

# Shenzhen Toby Technology Co., Ltd.



Report No.: TBR-C-202404-0185-31

Page: 1 of 46

# **RF Test Report**

FCC ID: 2BK80-R12E

**Report No.** : TBR-C-202404-0185-31

**Applicant**: Shenzhen TBZ Technology Co., LTD.

**Equipment Under Test (EUT)** 

**EUT Name** : AIBOT2 AI humanoid robot

Model No. : R12E

Series Model No. : ----

Brand Name : ----

Sample ID : HC-C-202404-0185-01-01-1#&HC-C-202404-0185-01-01-2#

**Receipt Date** : 2024-09-19

**Test Date** : 2024-09-19 to 2025-03-04

Issue Date : 2025-03-04

Standards : FCC Part 15 Subpart C 15.247

**Test Method** : ANSI C63.10:2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Tested By : 24 show

Reviewed By : Jule W

Approved By : MIN SV

Wade Lv Ivan Str

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202404-0185-31 Page: 2 of 46

# Contents

| COI | NTENTS                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 6  |
|     | 1.1 Client Information                                       |    |
|     | 1.2 General Description of EUT (Equipment Under Test)        | 6  |
|     | 1.3 Block Diagram Showing the Configuration of System Tested |    |
|     | 1.4 Description of Support Units                             | 8  |
|     | 1.5 Description of Test Mode                                 | 9  |
|     | 1.6 Description of Test Software Setting                     | 10 |
|     | 1.7 Measurement Uncertainty                                  | 10 |
|     | 1.8 Test Facility                                            |    |
| 2.  | TEST SUMMARY                                                 | 12 |
| 3.  | TEST SOFTWARE                                                | 12 |
| 4.  | TEST EQUIPMENT AND TEST SITE                                 |    |
| 5.  | CONDUCTED EMISSION                                           |    |
|     | 5.1 Test Standard and Limit                                  |    |
|     | 5.2 Test Setup                                               |    |
|     | 5.3 Test Procedure                                           |    |
|     | 5.4 Deviation From Test Standard                             | 16 |
|     | 5.5 EUT Operating Mode                                       | 16 |
|     | 5.6 Test Data                                                | 16 |
| 6.  | RADIATED AND CONDUCTED UNWANTED EMISSIONS                    | 17 |
|     | 6.1 Test Standard and Limit                                  | 17 |
|     | 6.2 Test Setup                                               | 19 |
|     | 6.3 Test Procedure                                           | 20 |
|     | 6.4 Deviation From Test Standard                             |    |
|     | 6.5 EUT Operating Mode                                       | 21 |
|     | 6.6 Test Data                                                | 21 |
| 7.  | RESTRICTED BANDS AND BAND EDGE REQUIREMENT                   | 22 |
|     | 7.1 Test Standard and Limit                                  | 22 |
|     | 7.2 Test Setup                                               | 22 |
|     | 7.3 Test Procedure                                           | 23 |
|     | 7.4 Deviation From Test Standard                             | 24 |
|     |                                                              |    |





Report No.: TBR-C-202404-0185-31 Page: 3 of 46

|     | 7.5 EUT Operating Mode              | 24 |
|-----|-------------------------------------|----|
|     | 7.6 Test Data                       | 24 |
| 8.  | 99% OCCUPIED AND 20DB BANDWIDTH     | 25 |
|     | 8.1 Test Standard and Limit         | 25 |
|     | 8.2 Test Setup                      | 25 |
|     | 8.3 Test Procedure                  | 25 |
|     | 8.4 Deviation From Test Standard    | 26 |
|     | 8.5 EUT Operating Mode              | 26 |
|     | 8.6 Test Data                       | 26 |
| 9.  | PEAK OUTPUT POWER TEST              | 27 |
|     | 9.1 Test Standard and Limit         | 27 |
|     | 9.2 Test Setup                      | 27 |
|     | 9.3 Test Procedure                  | 27 |
|     | 9.4 Deviation From Test Standard    | 28 |
|     | 9.5 EUT Operating Mode              | 28 |
|     | 9.6 Test Data                       | 28 |
| 10. | CARRIER FREQUENCY SEPARATION        | 29 |
|     | 10.1 Test Standard and Limit        | 29 |
|     | 10.2 Test Setup                     | 29 |
|     | 10.3 Test Procedure                 | 29 |
|     | 10.4 Deviation From Test Standard   | 30 |
|     | 10.5 Antenna Connected Construction | 30 |
|     | 10.6 Test Data                      | 30 |
| 11. | TIME OF OCCUPANCY (DWELL TIME)      | 31 |
|     | 11.1 Test Standard and Limit        | 31 |
|     | 11.2 Test Setup                     | 31 |
|     | 11.3 Test Procedure                 | 31 |
|     | 11.4 Deviation From Test Standard   | 32 |
|     | 11.5 Antenna Connected Construction | 32 |
|     | 11.6 Test Data                      | 32 |
| 12. | NUMBER OF HOPPING FREQUENCIES       | 33 |
|     | 12.1 Test Standard and Limit        | 33 |
|     | 12.2 Test Setup                     | 33 |
|     | 12.3 Test Procedure                 |    |
|     | 12.4 Deviation From Test Standard   | 34 |
|     | 12.5 Antenna Connected Construction | 34 |





Report No.: TBR-C-202404-0185-31 Page: 4 of 46

|     | 12.6 Test Data                                   | 34 |
|-----|--------------------------------------------------|----|
| 13. | ANTENNA REQUIREMENT                              | 35 |
|     | 13.1 Test Standard and Limit                     | 35 |
|     | 13.2 Deviation From Test Standard                | 35 |
|     | 13.3 Antenna Connected Construction              | 35 |
|     | 13.4 Test Data                                   | 35 |
| ATT | ACHMENT A CONDUCTED EMISSION TEST DATA           | 36 |
| ATT | ACHMENT B UNWANTED EMISSIONS TEST DATA           | 38 |
| ATT | ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA | 43 |





Report No.: TBR-C-202404-0185-31 Page: 5 of 46

# **Revision History**

| Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Version | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Date |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| TBR-C-202404-0185-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rev.01  | Initial issue of report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2025-03-04  |
| The state of the s | (ans)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4000        |
| 11 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000     | Charles of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mnB3    | The state of the s |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 5 6   | Dist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an33    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |





Page: 6 of 46

# 1. General Information about EUT

### 1.1 Client Information

| Applicant    |                                                                                     | Shenzhen TBZ Technology Co., LTD.                                                   |
|--------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Address      | C808, ZiGuang Information Harbor, Nanshan District, ShenZhen City. Guangdong, China |                                                                                     |
| Manufacturer | ufacturer : Shenzhen TBZ Technology Co., LTD.                                       |                                                                                     |
|              |                                                                                     | C808, ZiGuang Information Harbor, Nanshan District, ShenZhen City. Guangdong, China |

# 1.2 General Description of EUT (Equipment Under Test)

| <b>EUT Name</b>         |   | AIBOT2 AI humanoid robot                                                                                                   |                                             |  |  |
|-------------------------|---|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|
| Models No.              |   | R12E                                                                                                                       |                                             |  |  |
| Model Different         |   |                                                                                                                            |                                             |  |  |
| 1000                    |   | Operation Frequency:                                                                                                       | Bluetooth V5.0(BR+EDR): 2402MHz~2480MHz     |  |  |
| Disable of              | 7 | Number of Channel:                                                                                                         | 79 channels                                 |  |  |
| Product Description     |   | Antenna Gain:                                                                                                              | -0.58dBi PCB Antenna                        |  |  |
|                         |   | Modulation Type:                                                                                                           | GFSK(1Mbps) π /4-DQPSK(2Mbps) 8-DPSK(3Mbps) |  |  |
| Power Rating            |   | Adapter(KA1801A-0902000US) INPUT: 100-240V~50/60Hz 0.55A Max OUTPUT: 9V/2000mA DC 7.2V 3300mAh Rechargeable Li-ion battery |                                             |  |  |
| <b>Software Version</b> |   | 1.0.0                                                                                                                      |                                             |  |  |
| Hardware Version        |   | TBZ_R12_MAIN_V1.1                                                                                                          | 2024.12.06                                  |  |  |
| B I                     |   |                                                                                                                            |                                             |  |  |

#### Remark:

- (1) The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

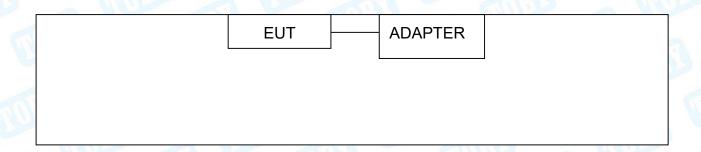




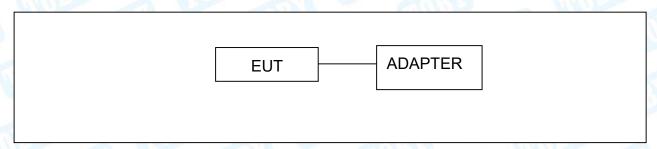
Report No.: TBR-C-202404-0185-31 Page: 7 of 46

# (4)Channel List:

| Bluetooth Channel List |                    |         |                    |         |                    |  |
|------------------------|--------------------|---------|--------------------|---------|--------------------|--|
| Channel                | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |
| 00                     | 2402               | 27      | 2429               | 54      | 2456               |  |
| 01                     | 2403               | 28      | 2430               | 55      | 2457               |  |
| 02                     | 2404               | 29      | 2431               | 56      | 2458               |  |
| 03                     | 2405               | 30      | 2432               | 57      | 2459               |  |
| 04                     | 2406               | 31      | 2433               | 58      | 2460               |  |
| 05                     | 2407               | 32      | 2434               | 59      | 2461               |  |
| 06                     | 2408               | 33      | 2435               | 60      | 2462               |  |
| 07                     | 2409               | 34      | 2436               | 61      | 2463               |  |
| 08                     | 2410               | 35      | 2437               | 62      | 2464               |  |
| 09                     | 2411               | 36      | 2438               | 63      | 2465               |  |
| 10                     | 2412               | 37      | 2439               | 64      | 2466               |  |
| 11                     | 2413               | 38      | 2440               | 65      | 2467               |  |
| 12                     | 2414               | 39      | 2441               | 66      | 2468               |  |
| 13                     | 2415               | 40      | 2442               | 67      | 2469               |  |
| 14                     | 2416               | 41      | 2443               | 68      | 2470               |  |
| 15                     | 2417               | 42      | 2444               | 69      | 2471               |  |
| 16                     | 2418               | 43      | 2445               | 70      | 2472               |  |
| 17                     | 2419               | 44      | 2446               | 71      | 2473               |  |
| 18                     | 2420               | 45      | 2447               | 72      | 2474               |  |
| 19                     | 2421               | 46      | 2448               | 73      | 2475               |  |
| 20                     | 2422               | 47      | 2449               | 74      | 2476               |  |
| 21                     | 2423               | 48      | 2450               | 75      | 2477               |  |
| 22                     | 2424               | 49      | 2451               | 76      | 2478               |  |
| 23                     | 2425               | 50      | 2452               | 77      | 2479               |  |
| 24                     | 2426               | 51      | 2453               | 78      | 2480               |  |
| 25                     | 2427               | 52      | 2454               |         |                    |  |
| 26                     | 2428               | 53      | 2455               |         |                    |  |







Page: 8 of 46

# 1.3 Block Diagram Showing the Configuration of System Tested

# **Conducted Test**



# **Radiated Test**



# 1.4 Description of Support Units

| Equipment Information |               |                  |        |          |  |  |
|-----------------------|---------------|------------------|--------|----------|--|--|
| Name                  | Manufacturer  | Used "√"         |        |          |  |  |
| With the              |               |                  | 40 R   | Military |  |  |
|                       | C             | able Information |        |          |  |  |
| Number                | Shielded Type | Ferrite Core     | Length | Note     |  |  |
|                       |               | C                | W      |          |  |  |
| A THUE                |               |                  | (10)   |          |  |  |





Page: 9 of 46

## 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| For Conducted Test                    |                                        |  |  |  |
|---------------------------------------|----------------------------------------|--|--|--|
| Final Test Mode Description           |                                        |  |  |  |
| Mode 1                                | TX GFSK Mode Channel 00                |  |  |  |
|                                       | For Radiated Test                      |  |  |  |
| Final Test Mode                       | Description                            |  |  |  |
| Mode 1                                | TX GFSK Mode Channel 00                |  |  |  |
| Mode 2 TX Mode(GFSK) Channel 00/39/78 |                                        |  |  |  |
| Mode 3                                | TX Mode( II /4-DQPSK) Channel 00/39/78 |  |  |  |
| Mode 4                                | TX Mode(8-DPSK) Channel 00/39/78       |  |  |  |
| Mode 5                                | Hopping Mode(GFSK)                     |  |  |  |
| Mode 6                                | Hopping Mode( π /4-DQPSK)              |  |  |  |
| Mode 7                                | Hopping Mode(8-DPSK)                   |  |  |  |

#### Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: π /4-DQPSK (2 Mbps)
TX Mode: 8-DPSK (3 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.





Page: 10 of 46

## 1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

| Test Software Version | 4000    | FCC_assist_v1.1 | .5      |
|-----------------------|---------|-----------------|---------|
| Frequency             | 2402MHz | 2441MHz         | 2480MHz |
| GFSK                  | 6       | 6               | 6       |
| π /4-DQPSK            | 6       | 6               | 6       |
| 8-DPSK                | 6       | 6               | 6       |

# 1.7 Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| Test Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parameters        | Expanded Uncertainty   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | (U <sub>Lab</sub> )    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level Accuracy:   | $\pm 3.50~\mathrm{dB}$ |  |
| Conducted Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9kHz~150kHz       |                        |  |
| The state of the s | 150kHz to 30MHz   | $\pm 3.10~\mathrm{dB}$ |  |
| Dedicted Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Level Accuracy:   | 4.00 dD                |  |
| Radiated Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9kHz to 30 MHz    | $\pm 4.60~\mathrm{dB}$ |  |
| Dedicted Fasionics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Level Accuracy:   | L 4.50 JD              |  |
| Radiated Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30MHz to 1000 MHz | $\pm$ 4.50 dB          |  |
| Dadiated Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Level Accuracy:   | 1 4 00 dD              |  |
| Radiated Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Above 1000MHz     | $\pm$ 4.20 dB          |  |





Page: 11 of 46

## 1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

### **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

### IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.





Report No.: TBR-C-202404-0185-31 Page: 12 of 46

# 2. Test Summary

| Standard Section       | Took Home                                  | Toot Comple(s)            | ldanaaaat |        |  |
|------------------------|--------------------------------------------|---------------------------|-----------|--------|--|
| FCC                    | Test Item                                  | Test Sample(s)            | Judgment  | Remark |  |
| FCC 15.207(a)          | Conducted Emission                         | HC-C-202404-0185-01-01-1# | PASS      | N/A    |  |
| FCC 15.209 & 15.247(d) | Radiated Unwanted Emissions                | HC-C-202404-0185-01-01-1# | PASS      | N/A    |  |
| FCC 15.203             | Antenna Requirement                        | HC-C-202404-0185-01-01-2# | PASS      | N/A    |  |
| FCC 15.247(a)          | 99% Occupied Bandwidth & 20dB<br>Bandwidth | HC-C-202404-0185-01-01-2# | PASS      | N/A    |  |
| FCC 15.247(b)(1)       | Peak Output Power                          | HC-C-202404-0185-01-01-2# | PASS      | N/A    |  |
| FCC 15.247(a)(1)       | Carrier frequency separation               | HC-C-202404-0185-01-01-2# | PASS      | N/A    |  |
| FCC 15.247(a)(1)       | Time of occupancy                          | HC-C-202404-0185-01-01-2# | PASS      | N/A    |  |
| FCC 15.247(b)(1)       | Number of Hopping<br>Frequency             | HC-C-202404-0185-01-01-2# | PASS      | N/A    |  |
| FCC 15.247(d)          | Band Edge                                  | HC-C-202404-0185-01-01-2# | PASS      | N/A    |  |
| FCC 15.207             | Conducted Unwanted Emissions               | HC-C-202404-0185-01-01-2# | PASS      | N/A    |  |
| FCC 15.205             | Emissions in Restricted Bands              | HC-C-202404-0185-01-01-2# | PASS      | N/A    |  |
|                        | On Time and Duty Cycle                     | HC-C-202404-0185-01-01-2# |           | N/A    |  |

# 3. Test Software

| Test Item                 | Test Software | Manufacturer | Version No. |
|---------------------------|---------------|--------------|-------------|
| Conducted Emission        | EZ-EMC        | EZ           | CDI-03A2    |
| Radiation Emission        | EZ-EMC        | EZ           | FA-03A2RE   |
| Radiation Emission        | EZ-EMC        | EZ           | FA-03A2RE+  |
| RF Conducted  Measurement | MTS-8310      | MWRFtest     | V2.0.0.0    |
| RF Test System            | JS1120        | Tonscend     | V3.2.22     |





Report No.: TBR-C-202404-0185-31 Page: 13 of 46

# 4. Test Equipment and Test Site

|             | Test Site              |              |                   |      |
|-------------|------------------------|--------------|-------------------|------|
| No.         | Test Site              | Manufacturer | Specification     | Used |
| TB-EMCSR001 | Shielding Chamber #1   | YIHENG       | 7.5*4.0*3.0 ( m ) | V    |
| TB-EMCSR002 | Shielding Chamber #2   | YIHENG       | 8.0*4.0*3.0 ( m ) | V    |
| TB-EMCCA001 | 3m Anechoic Chamber #A | ETS          | 9.0*6.0*6.0 ( m ) | X    |
| TB-EMCCB002 | 3m Anechoic Chamber #B | YIHENG       | 9.0*6.0*6.0 ( m ) | V    |

| Conducted Emissi        | on lest                          |                    |             |               | 1             |
|-------------------------|----------------------------------|--------------------|-------------|---------------|---------------|
| Equipment               | Manufacturer                     | Model No.          | Serial No.  | Last Cal.     | Cal. Due Date |
| EMI Test Receiver       | Rohde & Schwarz                  | ESCI               | 100321      | Jun. 17, 2024 | Jun. 16, 2025 |
| RF Switching Unit       | Compliance Direction Systems Inc | RSU-A4             | 34403       | Jun. 17, 2024 | Jun. 16, 2025 |
| AMN                     | SCHWARZBECK                      | NNBL 8226-2        | 8226-2/164  | Jun. 17, 2024 | Jun. 16, 2025 |
| LISN                    | Rohde & Schwarz                  | ENV216             | 101131      | Jun. 17, 2024 | Jun. 16, 2025 |
| Radiation Emissio       | n Test (B Site)                  |                    |             |               |               |
| Equipment               | Manufacturer                     | Model No.          | Serial No.  | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer       | Agilent                          | N9020A             | MY49100060  | Aug. 29, 2024 | Aug. 28, 2025 |
| Spectrum<br>Analyzer    | Rohde & Schwarz                  | FSV40-N            | 102197      | Jun. 17, 2024 | Jun. 16, 2025 |
| EMI Teet Dessiver       | Dahda & Cabusan                  | ECH 0              | 400470/000  | Feb. 23, 2024 | Feb. 22, 2025 |
| EMI Test Receiver       | Rohde & Schwarz                  | ESU-8              | 100472/008  | Feb. 20, 2025 | Feb. 19, 2026 |
| Bilog Antenna           | SCHWARZBECK                      | VULB 9168          | 1225        | Nov. 13, 2023 | Nov. 12, 2025 |
| Horn Antenna            | SCHWARZBECK                      | BBHA 9120 D        | 2463        | Jun. 14, 2024 | Jun. 13, 2026 |
| Horn Antenna            | SCHWARZBECK                      | BBHA 9170          | 1118        | Feb. 27, 2024 | Feb. 26, 2026 |
| Loop Antenna            | SCHWARZBECK                      | FMZB 1519 B        | 1519B-059   | Jun. 14, 2024 | Jun. 13, 2026 |
| HF Amplifier            | Tonscend                         | TAP9E6343          | AP21C806117 | Aug. 29, 2024 | Aug. 28, 2025 |
| HF Amplifier            | Tonscend                         | TAP051845          | AP21C806141 | Aug. 29, 2024 | Aug. 28, 2025 |
| HF Amplifier            | Tonscend                         | TAP0184050         | AP21C806129 | Aug. 29, 2024 | Aug. 28, 2025 |
| Highpass Filter         | CD                               | HPM-6.4/18G        |             | N/A           | N/A           |
| Highpass Filter         | CD                               | HPM-2.8/18G        | 14/22       | N/A           | N/A           |
| Highpass Filter         | XINBO                            | XBLBQ-HTA67(8-25G) | 22052702-1  | N/A           | N/A           |
| Antenna Conducte        | d Emission                       |                    |             |               |               |
| Equipment               | Manufacturer                     | Model No.          | Serial No.  | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer       | Rohde & Schwarz                  | FSV40-N            | 102197      | Jun. 17, 2024 | Jun. 16, 2025 |
| MXA Signal Analyzer     | KEYSIGHT                         | N9020B             | MY60110172  | Aug. 29, 2024 | Aug. 28, 2025 |
| MXA Signal Analyzer     | Agilent                          | N9020A             | MY47380425  | Aug. 29, 2024 | Aug. 28, 2025 |
| Vector Signal Generator | Agilent                          | N5182A             | MY50141294  | Aug. 29, 2024 | Aug. 28, 2025 |
| Analog Signal Generator | Agilent                          | N5181A             | MY48180463  | Aug. 29, 2024 | Aug. 28, 2025 |
| Vector Signal Generator | KEYSIGHT                         | N5182B             | MY59101429  | Aug. 29, 2024 | Aug. 28, 2025 |





Report No.: TBR-C-202404-0185-31 Page: 14 of 46

| Analog Signal Generator | KEYSIGHT           | N5173B            | MY61252685    | Aug. 29, 2024 | Aug. 28, 2025 |
|-------------------------|--------------------|-------------------|---------------|---------------|---------------|
|                         | DARE!! Instruments | RadiPowerRPR3006W | 17I00015SNO26 | Aug. 29, 2024 | Aug. 28, 2025 |
| RF Power Sensor         | DARE!! Instruments | RadiPowerRPR3006W | 17I00015SNO29 | Aug. 29, 2024 | Aug. 28, 2025 |
| RF Power Sensor         | DARE!! Instruments | RadiPowerRPR3006W | 17I00015SNO31 | Aug. 29, 2024 | Aug. 28, 2025 |
|                         | DARE!! Instruments | RadiPowerRPR3006W | 17I00015SNO33 | Aug. 29, 2024 | Aug. 28, 2025 |
| RF Control Unit         | Tonsced            | JS0806-1          | 21C8060380    | N/A           | N/A           |
| RF Control Unit         | Tonsced            | JS0806-2          | 21F8060439    | Aug. 29, 2024 | Aug. 28, 2025 |
| Power Control Box       | Tonsced            | JS0806-4ADC       | 21C8060387    | N/A           | N/A           |





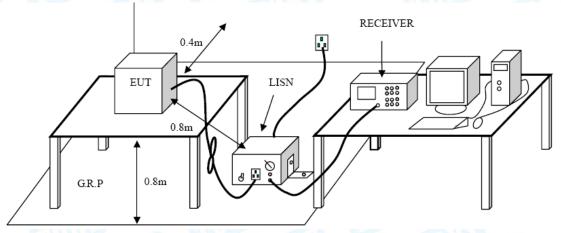
Page: 15 of 46

# 5. Conducted Emission

#### 5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

| Fragueney     | Maximum RF Line  | Voltage (dBμV) |
|---------------|------------------|----------------|
| Frequency     | Quasi-peak Level | Average Level  |
| 150kHz~500kHz | 66 ~ 56 *        | 56 ~ 46 *      |
| 500kHz~5MHz   | 56               | 46             |
| 5MHz~30MHz    | 60               | 50             |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

### 5.2 Test Setup



## 5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.





Page: 16 of 46

● The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

# 5.4 Deviation From Test Standard

No deviation

# 5.5 EUT Operating Mode

Please refer to the description of test mode.

### 5.6 Test Data

Please refer to the Attachment A inside test report.





Page: 17 of 46

# 6. Radiated and Conducted Unwanted Emissions

### 6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

#### 6.1.2 Test Limit

| General field strength limits at frequencies Below 30MHz |                                       |                                  |  |
|----------------------------------------------------------|---------------------------------------|----------------------------------|--|
| Frequency<br>(MHz)                                       | Field Strength<br>(microvolt/meter)** | Measurement Distance<br>(meters) |  |
| 0.009~0.490                                              | 2400/F(KHz)                           | 300                              |  |
| 0.490~1.705                                              | 24000/F(KHz)                          | 30                               |  |
| 1.705~30.0                                               | 30                                    | 30                               |  |

**Note:** 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

| General field | General field strength limits at frequencies above 30 MHz |                      |  |
|---------------|-----------------------------------------------------------|----------------------|--|
| Frequency     | Field strength                                            | Measurement Distance |  |
| (MHz)         | (µV/m at 3 m)                                             | (meters)             |  |
| 30~88         | 100                                                       | 3                    |  |
| 88~216        | 150                                                       | 3                    |  |
| 216~960       | 200                                                       | 3                    |  |
| Above 960     | 500                                                       | 3                    |  |

| General field st | rength limits at frequencies A | Above 1000MHz |
|------------------|--------------------------------|---------------|
| Frequency Distar |                                | n (dBuV/m)    |
| (MHz)            | Peak                           | Average       |
| Above 1000       | 74                             | 54            |

#### Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

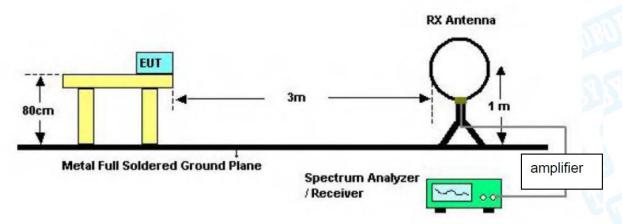
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power



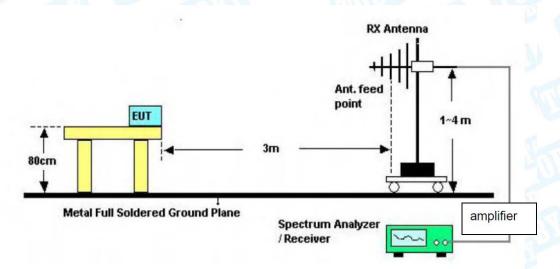


Page: 18 of 46

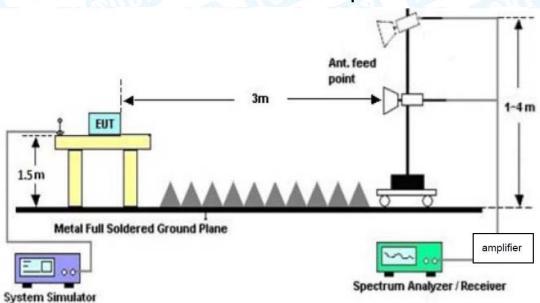
limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.







Page: 19 of 46

# 6.2 Test Setup

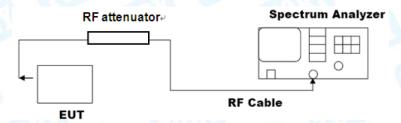

### Radiated measurement



### **Below 30MHz Test Setup**



### **Below 1000MHz Test Setup**








Page: 20 of 46

# Above 1GHz Test Setup Conducted measurement



#### 6.3 Test Procedure

#### ---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.





Page: 21 of 46

#### --- Conducted measurement

#### Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3\*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

#### Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3\*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

#### 6.4 Deviation From Test Standard

No deviation

### 6.5 EUT Operating Mode

Please refer to the description of test mode.

#### 6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the external appendix report of BT.





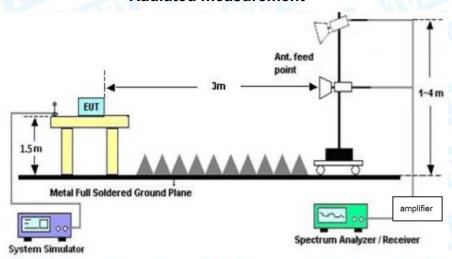
Page: 22 of 46

# 7. Restricted Bands and Band Edge Requirement

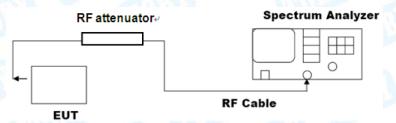
### 7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


#### 7.1.2 Test Limit

| Restricted Frequency | Distance Meters(at 3m) |                          |  |
|----------------------|------------------------|--------------------------|--|
| Band (MHz)           | Peak (dBuV/m)          | Average (dBuV/m)         |  |
| 2310 ~2390           | 74                     | 54                       |  |
| 2483.5 ~2500         | 74                     | 54                       |  |
|                      | Peak (dBm)see 7.3 e)   | Average (dBm) see 7.3 e) |  |
| 2310 ~2390           | -21.20                 | -41.20                   |  |
| 2483.5 ~2500         | -21.20                 | -41.20                   |  |


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

# 7.2 Test Setup

### Radiated measurement



#### **Conducted measurement**







Page: 23 of 46

### 7.3 Test Procedure

#### ---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

#### --- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to
- determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies
- ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:





Page: 24 of 46

### $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

### 7.4 Deviation From Test Standard

No deviation

### 7.5 EUT Operating Mode

Please refer to the description of test mode.

### 7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the external appendix report of BT.

Please refer to the Attachment C inside test report.

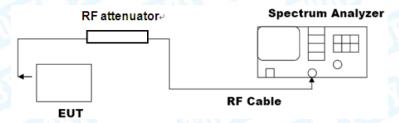




Page: 25 of 46

# 8. 99% Occupied and 20dB Bandwidth

#### 8.1 Test Standard and Limit


8.1.1 Test Standard

### FCC Part 15.205 & FCC Part 15.247(a)

8.1.2 Test Limit

For an FHSS system operating in the 2400 to 2483.5 MHz band, there are no limits for 20dB bandwidth and 99% occupied bandwidth.

## 8.2 Test Setup



#### 8.3 Test Procedure

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data





Page: 26 of 46

points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

#### 8.4 Deviation From Test Standard

No deviation

### 8.5 EUT Operating Mode

Please refer to the description of test mode.

### 8.6 Test Data

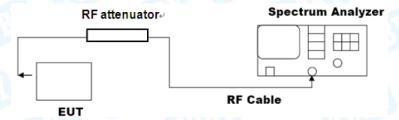
Please refer to the external appendix report of BT.





Page: 27 of 46

# 9. Peak Output Power Test


- 9.1 Test Standard and Limit
  - 9.1.1 Test Standard

FCC Part 15.247(b)(1)

9.1.2 Test Limit

| Test Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit                                                              | Frequency Range(MHz)         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>P</i> max-pk ≤ 1 W                                              |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N <sub>ch</sub> ≥ 75                                               | and the same                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f≥MAX { 25 kHz, BW20dB }                                           |                              |
| The state of the s | max. BW20dB not specified                                          |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tch ≤ 0.4 s for $T = 0.4*N$ ch                                     |                              |
| Peak Output Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>P</i> max-pk ≤ 0.125 W                                          | 2400~2483.5                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nch ≥ 15                                                           |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f ≥ [ MAX{25 kHz, 0.67*BW <sub>20dB</sub> }                        |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR MAX{25 kHz, BW20dB}]                                            |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | max. BW20dB not specified                                          | A THURSDAY                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tch ≤ 0.4 s for $T = 0.4*N$ ch                                     |                              |
| tch = average time of occ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cupancy; $T = \text{period}$ ; $N_{\text{ch}} = \# \text{hopping}$ | frequencies; BW = bandwidth; |
| m M b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = hopping channel carrier frequency s                              | separation                   |

# 9.2 Test Setup



### 9.3 Test Procedure

- This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
- a) Use the following spectrum analyzer settings:
  - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
  - 2) RBW > 20 dB bandwidth of the emission being measured.
  - 3) VBW≥ RBW.





Page: 28 of 46

4) Sweep: Auto.

5) Detector function: Peak.

6) Trace: Max hold.

- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and cables.
- e) A plot of the test results and setup description shall be included in the test report.

NOTE-A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

### 9.4 Deviation From Test Standard

No deviation

### 9.5 EUT Operating Mode

Please refer to the description of test mode.

#### 9.6 Test Data

Please refer to the external appendix report of BT.

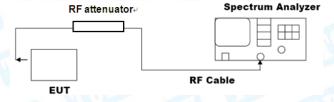




Page: 29 of 46

# 10. Carrier frequency separation

### 10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(a)(1)

10.1.2 Test Limit

| Test Item            | Limit                                               | Frequency Range(MHz) |
|----------------------|-----------------------------------------------------|----------------------|
| Maria                | P <sub>max-pk</sub> ≤ 1 W                           |                      |
|                      | N <sub>ch</sub> ≥ 75                                | 100                  |
|                      | f ≥ MAX { 25 kHz, BW <sub>20dB</sub> }              | ALLE STORY           |
| 110                  | max. BW20dB not specified                           | WOOD .               |
| Comion for accompany | <i>t</i> ch ≤ 0.4 s for <i>T</i> = 0.4* <i>N</i> ch |                      |
| Carrier frequency    | <i>P</i> max-pk ≤ 0.125 W                           | 2400~2483.5          |
| separation           | Nch ≥ 15                                            |                      |
|                      | f ≥ [ MAX{25 kHz, 0.67*BW <sub>20dB</sub> }         | 33                   |
|                      | OR MAX{25 kHz, BW20dB}]                             |                      |
| an B                 | max. BW20dB not specified                           |                      |
|                      | $t$ ch $\leq 0.4$ s for $T = 0.4*N$ ch              |                      |

# 10.2 Test Setup



### 10.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.





Page: 30 of 46

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

# 10.4 Deviation From Test Standard

No deviation

### 10.5 Antenna Connected Construction

Please refer to the description of test mode.

## 10.6 Test Data

Please refer to the external appendix report of BT.

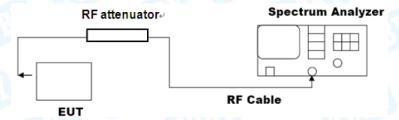




Page: 31 of 46

# 11. Time of occupancy (Dwell time)

### 11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.247(a)(1)

11.1.2 Test Limit

| Test Item         | Limit                                               | Frequency Range(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The same          | P <sub>max-pk</sub> ≤ 1 W                           | The state of the s |
|                   | <i>N</i> <sub>ch</sub> ≥ 75                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | f ≥ MAX { 25 kHz, BW20dB }                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | max. BW20dB not specified                           | MUDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | <i>t</i> ch ≤ 0.4 s for <i>T</i> = 0.4* <i>N</i> ch |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time of occupancy | <i>P</i> max-pk ≤ 0.125 W                           | 2400~2483.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (dwell time)      | Nch ≥ 15                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | f ≥ [ MAX{25 kHz, 0.67*BW <sub>20dB</sub> }         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | OR MAX{25 kHz, BW20dB} ]                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | max. BW20dB not specified                           | A TOP OF THE PARTY |
|                   | <i>t</i> ch ≤ 0.4 s for <i>T</i> = 0.4* <i>N</i> ch |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# 11.2 Test Setup



### 11.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be  $\Box$  channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be





Page: 32 of 46

needed with a longer sweep time to show two successive hops on a channel.

d) Detector function: Peak.

e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer)x(period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

#### 11.4 Deviation From Test Standard

No deviation

#### 11.5 Antenna Connected Construction

Please refer to the description of test mode.

#### 11.6 Test Data

Please refer to the external appendix report of BT.

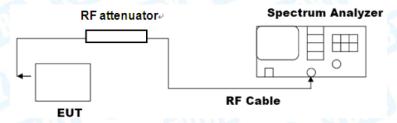




Page: 33 of 46

# 12. Number of hopping frequencies

### 12.1 Test Standard and Limit


12.1.1 Test Standard

FCC Part 15.247(b)(1)

12.1.2 Test Limit

| Test Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit                                                                                                                  | Frequency Range(MHz) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>P</i> max-pk ≤ 1 W                                                                                                  |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Nch</i> ≥ 75                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f ≥ MAX { 25 kHz, BW20dB }                                                                                             |                      |
| The state of the s | max. BW20dB not specified                                                                                              |                      |
| Camion from Long.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>t</i> ch ≤ 0.4 s for <i>T</i> = 0.4* <i>N</i> ch                                                                    |                      |
| Carrier frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>P</i> max-pk ≤ 0.125 W                                                                                              | 2400~2483.5          |
| separation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nch ≥ 15                                                                                                               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f ≥ [ MAX{25 kHz, 0.67*BW <sub>20dB</sub> }                                                                            | 33                   |
| WILL STATE OF THE  | OR MAX{25 kHz, BW20dB} ]                                                                                               |                      |
| A COURT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | max. BW20dB not specified                                                                                              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $t$ ch $\leq 0.4 \text{ s for } T = 0.4*N_{ch}$                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ccupancy; $T = \text{period}$ ; $N_{\text{ch}} = \# \text{hopping f}$ $f = \text{hopping channel carrier frequency s}$ |                      |

# 12.2 Test Setup



### 12.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.





Page: 34 of 46

- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

## 12.4 Deviation From Test Standard

No deviation

### 12.5 Antenna Connected Construction

Please refer to the description of test mode.

### 12.6 Test Data

Please refer to the external appendix report of BT.





Page: 35 of 46

# 13. Antenna Requirement

### 13.1 Test Standard and Limit

11.1.1 Test Standard

#### FCC Part 15.203

### 11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### 13.2 Deviation From Test Standard

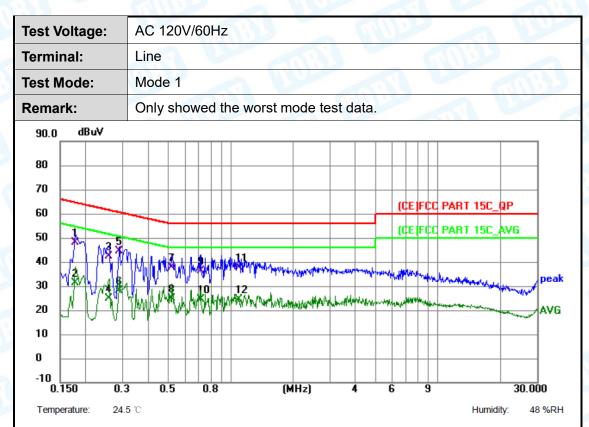
No deviation

#### 13.3 Antenna Connected Construction

The gains of the antenna used for transmitting is -0.58dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

### 13.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.


|         | Antenna Type                       |     |
|---------|------------------------------------|-----|
| a Music | ⊠Permanent attached antenna        |     |
|         | ☐Unique connector antenna          | 1.5 |
| 4000    | ☐Professional installation antenna |     |





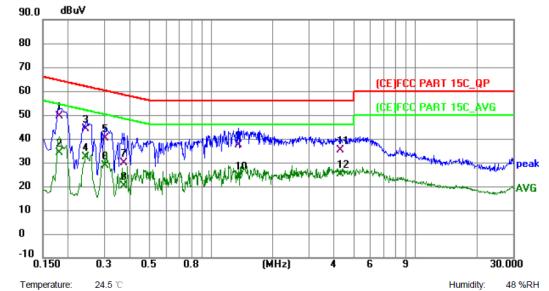
Page: 36 of 46

# **Attachment A-- Conducted Emission Test Data**



| No. Mk. | Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|-------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz   | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1       | 0.177 | 38.31            | 9.55              | 47.86            | 64.63 | -16.77 | QP       |
| 2       | 0.177 | 21.77            | 9.55              | 31.32            | 54.63 | -23.31 | AVG      |
| 3       | 0.258 | 32.73            | 9.49              | 42.22            | 61.50 | -19.28 | QP       |
| 4       | 0.258 | 15.39            | 9.49              | 24.88            | 51.50 | -26.62 | AVG      |
| 5 *     | 0.289 | 34.98            | 9.50              | 44.48            | 60.55 | -16.07 | QP       |
| 6       | 0.289 | 18.63            | 9.50              | 28.13            | 50.55 | -22.42 | AVG      |
| 7       | 0.519 | 28.05            | 9.47              | 37.52            | 56.00 | -18.48 | QP       |
| 8       | 0.519 | 15.34            | 9.47              | 24.81            | 46.00 | -21.19 | AVG      |
| 9       | 0.717 | 26.60            | 9.49              | 36.09            | 56.00 | -19.91 | QP       |
| 10      | 0.717 | 15.05            | 9.49              | 24.54            | 46.00 | -21.46 | AVG      |
| 11      | 1.095 | 28.15            | 9.62              | 37.77            | 56.00 | -18.23 | QP       |
| 12      | 1.095 | 14.87            | 9.62              | 24.49            | 46.00 | -21.51 | AVG      |

#### Remark:


- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)





Page: 37 of 46

| Test Voltage: | AC 120V/60Hz                          |
|---------------|---------------------------------------|
| Terminal:     | Neutral                               |
| Test Mode:    | Mode 1                                |
| Remark:       | Only showed the worst mode test data. |
| 90.0 dBuV     |                                       |



| No. Mk. | Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|-------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz   | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1 *     | 0.181 | 39.83            | 9.52              | 49.35            | 64.44 | -15.09 | QP       |
| 2       | 0.181 | 24.41            | 9.52              | 33.93            | 54.44 | -20.51 | AVG      |
| 3       | 0.244 | 34.76            | 9.47              | 44.23            | 61.96 | -17.73 | QP       |
| 4       | 0.244 | 22.77            | 9.47              | 32.24            | 51.96 | -19.72 | AVG      |
| 5       | 0.303 | 30.88            | 9.47              | 40.35            | 60.16 | -19.81 | QP       |
| 6       | 0.303 | 19.42            | 9.47              | 28.89            | 50.16 | -21.27 | AVG      |
| 7       | 0.375 | 20.47            | 9.47              | 29.94            | 58.39 | -28.45 | QP       |
| 8       | 0.375 | 10.63            | 9.47              | 20.10            | 48.39 | -28.29 | AVG      |
| 9       | 1.361 | 27.85            | 9.48              | 37.33            | 56.00 | -18.67 | QP       |
| 10      | 1.361 | 14.82            | 9.48              | 24.30            | 46.00 | -21.70 | AVG      |
| 11      | 4.303 | 25.61            | 9.52              | 35.13            | 56.00 | -20.87 | QP       |
| 12      | 4.303 | 15.69            | 9.52              | 25.21            | 46.00 | -20.79 | AVG      |

#### Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)





Page: 38 of 46

# **Attachment B-- Unwanted Emissions Test Data**

### --- Radiated Unwanted Emissions

#### 9 KHz~30 MHz

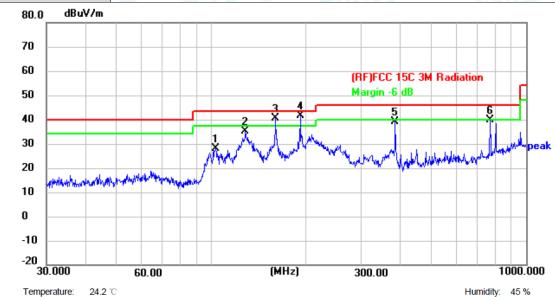
From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

### 30MHz~1GHz

|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | - 1 1 MA MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Voltage:     | AC 120V/60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WILL STATE       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Ant. Pol.         | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Horizontal       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Test Mode:        | Mode 2 TX Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | de(GFSK) Char    | inel 00            | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Remark:           | Only showed th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ne worst mode to | est data.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 80.0 dBuV/m       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 70                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 60                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | (DE)ECC 150        | 24 0 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 50                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Margin -6 dB       | 3M Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 40                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                | 4                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 30                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Į Ž Å            | 5                  | pea hour brillians pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 20                | <i></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( ) Property ( ) | A May Land May No. | married by the part of the constraint of the con |  |  |  |  |
| 10 manufacture    | Markey and the state of the sta | 'N 'T''          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| -10               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| -20 <u> </u>      | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (MHz)            | 300.00             | 1000.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Temperature: 24.2 | 2°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                    | Humidity: 45 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| No. Frequ         | ency Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Factor L         | evel Limit         | Margin Detector P/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |

| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 102.7192           | 51.71          | -25.20           | 26.51             | 43.50             | -16.99         | peak     | Р   |
| 2   | 122.8340           | 55.03          | -23.44           | 31.59             | 43.50             | -11.91         | peak     | Р   |
| 3   | 195.8220           | 57.88          | -24.25           | 33.63             | 43.50             | -9.87          | peak     | Р   |
| 4   | 239.9873           | 60.47          | -23.92           | 36.55             | 46.00             | -9.45          | peak     | Р   |
| 5   | 383.9318           | 46.21          | -19.48           | 26.73             | 46.00             | -19.27         | peak     | Р   |
| 6 * | 768.7481           | 49.09          | -11.68           | 37.41             | 46.00             | -8.59          | peak     | Р   |


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB $\mu$ V/m)-Limit QPK(dB $\mu$ V/m)





Page: 39 of 46

|   | Test Voltage: | AC 120V/60Hz                          |
|---|---------------|---------------------------------------|
| N | Ant. Pol.     | Vertical                              |
| 9 | Test Mode:    | Mode 2 TX Mode(GFSK) Channel 00       |
|   | Remark:       | Only showed the worst mode test data. |



| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 103.4421           | 53.54          | -25.42           | 28.12             | 43.50             | -15.38         | peak     | Р   |
| 2   | 128.5630           | 58.61          | -23.28           | 35.33             | 43.50             | -8.17          | peak     | Р   |
| 3 ! | 160.3456           | 61.80          | -21.43           | 40.37             | 43.50             | -3.13          | peak     | Р   |
| 4 * | 191.7450           | 66.17          | -24.46           | 41.71             | 43.50             | -1.79          | peak     | Р   |
| 5   | 383.9318           | 58.54          | -19.48           | 39.06             | 46.00             | -6.94          | peak     | Р   |
| 6   | 768.7481           | 51.53          | -11.68           | 39.85             | 46.00             | -6.15          | peak     | Р   |

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
   QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB $\mu$ V/m)-Limit QPK(dB $\mu$ V/m)





Page: 40 of 46

#### Above 1GHz

Only showed the worst mode test data.

| Temperature:  | 24.3°C               | Relative Humidity: | 47% |
|---------------|----------------------|--------------------|-----|
| Test Voltage: | AC 120V/60Hz         |                    |     |
| Ant. Pol.     | Horizontal           |                    |     |
| Test Mode:    | TX GFSK Mode 2402MHz | THU .              |     |

| No. | Frequency<br>(MHz) | Reading (dBuV) |       | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|-------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 10945.000          | 44.40          | -0.42 | 43.98             | 74.00             | -30.02         | peak     | Р   |
| 2   | 13265.500          | 42.45          | 0.72  | 43.17             | 74.00             | -30.83         | peak     | Р   |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

| Temperature:  | 24.3°C               | Relative Humidity: | 47% |
|---------------|----------------------|--------------------|-----|
| Test Voltage: | AC 120V/60Hz         |                    |     |
| Ant. Pol.     | Vertical             |                    |     |
| Test Mode:    | TX GFSK Mode 2402MHz |                    |     |

| No. | Frequency<br>(MHz) | Reading (dBuV) |       | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|-------|-------------------|-------|----------------|----------|-----|
| 1   | 10868.500          | 45.27          | -0.72 | 44.55             | 74.00 | -29.45         | peak     | Р   |
| 2 * | 14846.500          | 40.82          | 4.07  | 44.89             | 74.00 | -29.11         | peak     | Р   |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.





Page: 41 of 46

| Temperature:  | 24.3°C           | Relative Humidity: | 47%  |  |  |
|---------------|------------------|--------------------|------|--|--|
| Test Voltage: | AC 120V/60Hz     | AC 120V/60Hz       |      |  |  |
| Ant. Pol.     | Horizontal       |                    | U ST |  |  |
| Test Mode:    | TX GFSK Mode 244 | I1MHz              | COM  |  |  |

| No. | Frequency<br>(MHz) | Reading (dBuV) |       | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|-------|-------------------|-------|----------------|----------|-----|
| 1 * | 9185.500           | 47.12          | -1.84 | 45.28             | 74.00 | -28.72         | peak     | Р   |
| 2   | 14387.500          | 41.69          | 2.24  | 43.93             | 74.00 | -30.07         | peak     | Р   |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

| Temperature:  | 24.3°C               | Relative Humidity: | 47%    |
|---------------|----------------------|--------------------|--------|
| Test Voltage: | AC 120V/60Hz         | WW.                |        |
| Ant. Pol.     | Vertical             |                    | TO THE |
| Test Mode:    | TX GFSK Mode 2441MHz | U.S.               |        |

| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------|----------------|----------|-----|
| 1 * | 9466.000           | 45.42          | 0.35             | 45.77             | 74.00 | -28.23         | peak     | Р   |
| 2   | 10970.500          | 44.08          | -0.34            | 43.74             | 74.00 | -30.26         | peak     | Р   |

#### Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.





Page: 42 of 46

| Temperature:  | 24.3°C               | Relative Humidity: | 47%  |
|---------------|----------------------|--------------------|------|
| Test Voltage: | AC 120V/60Hz         | MUDE               | 7    |
| Ant. Pol.     | Horizontal           |                    |      |
| Test Mode:    | TX GFSK Mode 2480MHz |                    | Comm |

| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 10180.000          | 46.65          | -1.27            | 45.38             | 74.00             | -28.62         | peak     | Р   |
| 2   | 12118.000          | 42.50          | 0.68             | 43.18             | 74.00             | -30.82         | peak     | Р   |

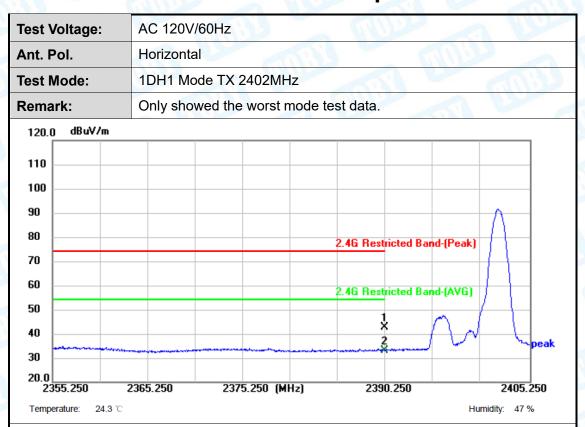
#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

| Temperature:  | 24.3°C               | Relative Humidity: | 47%   |
|---------------|----------------------|--------------------|-------|
| Test Voltage: | AC 120V/60Hz         | A US               |       |
| Ant. Pol.     | Vertical             | 1000               | ALC:  |
| Test Mode:    | TX GFSK Mode 2480MHz |                    | LINE. |

| No. | Frequency<br>(MHz) | Reading (dBuV) |      | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------|-------------------|-------|----------------|----------|-----|
| 1 * | 9542.500           | 45.12          | 0.19 | 45.31             | 74.00 | -28.69         | peak     | Р   |
| 2   | 12832.000          | 42.54          | 1.03 | 43.57             | 74.00 | -30.43         | peak     | Р   |

#### Remark:


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.





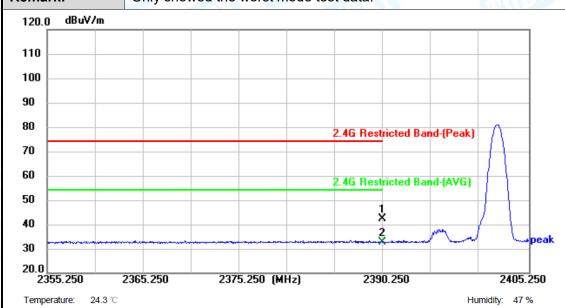
Page: 43 of 46

# **Attachment C-- Restricted Bands Requirement Test Data**



| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2390.000           | 53.12          | -10.60           | 42.52             | 74.00             | -31.48         | peak     | Р   |
| 2 * | 2390.000           | 43.63          | -10.60           | 33.03             | 54.00             | -20.97         | AVG      | Р   |

#### Remark


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)



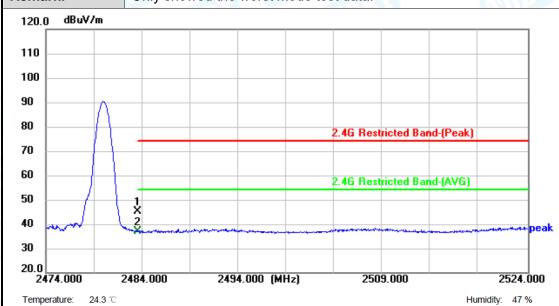


Page: 44 of 46

| Test Voltage: | AC 120V/60Hz                         |
|---------------|--------------------------------------|
| Ant. Pol.     | Vertical                             |
| Test Mode:    | 1DH1 Mode TX 2402MHz                 |
| Remark:       | Only showed the worst mode test data |



| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 2390.000           | 53.09          | -10.60           | 42.49             | 74.00             | -31.51         | peak     | Р   |
| 2 * | 2390.000           | 43.22          | -10.60           | 32.62             | 54.00             | -21.38         | AVG      | Р   |


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)



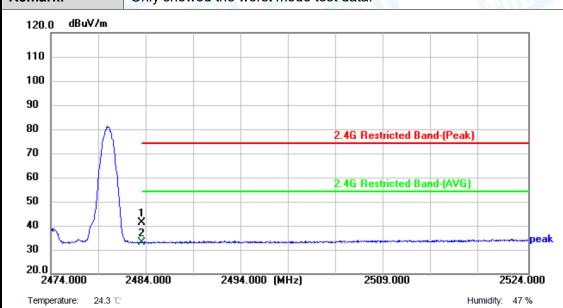


Page: 45 of 46

|     | Test Voltage: | AC 120V/60Hz                          |
|-----|---------------|---------------------------------------|
| N I | Ant. Pol.     | Horizontal                            |
|     | Test Mode:    | 1DH1 Mode TX 2480MHz                  |
| H   | Remark:       | Only showed the worst mode test data. |



| No. | Frequency<br>(MHz) | Reading (dBuV) |        | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|--------|-------------------|-------|----------------|----------|-----|
| 1   | 2483.500           | 55.45          | -10.39 | 45.06             | 74.00 | -28.94         | peak     | Р   |
| 2 * | 2483.500           | 47.47          | -10.39 | 37.08             | 54.00 | -16.92         | AVG      | Р   |


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





Page: 46 of 46

| Test Voltage: | AC 120V/60Hz                          |
|---------------|---------------------------------------|
| Ant. Pol.     | Vertical                              |
| Test Mode:    | 1DH1 Mode TX 2480MHz                  |
| Remark:       | Only showed the worst mode test data. |



| No. | Frequency<br>(MHz) | Reading (dBuV) |        | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|--------|-------------------|-------|----------------|----------|-----|
| 1   | 2483.500           | 51.79          | -10.39 | 41.40             | 74.00 | -32.60         | peak     | Р   |
| 2 * | 2483.500           | 43.51          | -10.39 | 33.12             | 54.00 | -20.88         | AVG      | Р   |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB $\mu$ V/m)= Corr. (dB/m)+ Read Level (dB $\mu$ V)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)

END OF THE REPORT----

