Certificate of Test

NCT CO., LTD.

211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, 18511, Republic of Korea (Tel: +82-31-323-6070 / Fax: +82-31-323-6071)

Report No.: NW2109-F011-1

Page (1) / (83)

1. Client

Name: SENA TECHNOLOGIES.Inc

o Address: 19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, Korea

o Date of Receipt : 2021-08-05

2. Use of Report: FCC & IC Approval

3. Test Sample

o Description / Model: 50C / SP98

o FCC ID: S7A-SP98 / IC: 8154A-SP98

4. Place of Test : ■ Fixed test □ Field test

(Address:211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, 18511, Republic of Korea)

5. Date of Test: 2021-08-23 ~ 2021-09-16

6. Test method used: FCC Part 15 Subpart C 15.247

RSS-247 Issue 2(2017-02), RSS-GEN Issue 5(2019-03)

7. Testing Environment:

 \circ Temperature: (25 \pm 5) °C, Humidity: Less than 75 % R.H.

* Unless specified otherwise in the individual methods, the tests were conducted on ambient conditions.

8. Test Results: Refer to the test results

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This Test Report cannot be reproduced, except in full

This test report is not related to KOLAS recognition and RRA designation.

Affirmation

Tested by

Jong-Myoung, Shin

Technical Manager

Changmin, Kim

Oct 12, 2021

NCT CO., LTD

Contact us at report@nct.re.kr to confirm the authenticity of this report

Table of contents

1. General Information	3
2. Information's about Test Item	3
3. Test Report	5
3.1 Test Summary	5
3.2 Test Report Version	6
3.3 Transmitter Requirements	
3.3.1 Antenna Requirement	7
3.3.2 6 dB Bandwidth & Occupied Bandwidth	8
3.3.3 Maximum Conducted Output Power	22
3.3.4 Peak Power Spectral Density	30
3.3.5 TX Radiated Spurious Emission and Conducted Spurious Emission	38
3.3.6 Conducted Emission	73
APPENDIX	
APPENDIX I TEST SETUP	76
APPENDIX II TEST EQUIPMENT USED FOR TESTS	78
APPENDIX III DUTY CYCLE CORRECTION FACTOR	80

1. General Information's

1.1 Test Performed

Laboratory : NCT Co., Ltd.

Address : 211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, 18511, Korea

Telephone : +82-31-323-6070 Facsimile : +82-31-323-6071

FCC Designation No. : KR0166
FCC Registration Number : 409631
IC Site Registration No. : 25897

2. Information's about Test Item

2.1 Applicant Information

Company name : SENA TECHNOLOGIES.Inc

Address : 19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, Korea

Telephone / Facsimile : +82-2-571-8283 / +82-2-573-7710

2.2 Equipment Under Test (EUT) description

Test item particulars : 50C

Model and/or type reference : SP98

Additional model name : -

Serial number : Prototype

Antenna type and gain : Chiip Antenna (M/N: AA077) with Max gain: 1.5 dBi

Date (s) of performance of tests: : 2021-08-23 ~ 2021-09-16

Date of receipt of test item : 2021-08-05

EUT condition : Pre-production, not damaged

Number of channel : 11 for 802.11b/g/n_HT20 / 9 for 802.11n_HT40

EUT Power Source : DC 3.8 V

Type of Modulation : DSSS for 802.11b / OFDM for 802.11g/n_HT20/n_HT40

Firmware version : 1.0

Hardware version : 1.0

Test software name(version) : Tera Term V4.79

2.3 Tested Frequency

Test Mode	Test frequency (쌘)			
rest wode	Low frequency	Middle frequency	High frequency	
802.11b	2 412	2 437	2 462	
802.11g	2 412	2 437	2 462	
802.11n_HT20	2 412	2 437	2 462	
802.11n_HT40	2 422	2 437	2 452	

2.4 Transmitting Configuration of EUT

Test Mode	Data rate
802.11b	1 ~ 11 Mbps
802.11g	6 ~ 54 Mbps
802.11n_HT20	MCS 0 ~ 7
802.11n_HT40	MCS 0 ~ 7

3. Test Report

3.1 Test Summary

Applied	FCC Rule	IC Rule	Test Items	Test Condition	Result
	15.203	-	Antenna Requirement		С
\boxtimes	15.247(a)	RSS-247 (5.2)	6 dB Bandwidth		С
\boxtimes	-	RSS GEN (6.7)	Occupied Bandwidth (99%)		С
\boxtimes	15.247(b)	RSS-247 (5.4)	Maximum Conducted Output Power	Conducted -	С
\boxtimes	15.247(e)	RSS-247 (5.2)	Peak Power Spectral Density		С
\boxtimes	15.247(d)	RSS-247 (5.5)	Conducted Spurious Emission		С
\boxtimes	15.247(d) 15.205 & 15.209	RSS-247 (5.5) RSS-GEN (8.9 & 8.10)	Radiated Spurious Emission	Radiated	С
\boxtimes	15.207	RSS-GEN (8.8)	Conducted Emissions	AC Line Conducted	С

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

The sample was tested according to the following specification: ANSI C63.10:2013.

Compliance was determined by specification limits of the applicable standard according to customer requirements.

3.2 Test Report Version

Test Report No.	Date	Description
NW2109-F011	2021-09-17	Initial issue
NW2109-F011-1	2021-10-12	Added the test result for radiated spurious emission.

3.3 Transmitter Requirements

3.3.1 Antenna Requirement

Accoding to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Accoding to §15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.1.1 Result

Complies

(The transmitter has a Chip Antenna. The directional peak gain of the antenna is 1.5 dBi.)

3.3.2 6 dB Bandwidth & Occupied Bandwidth

3.3.2.1 Test Setup

Refer to the APPENDIX I.

3.3.2.2 Limit

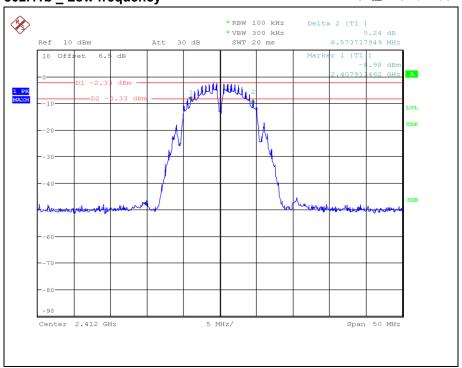
The minimum permissible 6 $\,\mathrm{dB}\,$ bandwidth is 500 $\,\mathrm{klz}.$

3.3.2.3 Test Procedure

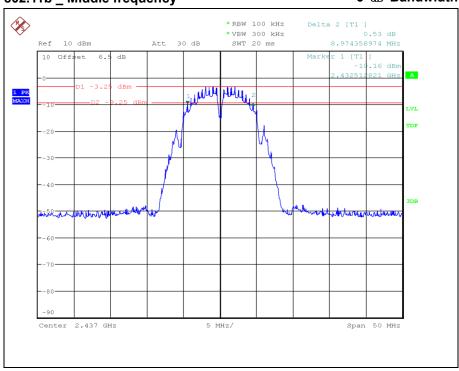
The bandwidth at $6~\mathrm{dB}$ down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max Hold.
- 5. Sweep = Auto
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
 - Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kB, VBW \geq 3 x RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB

3.3.2.4 Test Result

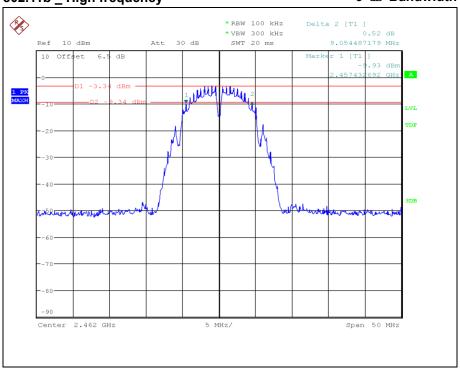

Test Mode	Test Frequency	6 dB Bandwidth (Mtz)	Occupied Bandwidth (M²)	
	Low	8.574	10.497	
802.11b	Middle	8.974	10.497	
	High	9.054	10.497	
	Low	16.522	16.827	
802.11g	Middle	16.394	16.747	
	High	16.522	16.827	
802.11n_HT20	Low	17.804	17.949	
	Middle	17.788	17.869	
	High	17.788	17.869	
	Low	36.538	36.218	
802.11n_HT40	Middle	36.603	36.218	
	High	36.506	36.218	

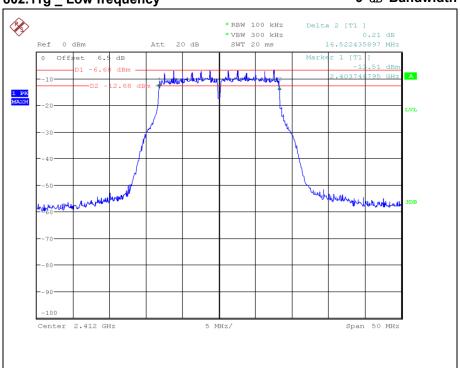
3.3.2.5 Test Plot



6 dB Bandwidth

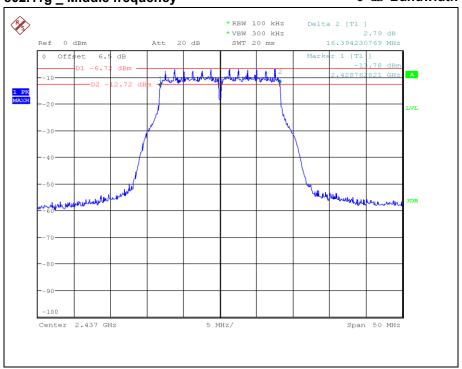
802.11b _ Middle frequency

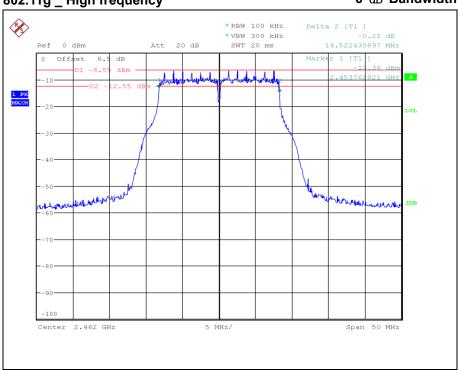

6 dB Bandwidth


802.11b _ High frequency

6 dB Bandwidth

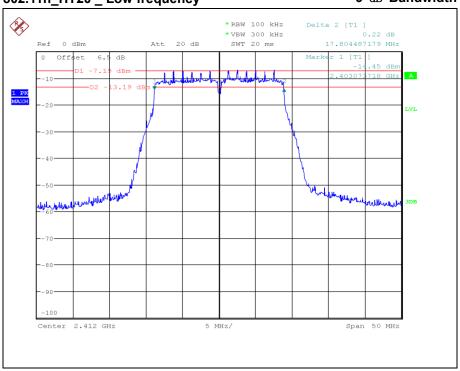
802.11g _ Low frequency

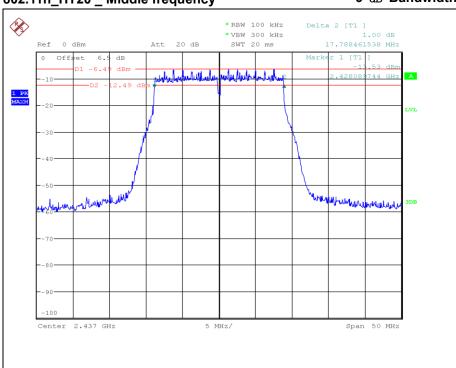

6 dB Bandwidth


802.11g _ Middle frequency

6 dB Bandwidth

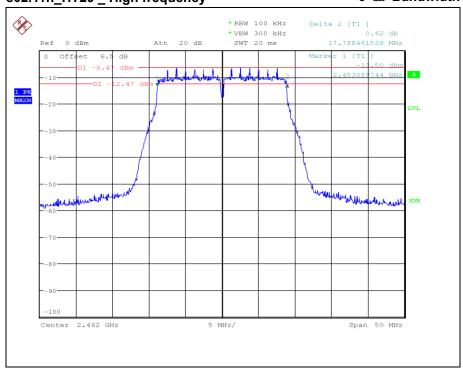
802.11g _ High frequency

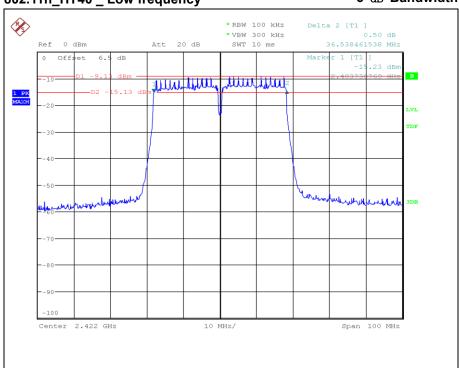

6 dB Bandwidth


802.11n_HT20 _ Low frequency

6 dB Bandwidth

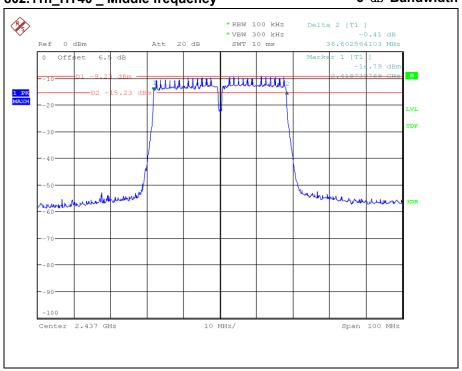
802.11n_HT20 _ Middle frequency

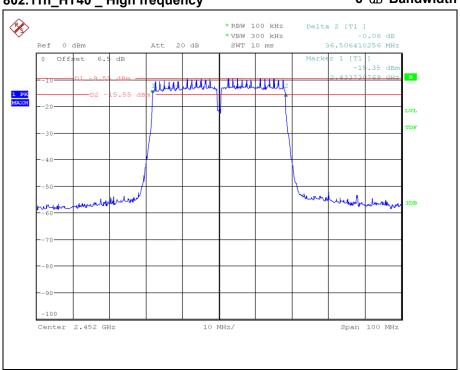

6 dB Bandwidth


802.11n_HT20 _ High frequency

6 dB Bandwidth

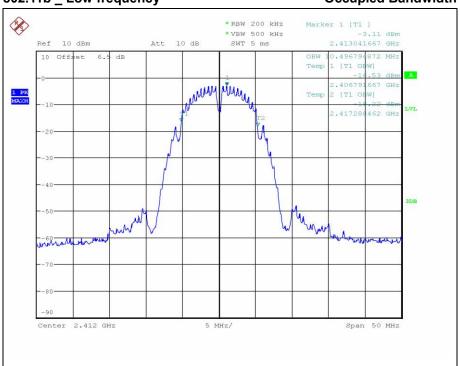
802.11n_HT40 _ Low frequency

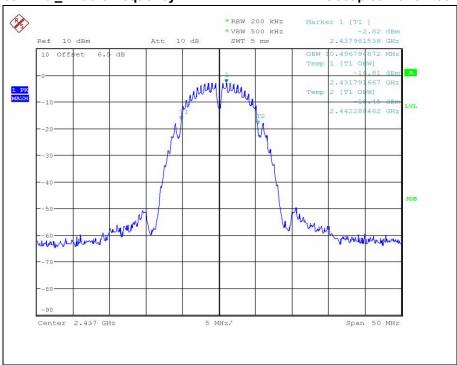

6 dB Bandwidth


802.11n_HT40 _ Middle frequency

6 dB Bandwidth

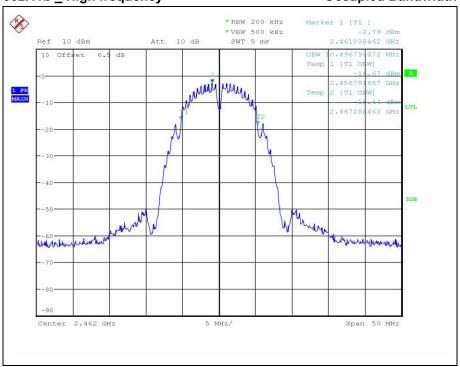
802.11n_HT40 _ High frequency

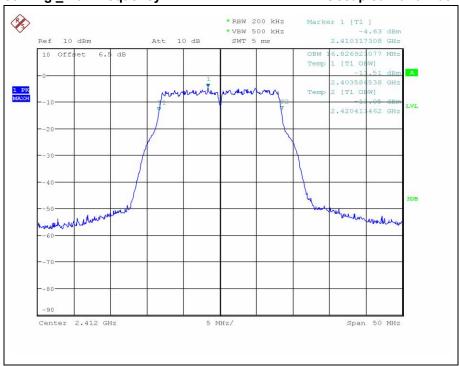

6 dB Bandwidth


802.11b _ Low frequency

Occupied Bandwidth

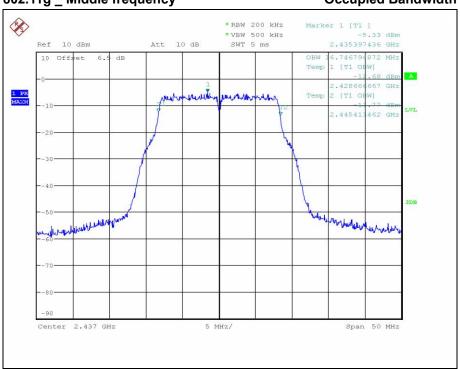
802.11b _ Middle frequency

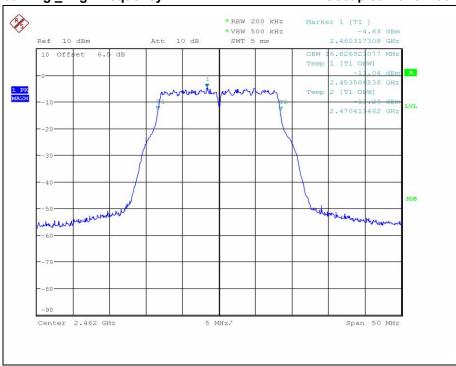

Occupied Bandwidth



Occupied Bandwidth

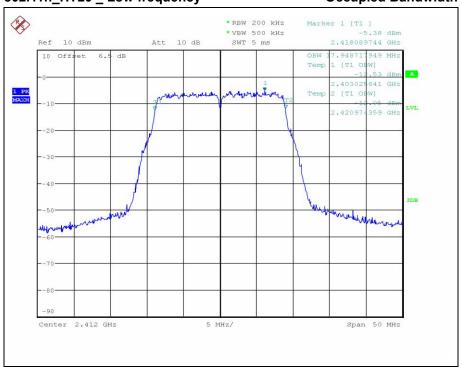
802.11g _ Low frequency

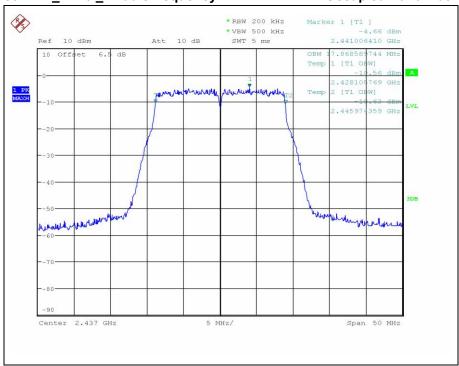

Occupied Bandwidth


802.11g _ Middle frequency

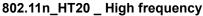
Occupied Bandwidth

802.11g _ High frequency

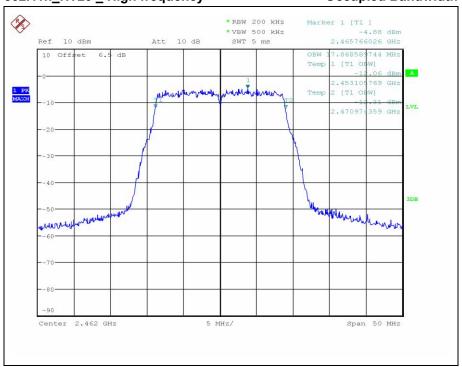

Occupied Bandwidth

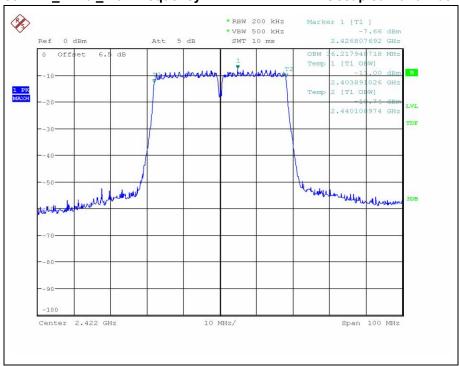

802.11n_HT20 _ Low frequency

Occupied Bandwidth



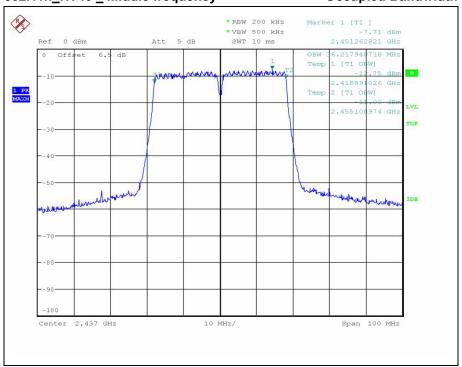
802.11n_HT20 _ Middle frequency

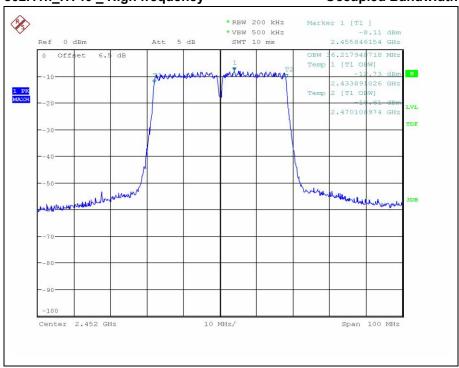

Occupied Bandwidth



Occupied Bandwidth

802.11n_HT40 _ Low frequency


Occupied Bandwidth


802.11n_HT40 _ Middle frequency

Occupied Bandwidth

802.11n_HT40 _ High frequency

Occupied Bandwidth

3.3.3 Maximum Conducted Output Power

3.3.3.1 Test Setup

Refer to the APPENDIX I.

3.3.3.2 Limit

The maximum permissible conducted output power is 1 Watt.

3.3.3.3 Test Procedure

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer. Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

- 1. Measure the duty cycle D of the transmitter output signal
- 2. Set span to at least 1.5 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
- 4. Set VBW ≥ 3 x RBW
- 5. Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- 6. Sweep time = auto.
- 7. Detector = RMS (power averaging)
- 8. Do not use sweep triggering. Allow the sweep to "free run."
- 9. Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter
- 10. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- 11. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

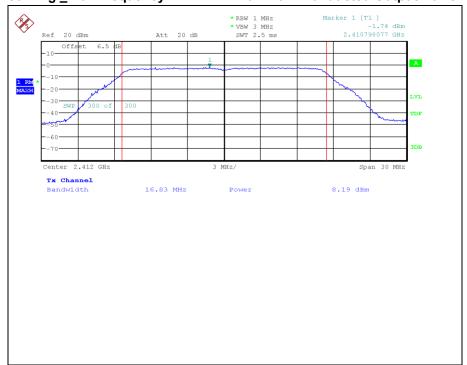
3.3.3.4 Test Result

T1		Maximum Conducted Output Power			
Test Mode	Test Frequency	Reading	C.F	Test F	Result
		(dBm)	(dB)	(dBm)	(mW)
	Low	6.82	0.05	6.87	4.86
802.11b	Middle	6.94	0.05	6.99	5.00
	High	7.43	0.05	7.48	5.60
	Low	8.19	0.31	8.50	7.08
802.11g	Middle	8.22	0.31	8.53	7.13
	High	8.29	0.31	8.60	7.25
	Low	8.18	0.33	8.51	7.10
802.11n_HT20	Middle	9.02	0.33	9.35	8.62
	High	8.82	0.33	9.15	8.23
	Low	7.33	0.28	7.61	5.77
802.11n_HT40	Middle	7.02	0.28	7.30	5.37
	High	7.15	0.28	7.43	5.53

Note 1: C.F(Correction Factor)
Correction Factor = DCCF
For DCCF(Duty Cycle Correction Factor) please refer to appendix III.
Note 2: Sample Calculation.
Test Result = Reading + C.F

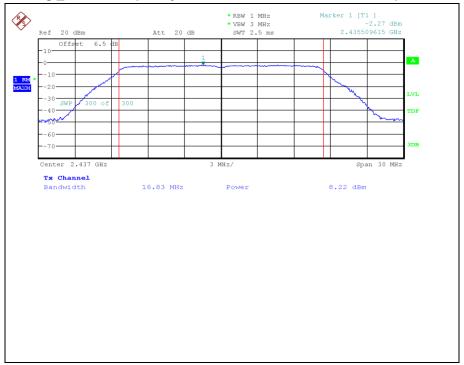
3.3.3.5 Test Plot

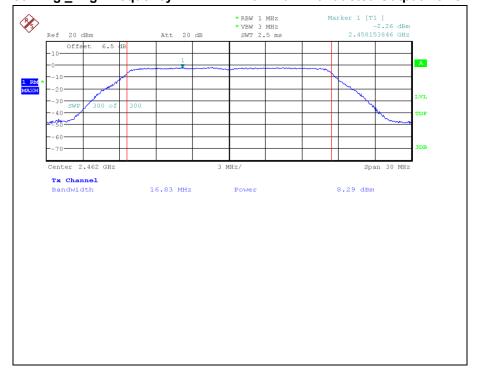



802.11b _ High frequency

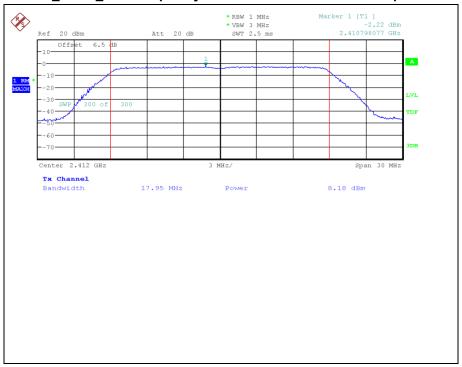
Maximum Conducted Output Power

802.11g _ Low frequency

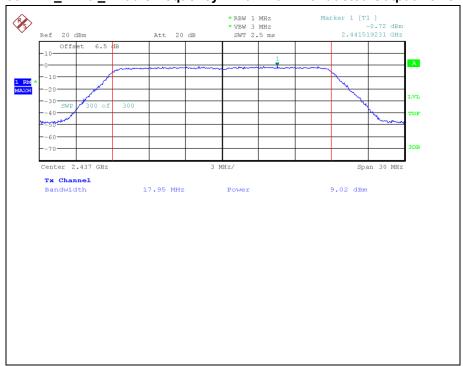

Maximum Conducted Output Power



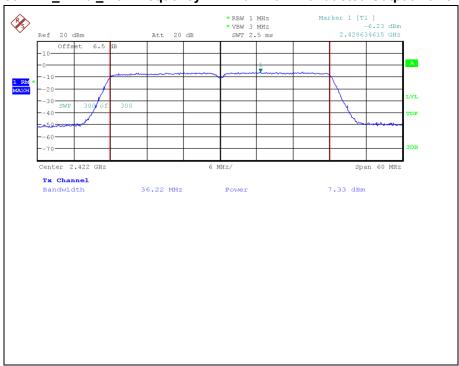
Maximum Conducted Output Power

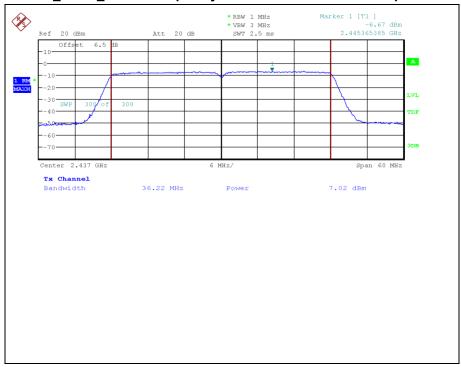

802.11g _ High frequency

Maximum Conducted Output Power



802.11n_HT20 _ Low frequency Maximum Conducted Output Power





802.11n_HT40 _ Low frequency Maximum Conducted Output Power

802.11n_HT40 _ High frequency Maximum Conducted Output Power

3.3.4 Peak Power Spectral Density

3.3.4.1 Test Setup

Refer to the APPENDIX I.

3.3.4.2 Limit

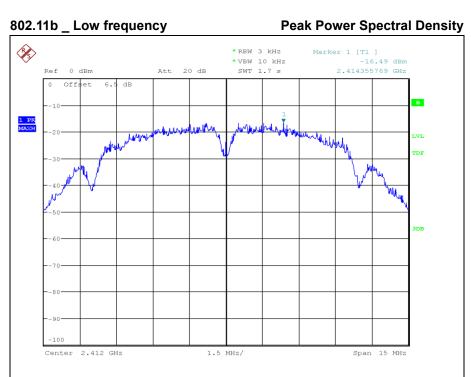
The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

3.3.4.3 Test Procedure

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

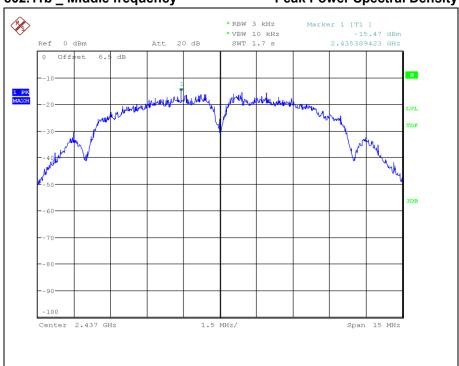
(ANSI C63.10-2013 Section 11.10.2 - Method PKPSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW : 3 kHz ≤ RBW ≤ 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = Peak.
- 6. Sweep time = Auto
- 7. Trace mode = Max Hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 klb) and repeat.



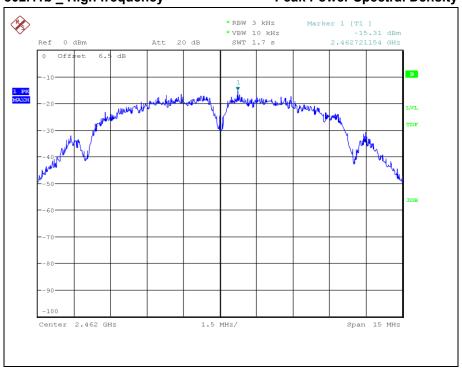
3.3.4.4 Test Result

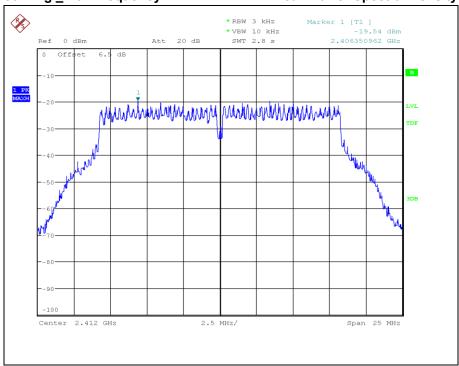
Test Mode	Test Frequency	Peak Power Spectral Density (dBm)
	Low	-16.49
802.11b	Middle	-15.47
	High	-15.31
802.11g	Low	-19.54
	Middle	-18.63
	High	-18.85
	Low	-19.55
802.11n_HT20	Middle	-20.37
	High	-19.58
802.11n_HT40	Low	-22.06
	Middle	-23.32
	High	-23.38



3.3.4.5 Test Plot

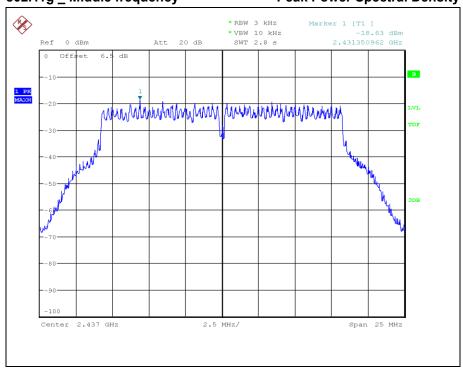
802.11b _ Middle frequency

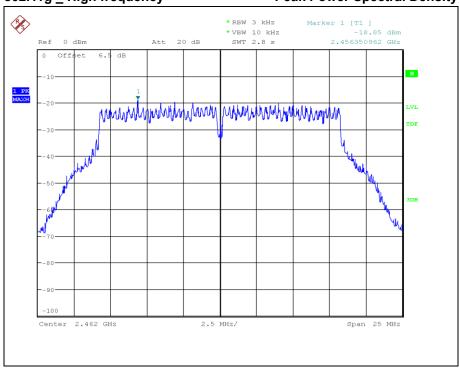

Peak Power Spectral Density


802.11b _ High frequency

Peak Power Spectral Density

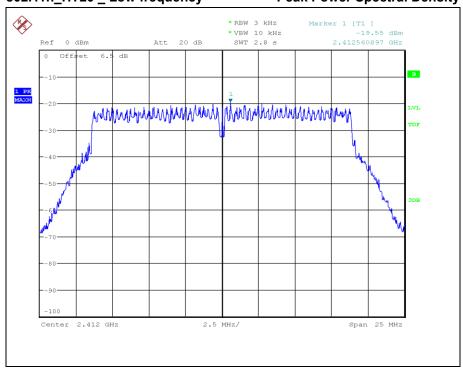
802.11g _ Low frequency

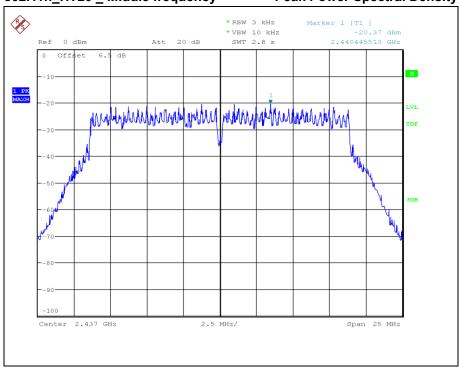

Peak Power Spectral Density


802.11g _ Middle frequency

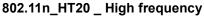
Peak Power Spectral Density

802.11g _ High frequency

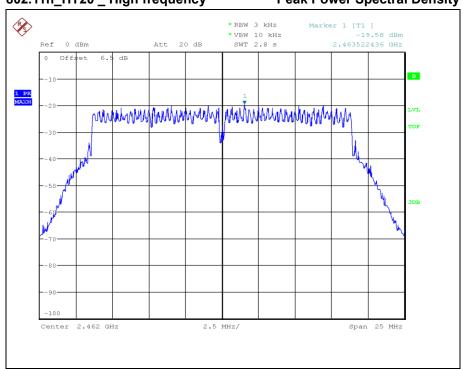

Peak Power Spectral Density

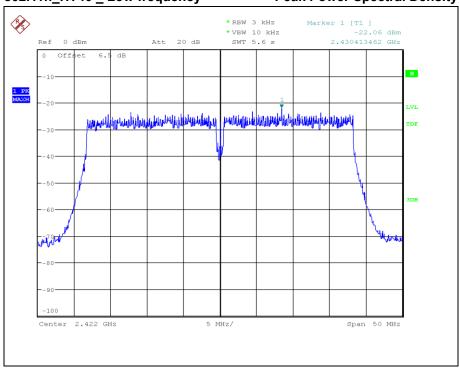


Peak Power Spectral Density



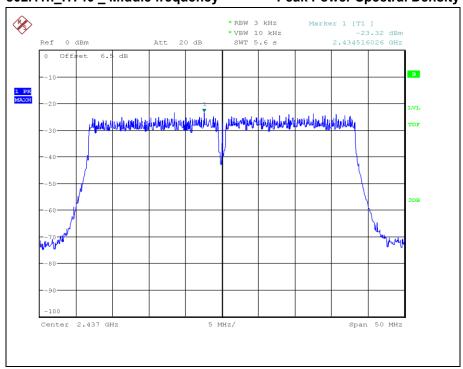
802.11n_HT20 _ Middle frequency

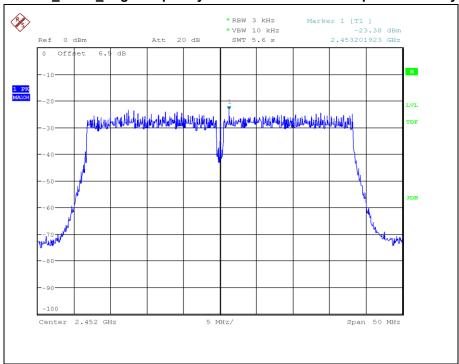

Peak Power Spectral Density



Peak Power Spectral Density

802.11n_HT40 _ Low frequency


Peak Power Spectral Density


802.11n_HT40 _ Middle frequency

Peak Power Spectral Density

802.11n_HT40 _ High frequency

Peak Power Spectral Density

3.3.5 TX Radiated Spurious Emission and Conducted Spurious Emission

3.3.5.1 Test Setup

Refer to the APPENDIX I.

3.3.5.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional

radiator shall not exceed the field strength levels specified in the following table

Frequency (Mtz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 Mb, 76 - 88 Mb, 174 - 216 Mb or 470 – 806 Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 ~ 0.110	16.42 ~ 16.423	399.90 ~ 410	4.5 ~ 5.15
0.495 ~ 0.505	16.69475 ~ 16.69525	608 ~ 614	5.35 ~ 5.46
2.1735 ~ 2.1905	16.80425 ~ 16.80475	960 ~ 1240	7.25 ~ 7.75
4.125 ~ 4.128	25.5 ~ 25.67	1300 ~ 1427	8.025 ~ 8.5
4.17725 ~ 4.17775	37.5 ~ 38.	1435 ~ 1626.5	9.0 ~ 9.2
4.20725 ~ 4.20775	25 73 ~ 74.6	1645.5 ~ 1646.5	9.3 ~ 9.5
4.17725 ~ 4.17775	74.8 ~ 75.2	1660 ~ 1710	10.6 ~ 12.7
6.215 ~ 6.218	108 ~ 121.94	1718.8 ~ 1722.2	13.25 ~ 13.4
6.26775 ~ 6.26825	149.9 ~ 150.05	2200 ~ 2300	14.47 ~ 14.5
6.31175 ~ 6.31225	156.52475 ~ 156.52525	2310 ~ 2390	15.35 ~ 16.2
8.291 ~ 8.294	156.7 ~ 156.9	2483.5 ~ 2500	17.7 ~ 21.4
8.362 ~ 8.366	162.0125 ~ 167.17	2690 ~ 2900	22.01 ~ 23.12
8.37625 ~ 8.38675	3345.8 ~ 3358	3260 ~ 3267	23.6 ~ 24.0
8.41425 ~ 8.41475	3600 ~ 4400	3332 ~ 3339	31.2 ~ 31.8
12.51975 ~ 12.52025	3345.8 ~ 3358	240 ~ 285	36.43 ~ 36.5
12.57675 ~ 12.57725	3600 ~ 4400	322 ~ 335.4	Above 38.6
13.36 ~ 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 Mb, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 Mb, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

3.3.5.3 Test Procedure for Radiated Spurious Emission

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 % the table height is 80 cm. For emission measurements above 1 % the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 6½, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 6½, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1 @ absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 @ , the absorbers are removed.
- 4. The antenna is a Broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

(The EUT was pre-tested with three axes (X, Y, Z) and the final test was performed at the worst case.)

6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting

1. Frequency Range: Below 1 🖫

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

2. Frequency Range: Above 1 @

Peak Measurement

RBW = 1 Mz, VBW = 3 Mz, Detector = Peak, Sweep time = Auto,

Trace mode = Max Hold until the trace stabilizes

Average Measurement

RBW = 1 Mb, VBW = 3 Mb, Detector = RMS (Number of points ≥ 2 x Span / RBW), Trace Mode = Average (Averaging type = power(i.e. RMS)), Sweep Time = Auto, Sweep Count = at least 100 traces

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than tuming on and off with the transmit cycle, then no duty cycle correction is required for that emission.

3.3.5.4 Test Procedure for Conducted Spurious Emission

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The reference level of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 $\, \text{kHz}$, VBW = 300 $\, \text{kHz}$.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range: 30 № ~ 26.5 №

RBW = 100 klb, VBW = 300 klb, Sweep Time = Auto, Detector = Peak,

Trace = Max Hold

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

3.3.5.5 Test Result

9 社 ~ 25 (社 Data for 802.11b

Low frequency

Read	ling		TE	DCCE	Lin	nits	Res	sult	Margin																	
(dB uV/m) AV / Peak						(dB uV/m)		(dB uV/m)		(dB uV/m)		(dB uV/m)		(dB uV/m)		(dB uV/m)		uV/m) Pol.			(dB uV/m)		(dB u	V/m)	(d	В)
									(db)	(db)	AV /	Peak	AV /	Peak	AV /	Peak										
13.84	35.75	V	17.65	0.05	54.0	74.0	31.5	53.4	22.5	20.6																
	AV /	AV / Peak	AV / Peak	AV / Peak (dB)	(dB uV/m) Pol. (dB) (dB)	(dB uV/m) Pol. (dB) (dB) AV / Peak AV /	(dB uV/m) Pol. (dB) (dB) (dB) AV / Peak	(dB uV/m) Pol. (dB) (dB) (dB uV/m) (dB uV/m) <td>(dB uV/m) Pol. (dB) (dB) (dB) (dB uV/m) (dB uV/m) AV / Peak AV / Peak AV / Peak AV / Peak</td> <td>(dB uV/m) Pol. (dB) (dB) (dB) (dB) (dB) (dB uV/m) (dB uV/m) (dB uV/m) (dB uV/m)</td>	(dB uV/m) Pol. (dB) (dB) (dB) (dB uV/m) (dB uV/m) AV / Peak AV / Peak AV / Peak AV / Peak	(dB uV/m) Pol. (dB) (dB) (dB) (dB) (dB) (dB uV/m) (dB uV/m) (dB uV/m) (dB uV/m)																

Middle frequency

Francis	Rea	ding	TF DCCF		Lin	Limits		sult	Mai	rgin	
Frequency	(dB uV/m)		Pol.	TF	(dB uV/m)	(dB uV/m)		(dB)			
(Mtz)	AV / Peak			(db)	(dB) (dB) AV /		Peak	AV / Peak		AV / Peak	
***************************************		No emiss	sions we	ere detected a	t a level great	er than 1	0dB belo	w limit.	•		

High frequency

Fraguanay	Rea	ding		TF	DCCF	Lin	nits	Re	sult	Mai	rgin	
Frequency	(dB uV/m)		(dB uV/m) Pol.			(dB)	(dB uV/m)		(dB u	ıV/m)	(dB)	
(Mtz)	AV / Peak			(dB)	(db)	AV / Peak		AV /	Peak	AV /	Peak	
		No emiss	ions we	ere detected a	t a level great	er than 1	0dB belo	w limit.				

Note 1: The radiated emissions were investigated 9 kllz to 25 Gllz. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCCF(Duty Cycle Correction Factor)
For DCCF(Duty Cycle Correction Factor) please refer to appendix III.
Note 3: Sample Calculation.

Margin = Limit - Result / Peak Result = Peak Reading + TF / Average Result = Average Reading + TF + DCCF TF = Ant factor + Cable Loss + Filter Loss – Amp Gain

9 km ~ 25 km Data for 802.11g

Low frequency

Ewa mua may	Rea	ding		TF	DCCF	Lin	nits	Res	sult	Mai	rgin								
Frequency	(dB uV/m)		Pol.			(dB uV/m)		(dB uV/m)		(dB)									
(Mtz)	AV / Peak		AV / Peak		AV / Peak) AV / Peal		AV / Peak			(dB)	(dB)	AV /	Peak	AV /	Peak	AV /	Peak
2 375.20	14.93	34.85	V	17.65	0.31	54.0	74.0	32.9	52.8	21.1	21.2								
ı																			

Middle frequency

Fraguanay	Reading		TF	DCCE	Limits	Result	Margin
Frequency	(dB uV/m)	Pol.		(dB)	(dB uV/m)	(dB uV/m)	(dB)
(Mtz)	AV / Peak		(dB)	(db)	AV / Peak	AV / Peak	AV / Peak
	No emiss	ions we	ere detected a	t a level great	er than 10dB be	ow limit.	

High frequency

F	Rea	ding			DCCF	Lin	nits	Re	sult	Mai	rgin
Frequency	(dB uV/m)		Pol.			(dB uV/m)		(dB uV/m)		(dB)	
(Mtz)			AV / Peak			(dB)	(dB) -	AV /	Peak	AV /	Peak
2 483.72	19.24	39.28	٧	17.5	0.31	54.0	74.0	37.1	57.1	16.9	16.9

Note 1: The radiated emissions were investigated 9 klb to 25 Glb. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCCF(Duty Cycle Correction Factor)
For DCCF(Duty Cycle Correction Factor) please refer to appendix III.

Note 3: Sample Calculation.

Margin = Limit - Result / Peak Result = Peak Reading + TF / Average Result = Average Reading + TF + DCCF TF = Ant factor + Cable Loss + Filter Loss – Amp Gain

9 k ~ 25 € Data for 802.11n_HT20

Low frequency

Francis	Rea	ding	_		DCCF	Lin	nits	Re	sult	Mai	Margin						
Frequency	(dB uV/m)		Pol.			(dB uV/r		(dB uV/m)		(dB)							
(Mtz)	AV / Peak		AV / Peak		AV / Peak		AV / Peak			(dB)	(dB)	AV /	Peak	AV /	Peak	AV /	Peak
2 315.07	15.41	35.37	V	17.65	0.33	54.0	74.0	33.4	53.0	20.6	21.0						

Middle frequency

Eroguanov	Reading		TF	DCCF	Limits	Result	Margin
Frequency	(dB uV/m)	Pol.		(dB)	(dB uV/m)	(dB uV/m)	(dB)
(Mtz)	AV / Peak		(dB)	(db)	AV / Peak	AV / Peak	AV / Peak
	No emiss	ions we	ere detected a	t a level great	er than 10dB b	elow limit.	

High frequency

F	Rea	ding		DOOF	Lin	Limits		sult	Margin						
Frequency	(dB uV/m)		(dB uV/m)				Pol.	TF	DCCF	(dB u	ıV/m)	(dB u	ıV/m)	(c	B)
(Mtz)						(dB)	(dB)	AV /	Peak	AV /	Peak	AV /	Peak		
2 483.89	20.53	43.53	V	17.5	0.33	54.0	74.0	38.4	61.0	15.6	13.0				

Note 1: The radiated emissions were investigated 9 klb to 25 Glb. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCCF(Duty Cycle Correction Factor)
For DCCF(Duty Cycle Correction Factor) please refer to appendix III.

Note 3: Sample Calculation.

Margin = Limit - Result / Peak Result = Peak Reading + TF / Average Result = Average Reading + TF + DCCF TF = Ant factor + Cable Loss + Filter Loss – Amp Gain

9 版 ~ 25 版 Data for 802.11n_HT40

Low frequency

Read	ding			DCCE	Lin	nits	Res	sult	Margin					
(dB uV/m) (Mt) AV / Peak						Pol.			(dB uV/m)		(dB u	ıV/m)	(dB)	
			(db)	(ab)	AV /	Peak	AV /	Peak	AV /	Peak				
	17.65	0.28	54.0	74.0	34.7	53.0	19.3	21.0						
	(dB u	AV / Peak	(dB uV/m) Pol.	(dB uV/m) Pol. (dB)	(dB uV/m) Pol. (dB) (dB) (dB)	(dB uV/m) Pol. (dB) (dB) (dB) AV /	(dB uV/m) AV / Peak TF DCCF (dB uV/m) (dB) AV / Peak	(dB uV/m) Pol. (dB) (dB) (dB) AV / Peak AV /	(dB uV/m) AV / Peak TF (dB) (dB) (dB) (dB uV/m) (dB uV/m) AV / Peak AV / Peak	(dB uV/m) Pol. TF DCCF (dB uV/m) (dB uV/m) (dB uV/m) (dB uV/m) (c AV / Peak AV				

Middle frequency

Eroguency	Reading		TF	DCCF	Limits (dB uV/m) AV / Peak		Result		Marg	jin						
Frequency	(dB uV/m)	Pol.		(dB)			(dB uV/m)		//m) (dB uV/m)		(dB uV/m)		(dB uV/m) (dB uV/m)		(dB))
(MHz)	AV / Peak		(dB)	(db)			AV / Peak		AV / Peak AV / Peak A		AV / P	AV / Peak				
No emissions were detected at a level greater than 10dB below limit.																

High frequency

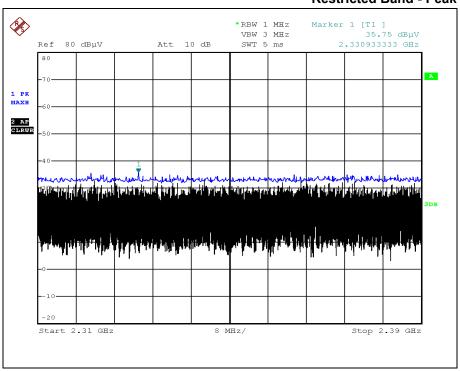
Evanuanav	Rea	ding		TE	Limits Result		sult	Margin			
Frequency	(dB u	V/m)	Pol.	TF	DCCF	(dB u	V/m)	(dB u	ıV/m)	(d	B)
(Mtz)	AV	/ Peak		(dB)	(dB)	AV / Peak		AV / Peak		AV / Peak	
2 484.71	18.48	41.53	٧	17.5	0.28	54.0	74.0	36.3	59.0	17.7	15.0

Note 1: The radiated emissions were investigated 9 klb to 25 Glb. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCCF(Duty Cycle Correction Factor)

For DCCF(Duty Cycle Correction Factor) please refer to appendix III.

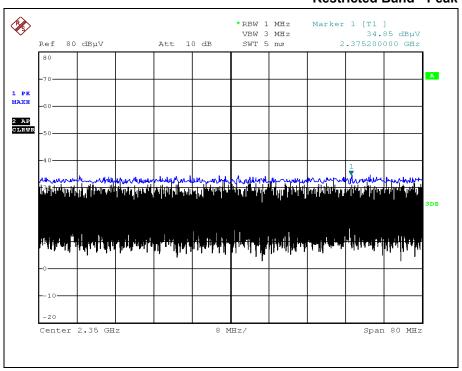
Note 3: Sample Calculation.

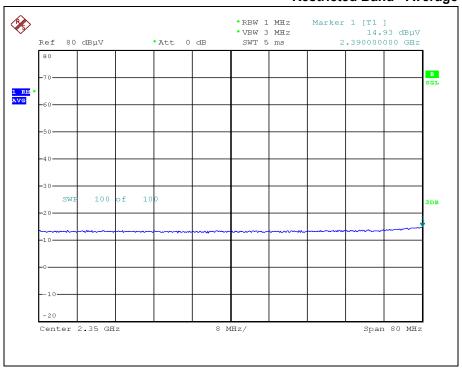

Margin = Limit - Result / Peak Result = Peak Reading + TF / Average Result = Average Reading + TF + DCCF TF = Ant factor + Cable Loss + Filter Loss – Amp Gain

3.3.5.6 Test Plot for Radiated Spurious Emission

• 802.11b _ Low frequency

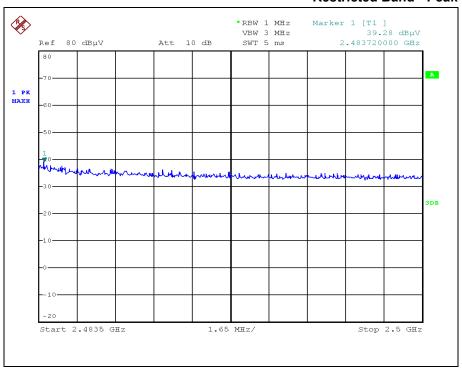
Restricted Band - Peak

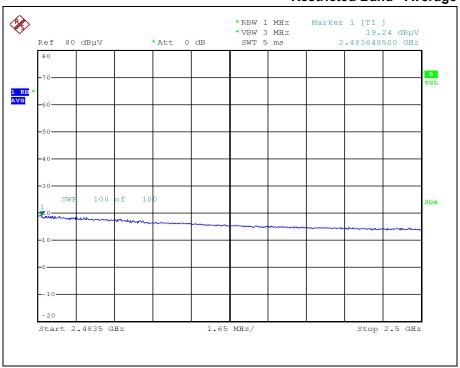

Restricted Band - Average



• 802.11g _ Low frequency

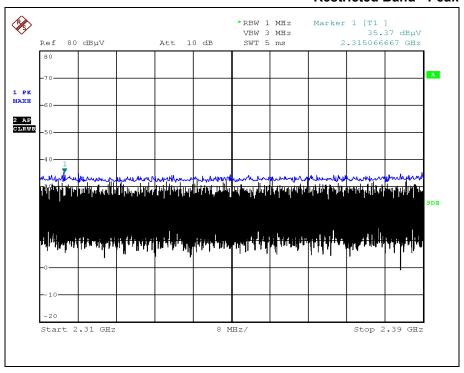
Restricted Band - Peak

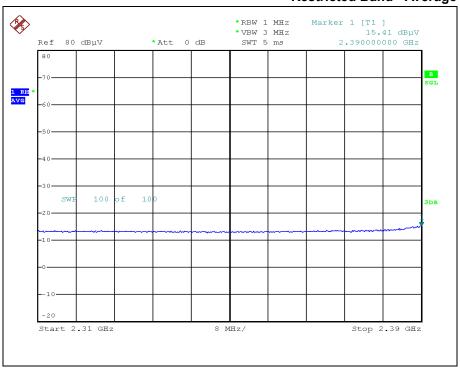

Restricted Band - Average



• 802.11g _ High frequency

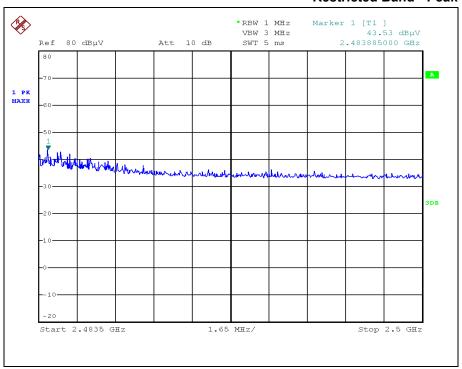
Restricted Band - Peak

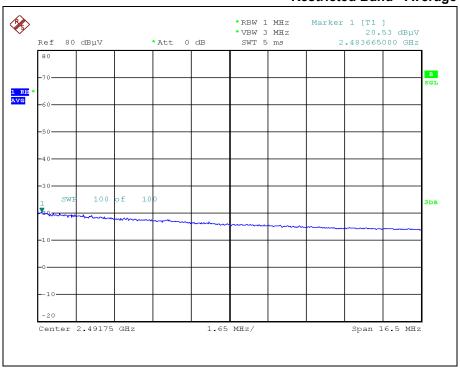

Restricted Band - Average



• 802.11n_HT20 _ Low frequency

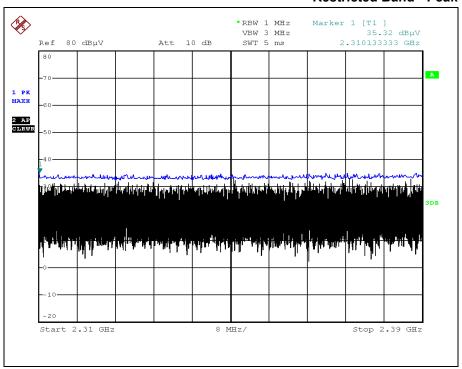
Restricted Band - Peak

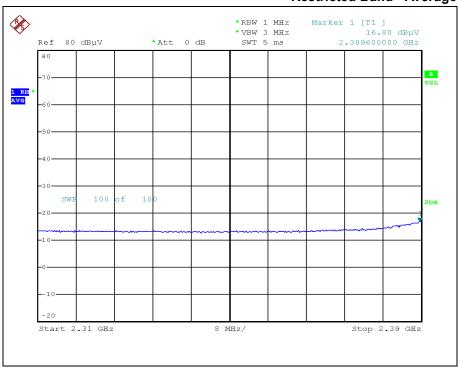

Restricted Band - Average



• 802.11n_HT20 _ High frequency

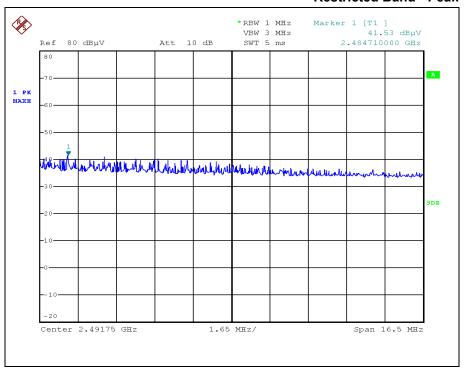
Restricted Band - Peak

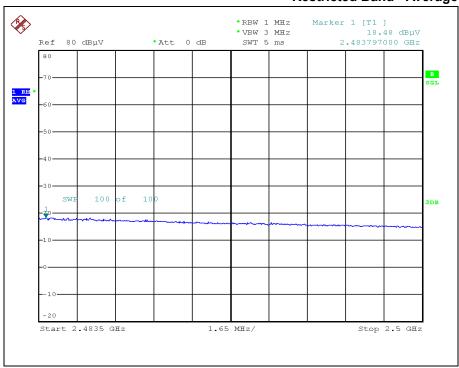

Restricted Band - Average



• 802.11n_HT40 _ Low frequency

Restricted Band - Peak

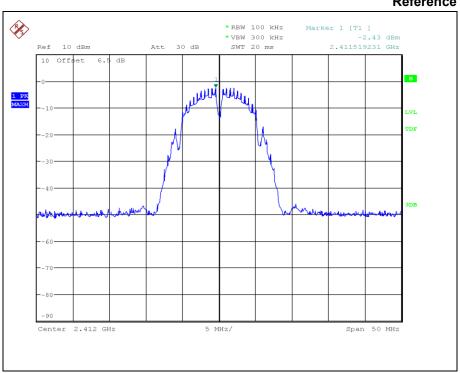

Restricted Band - Average

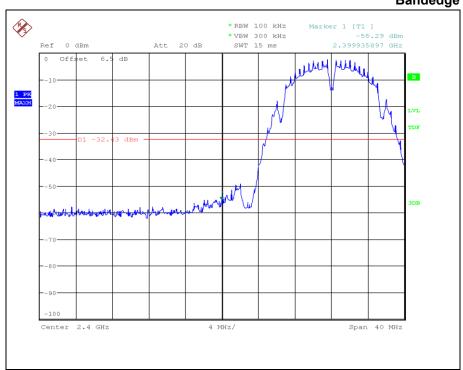


• 802.11n_HT40 _ High frequency

Restricted Band - Peak

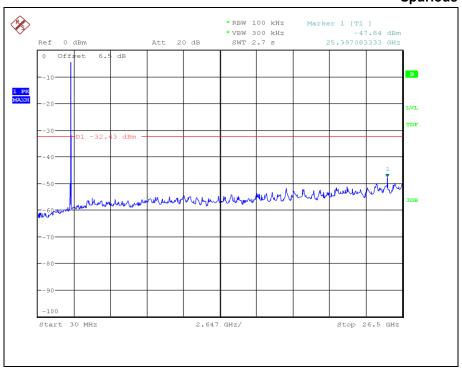
Restricted Band - Average



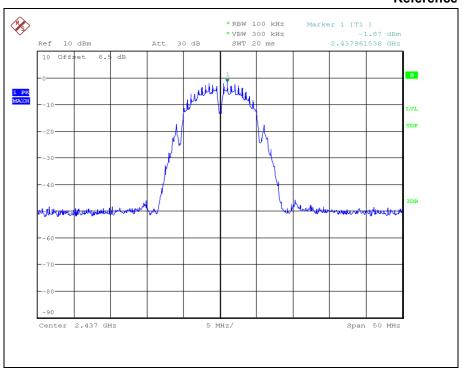

3.3.5.7 Test Plot for Conducted Spurious Emission

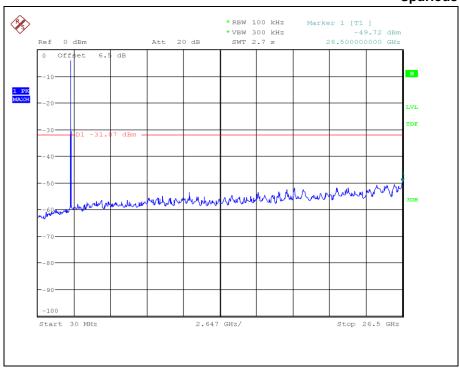
• 802.11b _ Low frequency

Reference



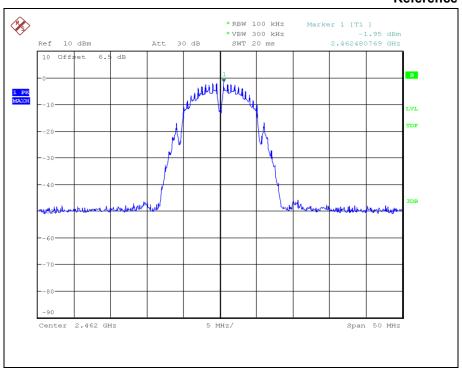
Bandedge

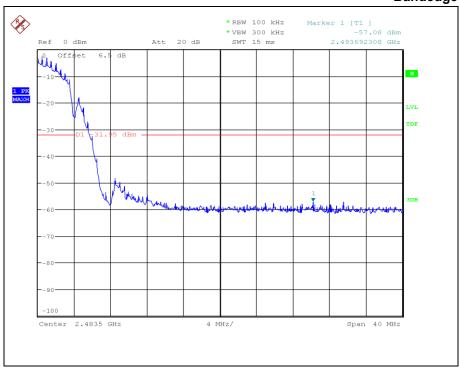

Spurious



• 802.11b _ Middle frequency

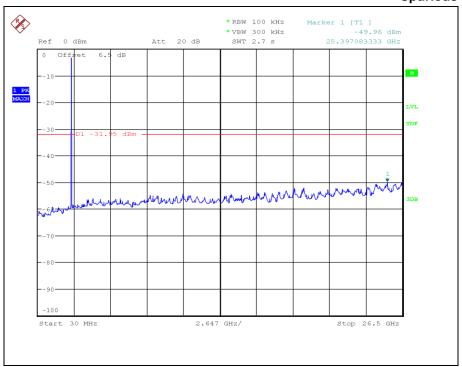
Reference


Spurious

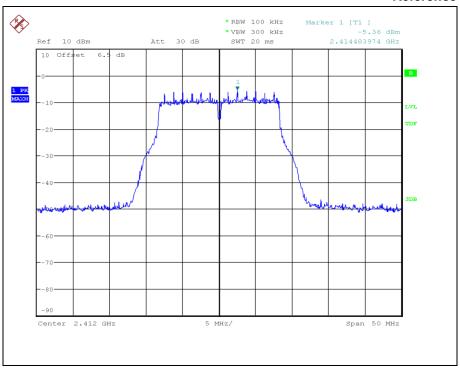


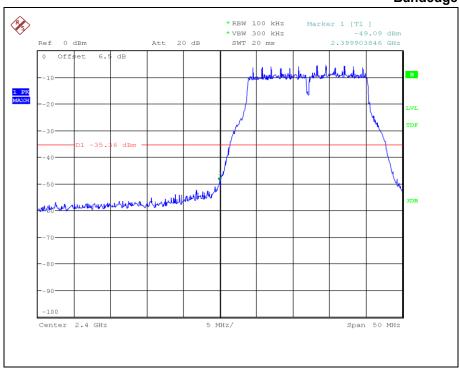
• 802.11b _ High frequency

Reference



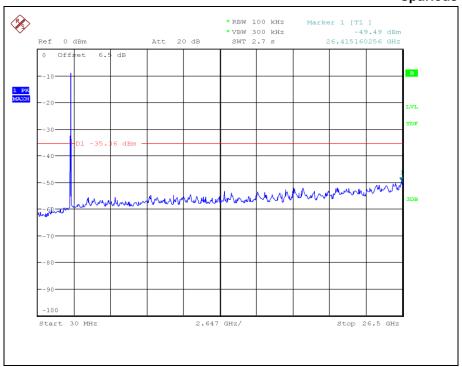
Bandedge


Spurious

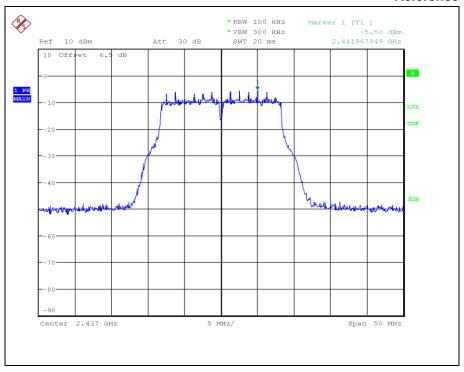


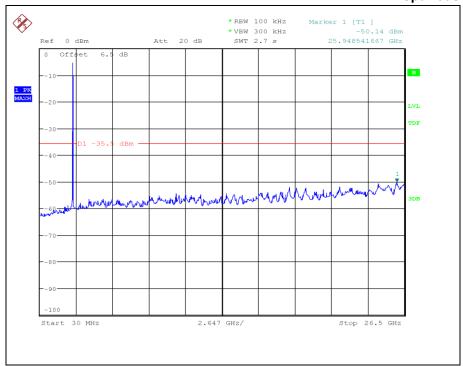
• 802.11g _ Low frequency

Reference



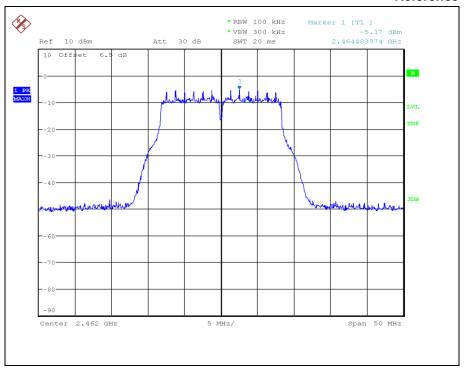
Bandedge

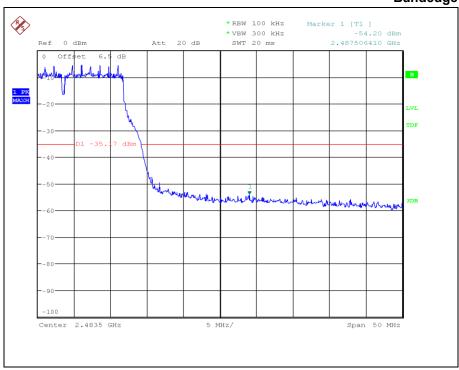

Spurious



• 802.11g _ Middle frequency

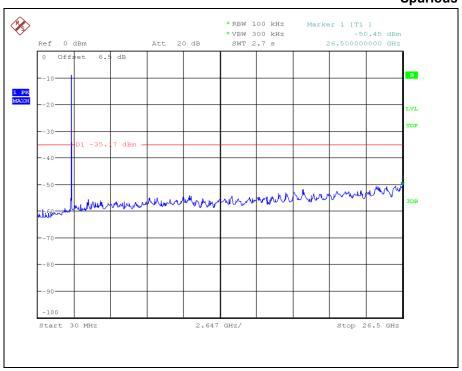
Reference


Spurious

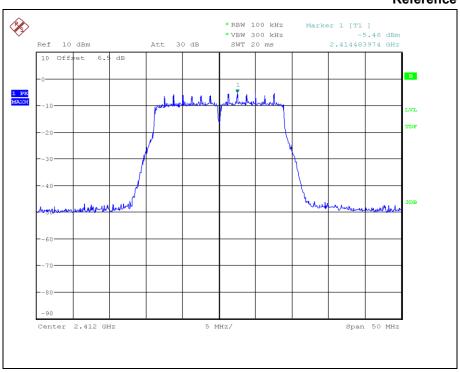


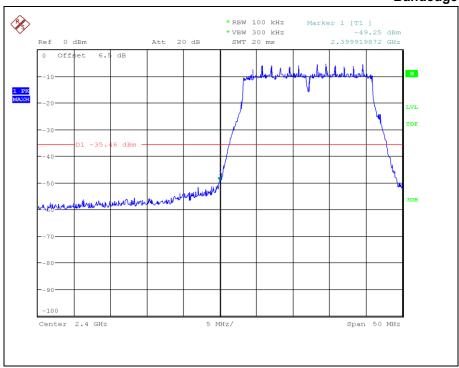
• 802.11g _ High frequency

Reference



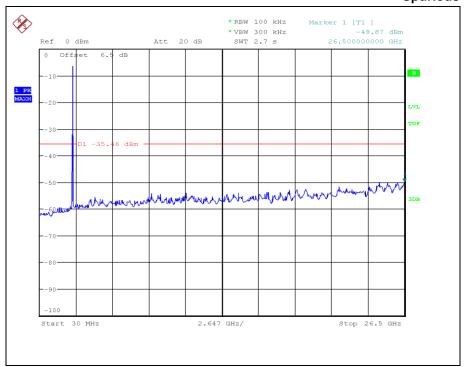
Bandedge


Spurious



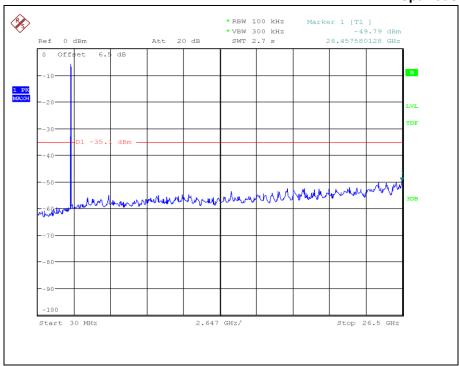
• 802.11n_HT20 _ Low frequency

Reference



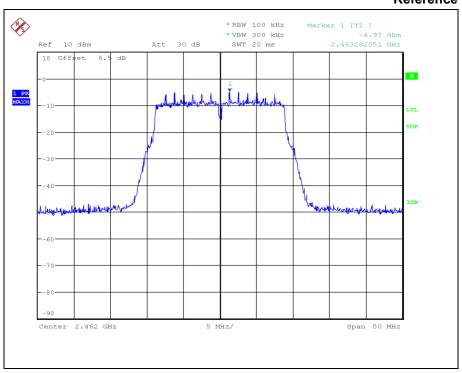
Bandedge

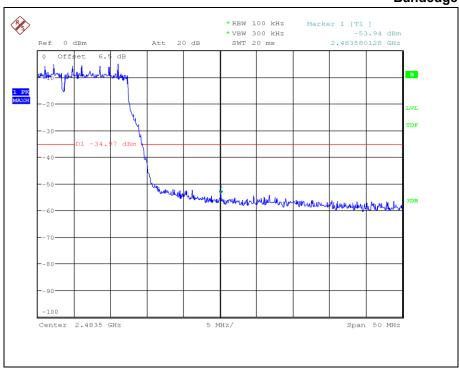
Spurious



• 802.11n_HT20 _ Middle frequency

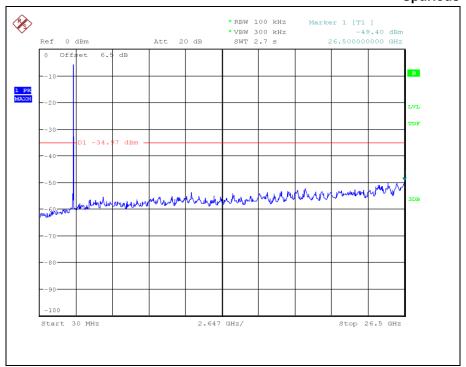
Reference


Spurious

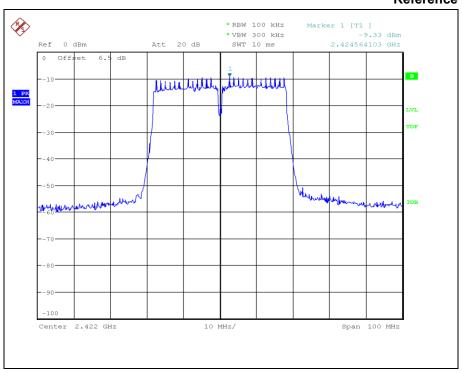


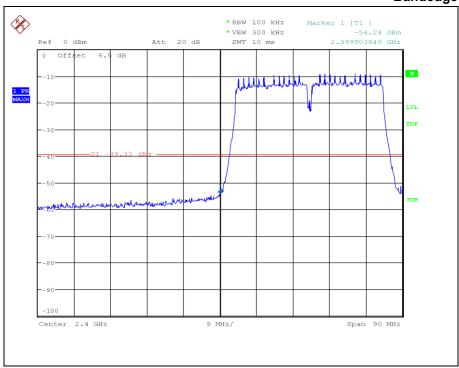
• 802.11n_HT20 _ High frequency

Reference



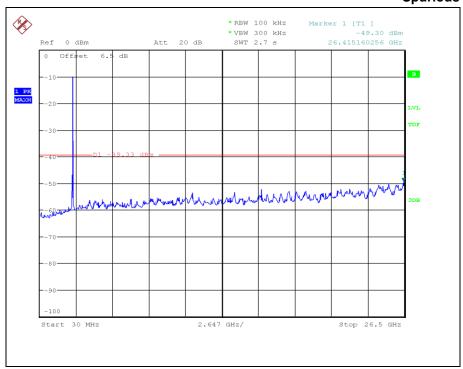
Bandedge


Spurious

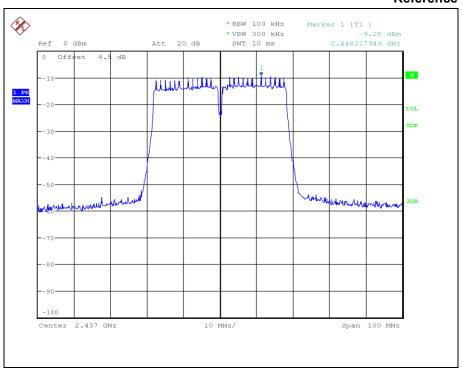


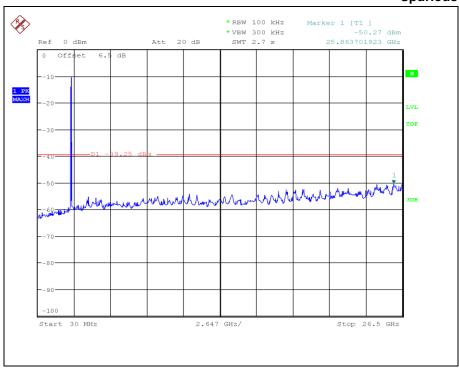
• 802.11n_HT40 _ Low frequency

Reference



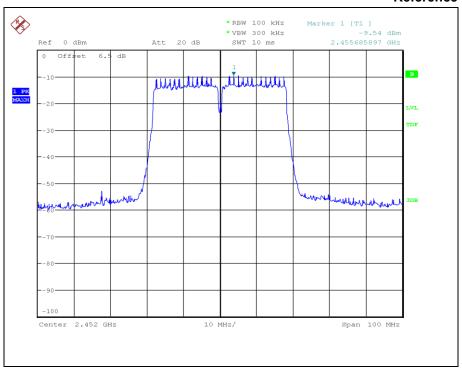
Bandedge

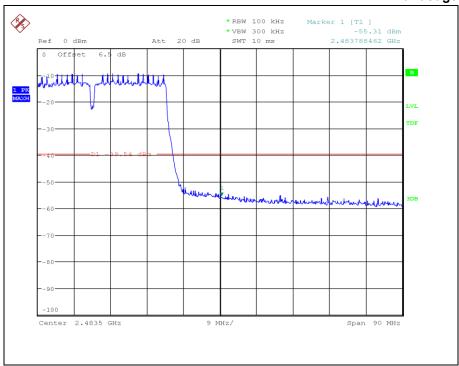

Spurious



• 802.11n_HT40 _ Middle frequency

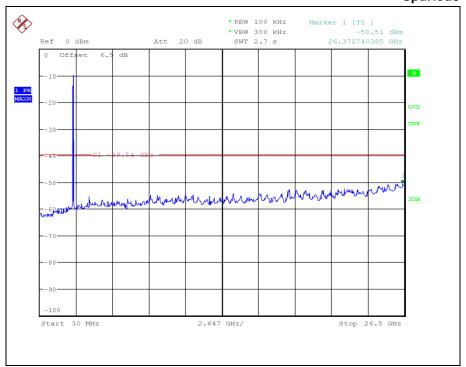
Reference


Spurious



• 802.11n_HT40 _ High frequency

Reference



Bandedge

Spurious

3.3.6 Conducted Emission

3.3.6.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

3.3.6.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 klb to 30 Mb, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

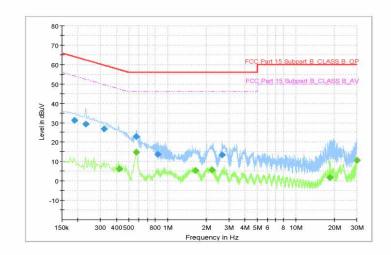
Eroqueney Bango (Mk)	Conducted Limit (dBuV)				
Frequency Range (Mtz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} Decreases with the logarithm of the frequency

3.3.6.3 Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.


3.3.6.4 Test Result

• AC Line Conducted Emission (Graph)

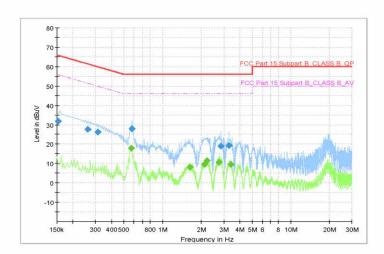
Test Report

Common Information

Test Model: Test Standard: Test Mode: Test Conditions: Operator Name: Comment: Order Number: SP98 FCC Part 15 Subpart B WLAN AC 120 V, 60 Hz / 25.5 'C, 49.4 % R. H. JongMyoung, Shin LINE

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.188000	31.23		64.12	32.90	1000.0	9.000	L1	10.4
0.230000	29.28		62.45	33.17	1000.0	9.000	L1	10.4
0.320000	26.71		59.71	33.00	1000.0	9.000	L1	10.5
0.422000		6.09	47.41	41.32	1000.0	9.000	L1	10.4
0.572000		14.94	46.00	31.06	1000.0	9.000	L1	10.4
0.572000	22.79		56.00	33.21	1000.0	9.000	L1	10.4
0.840000	13.77		56.00	42.23	1000.0	9.000	L1	10.4
1.658000	_	5.34	46.00	40.66	1000.0	9.000	L1	10.6
2.212000	_	5.58	46.00	40.42	1000.0	9.000	L1	10.€
2.668000	13.57		56.00	42.43	1000.0	9.000	L1	10.6
18.428000	_	1.81	50.00	48.19	1000.0	9.000	L1	11.6
29.908000		10.64	50.00	39,36	1000.0	9,000	L1	12.1


2021-08-06

Test Report

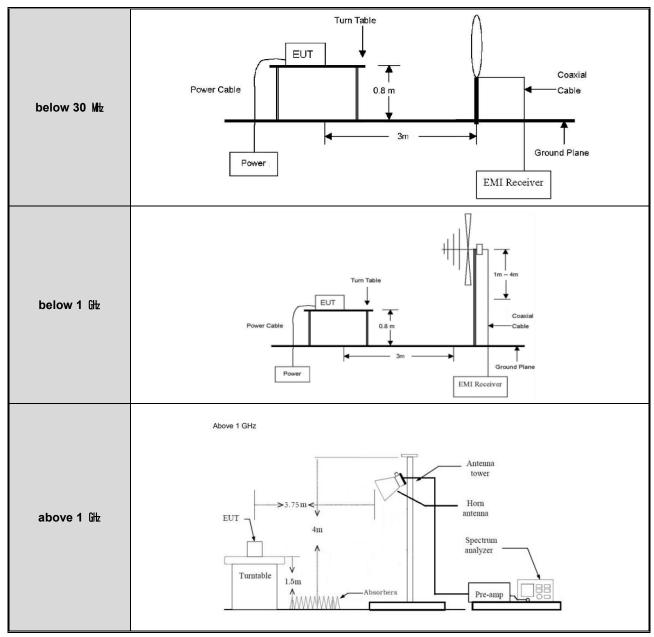
Common Information
Test Model:
Test Standard:
Test Mode:
Test Conditions:
Operator Name:
Comment:
Order Number:

SP98 FCC Part 15 Subpart B WLAN AC 120 V, 60 Hz / 25.5 'C, 49.4 % R. H. JongMyoung, Shin NEUTRAL

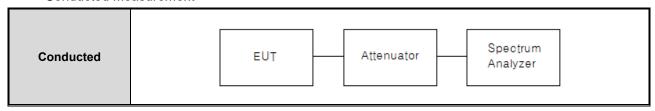
Final Pocult

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas, Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.154000	31.79	_	65.78	34.00	1000.0	9.000	N	10.4
0.260000	27.68		61.43	33.75	1000.0	9.000	N	10.4
0.312000	26.31		59.92	33.60	1000.0	9.000	N	10.5
0.572000		17.77	46.00	28.23	1000.0	9.000	N	10.4
0.576000	27.78		56.00	28.22	1000.0	9.000	N	10.4
1.644000		8.07	46.00	37.93	1000.0	9.000	N	10.6
2.112000		9.49	46.00	36.51	1000.0	9.000	N	10.6
2.228000		11.50	46.00	34.50	1000.0	9.000	N	10.6
2.748000		10.71	46.00	35.29	1000.0	9.000	N	10.6
2.860000	19.03		56.00	36.97	1000.0	9.000	N	10.6
3.304000	19.39		56.00	36.61	1000.0	9.000	N	10.6
3.412000		9.53	46.00	36.47	1000.0	9.000	N	10.6

2021-08-06



APPENDIX I


TEST SETUP

Radiated Measurement

Conducted Measurement

APPENDIX II

TEST EQUIPMENT USED FOR TESTS

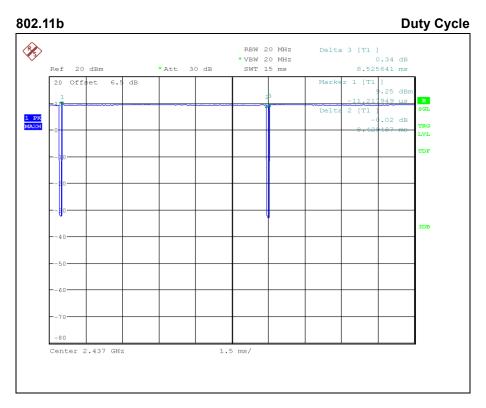
	Description	Manufacturer	Serial No.	Model No.	Cal. Date	Next Cal. Date
1	SPECTRUM ANALYZER	R&S	100617	FSP40	2021-03-09	2022-03-09
2	SPECTRUM ANALYZER	R&S	100250	FSU26	2020-09-22	2021-09-22
3	Triple Output DC Power Supply	Agilent	MY40038816	E3631A	2021-03-09	2022-03-09
4	Power supply	GWInstek	EH120798	PST-3202	2021-03-09	2022-03-09
5	Humi./Baro/Temp. data recorder	Lutron	38420	MHB-382SD	2020-11-13	2021-11-13
6	USB Peak & Average Power Sensor	KEYSIGHT	MY58140003	U2044XA	2021-09-03	2022-09-03
7	8360B SERIES SWEPT SIGNAL GENERATOR	HP	3614A00312	83640B	2020-12-30	2021-12-30
8	LOOP-ANTENNA	Schwarzbeck	00124	FMZB1519 B	2021-06-01	2023-06-01
9	TRILOG Broadband Antenna	Schwarzbeck	01027	VULB 9168	2021-06-08	2023-06-08
10	Double Ridged Broadband Horn Antenna	Schwarzbeck	02087	BBHA 9120D	2021-06-02	2022-06-02
11	Broadband Horn Antenna	Schwarzbeck	00938	BBHA 9170	2021-06-01	2022-06-01
12	AMPIIFIER	TESTEK	160011-L	TK-PA18M	2021-05-24	2022-05-24
13	Amplifier	TESTEK	190008-L	TK-PA1840H	2021-05-28	2022-05-28
14	ATTENUATOR	INMET	279465	40AH2W	2021-07-27	2022-07-27
15	ATTENUATOR	Weinschel	none	WA41/12-30-12	2021-03-09	2022-03-09
16	High Pass Filter	Mini-Circuits	1741	VHF-3100+	2021-03-09	2022-03-09
17	High Pass Filter	Mini-Circuits	1732	VHF-8400+	2021-03-09	2022-03-09
18	LISN	Schwarzbeck	00984	NSLK 8127	2021-05-27	2022-05-27
19	EMI Test Receiver	R&S	102116	ESRP3	2021-05-27	2022-05-27

APPENDIX III

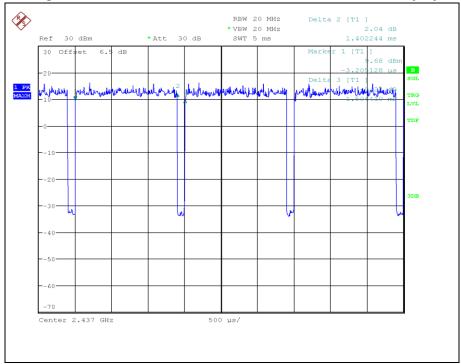
DUTY CYCLE CORRECTION FACTOR

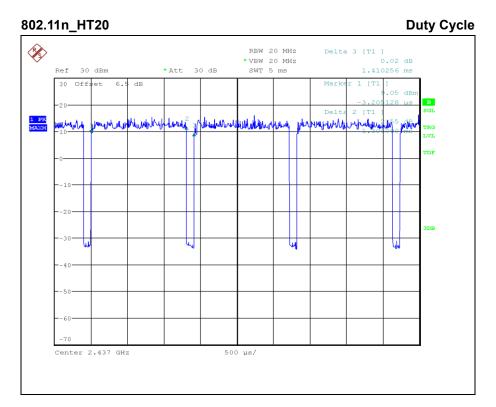
Test Procedure

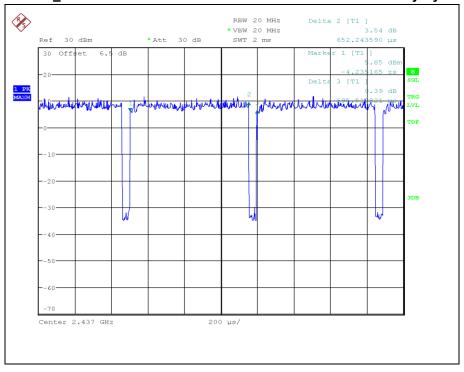
Duty Cycle [X = On Time / (On + Off time)] is measured using Measurement Procedure of KDB558074 D01v05r02


- 1. Set the center frequency of the spectrum analyzer to the center frequency of the transmission.
- 2. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value.
- 3. Set VBW ≥ RBW. Set detector = peak.
- 4. Note: The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3   ₩z, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)
 - T: The minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
 - (T = On time of the above table since the EUT operates with above fixed Duty Cycle and it is the minimum On time)


Test Result


Test Mode	Data	Test		aximum Achievab Cycle (x) = On / (O	Duty Cycle Correction	50/T	
	Rate	Channel	On Time (ms)	(On+Off) Time (ms)	Duty Cycle (x)	Factor (dB)	(kHz)
802.11b	1 Mbps	6	8.429	8.526	0.989	0.05	5.93
802.11g	6 Mbps	6	1.402	1.506	0.931	0.31	35.66
802.11n _HT20	MCS 0	6	1.306	1.410	0.926	0.33	38.28
802.11n _HT40	MCS 0	6	0.652	0.696	0.938	0.28	76.66


Test Plot



802.11n_HT40 Duty Cycle

