TEST REPORT BNetzA-CAB-02/21-102 Test report no.: 1-3547/21-01-12-A ## **Testing laboratory** #### **CTC advanced GmbH** Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: https://www.ctcadvanced.com e-mail: <u>mail@ctcadvanced.com</u> # Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01. #### **Applicant** #### Digi International Inc. 9350 Excelsior Blvd, Suite 700 Hopkins, 55343 / UNITED STATES Phone: -/- Contact: Dan Kobylarz e-mail: <u>daniel.kobylarz@digi.com</u> #### Manufacturer #### Digi International Inc. 9350 Excelsior Blvd, Suite 700 Hopkins, 55343 / UNITED STATES #### Test standard/s FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices For further applied test standards please refer to section 3 of this test report. Test Item Kind of test item: Embedded ARM module Model name: CCWMX28N FCC ID: MCQ-CCIMX28N ISED certification number: 1846A-CCIMX28N Frequency: 2400 MHz to 2483.5 MHz Technology tested: Bluetooth® + EDR Antenna: Four different external antennas Power supply: 5.0 V DC by external power supply Temperature range: -40°C to +85°C This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. | Test report authorized: | Test performed: | |-------------------------|---------------------| | | | | | | | | | | David Lang | Michael Dorongovski | Lab Manager Radio Communications Lab Manager Radio Communications # 1 Table of contents | 1 | Table | of contents | 2 | |----|--------|--|----| | 2 | Genera | al information | | | | 2.1 | Notes and disclaimer | | | | 2.1 | Application details | | | | 2.3 | Test laboratories sub-contracted | | | 3 | | tandard/s, references and accreditations | | | 4 | | ing statements of conformity — decision rule | | | 5 | - | nvironment | | | 6 | | em | | | 0 | | | | | | 6.1 | General description | | | | 6.2 | Additional information | 7 | | 7 | Descri | ption of the test setup | 8 | | | 7.1 | Shielded semi anechoic chamber | | | | 7.2 | Shielded fully anechoic chamber | | | | 7.3 | Radiated measurements > 18 GHz | 11 | | | 7.4 | AC conducted | | | | 7.5 | Conducted measurements Bluetooth system | 13 | | 8 | Seque | nce of testing | 14 | | | 8.1 | Sequence of testing radiated spurious 9 kHz to 30 MHz | 14 | | | 8.2 | Sequence of testing radiated spurious 30 MHz to 1 GHz | | | | 8.3 | Sequence of testing radiated spurious 1 GHz to 18 GHz | | | | 8.4 | Sequence of testing radiated spurious above 18 GHz | 17 | | 9 | Measu | rement uncertainty | 18 | | 10 | Sun | ımary of measurement results | 19 | | 11 | Add | itional comments | 20 | | 12 | Mea | surement results | 21 | | | 12 1 | Antenna gain | 21 | | | 12.2 | Carrier frequency separation | | | | 12.3 | Number of hopping channels | | | | 12.4 | Time of occupancy (dwell time) | | | | 12.5 | Spectrum bandwidth of a FHSS system | 25 | | | 12.6 | Maximum output power | 27 | | | 12.7 | Band edge compliance radiated | 28 | | | 12.8 | Spurious emissions conducted | | | | 12.9 | Spurious emissions radiated below 30 MHz | | | | 12.10 | Spurious emissions radiated 30 MHz to 1 GHz | | | | 12.11 | Spurious emissions radiated above 1 GHz | | | | 12.12 | Spurious emissions conducted below 30 MHz (AC conducted) | 54 | | 13 | Obs | ervations | 56 | | 14 | Glos | sary | 57 | | 15 | Document history | 58 | |----|--|----| | 16 | Accreditation Certificate - D-PL-12076-01-04 | 58 | | 17 | Accreditation Certificate - D-PL-12076-01-05 | 59 | #### 2 General information #### 2.1 Notes and disclaimer The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH. The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH". CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer. Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided. Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH. All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval. This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. This test report replaces the test report with the number 1-3547/21-01-12 and dated 2022-09-05. ### 2.2 Application details Date of receipt of order: 2022-06-22 Date of receipt of test item: 2022-06-22 Start of test:* 2022-06-30 End of test:* 2022-08-24 Person(s) present during the test: -/- #### 2.3 Test laboratories sub-contracted None © CTC advanced GmbH Page 4 of 59 ^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software. # 3 Test standard/s, references and accreditations | | _ | | | | | | | |---|----------------------|---|--|--|--|--|--| | Test standard | Date | Description | | | | | | | FCC - Title 47 CFR Part 15 | -/- | FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices | | | | | | | RSS - 247 Issue 2 | February
2017 | Digital Transmission Systems (DTSs), Frequency Hopping
Systems (FHSs) and Licence - Exempt Local Area Network (LE-
LAN) Devices | | | | | | | RSS - Gen Issue 5 incl.
Amendment 1 & 2 | February
2021 | Spectrum Management and Telecommunications Radio
Standards Specification
- General Requirements for Compliance of Radio Apparatus | | | | | | | Guidance | Version | Description | | | | | | | KDB 558074 D01 ANSI C63.4-2014 ANSI C63.10-2013 | v05r02
-/-
-/- | GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices | | | | | | | Accreditation | Description | n | | | | | | | D-PL-12076-01-04 | https://www. | unication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04e.pdf DakkS Deutsche Akkreditierungsstelle D-PL-12076-01-04 | | | | | | | D-PL-12076-01-05 | | unication FCC requirements dakks.de/as/ast/d/D-PL-12076-01-05e.pdf DAkkS Deutsche Akkreditierungsstelle D-PL-12076-01-05 | | | | | | ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002 © CTC advanced GmbH Page 5 of 59 # 4 Reporting statements of conformity – decision rule Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3. The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong." © CTC advanced GmbH Page 6 of 59 ## 5 Test environment | Temperature : | | T _{nom}
T _{max}
T _{min} | +22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required. | |---------------------------|---|--|--| | Relative humidity content | : | - 111111 | 42 % | | Barometric pressure | : | | 1022 hpa | | | | V_{nom} | 5.0 V DC by external
power supply | | Power supply | : | V_{max} | No tests under extreme conditions required. | | | | V_{min} | No tests under extreme conditions required. | # 6 Test item # 6.1 General description | Kind of test item : | Embedded ARM module | |--|-----------------------------------| | Model name : | CCWMX28N | | HMN : | -/- | | PMN : | ConnectCard 28N | | HVIN : | 55002138-XX | | FVIN : | 82004604 | | S/N serial number : | 50002102-XX | | Hardware status : | 55002138-XX | | Software status : | -/- | | Firmware status : | 82004604 | | Frequency band : | 2400 MHz to 2483.5 MHz | | Type of radio transmission: Use of frequency spectrum: | FHSS | | Type of modulation : | GFSK, Pi/4 DQPSK, 8DPSK | | Number of channels : | 79 | | Antenna : | Four different external antennas | | Power supply : | 5.0 V DC by external power supply | | Temperature range : | -40°C to +85°C | # 6.2 Additional information The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing. Test setup and EUT photos are included in test report: 1-3547/21-01-01_AnnexA 1-3547/21-01-01_AnnexB 1-3547/21-01-01_AnnexD © CTC advanced GmbH Page 7 of 59 # 7 Description of the test setup Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard). In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item). Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A. #### **Agenda:** Kind of Calibration | - 1 | k | calibration / calibrated | EK | limited calibration | |-----|-------|--|-----|--| | ı | ne | not required (k, ev, izw, zw not required) | ZW | cyclical maintenance (external cyclical | | | | | | maintenance) | | (| ev | periodic self verification | izw | internal cyclical maintenance | | , | Ve | long-term stability recognized | g | blocked for accredited testing | | , | vlkI! | Attention: extended calibration interval | | | | | NK! | Attention: not calibrated | *) | next calibration ordered / currently in progress | | | | | | | © CTC advanced GmbH Page 8 of 59 #### 7.1 Shielded semi anechoic chamber The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63. Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00 FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor) #### <u>Example calculation:</u> FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$ ### **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|--|--------------|----------------------------------|------------|-----------|------------------------|---------------------|---------------------| | 1 | Α | Switch-Unit | 3488A | HP | 2719A14505 | 300000368 | ev | -/- | -/- | | 2 | Α | Semi anechoic chamber | 3000023 | MWB AG | -/- | 300000551 | ne | -/- | -/- | | 3 | Α | Antenna Tower | Model 2175 | ETS-Lindgren | 64762 | 300003745 | izw | -/- | -/- | | 4 | Α | Positioning Controller | Model 2090 | ETS-Lindgren | 64672 | 300003746 | izw | -/- | -/- | | 5 | Α | Turntable Interface-Box | Model 105637 | ETS-Lindgren | 44583 | 300003747 | izw | -/- | -/- | | 6 | Α | TRILOG Broadband Test-
Antenna 30 MHz - 3 GHz | VULB9163 | Schwarzbeck
Mess - Elektronik | 318 | 300003696 | vlKI! | 30.09.2021 | 29.09.2023 | | 7 | Α | Turntable | 2089-4.0 | EMCO | -/- | 300004394 | ne | -/- | -/- | | 8 | Α | PC | TecLine | F+W | -/- | 300004388 | ne | -/- | -/- | | 9 | Α | EMI Test Receiver | ESR3 | Rohde & Schwarz | 102587 | 300005771 | k | 20.05.2022 | 19.05.2023 | © CTC advanced GmbH Page 9 of 59 # 7.2 Shielded fully anechoic chamber Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor) ## Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$ ### **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|---------|---|---|-------------------------|--------------------|-----------|------------------------|---------------------|---------------------| | 1 | А | Active Loop
Antenna 9 kHz to
30 MHz | 6502 | EMCO | 2210 | 300001015 | vlKI! | 01.07.2021 | 31.07.2023 | | 2 | С | Highpass Filter | WHK1.1/15G-10SS | Wainwright | 37 | 400000148 | ne | -/- | -/- | | 3 | С | Highpass Filter | WHKX7.0/18G-8SS | Wainwright | 18 | 300003789 | ne | -/- | -/- | | 4 | С | Band Reject Filter | WRCG2400/2483-
2375/2505-50/10SS | Wainwright | 26 | 300003792 | ne | -/- | -/- | | 5 | B, C | Broadband Amplifier
0.5-18 GHz | CBLU5184540 | CERNEX | 22051 | 300004483 | ev | -/- | -/- | | 6 | A, B, C | 4U RF Switch
Platform | L4491A | Agilent
Technologies | MY50000032 | 300004510 | ne | -/- | -/- | | 7 | A, B, C | Computer | Intel Core i3
3220/3,3 GHz,
Prozessor | -/- | 2V2403033A54
21 | 300004591 | ne | -/- | -/- | | 8 | A, B, C | NEXIO EMV-
Software | BAT EMC V3.21.0.32 | EMCO | -/- | 300004682 | ne | -/- | -/- | | 9 | A, B, C | Anechoic chamber | -/- | TDK | -/- | 300003726 | ne | -/- | -/- | | 10 | A, B, C | EMI Test Receiver
9kHz-26,5GHz | ESR26 | Rohde & Schwarz | 101376 | 300005063 | k | 15.12.2021 | 31.12.2022 | | 11 | С | RF-Amplifier | AMF-6F06001800-
30-10P-R | NARDA-MITEQ Inc | 2011571 | 300005240 | ev | -/- | -/- | © CTC advanced GmbH Page 10 of 59 # 7.3 Radiated measurements > 18 GHz Measurement distance: horn antenna 50 cm FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor) # Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \(\mu V/m \))$ ## **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|--|-------------------------|----------------|---------------------|-----------|------------------------|---------------------|---------------------| | 1 | А | Microwave System
Amplifier, 0.5-26.5
GHz | 83017A | НР | 00419 | 300002268 | ev | -/- | -/- | | 2 | А | Std. Gain Horn
Antenna 18.0-26.5
GHz | 638 | Narda | 8205 | 300002442 | k | 17.01.2022 | 31.01.2024 | | 3 | А | Amplifier 2-40 GHz | JS32-02004000-57-
5P | MITEQ | 1777200 | 300004541 | ev | -/- | -/- | | 4 | Α | RF-Cable | ST18/SMAm/SMAm
/48 | Huber & Suhner | Batch no.
127377 | 400001183 | ev | -/- | -/- | | 5 | Α | DC-Blocker 0.1-40
GHz | 8141A | Inmet | -/- | 400001185 | ev | -/- | -/- | © CTC advanced GmbH Page 11 of 59 ## 7.4 AC conducted FS = UR + CF + VC (FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN) ### Example calculation: FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$ ## **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|--|----------|-----------------|--------------------|-----------|------------------------|---------------------|---------------------| | 1 | Α | Spektrum Monitor | EZM | Rohde & Schwarz | 883086/026 | 300001469 | NK! | -/- | -/- | | 2 | А | Two-line V-Network
(LISN) 9 kHz to 30
MHz | ESH3-Z5 | Rohde & Schwarz | 892475/017 | 300002209 | vlKI! | 14.12.2021 | 31.12.2023 | | 3 | Α | RF-Filter-section | 85420E | HP | 3427A00162 | 300002214 | NK! | -/- | -/- | | 4 | Α | EMI Test Receiver | ESCI 3 | R&S | 100083 | 300003312 | k | 09.12.2021 |
31.12.2022 | | 5 | А | Analyzer-Reference-
System (Harmonics
and Flicker) | ARS 16/1 | SPS | A3509 07/0
0205 | 300003314 | vlKI! | 29.12.2021 | 31.12.2023 | | 6 | Α | Hochpass 150 kHz | EZ-25 | R&S | 100010 | 300003798 | ev | -/- | -/- | | 7 | Α | PC | TecLine | F+W | -/- | 300003532 | ne | -/- | -/- | © CTC advanced GmbH Page 12 of 59 # 7.5 Conducted measurements Bluetooth system OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path) ### Example calculation: OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW) ## **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|--|-----------------|-------------------------|-------------------------|-----------|------------------------|---------------------|---------------------| | 1 | А | USB/GPIB interface | 82357B | Agilent
Technologies | MY52103346 | 300004390 | ne | -/- | -/- | | 2 | А | PC Laboratory | Exone | Fröhlich + Walter | \$2642279-03 /
10 | 300004179 | ne | -/- | -/- | | 3 | А | Signal analyzer | FSV30 | Rohde&Schwarz | 1321.3008K30/
103809 | 300005359 | vlKI! | 08.12.2020 | 31.12.2022 | | 4 | А | Switch matrix | RSM-1 | CTC advanced
GmbH | 29655273 | 400001355 | ev | 26.01.2022 | 31.01.2023 | | 5 | А | Tester Software
RadioStar (C.BER2
for BT
Conformance) | Version 1.0.0.X | CTC advanced
GmbH | 0001 | 400001380 | ne | -/- | -/- | | 6 | А | Wideband Radio
Communication
Tester | CMW270 | Rohde & Schwarz | 102550 | 300006253 | k | 17.09.2021 | 30.09.2023 | © CTC advanced GmbH Page 13 of 59 ### 8 Sequence of testing ## 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz ### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, it is placed on a table with 0.8 m height. - If the EUT is a floor standing device, it is placed directly on the turn table. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement*** - The turntable rotates from 0° to 315° using 45° steps. - The antenna height is 1 m. - At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions. #### **Final measurement** - Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°. - Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT) - The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored. © CTC advanced GmbH Page 14 of 59 ^{*)}Note: The sequence will be repeated three times with different EUT orientations. ### 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane. - If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement** - The turntable rotates from 0° to 315° using 45° steps. - The antenna is polarized vertical and horizontal. - The antenna height changes from 1 m to 3 m. - At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions. #### Final measurement - The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4. - Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m. - The final measurement is done with quasi-peak detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored. © CTC advanced GmbH Page 15 of 59 ### 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used. - If the EUT is a floor standing device, it is placed directly on the turn table. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement** - The turntable rotates from 0° to 315° using 45° steps. - The antenna is polarized vertical and horizontal. - The antenna height is 1.5 m. - At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions. #### Final measurement - The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4. - Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations. - The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored. © CTC advanced GmbH Page 16 of 59 ## 8.4 Sequence of testing radiated spurious above 18 GHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet. - The measurement distance is as appropriate (e.g. 0.5 m). - The EUT is set into operation. #### **Premeasurement** • The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna. #### Final measurement - The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored. © CTC advanced GmbH Page 17 of 59 # 9 Measurement uncertainty | Measurement uncertainty | | | | | |--|--|--|--|--| | Test case | Uncertainty | | | | | Antenna gain | ± 3 dB | | | | | Carrier frequency separation | ± 21.5 kHz | | | | | Number of hopping channels | -/- | | | | | Time of occupancy | According BT Core specification | | | | | Spectrum bandwidth | ± 21.5 kHz absolute; ± 15.0 kHz relative | | | | | Maximum output power | ± 1 dB | | | | | Detailed conducted spurious emissions @ the band edge | ± 1 dB | | | | | Band edge compliance radiated | ± 3 dB | | | | | Spurious emissions conducted | ± 3 dB | | | | | Spurious emissions radiated below 30 MHz | ± 3 dB | | | | | Spurious emissions radiated 30 MHz to 1 GHz | ± 3 dB | | | | | Spurious emissions radiated 1 GHz to 12.75 GHz | ± 3.7 dB | | | | | Spurious emissions radiated above 12.75 GHz | ± 4.5 dB | | | | | Spurious emissions conducted below 30 MHz (AC conducted) | ± 2.6 dB | | | | © CTC advanced GmbH Page 18 of 59 # 10 Summary of measurement results | \boxtimes | No deviations from the technical specifications were ascertained | |-------------|---| | | There were deviations from the technical specifications ascertained | | | This test report is only a partial test report. | | 1 | The content and verdict of the performed test cases are listed below. | | TC Identifier | Description | Verdict | Date | Remark | |---------------|-----------------------------------|------------|------------|--------| | RF-Testing | CFR Part 15
RSS - 247, Issue 2 | See table! | 2022-12-12 | -/- | | Test specification clause | Test case | Temperature conditions | Power source voltages |
Mode | С | NC | NA | NP | Remark | |---|---|------------------------|-----------------------|-----------------------------|-------------|----|----|----|--------| | §15.247(b)(4)
RSS - 247 /
5.4.(f)(ii) | Antenna gain | Nominal | Nominal | GFSK | × | | | | -/- | | §15.247(a)(1)
RSS - 247 / 5.1.(b) | Carrier frequency separation | Nominal | Nominal | GFSK | × | | | | -/- | | §15.247(a)(1)
RSS - 247 / 5.1 (d) | Number of hopping channels | Nominal | Nominal | GFSK | × | | | | -/- | | §15.247(a)(1) (iii)
RSS - 247 / 5.1 (c) | Time of occupancy
(dwell time) | Nominal | Nominal | GFSK
Pi/4 DQPSK
8DPSK | × | | | | -/- | | §15.247(a)(1)
RSS - 247 / 5.1 (a) | Spectrum bandwidth
of a FHSS system
bandwidth | Nominal | Nominal | GFSK
Pi/4 DQPSK
8DPSK | X
X | | | | -/- | | §15.247(b)(1)
RSS - 247 / 5.4 (b) | Maximum output
power | Nominal | Nominal | GFSK
Pi/4 DQPSK
8DPSK | ⊠
⊠
⊠ | | | | -/- | | §15.205
RSS - 247 /
5.5 RSS - Gen | Band edge
compliance radiated | Nominal | Nominal | GFSK
Pi/4 DQPSK
8DPSK | ⊠
⊠
⊠ | | | | -/- | | §15.247(d)
RSS - 247 / 5.5 | Spurious emissions conducted | Nominal | Nominal | GFSK
Pi/4 DQPSK
8DPSK | ×
×
× | | | | -/- | | §15.209(a)
RSS - Gen | Spurious emissions
radiated
below 30 MHz | Nominal | Nominal | GFSK | × | | | | -/- | | §15.247(d)
RSS - 247 / 5.5
§15.109
RSS - Gen | Spurious emissions
radiated
30 MHz to 1 GHz | Nominal | Nominal | GFSK | × | | | | -/- | | §15.247(d)
RSS - 247 / 5.5
§15.109
RSS - Gen | Spurious emissions
radiated
above 1 GHz | Nominal | Nominal | GFSK | × | | | | -/- | | §15.107(a)
§15.207 | Conducted
emissions
below 30 MHz | Nominal | Nominal | GFSK | × | | | | -/- | # Notes: © CTC advanced GmbH Page 19 of 59 ### 11 Additional comments | The Bluetooth® | word mark and logos are owned b | v the Bluetooth SIG Inc. and an | v use of such marks by | y CTC advanced GmbH is under license. | |----------------|---------------------------------|---------------------------------|------------------------|---------------------------------------| | | | | | | Reference documents: 1-3547_21-01-12_Annex_MR.pdf Special test descriptions: The module can be used with 4 different external antennas: ANT1-DB1-RAF-xxx (dipole) A24-HASM-450 Model no: SA-006 Rev. C R-AN2400-5701RS-Z (dipole) TAOGLAS FXP830.07.0100C (PCB) TAOGLAS PC11.07.0100A (PCB) The radiated tests were performed with ANT1-DB1-RAF-xxx and with the TAOGLAS PC11.07.0100A antennas because they have the highest gains. Configuration descriptions: TX tests: were performed with x-DH5 packets and static PRBS pattern payload. RX/Standby tests: BT test mode enabled, scan enabled, TX Idle Test mode: Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU/CMW) Special software is used. EUT is transmitting pseudo random data by itself Antennas and transmit operating modes: Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) © CTC advanced GmbH Page 20 of 59 # 12 Measurement results # 12.1 Antenna gain # Limits: | FCC | ISED | |---|------| | 6 dBi / > 6 dBi output power and power density reduction required | | ## Results: Extracted from antenna data sheets | Gain [dBi]
declared | Low channel
(2402 MHz) | Mid channel
(2440 MHz) | High channel
(2480 MHz) | |---|---------------------------|---------------------------|----------------------------| | ANT1-DB1-RAF-xxx
Dipole | | 2.7 | | | A24-HASM-450
Model no: SA-006 Rev. C R-
AN2400-5701RS-Z
Dipole | | 2.5 | | | TAOGLAS
FXP830.07.0100C
PCB | | 2.5 | | | TAOGLAS
PC11.07.0100A
PCB | | 3.0 | | © CTC advanced GmbH Page 21 of 59 # 12.2 Carrier frequency separation # **Description:** Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode. | Measurement parameters | | | | |-------------------------|---|--|--| | External result file | 1-3547_21-01-12_Annex_MR.pdf | | | | External result file | FCC Part 15.247 Carrier Frequency Separation FHSS | | | | Test setup | See sub clause 7.5 setup A | | | | Measurement uncertainty | See sub clause 9 | | | ## **Limits:** | FCC | ISED | | |---|------|--| | Carrier frequency separation | | | | Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater. | | | ## Result: | Carrier frequency separation | ~ 1 MHz | |------------------------------|---------| |------------------------------|---------| © CTC advanced GmbH Page 22 of 59 # 12.3 Number of hopping channels # **Description:** Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode. | Measurement parameters | | | | |-------------------------|--|--|--| | | 1-3547_21-01-12_Annex_MR.pdf | | | | External result file | FCC Part 15.247 Number Of Hopping Channels | | | | | FHSS | | | | Test setup | See sub clause 7.5 setup A | | | | Measurement uncertainty | See sub clause 9 | | | ### **Limits:** | FCC | ISED | | |--|------|--| | Number of hopping channels | | | | At least 15 non overlapping hopping channels | | | ## Result: | Number of hopping channels | 79 | |----------------------------|----| |----------------------------|----| © CTC advanced GmbH Page 23 of 59 ### 12.4 Time of occupancy (dwell time) #### **Measurement:** For Bluetooth® devices no measurements mandatory depending on the fixed requirements according to the Bluetooth® Core Specifications! #### For Bluetooth® devices: The channel staying time of 0.4 s within a 31.6 second period in data mode is constant for Bluetooth® devices and independent from the packet type (packet length). The calculation for a 31.6 second period is a follows: Channel staying time = time slot length * hop rate / number of hopping channels * 31.6 s Example for a DH1 packet (with a maximum length of one time slot) Channel staying time = $625 \mu s * 1600*1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period) For multi-slot packets the hopping is reduced according to the length of the packet. Example for a DH3 packet (with a maximum length of three time slots) Channel staying time = $3 * 625 \mu s * 1600/3 * 1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period) Example for a DH5 packet (with a maximum length of five time slots) Channel staying time = $5 * 625 \mu s * 1600/5 * 1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period) This is according the Bluetooth® Core Specification 5.0 (and lower) for all Bluetooth® devices and all modulations. #### The following table shows the relations: | Packet Size | Pulse Width [ms] * | Max. number of transmissions per channel in 31.6 sec | |-------------|--------------------|--| | DH1 | 0.366 | 640 | | DH3 | 1.622 | 214 | | DH5 | 2.870 | 128 | ^{*} according Bluetooth® specification ### Results: | Packet Size | Pulse Width [ms]* | Max. number of
transmissions
in 31.6 sec | Time of occupancy
(dwell time)
[Pulse width * Number of
transmissions] | |-------------|-------------------|--|---| | DH1 | 0.366 | 640 | 234.2 ms | | DH3 | 1.622 | 214 | 347.1 ms | | DH5 | 2.870 | 128 | 367.4 ms | #### Limits: | FCC | ISED | | |--------------------------------|------|--| | Time of occupancy (dwell time) | | | The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4. © CTC advanced GmbH Page 24 of 59 # 12.5 Spectrum bandwidth of a FHSS system ### **Description:** Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode. | Measurement parameters | | | |-------------------------|---------------------------------|--| | External regult file | 1-3547_21-01-12_Annex_MR.pdf | | | External result file | FCC Part 15.247 Bandwidth 99PCT | | | Test setup | See sub clause 7.5 setup A | | | Measurement uncertainty | See sub clause 9 | | #### Limits: | FCC | ISED | | | |-------------------------------------|------|--|--| | Spectrum bandwidth of a FHSS system | | | | Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. © CTC advanced GmbH Page 25 of 59 # Results: | Modulation | 20 dB bandwidth [kHz] | | | |------------|-----------------------|----------|----------| | Frequency | 2402 MHz | 2441 MHz | 2480 MHz | | GFSK | 933 | 926 | 908 | | Pi/4 DQPSK | 1251 | 1251 | 1251 | | 8DPSK | 1232 | 1221 | 1222
| # Results: | Modulation | 99 % bandwidth [kHz] | | | |------------|----------------------|----------|----------| | Frequency | 2402 MHz | 2441 MHz | 2480 MHz | | GFSK | 893 | 884 | 882 | | Pi/4 DQPSK | 1166 | 1166 | 1165 | | 8DPSK | 1155 | 1155 | 1156 | © CTC advanced GmbH Page 26 of 59 # 12.6 Maximum output power # **Description:** Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10. | Measurement parameters | | | |-------------------------|---|--| | | 1-3547_21-01-12_Annex_MR.pdf | | | External result file | FCC Part 15.247 Maximum Peak Conducted Output | | | | Power FHSS | | | Test setup | See sub clause 7.5 setup A | | | Measurement uncertainty | See sub clause 9 | | ## **Limits:** | FCC | ISED | | |--|------|--| | Maximum output power | | | | [Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi | | | ## Results: | Modulation | Maximum output power conducted [dBm] | | | |------------|--------------------------------------|----------|----------| | Frequency | 2402 MHz | 2441 MHz | 2480 MHz | | GFSK | 7.7 | 8.1 | 7.5 | | Pi/4 DQPSK | 7.0 | 7.3 | 6.9 | | 8DPSK | 7.3 | 7.8 | 7.2 | © CTC advanced GmbH Page 27 of 59 # 12.7 Band edge compliance radiated ### **Description:** Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m. | Measurement parameters | | | |-------------------------|--|--| | Detector | Peak / RMS | | | Sweep time | Auto | | | Resolution bandwidth | 1 MHz | | | Video bandwidth | 3 MHz | | | Span | Lower Band: 2370 – 2400 MHz
Upper Band: 2480 – 2500 MHz | | | Trace mode | Max hold | | | Test setup | See sub clause 7.2 setup B | | | Measurement uncertainty | See sub clause 9 | | ### **Limits:** | FCC | ISED | | |---|------|--| | Band edge compliance radiated | | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RI conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)). | | | 54 dBμV/m AVG 74 dBμV/m Peak © CTC advanced GmbH Page 28 of 59 Results: ANT1-DB1-RAF-xxx antenna | Scenario | Band edg | e compliance radiated | [dBµV/m] | |-----------------------|------------------|-----------------------|------------------| | Modulation | GFSK | Pi/4 DQPSK | 8DPSK | | Lower restricted band | 33.0 dBµV/m AVG | 30.9 dBµV/m AVG | 30.5 dBμV/m AVG | | | 51.0 dBμV/m Peak | 48.5 dBμV/m Peak | 46.4 dBµV/m Peak | | Upper restricted band | 31.9 dBµV/m AVG | 34.0 dBµV/m AVG | 35.8 dBµV/m AVG | | | 56.7 dBµV/m Peak | 57.0 dBµV/m Peak | 53.7 dBµV/m Peak | Results: TAOGLAS PC11.07.0100A antenna | Scenario | Band edg | e compliance radiated | [dBµV/m] | |-----------------------|------------------|-----------------------|------------------| | Modulation | GFSK | Pi/4 DQPSK | 8DPSK | | Lower restricted band | 32.9 dBµV/m AVG | 33.4 dBµV/m AVG | 33.5 dBµV/m AVG | | | 57.6 dBμV/m Peak | 56.1 dBμV/m Peak | 56.6 dBμV/m Peak | | Upper restricted band | 41.6 dBµV/m AVG | 41.0 dBµV/m AVG | 41.2 dBμV/m AVG | | | 62.5 dBµV/m Peak | 60.4 dBµV/m Peak | 61.0 dBµV/m Peak | © CTC advanced GmbH Page 29 of 59 ## Plots: ANT1-DB1-RAF-xxx antenna Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization © CTC advanced GmbH Page 30 of 59 Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization © CTC advanced GmbH Page 31 of 59 Plot 5: Lower band edge, 8DPSK modulation, vertical & horizontal polarization Plot 6: Upper band edge, 8DPSK modulation, vertical & horizontal polarization © CTC advanced GmbH Page 32 of 59 ## Plots: TAOGLAS PC11.07.0100A antenna Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization © CTC advanced GmbH Page 33 of 59 Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization © CTC advanced GmbH Page 34 of 59 Plot 5: Lower band edge, 8DPSK modulation, vertical & horizontal polarization Plot 6: Upper band edge, 8DPSK modulation, vertical & horizontal polarization © CTC advanced GmbH Page 35 of 59 # 12.8 Spurious emissions conducted ### **Description:** Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is repeated for all modulations. | Measurement parameters | | | |-------------------------|---------------------------------------|--| | External result file | 1-3547_21-01-12_Annex_MR.pdf | | | | FCC Part 15.247 TX Spurious Conducted | | | Test setup | See sub clause 7.5 setup A | | | Measurement uncertainty | See sub clause 9 | | #### Limits: | FCC | ISED | |---------------------------------|------| | TX spurious emissions conducted | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required © CTC advanced GmbH Page 36 of 59 ## Results: | | | TX spu | rious emissions condu | ıcted | | |--------------|--|------------------|-----------------------|--------------------|---------------------| | | | | GFSK - mode | | | | | | amplitude of | limit | actual attenuation | | | f [MHz] | | emission | max. allowed | below frequency of | results | | | | [dBm] | emission power | operation [dB] | | | 2402 | | 7.19 | 30 dBm | | Operating frequency | | All detected | All detected emissions are below the -20 dBc | | | | compliant | | criteria. | Please take a loo | k at the plot! | -20 dBc | | compliant | | | | | -20 abc | | | | | | | | | | | 2441 | | 7.7 | 30 dBm | | Operating frequency | | All detected | d emissions are b | elow the -20 dBc | | | aamuliant | | criteria. | Please take a loo | k at the plot! | 00 dp - | | compliant | | | | | -20 dBc | | | | | | | | | | | 2480 | | 7.0 | 30 dBm | | Operating frequency | | All detected | All detected emissions are below the -20 dBc | | | | | | criteria. | criteria. Please take a look at the plot! | | 00 dD- | | compliant | | | | | -20 dBc | | | | | | | | | | ## Results: | | TX spurious emissions conducted | | | | | | | | |--------------|--|------------------|-------------------|--------------------|---------------------|--|--|--| | | | | Pi/4-DQPSK - mode | | | | | | | | amplitude of | | limit | actual attenuation | | | | | | f [MHz] | | emission | max. allowed | below frequency of | results | | | | | | | [dBm] | emission power | operation [dB] | | | | | | 2402 | | 2.26 | 30 dBm | | Operating frequency | | | | | All detected | d emissions are b | elow the -20 dBc | | | compliant | | | | | criteria. | Please take a loo | k at the plot! | -20 dBc | | compliant | | | | | | | | -20 abc | | | | | | | | | | | | | | | | | 2441 | | 5.06 | 30 dBm | | Operating frequency | | | | | All detected | d emissions are b | elow the -20 dBc | | | compliant | | | | | criteria. | Please take a loo | k at the plot! | 00 dD- | | compliant | | | | | | | | -20 dBc | | | | | | | | | | | | | | | | | 2480 | | 4.71 | 30 dBm | | Operating frequency | | | | | All detected | All detected emissions are below the -20 dBc criteria. Please take a look at the plot! | | | | compliant | | | | | criteria. | | | 00 dD- | | compliant | | | | | | | | -20 dBc | | | | | | | | | | | | | | | | © CTC advanced GmbH Page 37 of 59 ## Results: | | TX spurious emissions conducted | | | | | | | |
--|--|-----------------------------------|---|--|---------------------|--|--|--| | | | | 8DPSK - mode | | | | | | | f [MHz] | | amplitude of
emission
[dBm] | limit
max. allowed
emission power | actual attenuation
below frequency of
operation [dB] | results | | | | | 2402 | | 4.13 | 30 dBm | | Operating frequency | | | | | | All detected emissions are below the -20 dBc criteria. Please take a look at the plot! | | -20 dBc | | compliant | | | | | 2441 | | 5.41 | 30 dBm | | Operating frequency | | | | | | All detected emissions are below the -20 dBc criteria. Please take a look at the plot! | | -20 dBc | | compliant | | | | | 2480 | | 4.32 | 30 dBm | | Operating frequency | | | | | All detected emissions are below the -20 dBc criteria. Please take a look at the plot! | | -20 dBc | | compliant | | | | | © CTC advanced GmbH Page 38 of 59 ## 12.9 Spurious emissions radiated below 30 MHz #### **Description:** Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10. | Measurement parameters | | | | | | |-------------------------|--|--|--|--|--| | Detector | Peak / Quasi peak | | | | | | Sweep time | Auto | | | | | | Resolution bandwidth | F < 150 kHz: 200 Hz
F > 150 kHz: 9 kHz | | | | | | Video bandwidth | F < 150 kHz: 1 kHz
F > 150 kHz: 100 kHz | | | | | | Span | 9 kHz to 30 MHz | | | | | | Trace mode | Max hold | | | | | | Test setup | See sub clause 7.2 setup A | | | | | | Measurement uncertainty | See sub clause 9 | | | | | #### Limits: | FCC | | | ISED | | | |---|---------------|-------------|----------------------|--|----| | TX spurious emissions radiated below 30 MHz | | | | | | | Frequency (MHz) | Field strengt | th (dBµV/m) | Measurement distance | | | | 0.009 - 0.490 | 2400/F(kHz) | | 300 | | | | 0.490 - 1.705 | 24000/F(kHz) | | 24000/F(kHz) | | 30 | | 1.705 – 30.0 | 3 | 0 | 30 | | | © CTC advanced GmbH Page 39 of 59 ### Results: ANT1-DB1-RAF-xxx antenna | TX spurious emissions radiated below 30 MHz [dBμV/m] | | | | | | | | |--|--|------------|--|--|--|--|--| | F [MHz] Detector Level [dBμV/m] | | | | | | | | | All detect | ed emissions are more than 20 dB below | the limit. | ### Results: TAOGLAS PC11.07.0100A antenna | TX spurious emissions radiated below 30 MHz [dBμV/m] | | | | | | | | |--|--|------------|--|--|--|--|--| | F [MHz] Detector Level [dBµV/m] | | | | | | | | | All detect | ed emissions are more than 20 dB below | the limit. | © CTC advanced GmbH Page 40 of 59 #### Plots: ANT1-DB1-RAF-xxx antenna Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode © CTC advanced GmbH Page 41 of 59 Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode © CTC advanced GmbH Page 42 of 59 ### Plots: TAOGLAS PC11.07.0100A antenna Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode © CTC advanced GmbH Page 43 of 59 Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode © CTC advanced GmbH Page 44 of 59 ### 12.10 Spurious emissions radiated 30 MHz to 1 GHz #### **Description:** Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power. | Measure | Measurement parameters | | | | | |-------------------------|-----------------------------|--|--|--|--| | Detector | Peak / Quasi Peak | | | | | | Sweep time | Auto | | | | | | Resolution bandwidth | 120 kHz | | | | | | Video bandwidth | 3 x RBW | | | | | | Span | 30 MHz to 1 GHz | | | | | | Trace mode | Max hold | | | | | | Measured modulation | ☑ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK | | | | | | Test setup | See sub clause 7.1 setup A | | | | | | Measurement uncertainty | See sub clause 9 | | | | | The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation. #### **Limits:** | FCC | ISED | | | | |--------------------------------|------|--|--|--| | TX spurious emissions radiated | | | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). §15.209 | Frequency (MHz) | Field strength (dBµV/m) | Measurement distance | |-----------------|-------------------------|----------------------| | 30 - 88 | 30.0 | 10 | | 88 – 216 | 33.5 | 10 | | 216 – 960 | 36.0 | 10 | | Above 960 | 54.0 | 3 | © CTC advanced GmbH Page 45 of 59 Plots: Transmit mode, ANT1-DB1-RAF-xxx antenna Plot 1: 30 MHz to 1 GHz, TX mode, vertical & horizontal polarization, valid for all channels #### Final results: | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 37.931 | 9.34 | 30.0 | 20.7 | 1000 | 120.0 | 385.0 | Н | 165 | 15 | | 111.760 | 6.29 | 33.5 | 27.2 | 1000 | 120.0 | 376.0 | Н | 336 | 13 | | 327.011 | 21.53 | 36.0 | 14.5 | 1000 | 120.0 | 282.0 | Н | 55 | 16 | | 332.997 | 23.53 | 36.0 | 12.5 | 1000 | 120.0 | 285.0 | Н | 195 | 16 | | 408.004 | 16.19 | 36.0 | 19.8 | 1000 | 120.0 | 162.0 | Н | 135 | 18 | | 608.584 | 11.21 | 36.0 | 24.8 | 1000 | 120.0 | 279.0 | Н | 45 | 22 | © CTC advanced GmbH Page 46 of 59 Plots: Transmit mode, TAOGLAS PC11.07.0100A antenna Plot 1: 30 MHz to 1 GHz, TX mode, vertical & horizontal polarization, valid for all channels #### Final results: | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 73.191 | 21.61 | 30.0 | 8.4 | 1000 | 120.0 | 170.0 | ٧ | 22 | 8 | | 74.063 | 21.32 | 30.0 | 8.7 | 1000 | 120.0 | 170.0 | ٧ | 22 | 8 | | 75.156 | 21.86 | 30.0 | 8.1 | 1000 | 120.0 | 170.0 | V | 68 | 8 | | 108.797 | 22.36 | 33.5 | 11.1 | 1000 | 120.0 | 145.0 | V | 252 | 13 | | 109.485 | 17.95 | 33.5 | 15.6 | 1000 | 120.0 | 129.0 | ٧ | 75 | 13 | | 120.003 | 22.83 | 33.5 | 10.7 | 1000 | 120.0 | 152.0 | V | 260 | 11 | © CTC advanced GmbH Page 47 of 59 ## 12.11 Spurious emissions radiated above 1 GHz #### **Description:** Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power. | Measurement parameters | | | | | |-------------------------|---|--|--|--| | Detector | Peak / RMS | | | | | Sweep time | Auto | | | | | Resolution bandwidth | 1 MHz | | | | | Video bandwidth | 3 x RBW | | | | | Span | 1 GHz to 26 GHz | | | | | Trace mode | Max hold | | | | | Measured modulation | ☐ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK | | | | | Test setup | See sub clause 7.2 setup C (1 GHz - 18 GHz)
See sub clause 7.3 setup A (18 GHz - 26 GHz) | | | | | Measurement uncertainty | See sub clause 9 | | | | The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation. #### Limits: | FCC | | | ISED | | | | |--|----------------|------------------|------|--|--|--| | | TX spurious em | issions radiated | | | | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional
radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). | | | | | | | | §15.209 | | | | | | | | Frequency (MHz) Field strength (dBµV/m) Measurement distance | | | | | | | | Above 960 | 54.0 3 | | | | | | © CTC advanced GmbH Page 48 of 59 ## Results: Transmitter mode, ANT1-DB1-RAF-xxx antenna | TX spurious emissions radiated [dBµV/m] | | | | | | | | | |---|----------|-------------------|---------|---|-----|-----|----------|-------------------| | 2402 MHz 2441 MHz 2480 MHz | | | | | | | | | | F [MHz] | Detector | Level
[dBµV/m] | F [MHz] | F [MHz] Detector Level [dBµV/m] F [MHz] | | | Detector | Level
[dBµV/m] | | All detected emissions are more than 20 dB below the limit. | | | | | | | | | | -/- | Peak | -/- | -/- | Peak | -/- | , | Peak | -/- | | -/- | AVG | -/- | -/- | AVG | -/- | -/- | AVG | -/- | ## Results: Transmitter mode, TAOGLAS PC11.07.0100A antenna | TX spurious emissions radiated [dBµV/m] | | | | | | | | | |---|---|-------------------|----------------------------|------|-----|----------|----------|-------------------| | | 2402 MHz | | 2441 MHz | | | 2480 MHz | | | | F [MHz] | Detector | Level
[dBµV/m] | FIMHT Detector FIMHT | | | | Detector | Level
[dBµV/m] | | | All detected emissions are more than 20 dB below the limit. | | | | | | | | | -/- | Peak | -/- | , | Peak | -/- | -/- | Peak | -/- | | -/- | AVG | -/- | -/- | AVG | -/- | -/- | AVG | -/- | © CTC advanced GmbH Page 49 of 59 Plots: Transmitter mode, ANT1-DB1-RAF-xxx antenna Plot 1: 1 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization The carrier signal is notched with a 2.4 GHz band rejection filter. Plot 2: 1 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization The carrier signal is notched with a 2.4 GHz band rejection filter. © CTC advanced GmbH Page 50 of 59 Plot 3: 1 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization The carrier signal is notched with a 2.4 GHz band rejection filter. © CTC advanced GmbH Page 51 of 59 Plots: Transmitter mode, TAOGLAS PC11.07.0100A antenna Plot 1: 1 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization The carrier signal is notched with a 2.4 GHz band rejection filter. Plot 2: 1 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization The carrier signal is notched with a 2.4 GHz band rejection filter. © CTC advanced GmbH Page 52 of 59 Plot 3: 1 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization The carrier signal is notched with a 2.4 GHz band rejection filter. Plot 4: 18 GHz to 26 GHz, TX mode, vertical & horizontal polarization, valid for all channels and all antennas Date: 24 AUG .2022 14:06:16 © CTC advanced GmbH Page 53 of 59 ### 12.12 Spurious emissions conducted below 30 MHz (AC conducted) #### **Description:** Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits. | Measurement parameters | | | | | |-------------------------|--|--|--|--| | Detector | Peak - Quasi peak / average | | | | | Sweep time | Auto | | | | | Resolution bandwidth | F < 150 kHz: 200 Hz
F > 150 kHz: 9 kHz | | | | | Video bandwidth | F < 150 kHz: 1 kHz
F > 150 kHz: 100 kHz | | | | | Span | 9 kHz to 30 MHz | | | | | Trace mode | Max hold | | | | | Test setup | See sub clause 7.4 setup A | | | | | Measurement uncertainty | See sub clause 9 | | | | #### **Limits:** | FCC | | | ISED | | |--|---------------------|--|------------------|--| | TX spurious emissions conducted < 30 MHz | | | | | | Frequency (MHz) | Quasi-peak (dBμV/m) | | Average (dBμV/m) | | | 0.15 - 0.5 | 66 to 56* | | 56 to 46* | | | 0.5 - 5 | 56 | | 46 | | | 5 – 30.0 | 60 | | 50 | | ^{*}Decreases with the logarithm of the frequency #### **Results:** | Spurious emissions conducted < 30 MHz [dBµV/m] | | | | | | |--|--|--|--|--|--| | F [MHz] Detector Level [dBµV/m] | | | | | | | No emissions detected | © CTC advanced GmbH Page 54 of 59 ### Plots: Plot 1: 150 kHz to 30 MHz, phase line #### Final results: | Frequency | Quasi peak
level | Margin quasi
peak | Limit QP | Average
level | Margin
average | Limit AV | |-----------|---------------------|----------------------|----------|------------------|-------------------|----------| | MHz | dΒμV | dB | dΒμV | dΒμV | dB | dΒμV | | 0.150000 | 41.51 | 24.49 | 66.000 | 21.89 | 34.11 | 56.000 | | 0.202237 | 35.99 | 27.52 | 63.518 | 20.13 | 34.38 | 54.508 | | 0.534319 | 33.12 | 22.88 | 56.000 | 25.84 | 20.16 | 46.000 | | 3.549169 | 27.14 | 28.86 | 56.000 | 15.97 | 30.03 | 46.000 | © CTC advanced GmbH Page 55 of 59 Plot 2: 150 kHz to 30 MHz, neutral line #### Final results: | Frequency | Quasi peak
level | Margin quasi
peak | Limit QP | Average
level | Margin
average | Limit AV | |-----------|---------------------|----------------------|----------|------------------|-------------------|----------| | MHz | dΒμV | dB | dΒμV | dΒμV | dB | dΒμV | | 0.157463 | 41.91 | 23.69 | 65.597 | 23.03 | 32.75 | 55.787 | | 0.526856 | 31.92 | 24.08 | 56.000 | 27.17 | 18.83 | 46.000 | | 3.023062 | 23.65 | 32.35 | 56.000 | 15.59 | 30.41 | 46.000 | | 3.276788 | 24.90 | 31.10 | 56.000 | 16.07 | 29.93 | 46.000 | ### 13 Observations No observations except those reported with the single test cases have been made. © CTC advanced GmbH Page 56 of 59 # 14 Glossary | EUT | Equipment under test | |------------------|--| | DUT | Device under test | | UUT | Unit under test | | GUE | GNSS User Equipment | | ETSI | European Telecommunications Standards Institute | | EN | European Standard | | FCC | Federal Communications Commission | | FCC ID | Company Identifier at FCC | | IC | Industry Canada | | PMN | Product marketing name | | HMN | Host marketing name | | HVIN | Hardware version identification number | | FVIN | Firmware version identification number | | EMC | Electromagnetic Compatibility | | HW | Hardware | | SW | Software | | Inv. No. | Inventory number | | S/N or SN | Serial number | | С | Compliant | | NC | Not compliant | | NA | Not applicable | | NP | Not performed | | PP | Positive peak | | QP | Quasi peak | | AVG | Average | | OC | Operating channel | | OCW | Operating channel bandwidth | | OBW | Occupied bandwidth | | OOB | Out of band | | DFS | Dynamic frequency selection | | CAC | Channel availability check | | OP | Occupancy period | | NOP | Non occupancy period | | DC | Duty cycle | | PER | Packet error rate | | CW | Clean wave | | MC | Modulated carrier | | WLAN | Wireless local area network | | RLAN | Radio local area network | | DSSS | Dynamic sequence spread spectrum | | OFDM | Orthogonal frequency division multiplexing | | FHSS | Frequency hopping spread spectrum | | GNSS | Global Navigation Satellite System | | C/N ₀ | Carrier to noise-density ratio, expressed in dB-Hz | © CTC advanced GmbH Page 57 of 59 ## 15 Document history | Version | Applied changes | Date of release | |---------|--------------------------------------|-----------------| | -/- | Initial release | 2022-09-05 | | А | FCC ID, IC ID and model name changed | 2022-12-12 | ## 16 Accreditation Certificate - D-PL-12076-01-04 | first page | last page | |---|---| | Deutsche Akkreditierungstelle | Deutsche Akkreditierungsstelle GmbH | | Deutsche Akkreditierungsstelle GmbH | Deutsche Akkreditierungsstelle Gribh | | Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multiateral Agreements of EA, ILAC and IAF for Mutual Recognition | Office Berlin Office Frankfurt am Main Office Braunschweig
Spittelmarkt 10 Europa-Allee 52
Bundesallee 100
10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig | | Accreditation | | | The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory | | | CTC advanced GmbH
Untertürkheimer Straße 6-10, 66117 Saarbrücken | | | is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: | | | Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards | | | | The publication of extracts of the accreditation certificate is subject to the prior written approval by
Deutsche Akkreditierungsstelle GmbH (DAXS). Exempted is the unchanged form of separate
disseminations of the cover sheet by the conformity assessment body mentioned overleaf.
No impression shall be made that the accreditation also extends to fields beyond the scope of | | The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. | accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (federal Law Gazette Ip. 2629) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Intol. 128 of 9 July 2008, 30). DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA). International Accreditation Formul (AF) and International Juboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. | | Registration number of the certificate: D-PL-12076-01-04 | The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.liet.org IAF: www.liet.nu | | Frankfurt am Main, 09.06.2020 by orde (Full-ing, IFBRASE Egner
Head of Division | | | The configurate together with its annex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found at the distalates of accreditation can be found at the distalates of accreditate badies of Poutsche Alkreditierungsstelle GmbH. https://www.ddks.defenf.content/accreditate-badies-daks line rates withdi. | | Note: The current certificate annex is published on the websites (link see below). https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf © CTC advanced GmbH Page 58 of 59 # 17 Accreditation Certificate - D-PL-12076-01-05 | first page | last page | |--|--| | Deutsche Aktreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The corditate together with its annex reflects the attests at the time of the date of issue. The correct status of the asspect of excreditation on the found is in the database of excredite bother ad Operator Akhreditenospasticle GmbH. Attention on the found is in the database of excredite bother ad Operator Akhreditenospasticle GmbH. Attention on the found is in the database of accredite bother ad Operator Akhreditenospasticle GmbH. Attention on the found is in the database of accredite bother ad Operator Akhreditenospasticle GmbH. Attention on the found is in the database of accredite bother ad Operator Akhreditenospasticle GmbH. Attention of the control o | Office Berlin Spittelmarkt 10 10117 Berlin Spittelmarkt 20 10117 Berlin Spittelmarkt 30 10117 Berlin Spittelmarkt 30 10117 Berlin Spittelmarkt 30 10117 Berlin Spittelmarkt 30 | | maps/y year na sandu-say go og v seneser) value entrete viralete viralete viralete.
Sen nelfa menfald. | | Note: The current certificate annex is published on the websites (link see below). https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf