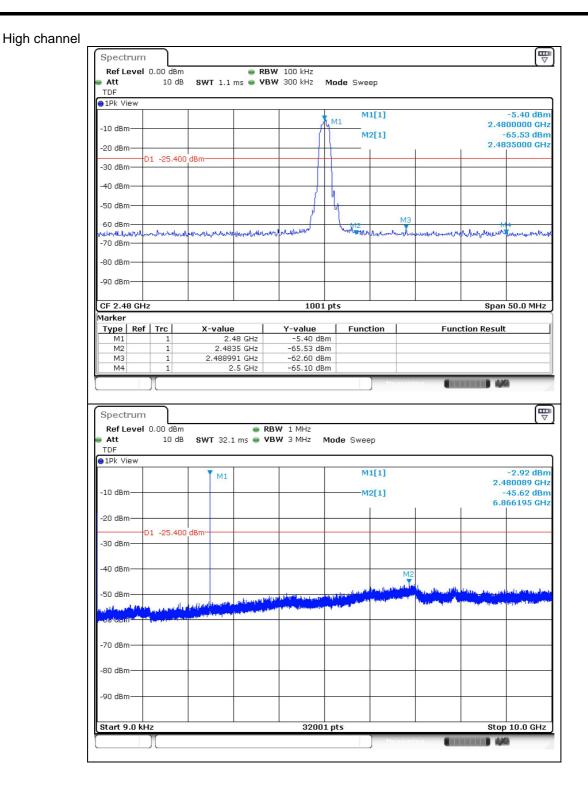



The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

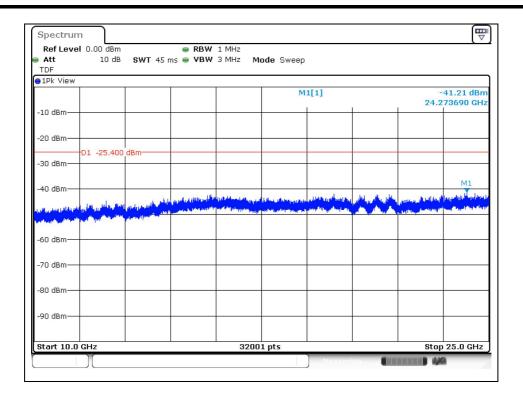
SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-19(2019.04.24)(1) A4(210 mm × 297 mm)





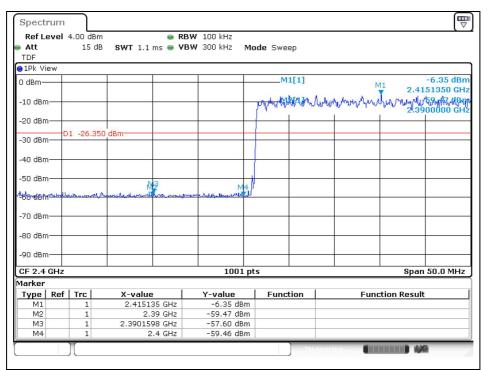








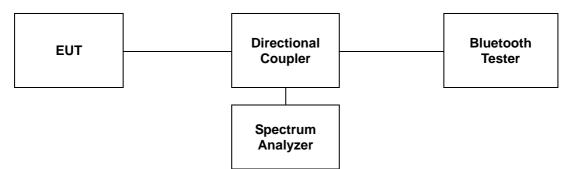





### Band edge compliance with hopping enabled

### Low channel




#### High channel

| Spectrum    |           |                          |                                         |                |            |              |               | [₹             |  |
|-------------|-----------|--------------------------|-----------------------------------------|----------------|------------|--------------|---------------|----------------|--|
| Ref Level   | 4.00 dBm  |                          | RBW 100 kHz                             |                |            |              |               |                |  |
| Att         | 15 dB     | SWT 1.1 ms 👄             | <b>VBW</b> 300 kHz                      | Mode Sweep     |            |              |               |                |  |
| TDF         |           |                          |                                         |                |            |              |               |                |  |
| ∋1Pk View   |           |                          |                                         |                |            |              |               |                |  |
| 0 dBm       |           | 171                      |                                         | M1[1]          |            |              | -5.49 dBr     |                |  |
|             | N         | L. S. S. A. N. L.        | - R - R - R - R - R - R - R - R - R - R |                |            | 2.4738600 GH |               |                |  |
| 1.10vdb.m.  | AL ANALAR | marging range and        | way and and                             | M2[1           | <b>[1]</b> |              |               | -59.15 dBr     |  |
|             |           |                          |                                         | 1              |            | ī            | 2.48          | 35000 GH       |  |
| -20 dBm     |           |                          |                                         |                |            |              |               |                |  |
| -30 dBm     | 1 -25,490 | dBm                      |                                         |                |            |              |               |                |  |
| -30 abin    |           |                          |                                         |                |            |              |               |                |  |
| -40 dBm     |           |                          |                                         |                |            |              |               |                |  |
|             |           |                          |                                         |                |            |              |               |                |  |
| -50 dBm —   |           |                          |                                         | МЗ             |            |              | M4            |                |  |
| -60 dBm     |           |                          | Murri                                   | 22 Marin Marin | mound      | mourne       | uder Tametrin | and Mathematic |  |
| -60 aBm     |           |                          |                                         |                |            |              |               |                |  |
| -70 dBm     |           |                          |                                         |                |            |              |               |                |  |
|             |           |                          |                                         |                |            |              |               |                |  |
| -80 dBm     |           |                          |                                         |                |            |              |               |                |  |
|             |           |                          |                                         |                |            |              |               |                |  |
| -90 dBm     |           |                          |                                         |                |            |              |               |                |  |
| CF 2.4835 G | Hz        | 1                        | 1001                                    | 1 pts          |            |              | Span          | 50.0 MHz       |  |
| 1arker      |           |                          |                                         |                |            |              |               |                |  |
|             | Trc       | X-value                  | Y-value                                 | Function       | <u>۱</u>   | Fun          | ction Result  |                |  |
| M1          | 1         | 2.47386 GH:              |                                         |                |            |              |               |                |  |
| M2          | 1         | 2.4835 GH                |                                         |                |            |              |               |                |  |
| M3<br>M4    | 1         | 2.4872962 GH:<br>2.5 GH; |                                         |                |            |              |               |                |  |
| 1914        |           | 2.3 GH                   |                                         | 500 J          |            |              |               |                |  |
|             |           |                          |                                         |                |            | 100          |               |                |  |



# 3. 20 dB Bandwidth and 99 % Bandwidth

# 3.1. Test Setup



# 3.2. Limit

Limit: Not Applicable

# 3.3. Test Procedure

### 3.3.1. 20 dB Bandwidth

The test follows ANSI C63.10-2013.

The 20 dB bandwidth was measured with a spectrum analyzer connected to RF antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency.

Use the following spectrum analyzer setting:

- 1. Span = approximately 2 to 5 times the 20 dB bandwidth.
- 2. RBW  $\geq$  1 % to 5 % of the 20 dB bandwidth.
- 3. VBW  $\geq$  3 x RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace = max hold

The marker-to-peak function to set the mark to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is 20 dB bandwidth of the emission.



### 3.3.2. 99 % Bandwidth

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

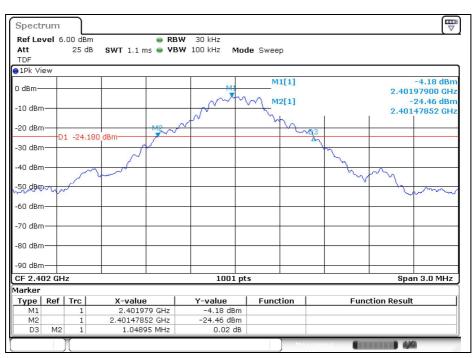
For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).



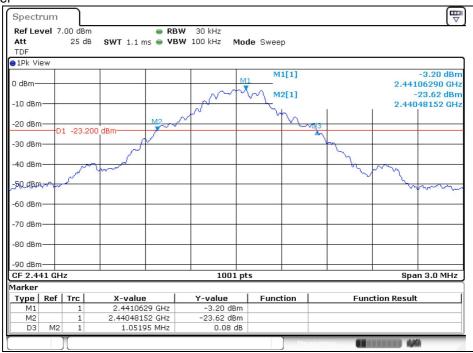
# 3.4. Test Results

| Ambient temperature | : | (23 = | <b>± 1)</b> ℃ |
|---------------------|---|-------|---------------|
| Relative humidity   | : | 47    | % R.H.        |

| Operation<br>Mode | Data Rate<br>(Mbps) | Channel | Frequency<br>(M৳) | 20 dB Bandwidth<br>(Mb) | 99 % Bandwidth<br>(账) |
|-------------------|---------------------|---------|-------------------|-------------------------|-----------------------|
| GFSK              | 1                   | Low     | 2 402             | 1.049                   | 0.932                 |
|                   |                     | Middle  | 2 441             | 1.052                   | 0.935                 |
|                   |                     | High    | 2 480             | 1.049                   | 0.935                 |
| π/4DQPSK          | 2                   | Low     | 2 402             | 1.340                   | 1.199                 |
|                   |                     | Middle  | 2 441             | 1.361                   | 1.208                 |
|                   |                     | High    | 2 480             | 1.358                   | 1.208                 |
| 8DPSK             | 3                   | Low     | 2 402             | 1.343                   | 1.208                 |
|                   |                     | Middle  | 2 441             | 1.346                   | 1.208                 |
|                   |                     | High    | 2 480             | 1.343                   | 1.208                 |



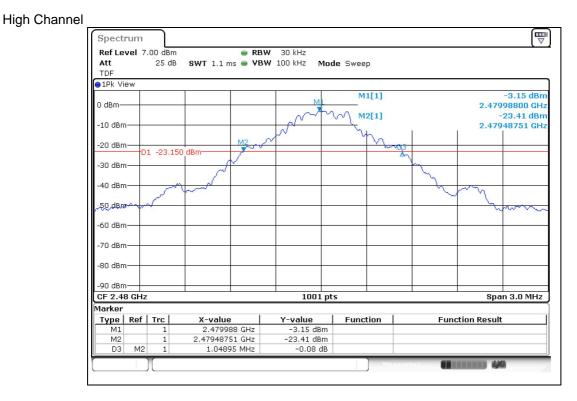

### - Test plots


#### $20 \hspace{0.1 cm} \text{dB} \hspace{0.1 cm} \text{Bandwidth}$

### **Operating Mode: GFSK**

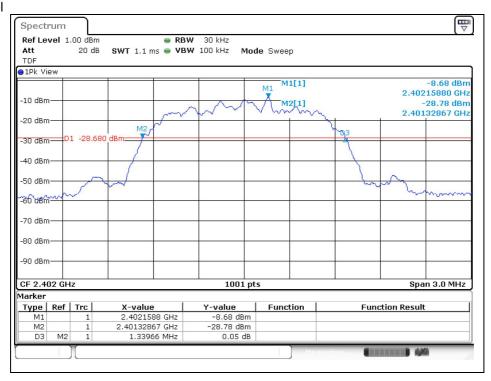
Low Channel




#### Middle Channel

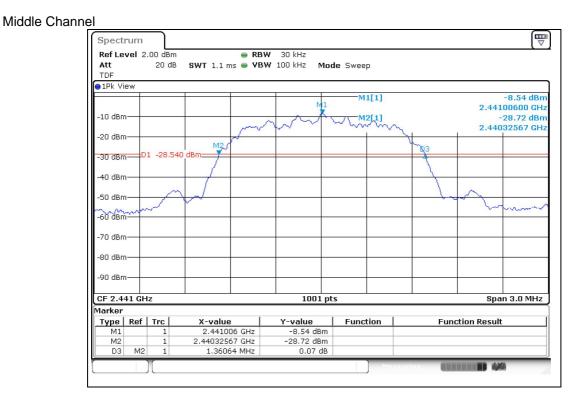


The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

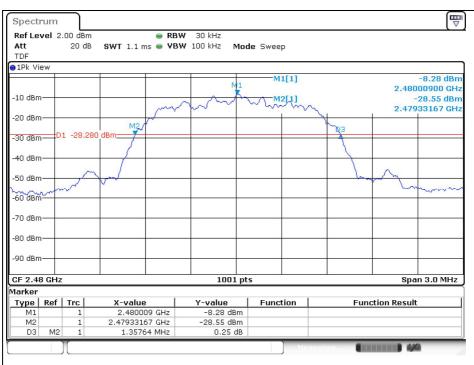

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>






### Operating Mode: $\pi/4DQPSK$

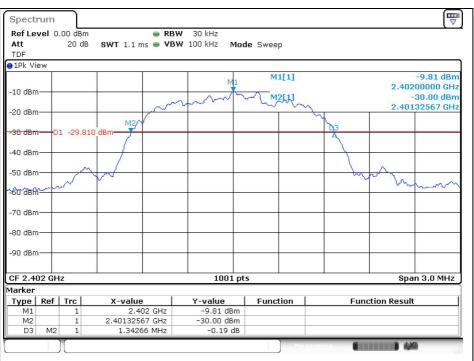
Low Channel



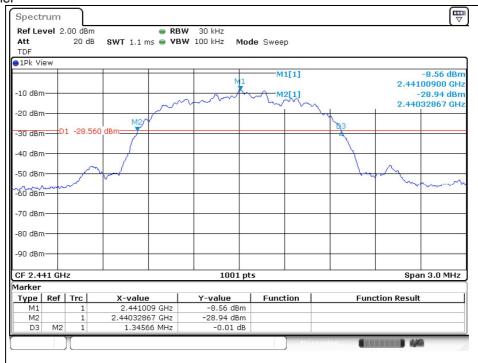

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



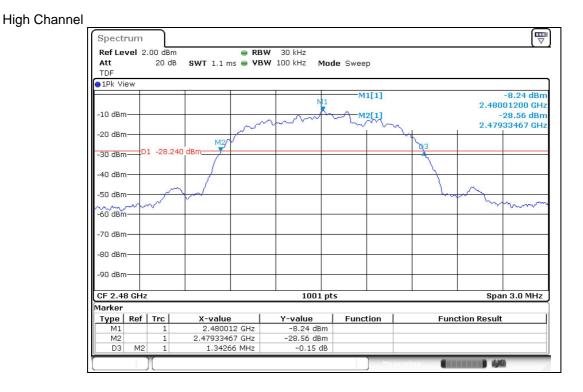



#### High Channel






### Operating Mode: 8DPSK






#### Middle Channel

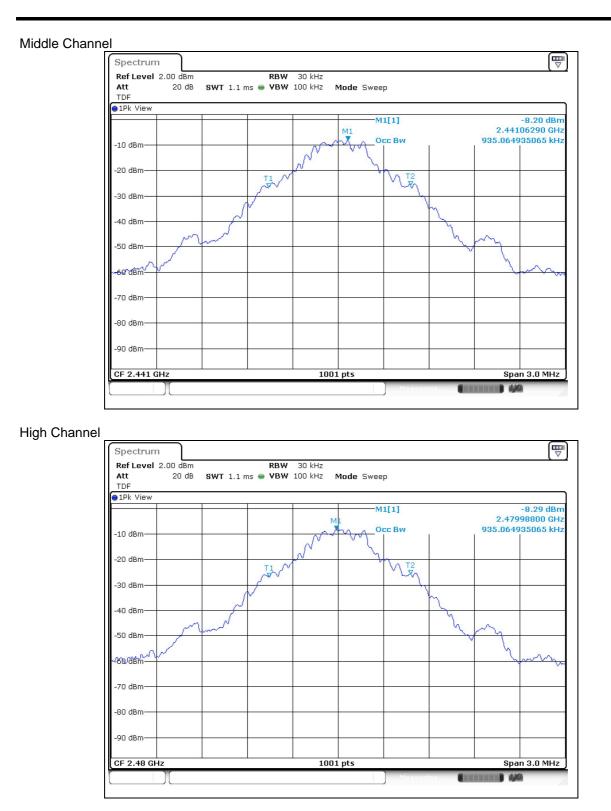






#### 99% Bandwidth

#### **Operating Mode: GFSK**

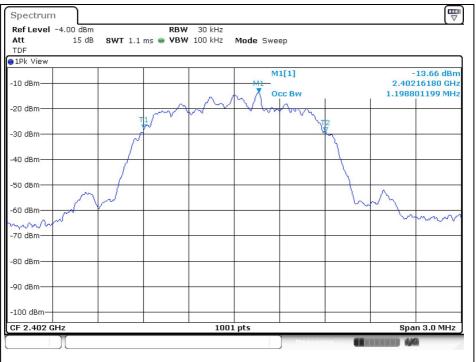

Low Channel



The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr






The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



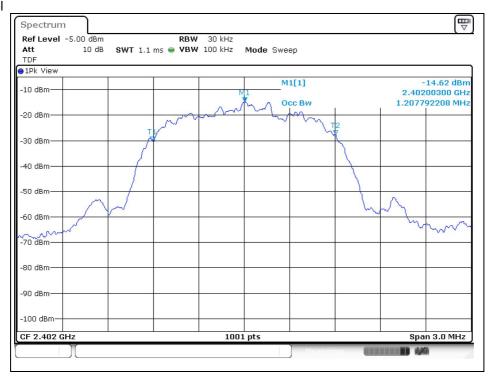
### Operating Mode: π/4DQPSK

#### Low Channel



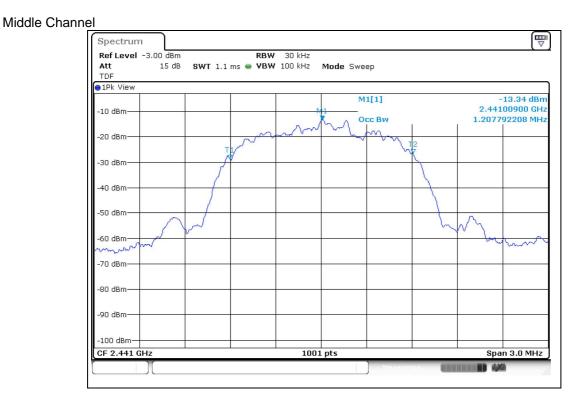
#### Middle Channel




The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.






### **Operating Mode: 8DPSK**

Low Channel



The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.





# High Channel



The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.