

Shenzhen Most Technology Service Co., Ltd.

East A, 1 floor of New Aolin Factory building, Langshan Erlu, North District, Hi-tech Industry Park, Nanshan, Shenzhen, Guangdong, China

RF Exposure Evaluation Report				
Report Reference No:				
Compiled by (position+printed name+signature):	File administrators Alisa Luo	Assa Luc		
Supervised by (position+printed name+signature):	Test Engineer Sunny Deng	Sunny Deng		
Approved by (position+printed name+signature):	Manager Yvette Zhou	fretter		
Date of issue:	Jan.03,2024			
Representative Laboratory Name.:	Shenzhen Most Technology Ser	vice Co., Ltd.		
Address:	No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.			

Applicant's name...... Xiamen Joint Tech. Co., Ltd

Address...... Building #1,No.268 HouXiang Rd,Xinyang,Industrial Park,Haicang

District, XIAMEN, Fujian, China.

KDB447498D01 General RF Exposure Guidance v06

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description:	Electric Vehicle AC Charger
Trade Mark:	Joint

Model/Type reference : JNT-EVC47/48AC/01C/WH/RF/WF Listed Models : JNT-EVC47/XXAC/01C/WH/RF/WF

XX stands for Electric current

Modulation Type..... ASK

Operation Frequency...... 13.56MHz
Hardware Version...... EVC47_V1.0

Rating..... AC 240V/60Hz

Result..... PASS

Page 2 of 7

TEST REPORT

Equipment under Test : Electric Vehicle AC Charger

Model /Type : JNT-EVC47/48AC/01C/WH/RF/WF

Listed Models JNT-EVC47/XXAC/01C/WH/RF/WF

Remark XX stands for Electric current

Applicant : Xiamen Joint Tech. Co., Ltd

Address : Building #1,No.268 HouXiang Rd,Xinyang,Industrial Park,Haicang

District, XIAMEN, Fujian, China.

Manufacturer : Xiamen Joint Tech. Co., Ltd

Address : Building #1,No.268 HouXiang Rd,Xinyang,Industrial Park,Haicang

District, XIAMEN, Fujian, China.

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: MTEB24010008-H Page 3 of 7

1. Revision History

Revision	Issue Date	Revisions	Revised By
00	2024.01.03	Initial Issue	Alisa Luo

Page 4 of 7

2. SAR Evaluation

2.1 RF Exposure Compliance Requirement

2.1.1 Standard Requirement

According to KDB447498D01 General RF Exposure Guidance v06

4.3.1. Standalone SAR test exclusion considerations

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

2.1.2 Limits

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposure	es	
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f2)	6
30–300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000		***************************************	5	6
(B) Limits	or General Populati	on/Uncontrolled Exp	osure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*Pi*R^2)$ Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Page 5 of 7

2.1.3 EUT RF Exposure

Antenna Gain: 1.85dBi

NFC:

The worst case (refer to report MTEB24010008-R1) is below:

Antenna polarization: Horizontal			
Frequency (MHz) Level (dBuV/m) Polarization			
13.56	79.1	Peak	

E=EIRP-20logd+104.8

E: is the electric field strength in dBuV/m

EIRP: is the equivalent isotropically radiated powerin dBm

d: is the specified measurement distance in m

d=3m

EIRP=79.1+20log3-104.8=-16.16dBm

13.56MHz< 30MHz, Add a 6DB maximum ground factor.

EIRP=-16.16dBm+6=-10.16dBm

The EIPR of the product is small enough, RF Exposure meets the requirements.

BLE

Antenna Gain: 0dBi

	GFSK				
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power		
	(dBm)	(dBm)	(dBm)		
Lowest(2402 MHz)	6.981	6.981±1	7.981		
Middle(2440MHz)	7.444	7.444±1	8.444		
Highest(2480MHz)	7.793	7.793 ± 1	8.793		

RI F

_	DLC						
	Worst case: GFSK						
	Channel	Maximum tune-up Power (dBm)	Maximum tune-up Power (MW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)	Limit	Result
	Lowest(2402 MHz)	8.793	7.57	0dBi	0.00015	1.0	Pass

Note: 1) Refer to report MTEB24010008-R2 for EUT test Max Conducted average Output Power value.

Note: 2) Pd = $(Pout*G)/(4*Pi*R^2)=(7.57*1.0)/(4*3.1416*20^2)=0.00015$

Note: 3)EUT's Bluetooth module is more than 20cm away from the human body.

Report No.: MTEB24010008-H Page 6 of 7

WIFI 2.4G

771172.10					
	802.11b				
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power		
	(dBm)	(dBm)	(dBm)		
Lowest(2412MHz)	14.06	14.06±1	15.06		
Middle(2437MHz)	13.98	13.98±1	14.98		
Highest(2462MHz)	13.82	13.82±1	14.82		

802.11g				
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power	
	(dBm)	(dBm)	(dBm)	
Lowest(2412MHz)	15.16	15.16±1	16.16	
Middle(2437MHz)	15.10	15.10±1	16.10	
Highest(2462MHz)	15.01	15.01±1	16.01	

802.11n(H20)				
Test channel	Peak Output Power Tune up tolera	Tune up tolerance	Maximum tune-up Power	
Test chamier	(dBm)	(dBm)	(dBm)	
Lowest(2412MHz)	14.78	14.78±1	15.78	
Middle(2437MHz)	14.42	14.42±1	15.42	
Highest(2462MHz)	14.38	14.38±1	15.38	

802.11n(H40)				
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power	
	(dBm)	(dBm)	(dBm)	
Lowest(2412MHz)	14.57	14.57±1	15.57	
Middle(2437MHz)	14.45	14.45±1	15.45	
Highest(2462MHz)	14.32	14.32±1	15.32	

Page 7 of 7

WIFI 2.4G

	20						
Worst case: 802.11g							
Channel	Maximum tune-up Power (dBm)	Maximum tune-up Power (MW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)	Limit	Result	
Middle(2437MHz)	16.16	41.30	0	0.008	1.0	Pass	

Note: 1) Refer to report MTEB24010008—R1 for EUT test Max Conducted average Output Power value. Note: 2) Pd = $(Pout*G)/(4*Pi*R^2)=(41.30*1)/(4*3.1416*20^2)=0.008$ Note: 3)EUT's Bluetooth module is more than 20cm away from the human body.

THE END	OF REPORT
---------	-----------