

For Question Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2ADYY-T16RAPRO

Product: Laptop Computer

Model No.: T16RA Pro

Trade Mark: TECNO

Report No.: WSCT-A2LA-R&E240300011A-BT

Issued Date: 07 April 2024

Issued for:

TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI

STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd.
Building A-B, Baoshi Science & Technology Park, Baoshi Road,
Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

WSLT

AN # PI

世転被测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376805 E-mail:tengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

TABLE OF CONTENTS

	1/6/48 / 1/6/48 / 1/6/48	
1.	Test Certification	3
2.	Test Result Summary	4
143.	EUT Description	5
4.	Genera Information	7
	4.1. TEST ENVIRONMENT AND MODE	7
/	4.2. DESCRIPTION OF SUPPORT UNITS	1175
5 .	Facilities and Accreditations	8
1	5.1. FACILITIES	8
141	5.2. ACCREDITATIONS	8
	5.3. MEASUREMENT UNCERTAINTY	9
	5.4. MEASUREMENT INSTRUMENTS	
6.	Test Results and Measurement Data	11
	6.1. ANTENNA REQUIREMENT	
	6.2. CONDUCTED EMISSION	
74	6.3. CONDUCTED OUTPUT POWER	
	6.4. 20DB OCCUPY BANDWIDTH	23
	6.5. CARRIER FREQUENCIES SEPARATION	31
,	6.6. HOPPING CHANNEL NUMBER	39
1	6.7. DWELL LIME	
X	6.8. PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9. CONDUCTED BAND EDGE MEASUREMENT	
744	6.10. CONDUCTED SPURIOUS EMISSION MEASUREMENT	-
	6.11. RADIATED SPURIOUS EMISSION MEASUREMENT	68

ATTEN A

Report No.: WSCT-A2LA-R&E240300011A-BT

For Chrestion,
Please Contact with WSCT
www.wsct-cert.com

1. Test Certification

Product:

Laptop Computer

Model No .:

T16RA Pro

Additional

TECNO

Applicant:

TECNO MOBILE LIMITED

Address:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Manufacturer:

TECNO MOBILE LIMITED

Address:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Date of Test:

04 March 2024 to 06 April 2024

Applicable Standards:

FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Way Xiay

Checked By:

Mo Peryun

(Wang Xiang)

(Mo Peiyun)

Approved By:

(Liu Fuxin)

Date:

Am Joseph

11d. # 101

Modition & Testing G

WSGT

WSFT

AWCIT

ALCOHOL:

WSET

WOW * PI

世标检测认证股份

Member of the WSCT INC.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

2. Test Result Summary

	AUZTA AUZTA		MATERIAL STATES
7	Requirement	CFR 47 Section	Result
	Antenna Requirement	§15.203/§15.247 (c)	PASS
	AC Power Line Conducted Emission	§15,207	PASS
	Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS
	20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS
	Carrier Frequencies Separation	§15.247 (a)(1)	PASS
	Hopping Channel Number	§15.247 (a)(1)	PASS
7	Dwell Time	§15.247 (a)(1)	PASS
Common Co	Radiated Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
	Band Edge	§15.247(d) §2.1051, §2.1057	PASS
	CITATE AND A CITATE		Z C AN THE MAN

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

World Stank as Styling Commission in One storage (She

WHO AVHOR

17979

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

3. **EUT Description**

Product Name:	Laptop Computer W5///
Model:	T16RA Pro
Trade Mark:	TECNO
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	1MHz
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK
Modulation Technology:	FHSS WSIT WSIT
Antenna Type:	Integral Antenna
Antenna Gain:	2.40dBi
Rechargeable Li-Polymer Battery:	Model: N160 Nominal Voltage: 11.61V Rated Capacity: 8612mAh Rated Energy: 99.99Wh
	Limited Charge Voltage: 13.35V
Adapter:	Adapter: A879-200500C-US1 Input: 100-240V~50/60Hz 2.5A Output:PD:5V==3A/9V==3A/12V==3A/15V==3A/20V==5A PPS 3.3-11V==5A 55W Max 3.3-21V==5A 100W Max
Remark:	N/A.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26998192 26992308 FAX:86-756-86378605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

DUOM * PT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Operation Frequency each of channel for GFSK, $\pi/4$ -DQP
--

7	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
	1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
3		ATTABLE		17/19		174991		THE
	10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
	11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
						<u> </u>		
7	18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
	19	2421MHz	39	2441MHz	59	2461MHz		- \/

Remark: Channel 0, 39 &78 have been tested for GFSK, π /4-DQPSK, 8DPSK modulation mode.

	WETER	1179	WHITE	N/F14	N.F.14 A
WEIGH	77639	$\langle \ \rangle$			
	WEIGH .	NV-141	NVF141	NIA A	Wester
WEI A	WETO	$\langle \ \rangle$			
	WEIGH	Wester	NVETO A	WETGE	WETGE
WHAT	NATO.	$\langle \ \rangle$			
	on & Testino	VISTA O	VI-191	N/STEE	N/STOP
Affically	- Company		/		

Page 6 of 74

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting
ATTENDED TO THE PARTY OF THE PA	by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	Adapter1	1	1	ADAPTER

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

5. Facilities and Accreditations

5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration

Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number: 5768.01

世际检测认证股份 or Group (Shenzhen) Co., Lts.

NOM * P

5.3. Measurement Uncertainty

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	No.	Item	MU
100	1	Conducted Emission Test	±3.2dB
	2	RF power, conducted	±0.16dB
	3	Spurious emissions, conducted	±0.21dB
7	4	All emissions, radiated(<1GHz)	±4.7dB
	5	All emissions, radiated(>1GHz)	±4.7dB
	6	Temperature W597	±0.5°C
	7	Humidity	±2.0%

	MATERIA	WATER	N/SI4	NETT	NET 4
NV &	7787				5700
	775141	WHITE	NVET III	NIE I A	WESTER
	AT ATTE				-14
	WEIGH	Witte	WET OF THE	Wester	Wister
NVE	AV S				5100
	X	WATER	WESTER	NYSTEE	N/FT#
	Sellication & Testing Co.				X

Page 9 of 74

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.4. MEASUREMENT INSTRUMENTS

					www.ws	CI-C
NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	Z
Test software		EZ-EMC	CON-03A	- 5	X-	
Test software		MTS8310	(VATE)	- 1	274	
EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	/
LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	7
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	/
Pre Amplifier	HP	HP8447E	2945A02715	11/05/2023	11/04/2024	7
Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2023	11/04/2024	
9*6*6 Anechoic	4 5	BUTA	WSGT	11/05/2023	11/04/2024	
Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2023	11/04/2024	1
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	é
System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	
Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	7
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
Power sensor	Anritsu	MX248XD	ARTE	11/05/2023	11/04/2024	
Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	1
			C			

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 2.40dBi.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Conducted Emission 6.2.

6.2.1. Test Specification	
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2014
Frequency Range:	150 kHz to 30 MHz
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto
Limits:	Frequency range (MHz) Limit (dBuV) 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50
X	Reference Plane
WET 9	LISN 40cm 80cm Filter AC power
Test Setup:	Test table/Insulation plane Remark: E.U.T. Equipment Under Test
AVET AVETE	LISN: Line Impedence Stabilization Network Test table height=0.8m
Test Mode:	Refer to item 4.1
WEIGH	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.
NISIO NISI	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH
Test Procedure:	coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum
stion & Testio	conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement.
Test Result:	PASS

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-758-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

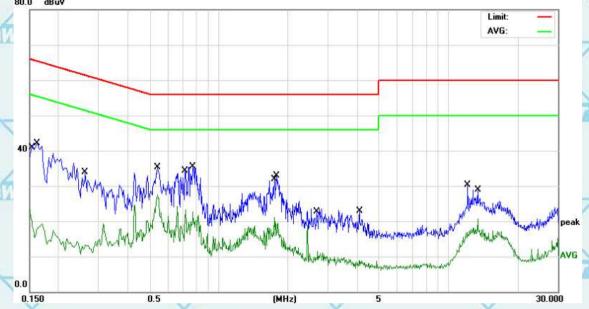
6.2.2. Test data

Please refer to following diagram for individual Adapter1 (the worst case)

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

1	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
/	1		0.1539	32.71	10.45	43.16	65.78	-22.62	QP
	2		0.1700	10.42	10.45	20.87	54.96	-34.09	AVG
	3		0.5420	25.43	10.52	35.95	56.00	-20.05	QP
1	4	*	0.5460	17.81	10.52	28.33	46.00	-17.67	AVG
Ī	5		0.6580	13.89	10.53	24.42	46.00	-21.58	AVG
	6		0.7740	26.92	10.54	37.46	56.00	-18.54	QP
	7		1.8060	25.27	10.68	35.95	56.00	-20.05	QP
	8		1.8060	13.75	10.68	24.43	46.00	-21.57	AVG
-	9		2.4380	16.27	10.71	26.98	56.00	-29.02	QP
,	10		11.8180	5.24	10.96	16.20	50.00	-33.80	AVG
4	11		11.9620	15.18	10.98	26.16	60.00	-33.84	QP
-	12		22.1500	5.10	11.08	16.18	50.00	-33.82	AVG

世标检测认证股份 oun(Shearben)Co.Ust



Report No.: WSCT-A2LA-R&E240300011A-BT

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

HZ) For Question,
Please Contact with WSCT
www.wsct-cert.com

N	о.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.1500	12.89	10.45	23.34	55.99	-32.65	AVG
ł	2		0.1620	31.75	10.45	42.20	65.36	-23.16	QP
4	3		0.2620	23.39	10.46	33.85	61.36	-27.51	QP
34	4	*	0.5420	17.05	10.52	27.57	46.00	-18.43	AVG
10	5		0.7180	12.86	10.53	23.39	46.00	-22.61	AVG
_	6		0.7740	24.88	10.54	35.42	56.00	-20.58	QP
9	7		1.7500	10.49	10.67	21.16	46.00	-24.84	AVG
3	8		1.7820	22.23	10.68	32.91	56.00	-23.09	QP
ı	9		2.6940	0.82	10.72	11.54	46.00	-34.46	AVG
1	0		4.0980	12.09	10.73	22.82	56.00	-33.18	QP
1	1		12.1820	19.35	10.99	30.34	60.00	-29.66	QP
1	2		13.4340	9.64	11.08	20.72	50.00	-29.28	AVG

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

on &* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

WSET

DUOM * PT

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-785-26998192 26992308 FAX-86-755-88378605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2014
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

6.3.2. Test Data

0.01	For Question,
Ple	ase Contact with WSC
	www.wsct-cert.com

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	10.68	20.97	PASS		
Middle	11.07	20.97	PASS		
Highest	11.28	20.97	PASS		

	ALTERNATION ALTERNATION ALTERNATION AND ALTERN					
1	Pi/4DQPSK mode					
Test channel		Peak Output Power (dBm)	Limit (dBm)	Result		
	Lowest	9.38	20.97	PASS		
I	Middle	9.47	20.97	PASS		
	Highest	9.4	20.97	PASS		

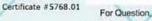
ı		MARIE AND STREET	C. J. Standard Standard	the state of the s	
8DPSK mode					
	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	9.21	20.97	PASS	
	Middle	9.43	20.97	PASS	
	Highest	9.33	20.97	PASS	

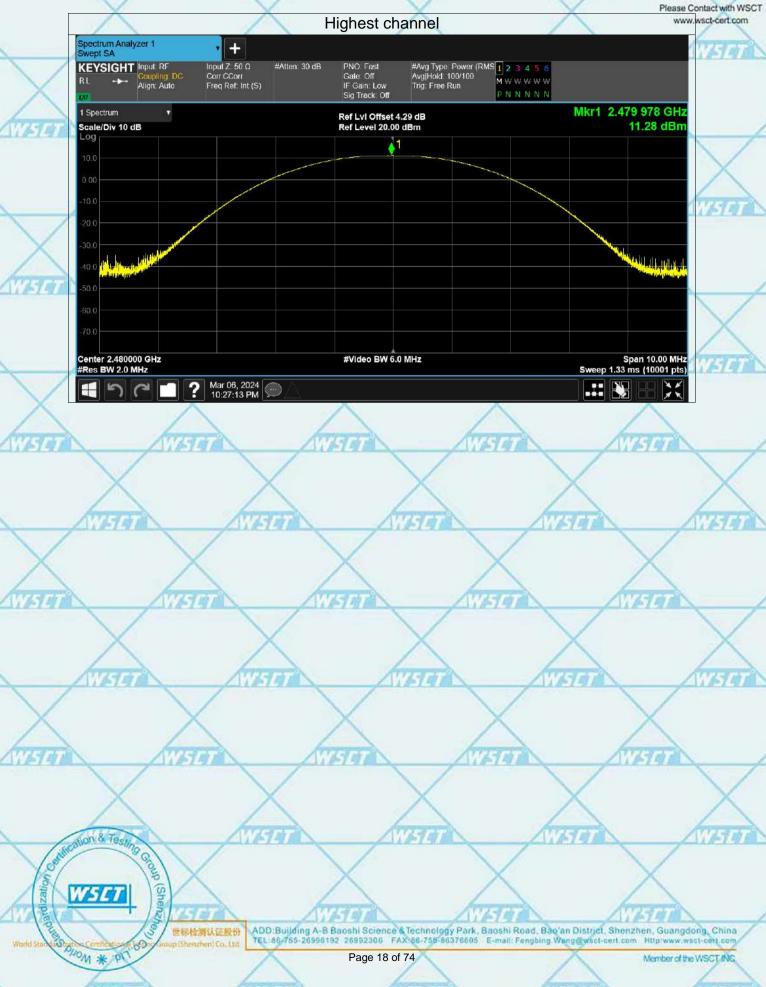
Test plots as follows:

Report No.: WSCT-A2LA-R&E240300011A-BT

GFSK Modulation

Certificate #5768.01 For Question,
Please Contact with WSCT





Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240300011A-BT

Page 18 of 74

Report No.: WSCT-A2LA-R&E240300011A-BT

Pi/4DQPSK Modulation

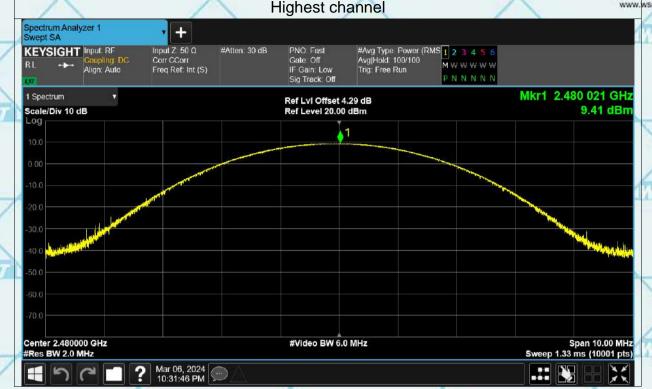
Certificate #5768.01 For Question,

Please Contact with WSCT www.wsct-cert.com

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26998192 26992306 FAX:86-758-86376605 E-mail: Fengbing Wang@wiscl-cert.com Http://www.wsci-cert.com

Month * DI

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.





Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Page 20 of 74

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-2698192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wiscl-cert.com Http://www.wsci-cert.com

Month * DI

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,

Please Contact with WSCT

www.wsct-cert.com

Page 22 of 74

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)
ANSI C63.10:2014
N/A
Spectrum Analyzer EUT
Transmitting mode with modulation
 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤ RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
PASS

11614

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com/

Report No.: WSCT-A2LA-R&E240300011A-BT

6.4.2. Test data

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Te	Test channel	-20dB Occupy Bandwidth (MHz)					
	rest charmer	GFSK	π/4-DQPSK	8DPSK	Conclusion		
	Lowest	0.947	1.525	1.483	PASS		
	Middle	0.957	1.405	1.434	PASS		
	Highest	1.023	1.428	1.434	PASS		

Test plots as follows:

Standard Sta

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992306 FAX-86-755-86378605 E-mail Fenghing Wang@wscf-cert.com Http://www.wscf-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT GFSK Modulation

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

S DUOM * DIT

Report No.: WSCT-A2LA-R&E240300011A-BT

(Shenz)

South attorn & Test

S DUOM * DIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

Pi/4DQPSK Modulation

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

S DUOM * DIT

1 Graph

S DUOM * DIT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240300011A-BT

Mar 06, 2024 10:31:53 PM

Page 28 of 74

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT 8DPSK Modulation

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

S DUOM * DIT

S DUOM * DIT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240300011A-BT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2014
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto;
Test Result:	PASS

16141

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-2698192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wiscl-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.5.2. Test data

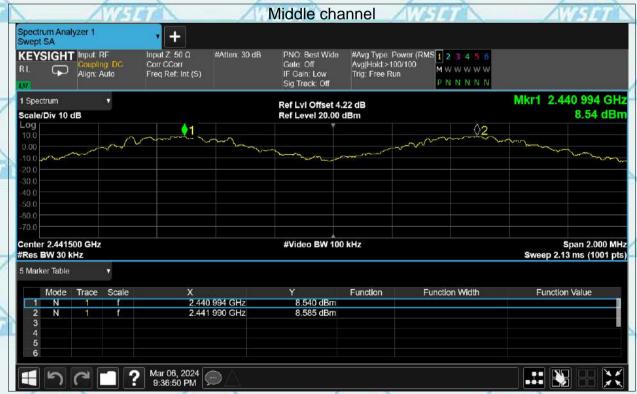
		GFSK mo	ode	
Test channel		Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
	Lowest	1.156	2/3*20dB BW	PASS
	Middle	0.996	2/3*20dB BW	PASS
	Highest	0.984	2/3*20dB BW	PASS

1					
	Pi/4 DQPSK mode				
	Test channel Carrier Frequencies Separation (MHz)		Limit (MHz)	Result	
	Lowest	1	2/3*20dB BW	PASS	
	Middle	1	2/3*20dB BW	PASS	
	Highest	W/50 1	2/3*20dB BW	PASS	

	8DPSK mode			
	Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
	Lowest	0.988	2/3*20dB BW	PASS
	Middle	0.996	2/3*20dB BW	PASS
7	Highest	1.002	2/3*20dB BW	PASS

Warld Standard Standa

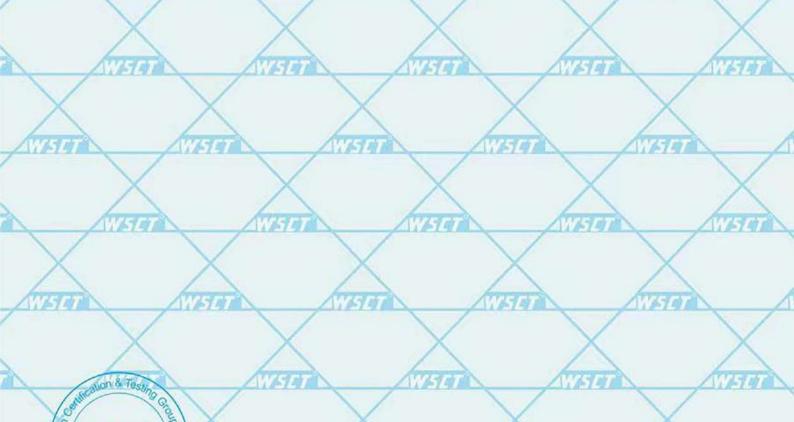
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com



Report No.: WSCT-A2LA-R&E240300011A-BT GFSK Modulation

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com


Report No.: WSCT-A2LA-R&E240300011A-BT

(Shenz)

S DUOM * PT

Page 34 of 74

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240300011A-BT

Pi/4DQPSK Modulation

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

S DUOM * DIT

Report No.: WSCT-A2LA-R&E240300011A-BT


(Shenz)

SOLOM * DIT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Page 36 of 74

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC

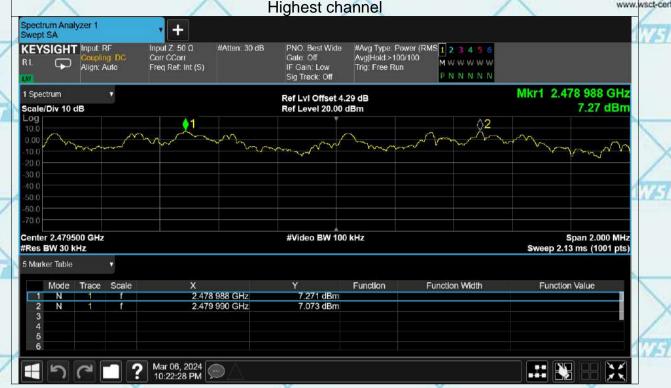
Report No.: WSCT-A2LA-R&E240300011A-BT 8DPSK Modulation

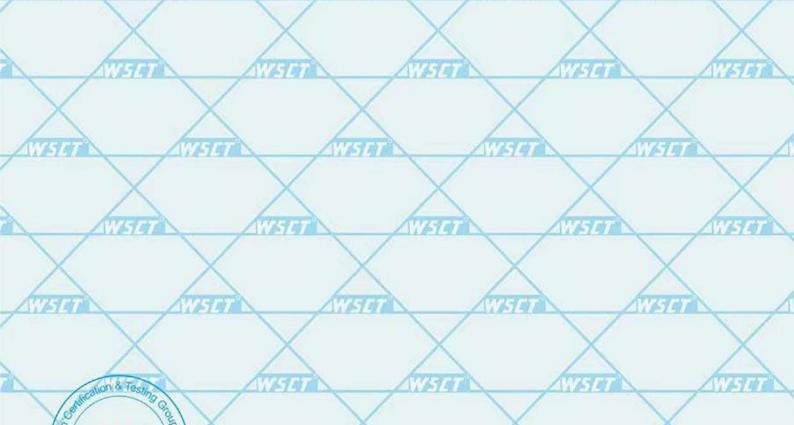
Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

世际检測认证数句 g-stoup (Shenzhen) Co. Ltst

S DUOM * DIT


Report No.: WSCT-A2LA-R&E240300011A-BT


(Shenz)

S DUOM * PT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.6. Hopping Channel Number

6.6.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)
ANSI C63.10:2014
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Spectrum Analyzer EUT
Hopping mode
 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the
 EUT transmit continuously. 4. Enable the EUT hopping function. 5. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 6. The number of hopping frequency used is defined as the number of total channel. 7. Record the measurement data in report.
PASS

WHAT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Limit

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com/

Member of the WSCT INC.

Report No.: WSCT-A2LA-R&E240300011A-BT

Mode

6.6.2. Test data

S DUOM * PITO

Certificate #5768.01

Result

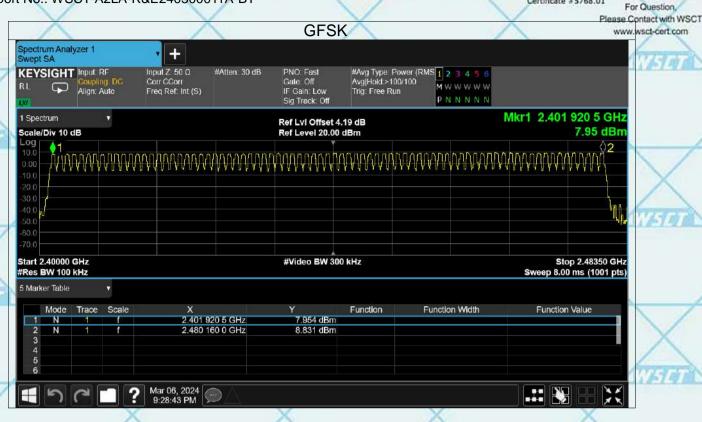
Please Contact with WSCT www.wsct-cert.com

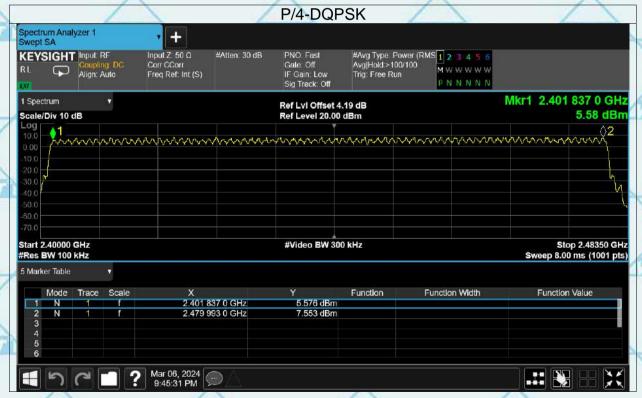
X	GFSK, P/4-DQPSK, 8DPSK	79	15	PASS	
AVE TO	est plots as follows:	WHI	NI-19	11414	
	WETER WETER	WETE	X		75191
AVETOR	N/F/4/	WEIGH	VILIA I	WEIGH	
	WATER WATER	WEIG	NYETO		1510
N/E/4/	WSIG	WEIGH	WSG	Wister	
	WEIGH	N. F. F.	VIETO .		7579
N/SIM	WSET	NATE OF THE PARTY	WSI	1679	
	WEIGH	NVETO	WEST		V5190
WETO	WATER	NYETHI	VII-10	WETGE	
	XX	NV-10	\times		7/2-7-0-0
ardization [M.	on & Testing Graup (Shenz)	N/F191	WEIGH	77.74	,

Page 40 of 74

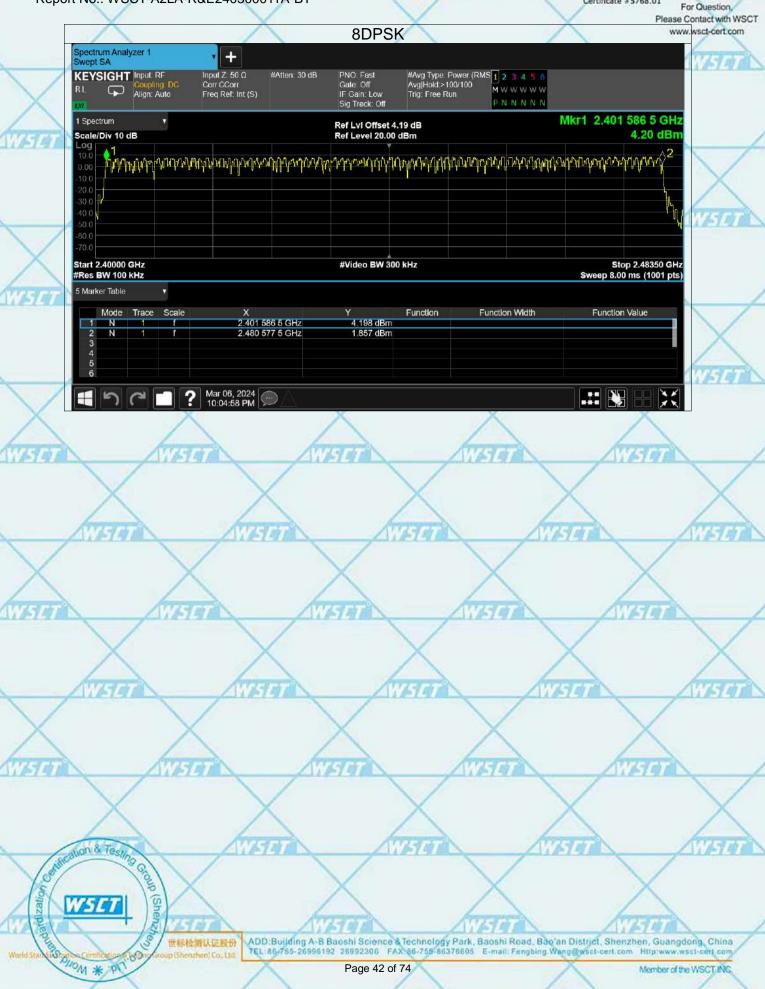
Hopping channel

numbers





Report No.: WSCT-A2LA-R&E240300011A-BT



Report No.: WSCT-A2LA-R&E240300011A-BT

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7. Dwell Time

6.7.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2014
	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Setup:	Spectrum Analyzer EUT
	Test Mode:	Hopping mode
	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
	Test Result:	PASS
L	Validation (Validation)	Acceptance of the control of the con

Report No.: WSCT-A2LA-R&E240300011A-BT

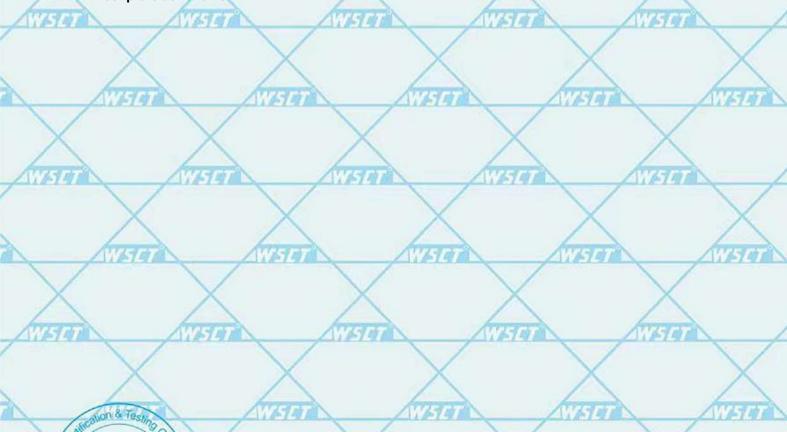
Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7.2. Test Data

Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
1-DH1	2402	0.381	120.777	317	31600	400	Pass
1-DH1	2441	0.381	119.634	314	31600	400	Pass
1-DH1	2480	0.381	120.015	315	31600	400	Pass
1-DH3	2402	1.637	248.824	152	31600	400	Pass
1-DH3	2441	1.636	269.94	165	31600	400	Pass
1-DH3	2480	1.636	265.032	162	31600	400	Pass
1-DH5	2402	2.885	300.04	104	31600	400	Pass
1-DH5	2441	2.885	326.005	113	31600	400	Pass
1-DH5	2480	2.884	328.776	114	31600	400	Pass

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.


For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 2 / 79) \times (0.4 \times 79) = 320$ hops

For DH3, With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 4 / 79) \times (0.4 \times 79) = 160$ hops

For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Test plots as follows:

世际检测认证股份 pup (Shenzhen) Co., Ltd.

(Sher

MOM * PIT

Report No.: WSCT-A2LA-R&E240300011A-BT

Center 2.402000000 GHz Res BW 1.0 MHz

Mar 06, 2024 9:20:26 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

#Video BW 3.0 MHz

Span 0 Hz Sweep 31.6 s (10001 pts)

₩

Report No.: WSCT-A2LA-R&E240300011A-BT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

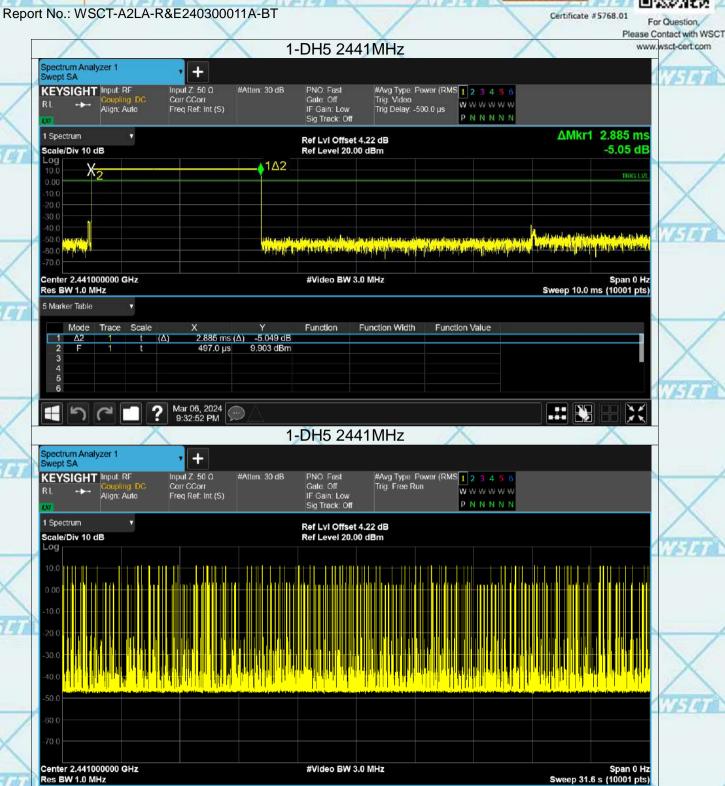
Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240300011A-BT

Report No.: WSCT-A2LA-R&E240300011A-BT

Report No.: WSCT-A2LA-R&E240300011A-BT



ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-2698192 26992306 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Mar 06, 2024 9:33:26 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

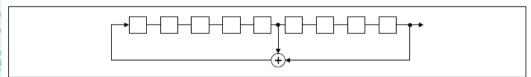
Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

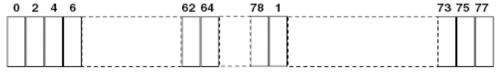
6.8. Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2014
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS
ATTYCK ATTYC	ATTENDA ATTENDA

Report No.: WSCT-A2LA-R&E240300011A-BT

6.9.2. Test Data

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

GFSK Modulation (the worst case)

S DUOM * DIT

(Shenz)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2014
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Test Data GFSK mode

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26998192 26992306 FAX:86-758-86376605 E-mail: Fengbing Wang@wiscl-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

For Question,

Please Contact with WSCT

www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/785-28998192 26992306 FAX:88-758-98378605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240300011A-BT Pi/4DQPSK mode

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:88/755-2698192 26992306 FAX:88-755-88376605 E-mail: Fengbing Wang@wiscl-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com



Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240300011A-BT Certificate #5768.01 For Question, 8DPSK mode Please Contact with WSCT www.wsct-cert.com 3-DH5 2402MHz Spectrum Analyzer 1 Swept SA + Input Z: 50 Ω Corr CCorr PNO: Best Wide Gate: Off #Avg Type Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 KEYSIGHT Input RF #Atten: 20 dB MWWWWW IF Gain: Low Sig Track: Off Freq Ref: Int (S) Trig: Free Run PNNNNN 1 Spectrum Mkr1 2.401 820 75 GHz Ref LvI Offset 4.19 dB Scale/Div 10 dB Ref Level 14.19 dBm 7.70 dBm al postermamorate Ven Wood Carles Viennes Almark In Mar Center 2.4020000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.00 ms (30001 pts) #Video BW 300 kHz Mar 06, 2024 10:34:06 PM 3-DH5 2402MHz Spectrum Analyzer 1 Swept SA + PNO Fast Gate Off Input Z: 50 Ω #Atten: 20 dB KEYSIGHT Input RF Corr CCorr Freq Ref: Int (S) MWWWWW Align: Auto IF Gain: Low Sig Track: Off PNNNNN Mkr1 2.401 7 GHz Ref LvI Offset 4.19 dB 4.48 dBm Scale/Div 10 dB Ref Level 14.19 dBm DL1-12-30 dB \Diamond 3 04 05 Start 30 MHz #Video BW 300 kHz Stop 26.50 GHz #Res BW 100 kHz Sweep ~2.53 s (30001 pts) 5 Marker Table Function Width Function Value Trace Scale Function Mode 2.401 7 GHz 26.213 2 GHz 5.002 8 GHz 7.349 8 GHz 9.641 3 GHz 4.479 dBm -56.75 dBm -63.24 dBm N 2 3 4 5 6 -62.72 dBm -63.32 dBm

Mar 06, 2024 10:34:38 PM

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01 For Question,
Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240300011A-BT

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Radiated Spurious Emission Measurement 6.11.

Test Specification

7	6.11.1. Test Specification	/		1			
	Test Requirement:	FCC Part15	C Sectio	n 15.209		X	
2	Test Method:	ANSI C63.10):2014	11499		11414	
	Frequency Range:	9 kHz to 25 (GHz		1	/	
	Measurement Distance:	3 m					
,	Antenna Polarization:	Horizontal &	Vertical		ATE	4	1
		Frequency	Detecto	RBW	VBW	Remark	
	X	9kHz- 150kHz	Quasi-pea	ak 200Hz	1kHz	Quasi-peak Value	
	Receiver Setup:	150kHz- 30MHz	Quasi-pea	ak 9kHz	30kHz	Quasi-peak Value	
		30MHz-1GHz	Quasi-pea	ak 100KHz	300KHz	Quasi-peak Value	5
		Above 1GHz	Peak	1MHz	3MHz	Peak Value	
		Above IGHZ	Peak	1MHz	10Hz	Average Value	
7	SVETO SVETO	Frequen	cy 751	Field Stre (microvolts	- 1 1 A A C	Measurement Distance (meters)	5
		0.009-0.4	190	2400/F(KHz)	300	1
		0.490-1.7	705	24000/F	(KHz)	30	
5		1.705-3	0	30		30	1
	176746	30-88		100		3	L
		88-216		150		3	
	Limit:	216-96	0	200		3	1

Frequency	Field Strength (microvolts/meter)	Measurement Distance (meters)	Detector
About 4011	500	3	Average
Above 1GHz	5000	3	Peak

Computer

Pre -Amplifier

Receiver

For radiated emissions below 30MHz

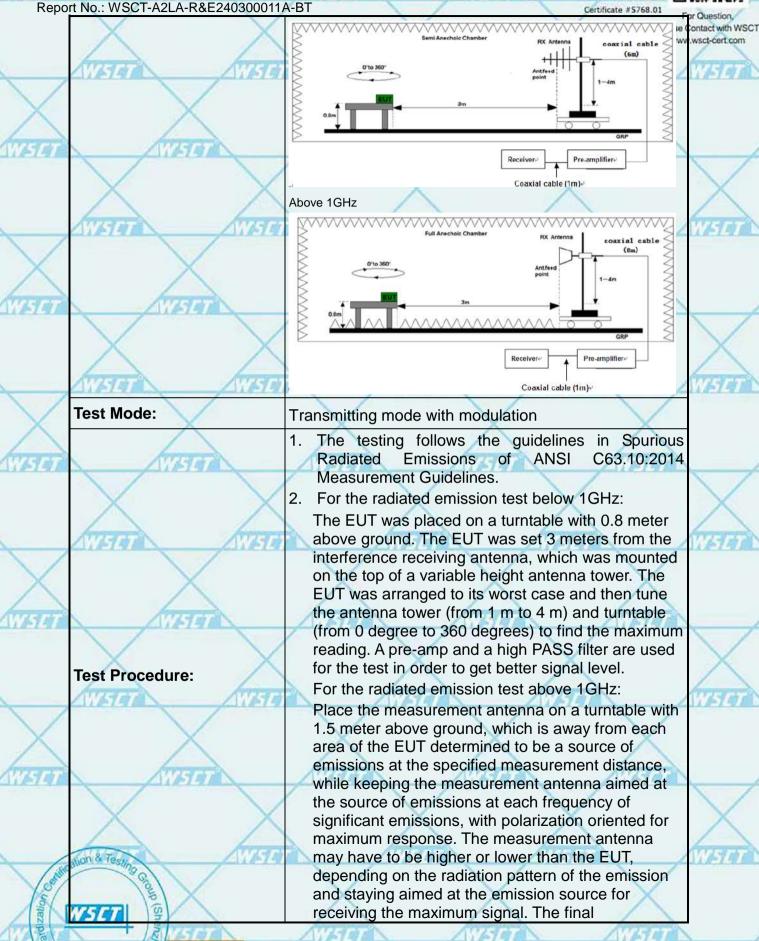
Distance = 3m

Test setup: EUT

30MHz to 1GHz

Shenz

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com


Ground Plane

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

	AVISTATI AVIST	(2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW≥RBW;	SET
X	X	Sweep = auto; Detector function = peak; Trace = max hold for peak	
AWSET	WHAT	(3) For average measurement: use duty cycle	
	\times	correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time =N1*L1+N2*L2++Nn-1*LNn-1+Nn*Ln	\times
	AVISTO AVIST	Where N1 is number of type 1 pulses, L1 is	947
X	\times	length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)	
		Account to the second s	
17554	775197	Corrected Reading: Antenna Factor + Cable	
AVE TO	TIFFEE	Loss + Read Level - Preamp Factor = Level	7
रामक	Test results:		Z
AVET OF	Test results:	Loss + Read Level - Preamp Factor = Level	7.0
(FI)	NIST AVES	Loss + Read Level - Preamp Factor = Level PASS	7.77
WEIGHT.	NIST AVES	Loss + Read Level - Preamp Factor = Level	710
WEIGH.	NIST AVES	Loss + Read Level - Preamp Factor = Level PASS	700
WEIT	NIST AVES	Loss + Read Level - Preamp Factor = Level PASS	799

NISTO NI

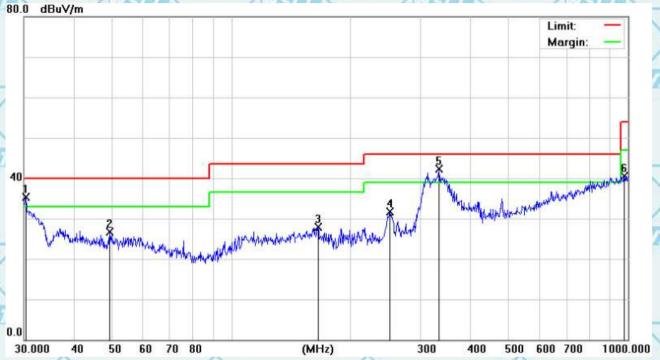
194

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992308 FAX:86-758-86376605 E-mail: Fengbing-Wang@wsci-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com


6.11.2. Test Data

Please refer to following diagram for individual

Below 1GHz

Adapter (the worst case)

Horizontal:

Į	No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	TAR
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	1	30.3173	36.95	-1.72	35.23	40.00	-4.77	QP
	2	1	49.3594	27.79	-1.10	26.69	40.00	-13.31	QP
/	3	- 1	165.4866	28.17	-0.30	27.87	43.50	-15.63	QP
	4		251.1804	33.34	-1.65	31.69	46.00	-14.31	QP
Į	5	*	333.6867	41.24	0.98	42.22	46.00	-3.78	QP
L	6		979.1804	26.40	14.19	40.59	54.00	-13.41	QP

WSTATI State Company of April 2019

TIPE ATTE

ADD:Building A-8 Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT Vertical:

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	141	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
×	1		32.7486	33.29	-1.63	31.66	40.00	-8.34	QP	
	2	A	113.7143	32.22	-2.74	29.48	43.50	-14.02	QP	
Ĺ	3	!	213.7634	40.26	-3.22	37.04	43.50	-6.46	QP	
	4	!	253.8367	42.98	-1.58	41.40	46.00	-4.60	QP	
	5	*	333.6867	40.86	0.98	41.84	46.00	-4.16	QP	
	6		996.4996	27.28	14.44	41.72	54.00	-12.28	QP	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit ($dB\mu V$) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) - Limits (dB μ V)

e 150 kHz to 30MHz.

ATHI

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Above 1GHz

GFSK

d	Frog	Low channel: 2402MHz								
Freq. (MHz)		Ant.Pol	Emission I	Emission Level(dBuV) I		Limit 3m(dBuV/m)		Over(dB)		
	(IVITZ)	H/V	PK	AV	PK	AV	PK	AV		
	4804	V	58.83	39.80	74	54	-15.17	-14.20		
	7206	V	59.13	39.39	74	54	-14.87	-14.61		
	4804	Η	58.60	40.73	74	54	-15.40	-13.27		
	7206	Η	59.93	40.93	74	54	-14.07	-13.07		

A 1 1 1 - W - 1 - W/S		ALT T A T T T T T T T T T T T T T T T T	20.7	F. J. W. L. MCL	4.1	F J _BF _L _ 247%	
Frog			Middle ch	nannel: 2441MHz			
Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)
(IVITIZ)	H/V	PK	AV	PK	AV	PK	AV
4882	V	60.28	39.73	74	54	-13.72	-14.27
7323	V	59.70	39.96	74	54	-14.30	-14.04
4882	Н	58.12	39.26	74	54	-15.88	-14.74
7323	Н	59.35	40.35	74	54	-14.65	-13.65

A Company of the Land of the L		- Appropriate Company	20	The same of the sa	, Aq	The second second	
Frog			High channel: 2480MHz				
Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)
(IVITZ)	H/V	PK	AV	PK	AV	PK	AV
4960	V	60.84	39.59	74	54	-13.16	-14.41
7440		58.22	40.92	74	54	-15.78	-13.08
4960	Н	58.26	39.44	74	54	-15.74	-14.56
7440	Н	58.79	39.79	74	54	-15.21	-14.21

Note:

- 1. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 2. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

Warld Status (Paris Common of Paris Status (Status of Paris Status of Paris St

W274

AWSET

17-14

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240300011A-BT Restricted Bands Requirements

Test result for GFSK Mode (the worst case)

A SECOND	1111111	200	ATTI AND ME	orst case)	ouc (the w	OI GI SIK IVI	I Cot I Coult I
Detector	Polar	Margin	Limit	Emission Level	Correct Factor	Reading	Frequency
	H/V	(dB)	(dBuV/m)	(dBuV/m)	dB/m	(dBuV/m)	(MHz)
Arra	-	Anna	nnel	Low Cha		ATTE DE	and the same of th
PK	H	-22.64	74	51.36	-8.94	60.30	2387
AV	H 🔪	-17.69	54	36.31	-8.94	45.25	2387
PK	V	-22.36	74	51.64	-8.94	60.58	2387
AV	V//5/	-19.99	54	34.01	-8.94	42.95	2387
PK	Н	-17.29	74	56.71	-8.73	65.44	2390
AV	Н	-11.50	54	42.50	-8.73	51.23	2390
PK	V	-15.13	74	58.87	-8.73	67.60	2390
AV	V	-13.32	54	40.68	-8.73	49.41	2390
	X		nnel	High Cha	X		X
PK	H	-17.02	74	56.98	-8.17	65.15	2483.5
AV	HE	-11.26	54	42.74	-8.17	50.91	2483.5
PK	V	-15.40	74	58.60	-8.17	66.77	2483.5
AV	V	-11.21	54	42.79	-8.17	50.96	2483.5
	H V V H H	-11.50 -15.13 -13.32 -17.02 -11.26 -15.40	54 74 54 nnel 74 54 74	42.50 58.87 40.68 High Cha 56.98 42.74 58.60	-8.73 -8.73 -8.73 -8.17 -8.17	51.23 67.60 49.41 65.15 50.91 66.77	2390 2390 2390 2483.5 2483.5 2483.5

Note: Freq. = Emission frequency in MHz Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit ($dB\mu V$) = Limit stated in standard Margin (dB) = Level ($dB\mu V$) – Limits ($dB\mu V$)

*****END OF REPORT*****

Standard Common Standard Commo

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX:86-755-96376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com