	TEST REPOR	Т				
FCC ID	2A7J2-BHS6P					
Test Report No:	TCT240704E029	$\langle \mathcal{C} \rangle$				
Date of issue:	Jul. 18, 2024					
Testing laboratory: :	SHENZHEN TONGCE TESTIN	G LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fu Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China					
Applicant's name:	CG Mobile SAS	$\langle \mathcal{C} \rangle$				
Address:	39 rue de Courcelles 75008 Par	is, France				
Manufacturer's name :	Mia Technologies Limited	(
Address:	RM 601, Building 9, No.19, Gua					
Standard(s):	FCC CFR Title 47 Part 15 Subp	Fucheng Street, Longhua Shenzhen, Guangdong, P.R China FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013				
Product Name:	Wireless Headphones					
Trade Mark:	DKNY	(.cl			
	SP-V30, DKBHS6PUSLK, DKBHS6PUSLW, DKBHS6001, DKBHS6002, DKBHS6003, DKBHS6004, DKBHS6005, DKOBHS6001, DKOBHS6002, DKOBHS6003, DKOBHS6004, DKOBHS6005					
Model/Type reference :		•	S6005,			
	DKOBHS6001, DKOBHS6002,	DKOBHS6003, E	S6005,			
Model/Type reference : Rating(s) : Date of receipt of test item	DKOBHS6001, DKOBHS6002, DKOBHS6005 Rechargeable Li-ion Battery DC	DKOBHS6003, E	S6005,			
Rating(s):	DKOBHS6001, DKOBHS6002, DKOBHS6005 Rechargeable Li-ion Battery DC Jul. 04, 2024	DKOBHS6003, E	S6005,			
Rating(s): Date of receipt of test item : Date (s) of performance of	DKOBHS6001, DKOBHS6002, DKOBHS6005 Rechargeable Li-ion Battery DC Jul. 04, 2024	DKOBHS6003, E 3.7∨	S6005,			
Rating(s): Date of receipt of test item 	DKOBHS6001, DKOBHS6002, DKOBHS6005 Rechargeable Li-ion Battery DC Jul. 04, 2024 Jul. 04, 2024 ~ Jul. 18, 2024	DKOBHS6003, E 3.7V	S6005, OKOBHS6004,			

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information
1.1. EUT description
1.2. Model(s) list
1.3. Operation Frequency
2. Test Result Summary
3. General Information
3.1. Test environment and mode
3.2. Description of Support Units
4. Facilities and Accreditations
4.1. Facilities
4.2. Location
4.3. Measurement Uncertainty8
5. Test Results and Measurement Data9
5.1. Antenna requirement9
5.2. Conducted Emission
5.3. Conducted Output Power14
5.4. 20dB Occupy Bandwidth15
5.5. Carrier Frequencies Separation
5.6. Hopping Channel Number17
5.7. Dwell Time
5.8. Pseudorandom Frequency Hopping Sequence
5.9. Conducted Band Edge Measurement20
5.10.Conducted Spurious Emission Measurement21
5.11.Radiated Spurious Emission Measurement
Appendix A: Test Result of Conducted Test
Appendix B: Photographs of Test Setup
Appendix C: Photographs of EUT

1. General Product Information

1.1. EUT description

Product Name:	Wireless Headphones	(C)	
Model/Type reference:	SP-V30		
Sample Number	TCT240704E029-0101		
Bluetooth Version:	V5.3		
Operation Frequency:	2402MHz~2480MHz		
Transfer Rate:	1/2/3 Mbits/s	(\mathcal{C})	
Number of Channel:	79		
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology:	FHSS		
Antenna Type:	PCB Antenna		
Antenna Gain:	2.499dBi	S	
Rating(s):	Rechargeable Li-ion Battery DC 3	7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.			Model No.			Test	ed with	
1		SP-V30						
Other models	DKBHS6PUSLK, DKBHS6PUSLW, DKBHS6001, DKBHS6002, DKBHS6003, DKBHS6004, DKBHS6005, DKOBHS6001, DKOBHS6002, DKOBHS6003, DKOBHS6004, DKOBHS6005							
ote: SP-V30 is te yout, only differe								
)			<u> </u>	5	9	

Report No.: TCT240704E029

1.3. Operation Frequency

TCT通测检测 TESTING CENTRE TECHNOLOGY

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
	9			<u> </u>		<u> </u>	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	S		.		S		S
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	- 39	2441MHz	- 59	2461MHz	-	-
Remark: modulatic	Channel 0, 3 on mode.	89 & 78 ha	ave been te	sted for G	GFSK, π/4-D	QPSK, 8	DPSK

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	Requirement CFR 47 Section		
Antenna Requirement	§15.203/§15.247 (c)	PASS	
AC Power Line Conducted Emission	§15.207	PASS	
Conducted Peak Output Power	§15.247 (b)(1)	PASS	
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS	
Carrier Frequencies Separation	§15.247 (a)(1)	PASS	
Hopping Channel Number	§15.247 (a)(1)	PASS	
Dwell Time	§15.247 (a)(1)	PASS	
Radiated Emission	§15.205/§15.209	PASS	
Band Edge	§15.247(d)	PASS	

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	22.8 °C	22.8 °C
Humidity:	49 % RH	51 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	FCC Assist 1.0.2.2	
Power Level:	10	
Test Mode:		
Engineer mode:	Keep the EUT in continuous channel and modulations wi	•••
above the ground plane of 3 polarities were performed. I the EUT continuously work axis (X, Y & Z) and cor manipulating interconnectin from 1m to 4m in both worst-case(Z axis) are	8m & 1.5m for the measure of the measurements in During the test, each emission ing, investigated all operating insidered typical configuration of cables, rotating the turnta horizontal and vertical po- shown in Test Results in tested, only worse case DH	n both horizontal and vertica on was maximized by: having g modes, rotated about all 3 n to obtain worst position able, varying antenna heigh plarizations. The emissions of the following pages

3.2. Description of Support Units

TCT通测检测 TCT通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

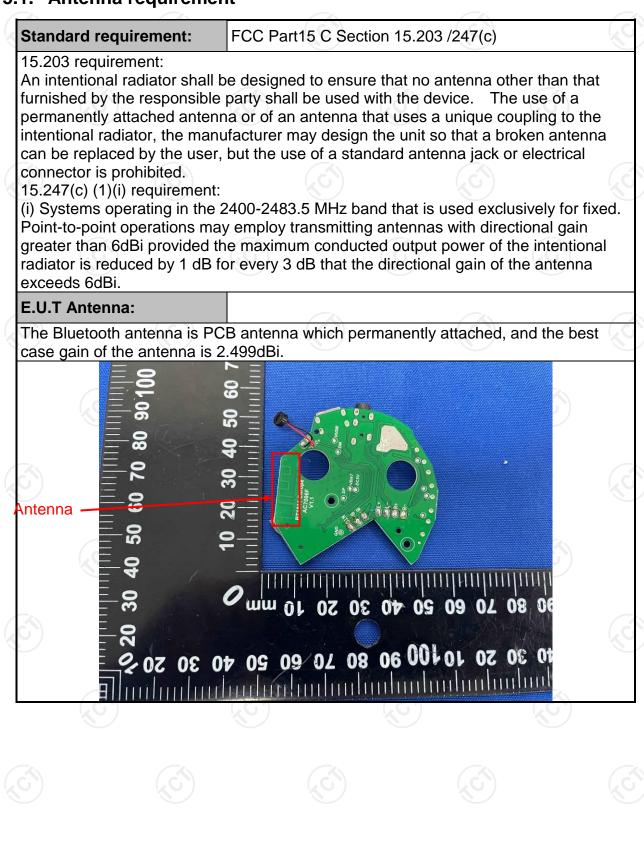
The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

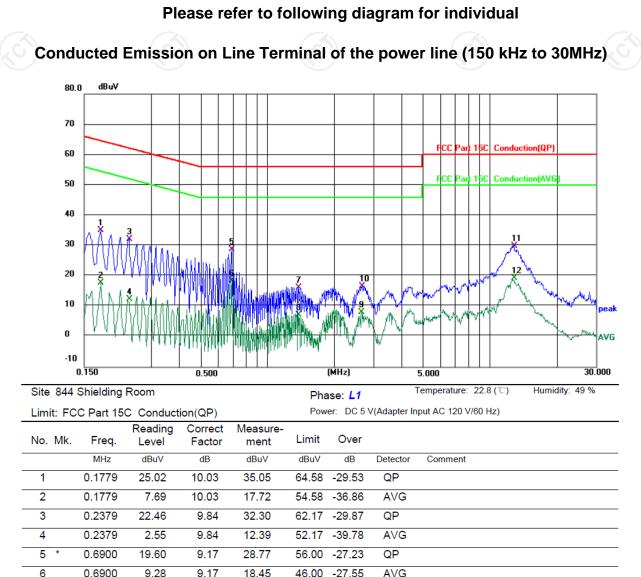
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207 😒				
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto			
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Referenc	e Plane				
Test Setup:	E.U.T AC powe Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m	EMI Receiver	r — AC power			
Test Mode:	Charging + Transmittir	ng Mode				
	1. The E.U.T is conne impedance stabiliz provides a 500hm/s	ation network	(L.I.S.N.). This			
Test Procedure:	 measuring equipme 2. The peripheral device power through a Liccoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference emission, the relative the interface cables 	nt. ces are also conne SN that provides with 50ohm tern diagram of the line are checkence. In order to fin e positions of equi must be changed	ected to the main a 500hm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all co l according to			
Test Procedure: Test Result:	 measuring equipme 2. The peripheral device power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference mission, the relative 	nt. ces are also conne SN that provides with 50ohm tern diagram of the line are checkence. In order to fin e positions of equi must be changed	ected to the mai a 50ohm/50ul nination. (Please test setup and ed for maximum nd the maximum ipment and all c l according to			

Page 10 of 96

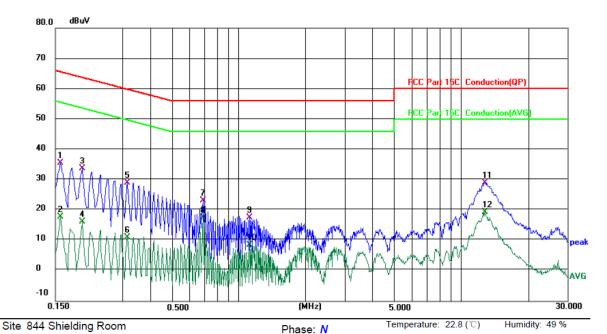
5.2.2. Test Instruments


Equipment Manufacturer Model Serial Number Calibration Due						
R&S	ESCI3	100898	Jun. 26, 2025			
Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025			
N/A	10dB	164080	Jun. 26, 2025			
тст	CE-05	1	Jun. 26, 2025			
EZ_EMC	EMEC-3A1	1.1.4.2	1			
	R&S Schwarzbeck N/A TCT	R&SESCI3SchwarzbeckNSLK 8126N/A10dBTCTCE-05	R&S ESCI3 100898 Schwarzbeck NSLK 8126 8126453 N/A 10dB 164080 TCT CE-05 /			

Page 11 of 96

5.2.3. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY



0	0.0300	3.20	3.17	10.45	40.00 -27.00	Avg	
7	1.3779	6.31	9.95	16.26	56.00 -39.74	QP	
8	1.3779	-2.69	9.95	7.26	46.00 -38.74	AVG	
9	2.6579	-2.02	10.12	8.10	46.00 -37.90	AVG	
10	2.6779	6.64	10.12	16.76	56.00 -39.24	QP	
11	12.8059	19.26	10.64	29.90	60.00 -30.10	QP	
12	12.8059	8.67	10.64	19.31	50.00 -30.69	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 12 of 96

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

CT通测检测 TESTING CENTRE TECHNOLOGY

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
-			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1580	25.48	10.01	35.49	65.57	-30.08	QP	
-	2		0.1580	7.80	10.01	17.81	55.57	-37.76	AVG	
	3		0.1980	23.72	10.02	33.74	63.69	-29.95	QP	
	4		0.1980	6.30	10.02	16.32	53.69	-37.37	AVG	
	5		0.3140	19.31	9.82	29.13	59.86	-30.73	QP	
	6		0.3140	1.26	9.82	11.08	49.86	-38.78	AVG	
	7		0.6900	13.95	9.14	23.09	56.00	-32.91	QP	
	8	*	0.6900	8.39	9.14	17.53	46.00	-28.47	AVG	
-	9		1.1220	7.66	9.87	17.53	56.00	-38.47	QP	
	10		1.1220	-1.30	9.87	8.57	46.00	-37.43	AVG	
	11		12.7580	18.50	10.62	29.12	60.00	-30.88	QP	
	12		12.7580	8.69	10.62	19.31	50.00	-30.69	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

Page 13 of 96

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	\bigcirc 1	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	N/A C				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test Result:	PASS				

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 			
Test Result:	PASS			

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB	1	1	

Page 16 of 96

5.6. Hopping Channel Number

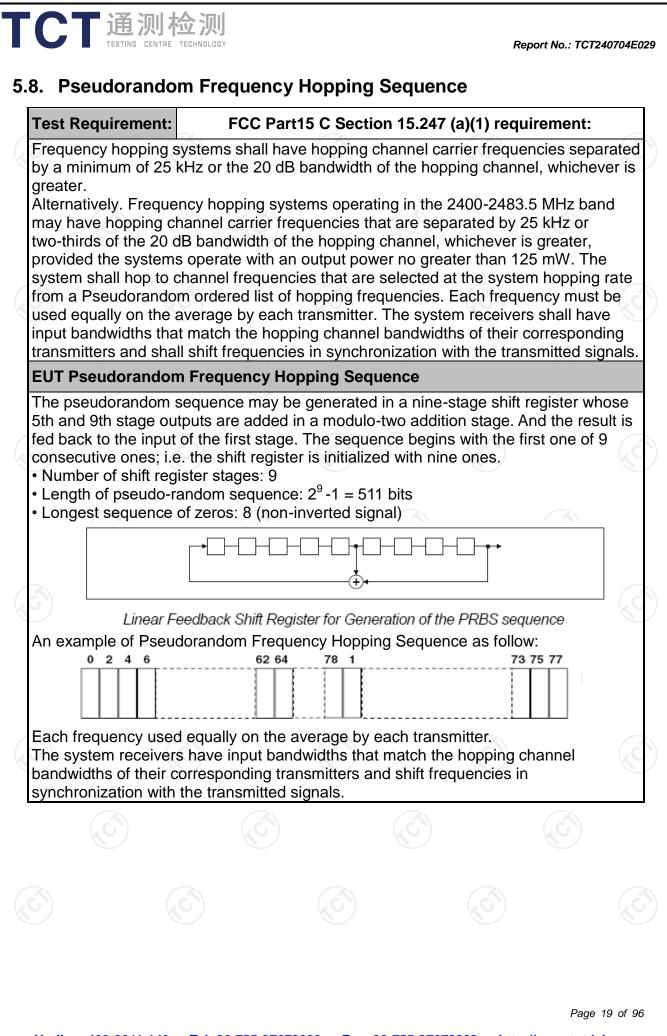
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Setup:				
	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 Hopping mode 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel. 			
Test Result:	PASS			
5.6.2. Tost Instruments				

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	/
	(.G)			

5.7. Dwell Time


5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Hopping mode		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 		
Test Result:	PASS		

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)			
KDB 558074 D01 v05r02			
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.			
Spectrum Analyzer			
Transmitting mode with modulation			
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 			
PASS			

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	1
(\mathcal{S})	(G)		(G)	(\mathcal{G})

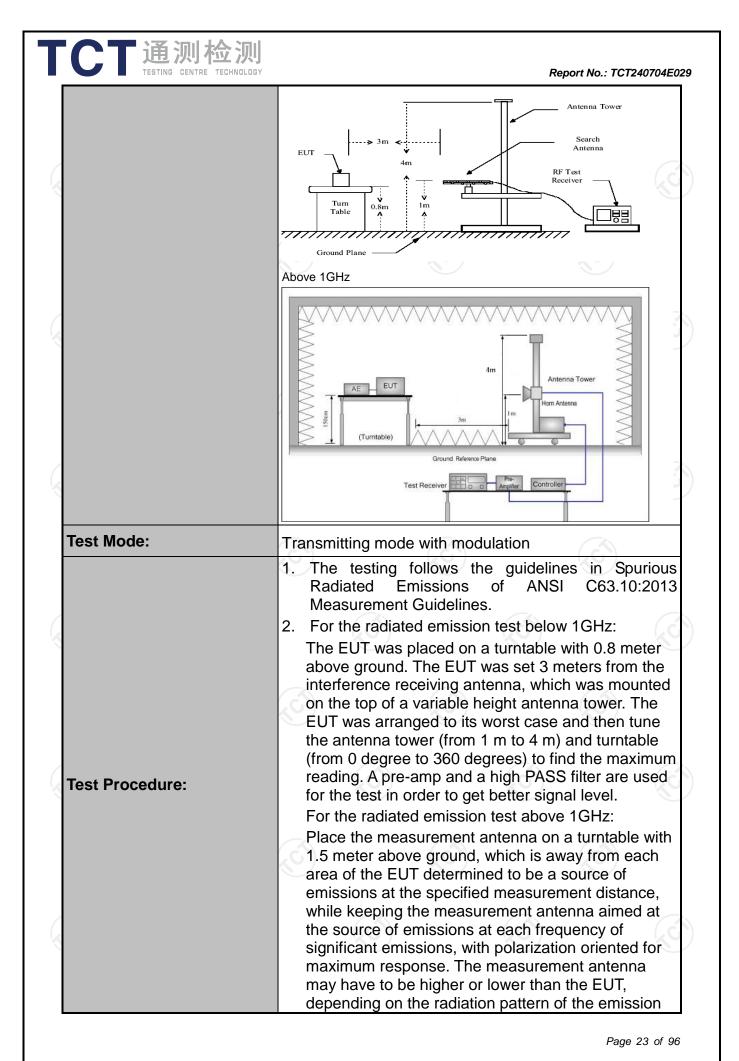
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		


Page 21 of 96

5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

	FCC Part15	C Sectior	15.209			8	
Test Method:	ANSI C63.10):2013					
Frequency Range:	9 kHz to 25 (GHz	3			<u></u>	
Measurement Distance:	3 m	K	9		R.)	
Antenna Polarization:	Horizontal &	Vertical					
	Frequency	Detector	RBW	BW VBW		Remark	
	9kHz- 150kHz	Quasi-peal	< 200Hz	1kHz	Quas	i-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-peal		30kHz	Quas	i-peak Value	
	30MHz-1GHz	Quasi-peal		300KHz		i-peak Value	
	Above 1GHz	Peak	1MHz	3MHz		eak Value	
		Peak	1MHz	10Hz	Ave	rage Value	
	Frequen	ю	Field Stre (microvolts)	-		asurement nce (meters)	
	0.009-0.4	490	2400/F(300	
	0.490-1.7	/	24000/F			30	
	1.705-3		30			30	
	30-88	/	100			3	
Limit:	<u>88-216</u> 216-96	2	150 200			3	
	Above 9		<u></u> 500			3	
	Above 1GH		ovolts/meter) 500	(meter 3	Average		
		2	5000	3		Peak	
Test setup:	For radiated emis	ssions below stance = 3m Turn table			Compute		
	30MHz to 1GHz						

	receiving the maximeasurement anterna elevation restricted to a rangabove the ground 3. Set to the maxim EUT transmit cont 4. Use the following (1) Span shall wide emission bein (2) Set RBW=120 for f>1GHz; V Sweep = aut = max hold for (3) For average correction factors and the set of t	at the emission source mum signal. The final enna elevation shall be issions. The measurem for maximum emission ge of heights of from 1 r or reference ground pla um power setting and tinuously. spectrum analyzer sett de enough to fully captu- ng measured; 0 kHz for f < 1 GHz, RB /BW≥RBW; to; Detector function = p	that which ent s shall be n to 4 m ane. enable the ings: ure the W=1MHz beak; Trace
	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Rea	L1+N2*L2++Nn-1*LN number of type 1 pulse e 1 pulses, etc. ission Level = Peak Em og(Duty cycle) ading: Antenna Factor - Level - Preamp Factor :	es, L1 is hission ⊦ Cable
Test results:	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Rea	number of type 1 pulse e 1 pulses, etc. ission Level = Peak Em og(Duty cycle)	es, L1 is hission ⊦ Cable
Test results:	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Rea Loss + Read I	number of type 1 pulse e 1 pulses, etc. ission Level = Peak Em og(Duty cycle) ading: Antenna Factor -	es, L1 is hission + Cable
Test results:	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Rea Loss + Read I	number of type 1 pulse e 1 pulses, etc. ission Level = Peak Em og(Duty cycle) ading: Antenna Factor -	es, L1 is hission + Cable
Test results:	On time =N1* Where N1 is length of type Average Em Level + 20*lo Corrected Rea Loss + Read I	number of type 1 pulse e 1 pulses, etc. ission Level = Peak Em og(Duty cycle) ading: Antenna Factor -	es, L1 is hission + Cable

5.11.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Radiated Er	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	7	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	21	
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/

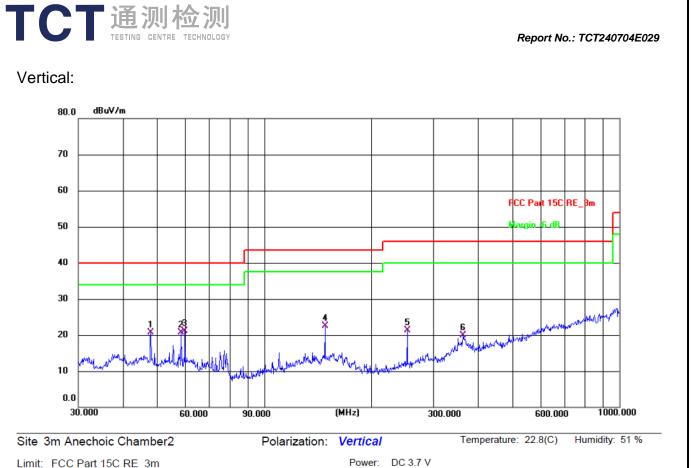

Page 25 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.11.3. Test Data

Please refer to following diagram for individual

Site 3m Anechoic Chamber2


Polarization: Horizontal

Temperature: 22.8(C) Humidity: 51 %

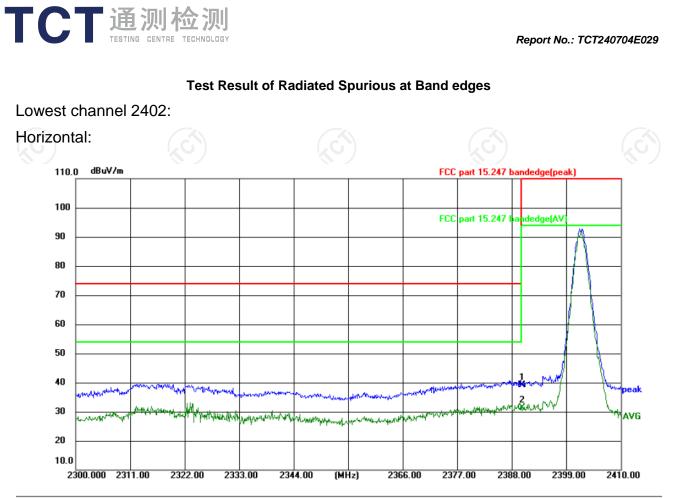
Limit: F	CC Part 15C R	E_3m			F	ower: D	OC 3.7 V		,
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	180.0164	43.33	-19.52	23.81	43.50	-19.69	QP	Ρ	
2	191.7450	49.62	-20.59	29.03	43.50	-14.47	QP	Р	
3	287.9904	41.87	-17.40	24.47	46.00	-21.53	QP	Р	
4	319.9368	41.17	-17.53	23.64	46.00	-22.36	QP	Р	
5 *	351.7079	50.65	-16.54	34.11	46.00	-11.89	QP	Ρ	
6	370.7022	46.42	-15.65	30.77	46.00	-15.23	QP	Ρ	

Page 26 of 96

	001 011 1001								
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	47.9938	39.28	-18.60	20.68	40.00	-19.32	QP	Ρ	
2	58.4074	39.55	-18.82	20.73	40.00	-19.27	QP	Ρ	
3 *	59.8588	40.07	-18.97	21.10	40.00	-18.90	QP	Ρ	
4	148.4410	40.00	-17.44	22.56	43.50	-20.94	QP	Ρ	
5	252.9481	40.21	-18.99	21.22	46.00	-24.78	QP	Ρ	
6	362.9843	35.84	-15.93	19.91	46.00	-26.09	QP	Ρ	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.
 Freq. = Emission frequency in MHz


Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor=Antenna Factor + Cable loss – Pre-amplifier

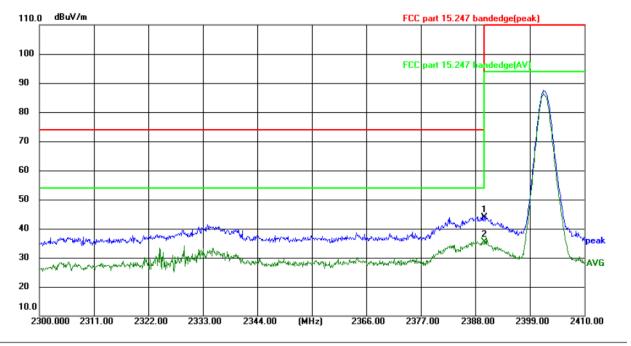
Limit ($dB\mu V/m$) = Limit stated in standard

 $Over (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

* is meaning the worst frequency has been tested in the test frequency range.

Page 27 of 96

 Site: 3m Anechoic Chamber
 Polarization: Horizontal
 Temperature: 23.7(°C)
 Humidity: 57 %

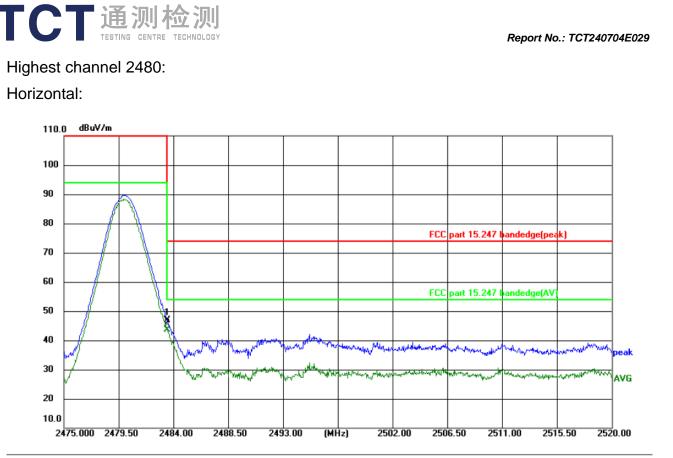

 Limit: FCC part 15.247 bandedge(peak)
 Power:DC 3.7V

	r oo part ro.		age(pean)				•		
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2390.000	55.05	-15.86	39.19	74.00	-34.81	peak	Р	
2 *	2390.000	47.23	-15.86	31.37	54.00	-22.63	AVG	Р	

Page 28 of 96

Vertical:

TCT通测检测 TESTING CENTRE TECHNOLOGY



Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.7(°C) Humidity: 57 %

Limit:	FCC part 15.2	247 bandeo	lge(peak)		Pov	ver:DC	3.7∨		
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2390.000	59.72	-15.86	43.86	74.00	-30.14	peak	Ρ	
2 *	2390.000	51.22	-15.86	35.36	54.00	-18.64	AVG	Ρ	

Page 29 of 96

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.7(°C) Humidity: 57 %

Limit:	FCC part 15.2	47 banded	lge(peak)		Pov	ver:DC	3.7∨		
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	62.67	-15.87	46.80	74.00	-27.20	peak	Ρ	
2 *	2483.500	59.46	-15.87	43.59	54.00	-10.41	AVG	Ρ	

Page 30 of 96

		ING GENTRE	金 测 TECHNOLOGY							Report No	o.: TCT2	40704E0
ertio	cal:											
	110.0 dBuV/m						1				1	
	100											
	90											
	80	n										
	70						F	CC pa	rt 15.247	bandedge(pe	ak)	
	60											
	50	L					F	CC pa	rt 15.247	andedge(AV		
		X	would	were have and	whether water	Martin and						
	40		whenever	Her Mar Lawren	worther where the states of	Mar Mar	norther starts	ماند جامعه ماند	na series and a series of the	and a start of the	and the second	www.peak
	30 m ^{dr}						1.000,000					AVG
	20											-
		79.50 248	34.00 24 8	8.50 2493	3.00 (MH	lz) 250	02.00	2506.5	50 251	11.00 25	15.50	2520.00
	3m Anechoic			Polarizatio		al ower:DC 3		eratur	e: 23.7(°	C) Hur	midity: 5	7 %
mit:	FCC part 15.2	247 bande	ddo(noak)		00	MA/Ar)(; ;	3.7V					
	Frequency	Reading	Factor	Level	Limit	Margin			Domo			
lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m	Margin (dB)	Detector	P/F	Rema	ark		
1	Frequency	Reading	Factor	Level	Limit	Margin		P/F P P	Rema	ark		
1	Frequency (MHz) 2483.500	Reading (dBuV) 64.13 60.42	Factor (dB/m) -15.87 -15.87	Level (dBuV/m) 48.26 44.55	Limit (dBuV/m 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P			orst cas	se Mode
1 * • <i>t</i> e :	Frequency (MHz) 2483.500 2483.500	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 ducted in donly.	Level (dBuV/m) 48.26 44.55	Limit (dBuV/m 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),		orst cas	
1	Frequency (MHz) 2483.500 2483.500 Measurement	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87	Level (dBuV/m) 48.26 44.55	Limit (dBuV/m 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P			orst cas	se Mode
1 2 * o <i>t</i> e <i>:</i>	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 ducted in donly.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		
1 * • <i>t</i> e :	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 ducted in donly.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w	orst cas	
1 2 * o <i>t</i> e <i>:</i>	Frequency (MHz) 2483.500 2483.500 Measurement	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 ducted in donly.	Level (dBuV/m) 48.26 44.55	Limit (dBuV/m 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		
1 2 *	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 nducted in f only.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m) 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		
1 2 *	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 ducted in donly.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		
1 2 *	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 nducted in f only.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m) 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		
1 2 *	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 nducted in f only.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m) 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		
1 2 *	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 nducted in f only.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m) 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		
1 2 * D te:	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 nducted in d only.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m) 74.00 54.00 odulation (Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		
1 2 *	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 nducted in f only.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m) 74.00 54.00	Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		
1 2 *	Frequency (MHz) 2483.500 2483.500 Measurement (8DPSK) was	Reading (dBuV) 64.13 60.42 ts were cor s submitted	Factor (dB/m) -15.87 -15.87 nducted in d only.	Level (dBuV/m) 48.26 44.55 all three mo	Limit (dBuV/m) 74.00 54.00 odulation (Margin (dB) -25.74 -9.45	Detector peak AVG	P P	DPSK),	and the w		

Page 31 of 96

Above 1GHz

Modulation Type: 8DPSK										
Low channel: 2402 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	A \ /	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4804	Н	43.41		0.66	44.07		74	54	-9.93	
7206	Н	34.63		9.50	44.13		74	54	-9.87	
	H									
4804	V	46.29		0.66	46.95		74	54	-7.05	
7206	V	37.77		9.50	47.27		74	54	-6.73	
	V									

Middle cha	nnel: 2441	MHz		XC V) (((N I
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Н	45.15		0.99	46.14		74	54	-7.86
7323	KCĤ)	34.94	-1,0	9.87	44.81	<u>, C -}-</u>	74	54	-9.19
	H								
4882	V	46.60		0.99	47.59		74	54	-6.41
7323	V	36.82		9.87	46.69		74	54	-7.31
27	V			X	27				

High channel: 2480 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	44.48		1.33	45.81)	74	54	-8.19
7440	Н	35.46		10.22	45.68		74	54	-8.32
	Н								
									(.C
4960	V	44.04		1.33 🔍	45.37		74	54	-8.63
7440	V	33.51		10.22	43.73		74	54	-10.27
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

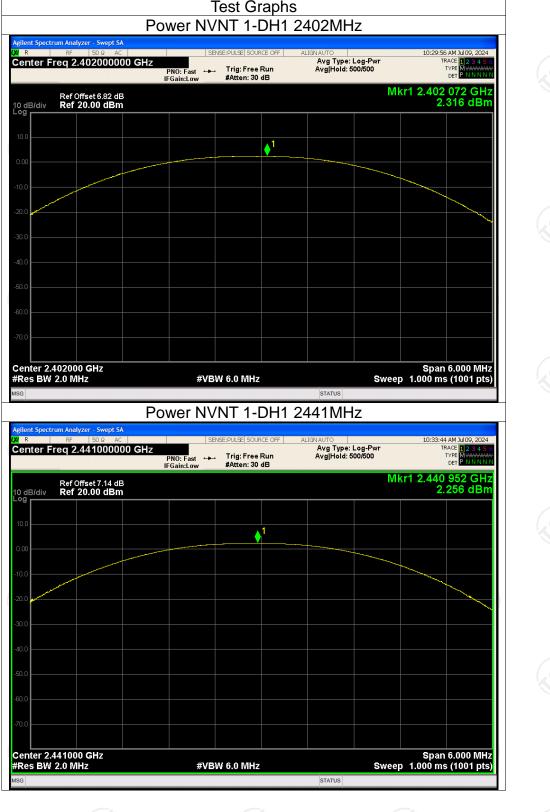
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

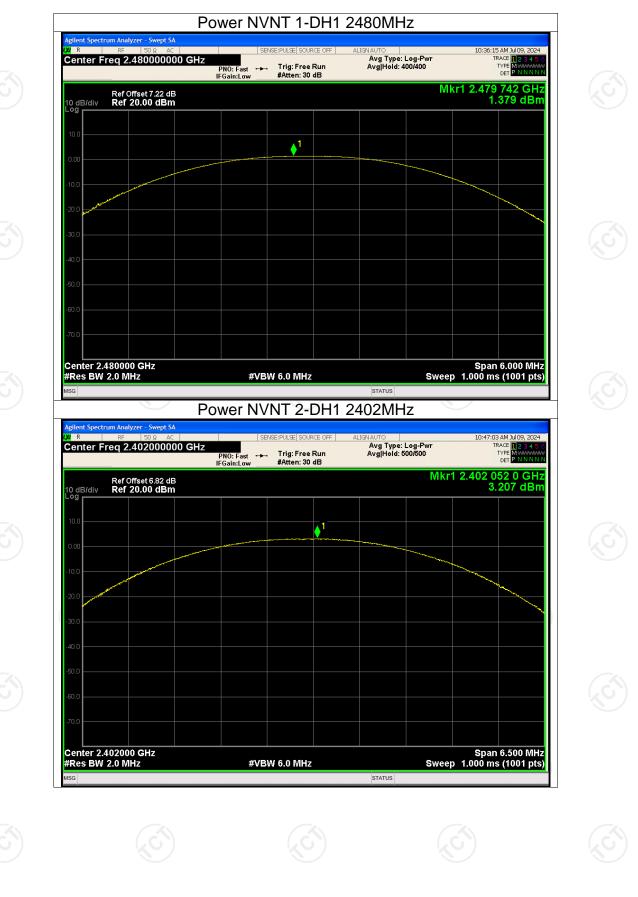
below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

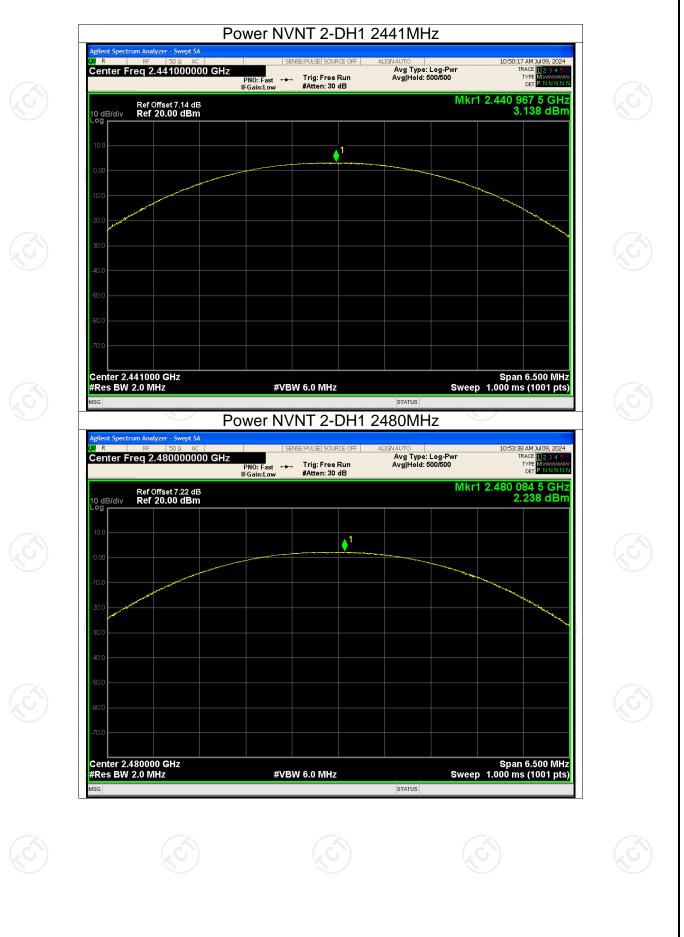
Appendix A: Test Result of Conducted Test


Maximum Conducted Output Power										
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict					
NVNT	1-DH1	2402	2.32	30	Pass					
NVNT	1-DH1	2441	2.26	30	Pass					
NVNT	1-DH1	2480	1.38	30	Pass					
NVNT	2-DH1	2402	3.21	21	Pass					
NVNT	2-DH1	2441	3.14	21	Pass					
NVNT	2-DH1	2480	2.24	21	Pass					
NVNT	3-DH1	2402	3.77	21	Pass					
NVNT	3-DH1	2441	3.72	21	Pass					
NVNT	3-DH1	2480	2.83	21	Pass					


Page 33 of 96

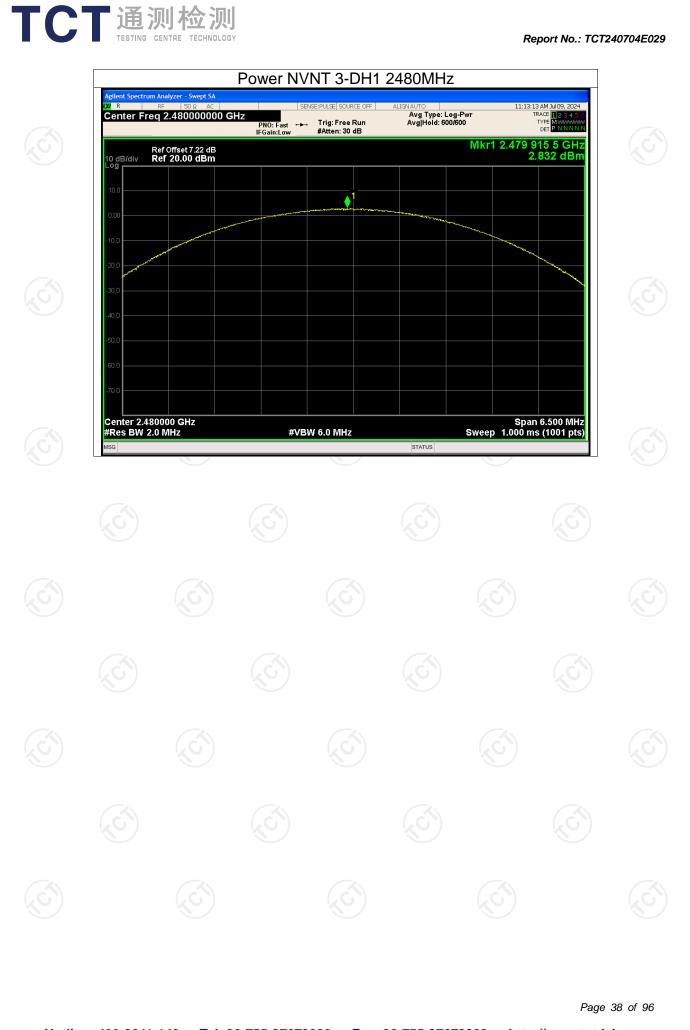
TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT240704E029



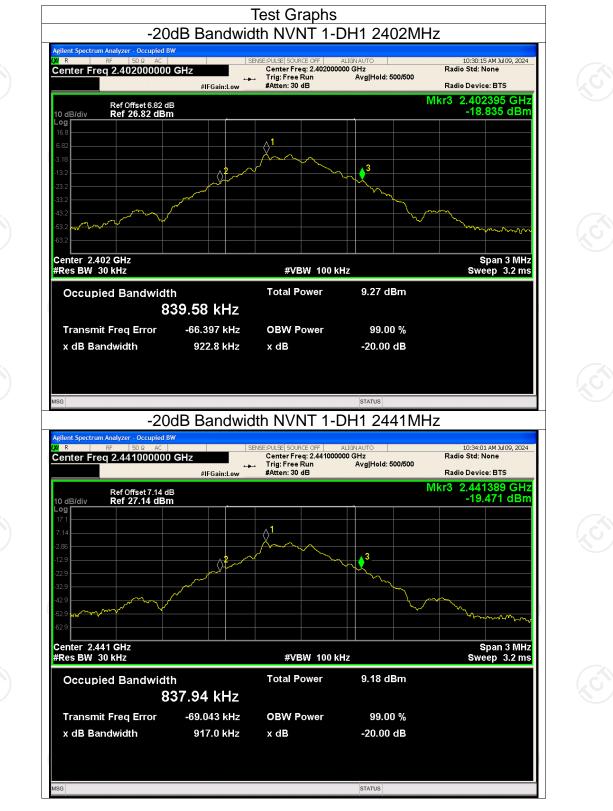
Page 34 of 96




Report No.: TCT240704E029

Report No.: TCT240704E029

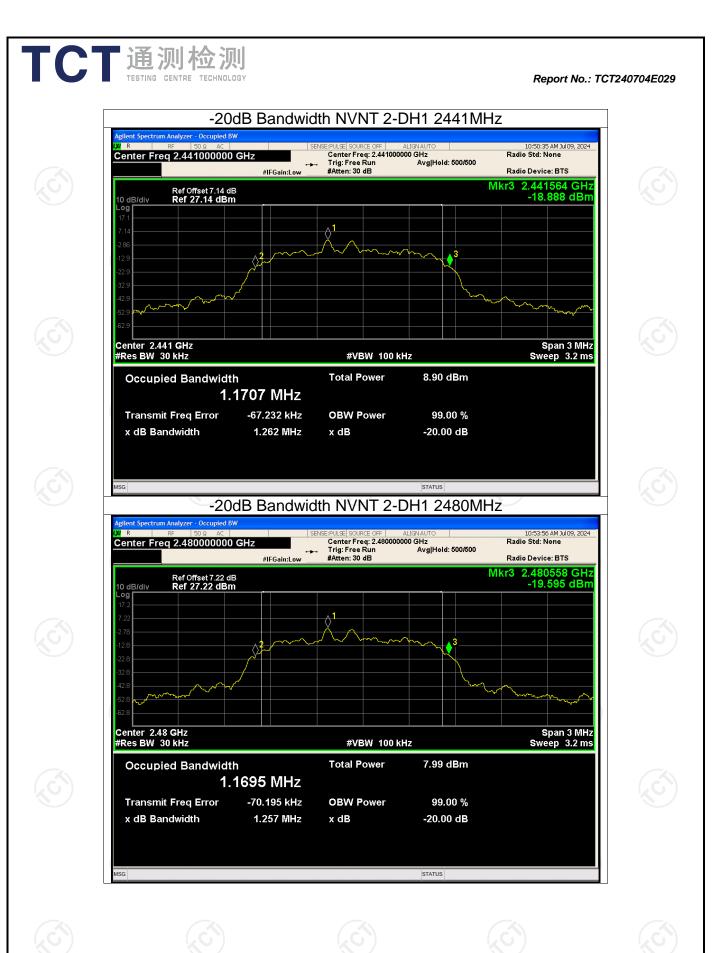
Report No.: TCT240704E029

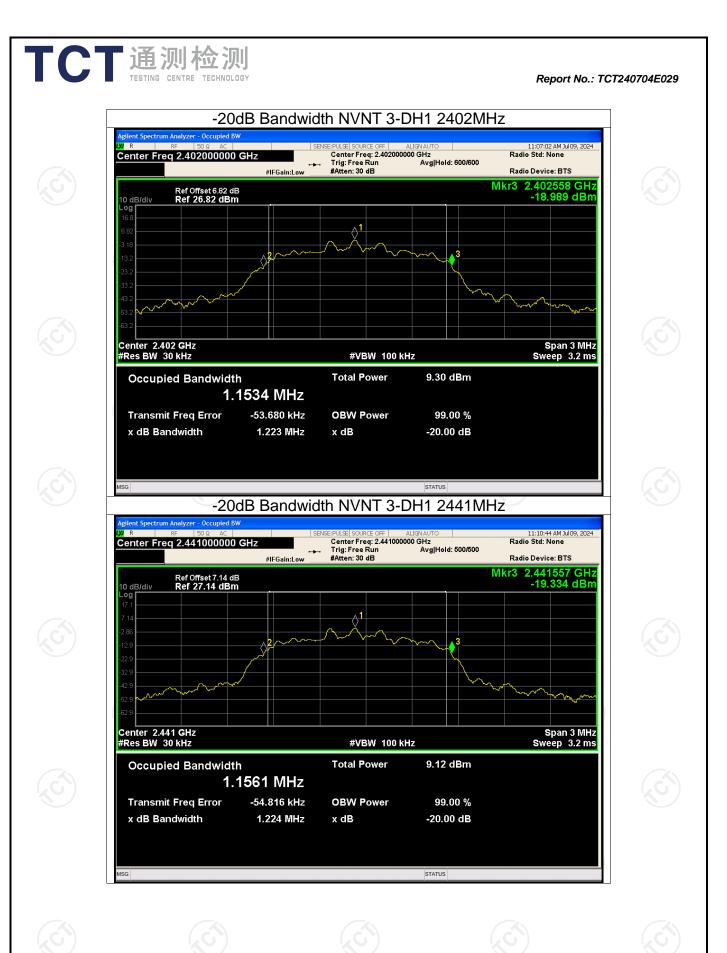

TCT通测检测 TESTING CENTRE TECHNOLOGY

-20dB Bandwidth						
Condition Mode		Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict		
NVNT	1-DH1	2402	0.923	Pass		
NVNT 🚫	1-DH1	2441	0.917	Pass		
NVNT	1-DH1	2480	0.878	Pass		
NVNT	2-DH1	2402	1.269	Pass		
NVNT	2-DH1	2441	1.262	Pass		
NVNT	2-DH1	2480	1.257	Pass		
NVNT	3-DH1	2402	1.223	Pass		
NVNT	3-DH1	2441	1.224	Pass		
NVNT	3-DH1	2480	1.255	Pass		
No.)					

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

CT 通测检测 TESTING CENTRE TECHNOLOGY


Page 40 of 96


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 41 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 43 of 96

Report No.: TCT240704E029

Carrier Frequencies Separation

Page 45 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

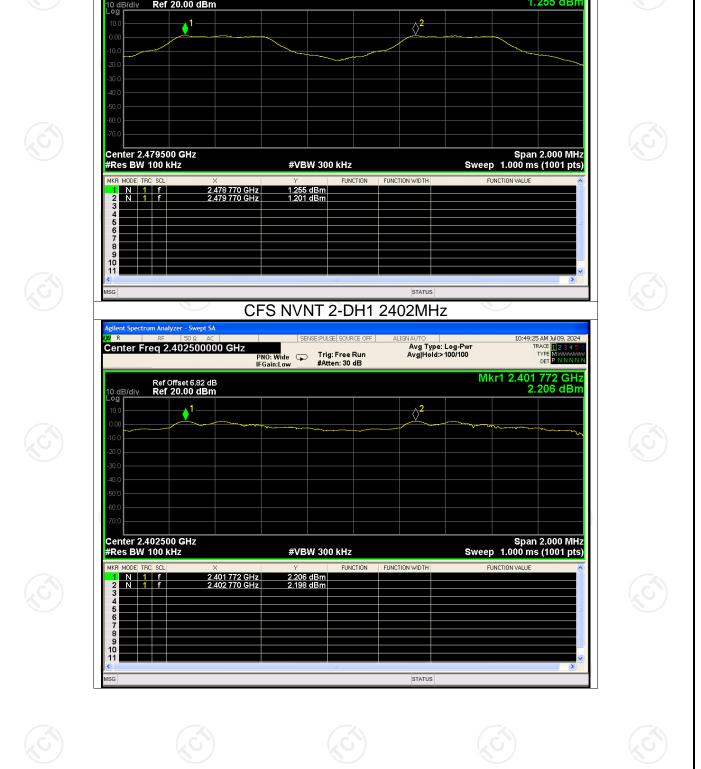
Test Graphs CFS NVNT 1-DH1 2402MHz

Avg Type: Log-Pwr Avg|Hold:>100/100

SENSE:PULSE SOURCE OFF

PNO: Wide 🖵 Trig: Free Run IFGain:Low #Atten: 30 dB

R


gilent Spectrum Analyzer - Swept SA

Center Freq 2.402500000 GHz

Report No.: TCT240704E029

Page 46 of 96

1:32:31 AM Jul 09, 2024 TRACE 12345 6 TYPE MWWWWW DET PNNNNN

CFS NVNT 1-DH1 2480MHz

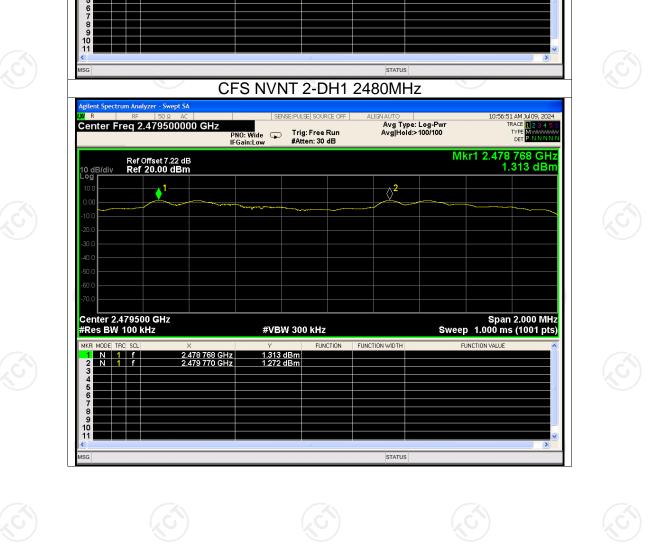
PNO: Wide Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold:>100/100

FCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectrum Analyzer - Swept SA

Center Freq 2.479500000 GHz


Ref Offset 7.22 dB Ref 20.00 dBm Report No.: TCT240704E029

10:38:29 AM Jul 09, 2024 TRACE 1 2 3 4 5

TYPE DET

Mkr1 2.478 770 GHz 1.255 dBm

Page 47 of 96

 \Diamond^2 Center 2.441500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz MKR MODE TRC FUNCTION FUNCTION WIDTH FUNCTION VALUE N 1 f N 1 f 2.440 770 GHz 2.441 774 GHz 2.160 dBm 2.102 dBm

CFS NVNT 2-DH1 2441MHz

PNO: Wide Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold:>100/100

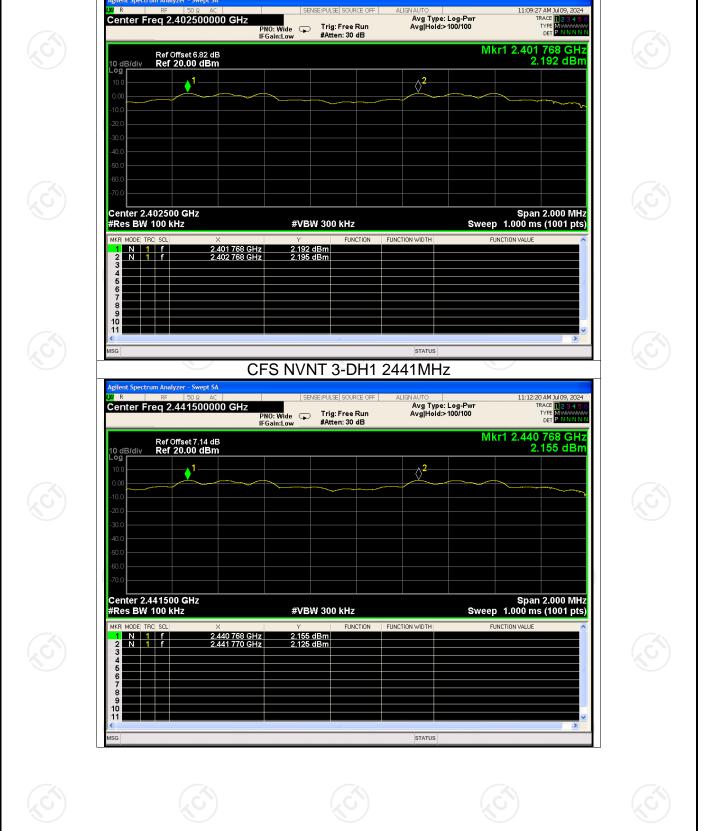
10 dB/div Log

3 5

gilent Spectrum Analyzer - Swept SA

Center Freq 2.441500000 GHz

Ref Offset 7.14 dB Ref 20.00 dBm

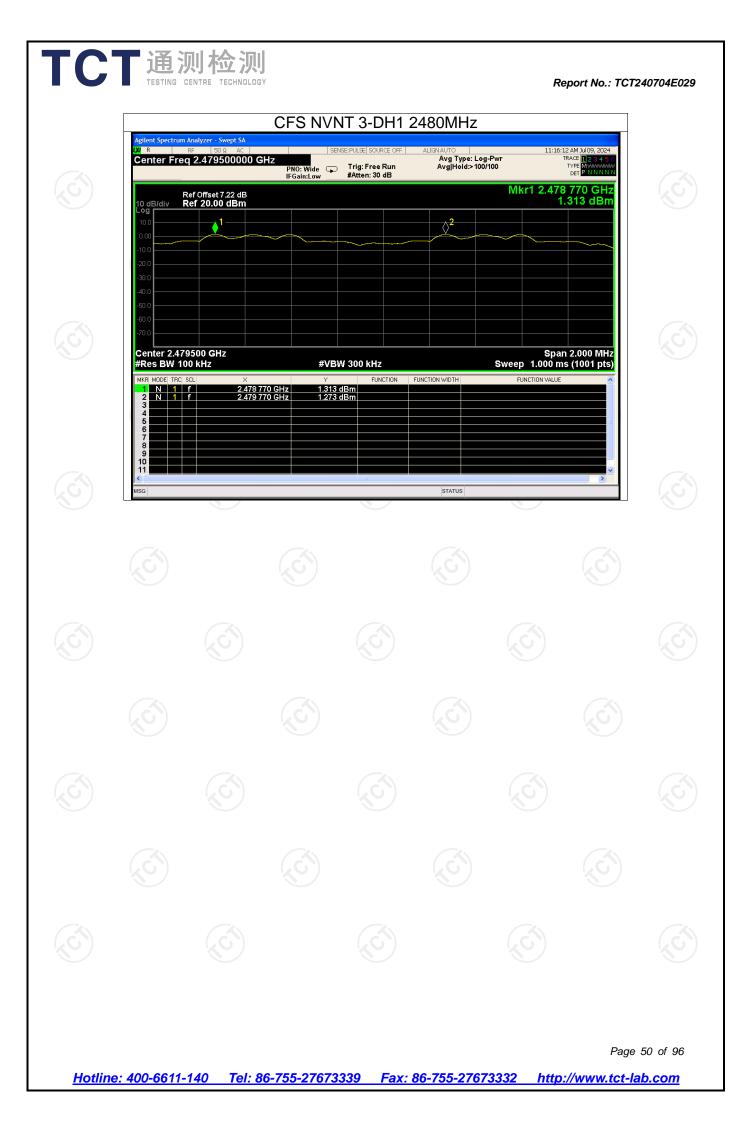

Page 48 of 96

Report No.: TCT240704E029

:44 AM Jul 09, 2024 TRACE 1 2 3 4 5

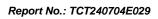
TYPE DET

Mkr1 2.440 770 GHz 2.160 dBm


CFS NVNT 3-DH1 2402MHz

FCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectrum Analyzer - Swept SA


Report No.: TCT240704E029

Page 49 of 96

Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com

			Band Edge			
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-49.92	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-51.84	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-48.86	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-52.38	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-48.87	-20	Pass
NVNT	3-DH1	2480	No-Hopping	-52.23	-20	Pass

Page 51 of 96

Span 8.000 MHz Sweep 1.000 ms (1001 pts) STATUS SENSE:PULSE SOURCE OFF ALIGN AUTO Avg Type: Log-Pwr 10:30:41 AM Jul 09, 2024

▲1 mm Mann mΛ man Center 2.402000 GHz #Res BW 100 kHz #VBW 300 kHz Band Edge NVNT 1-DH1 2402MHz No-Hopping Emission

Test Graphs Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref

Avg Type: Log-Pwr Avg|Hold: 1000/1000

PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Ref Offset 6.82 dB 10 dB/div Ref 20.00 dBm		g: Free Run ten: 30 dB	Avg Type: L Avg Hold: 10	og-Pwr 00/1000	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
10 dB/div Ref 20.00 dBm					DELIGHTERIN
Log				Mkr1 2.	401 8 GHz 2.252 dBm
10.0 0.00					1
-10.0					-1 17.3 0 dBm
-20.0					
-40.0	Marker Maryalland a rost ylus	open happround	Morrisullusenportourage	Amphharman 3	2
-60.0					
Start 2.30600 GHz #Res BW 100 kHz	#VBW 30	0 kHz		Stop Sweep 9.600 r	2.40600 GHz ns (1001 pts)
MKR MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	E 🔥
1 N 1 f 2.4018 GHz 2 N 1 f 2.4000 GHz 3 N 1 f 2.3900 GHz 4 N 1 f 2.3540 GHz	-49.188 dBm -53.312 dBm				
5 6 7 8					
9 10 11 11 11 11 11 11 11 11 11 11 11 11					v
< ISG		Ш	STATUS		>

Report No.: TCT240704E029

Page 52 of 96

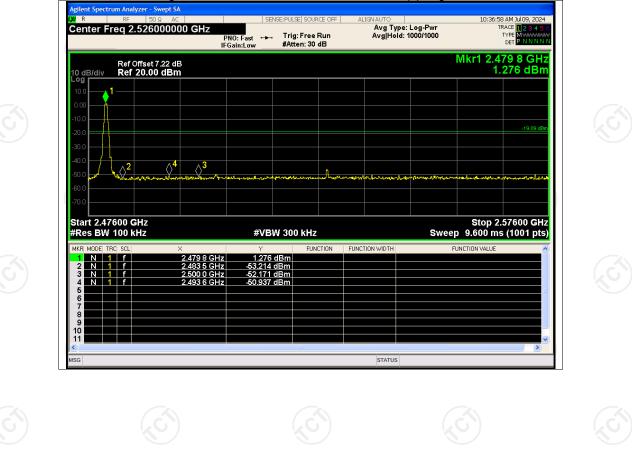
30:24 AM Jul 09, 2024

23456 NNNNN 1 M P

TRACE TYPE DET

Mkr1 2.401 776 GHz 2.196 dBm

gilent Spectrum Analyzer - Swept SA


Center Freq 2.402000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm

U R

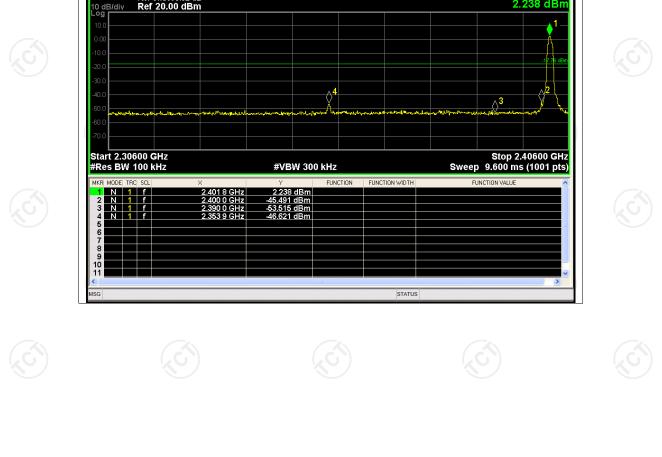
10 dB/div Log

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 944 GHz 0.908 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/div 1 _مړکې ma how my mr www. wwwww www Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000

Band Edge NVNT 1-DH1 2480MHz No-Hopping Emission


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 53 of 96

Report No.: TCT240704E029

10:36:41 AM Jul 09, 2024 TRACE 12345 TYPE MWWWW DET PNNNN

Center Freq 2.480000000 GHz

10:47:30 AM Jul 09, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N TYPE DET Mkr1 2.401 776 GHz 2.237 dBm Ref Offset 6.82 dB Ref 20.00 dBm ø www.www. ŝ M $w_{\rm r}$ when na man Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Band Edge NVNT 2-DH1 2402MHz No-Hopping Emission

SENSE:PULSE SOURCE OFF

PNO: Fast 🔸 Trig: Free Run IFGain:Low #Atten: 30 dB

Avg Type: Log-Pwr Avg|Hold: 1000/1000

FCT通测检测 TESTING CENTRE TECHNOLOGY

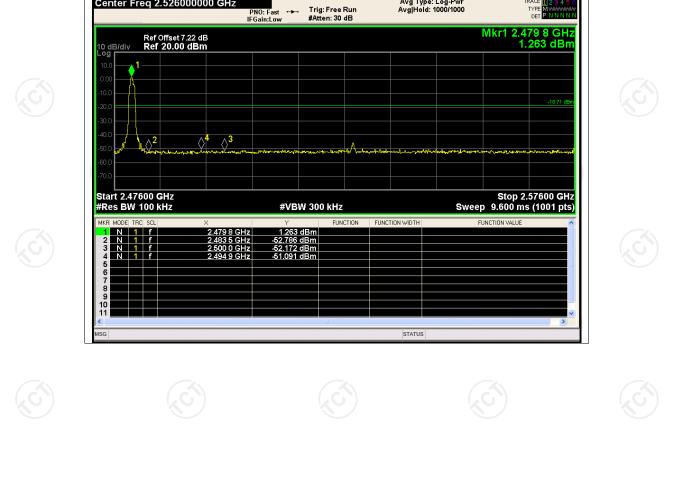
l R

Center Freq 2.356000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm

Report No.: TCT240704E029

7 AM Jul 09, 2024


TRACE

TYPE DET

Mkr1 2.401 8 GHz 2.238 dBm

Page 54 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 10:54:06 AM Jul 09, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.479 776 GHz 1.292 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/div ▲1 nom whatman m Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

Band Edge NVNT 2-DH1 2480MHz No-Hopping Emission SENSE:PULSE SOURCE OFF

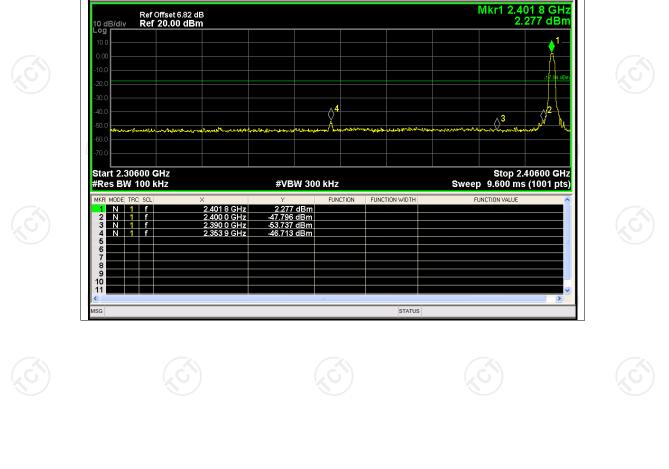
Avg Type: Log-Pwr Avg|Hold: 1000/1000

Page 55 of 96

Report No.: TCT240704E029

3 AM JUL09, 2024

TRACE


Center Freq 2.480000000 GHz

l R

Center Freq 2.526000000 GHz

Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref 11:07:12 AM Jul 09, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 Center Freq 2.402000000 GHz PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 776 GHz 2.161 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Ø Mary mm why por hann ~n.~ Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 3-DH1 2402MHz No-Hopping Emission

SENSE:PULSE SOURCE OFF

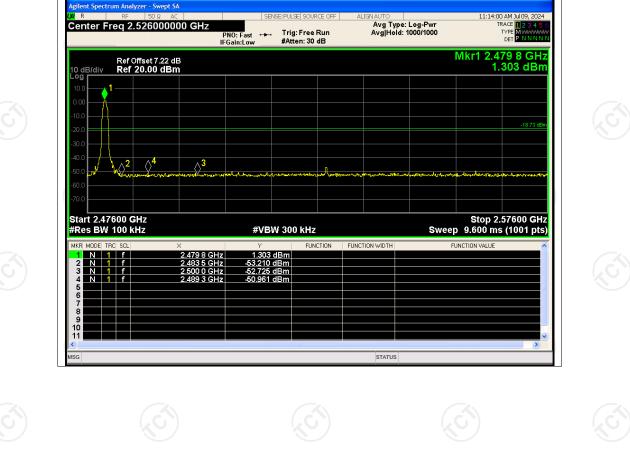
PNO: Fast 🔸 Trig: Free Run IFGain:Low #Atten: 30 dB

Avg Type: Log-Pwr Avg|Hold: 1000/1000

Page 56 of 96

Report No.: TCT240704E029

9 AM Jul 09, 2024


TRACE

TYPE DET

l R

Center Freq 2.356000000 GHz

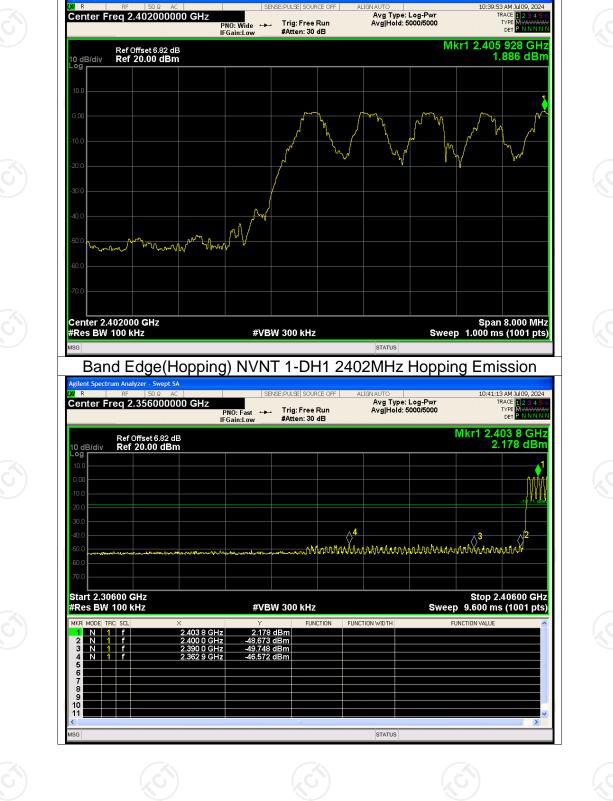
11:13:43 AM Jul 09, 2024 TRACE 12 3 4 5 TYPE MWWWW DET P N N N N SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 Center Freq 2.480000000 GHz PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 776 GHz 1.272 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/div ▲1 ሌፊ mm www. VI A AY WWW www. Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

Band Edge NVNT 3-DH1 2480MHz No-Hopping Emission

Report No.: TCT240704E029

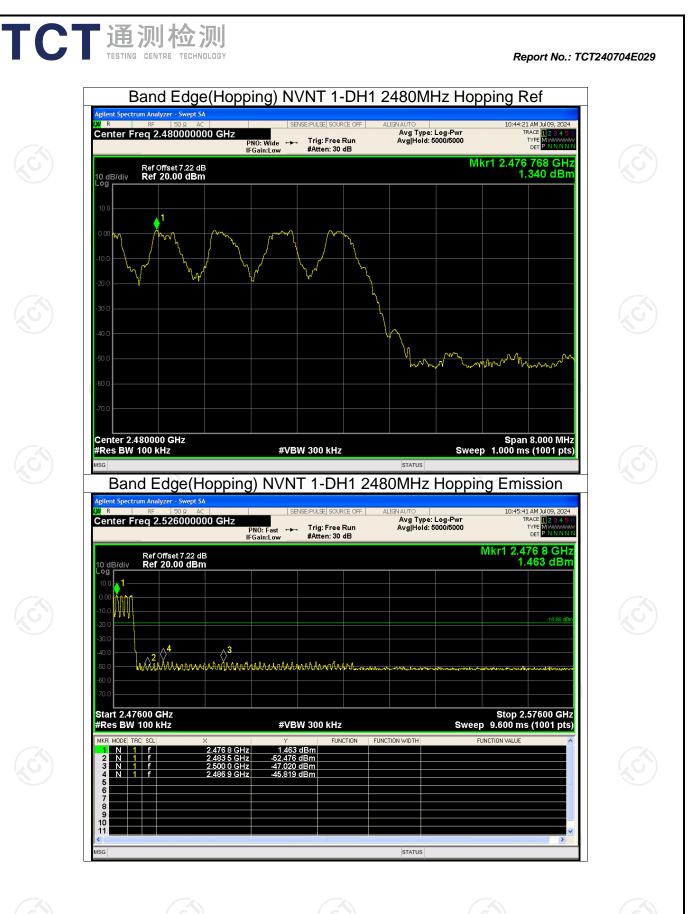
Report No.: 101240/04E029	Report	No.:	TCT240704E029
---------------------------	--------	------	---------------


Band Edge(Hopping)								
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	1-DH1	2402	Hopping	-48.46	-20	Pass		
NVNT	1-DH1	2480	Hopping	-47.15	-20	Pass		
NVNT	2-DH1	2402	Hopping	-49.28	-20	Pass		
NVNT	2-DH1	2480	Hopping	-47.43	-20	Pass		
NVNT	3-DH1	2402	Hopping	-49.37	-20	Pass		
NVNT 🐇	3-DH1	2480	Hopping	-47.45	-20	Pass		

Band Edge(Hopping)

Page 58 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Test Graphs Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref

CT 通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectrum Analyzer - Swept SA

Report No.: TCT240704E029

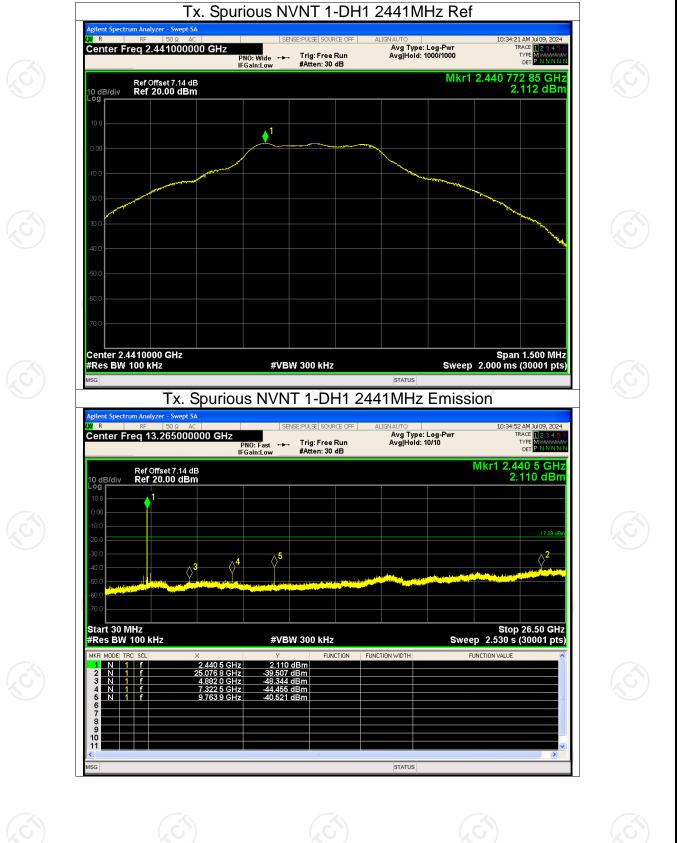
Page 59 of 96



Page 63 of 96

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict	
NVNT	1-DH1	2402	-41.66	-20	Pass	
NVNT	1-DH1	2441	-41.61	-20	Pass	
NVNT	1-DH1	2480	-41.22	-20	Pass	
NVNT	2-DH1	2402	-41.89	-20	Pass	
NVNT	2-DH1	2441	-44.17	-20	Pass	
NVNT	2-DH1	2480	-41.03	-20	Pass	
NVNT 🚫	3-DH1	2402	-42.29	-20	Pass	
NVNT	3-DH1	2441	-40.85	-20	Pass	
NVNT	3-DH1	2480	-41.30	-20	Pass	
			A			


R.C.

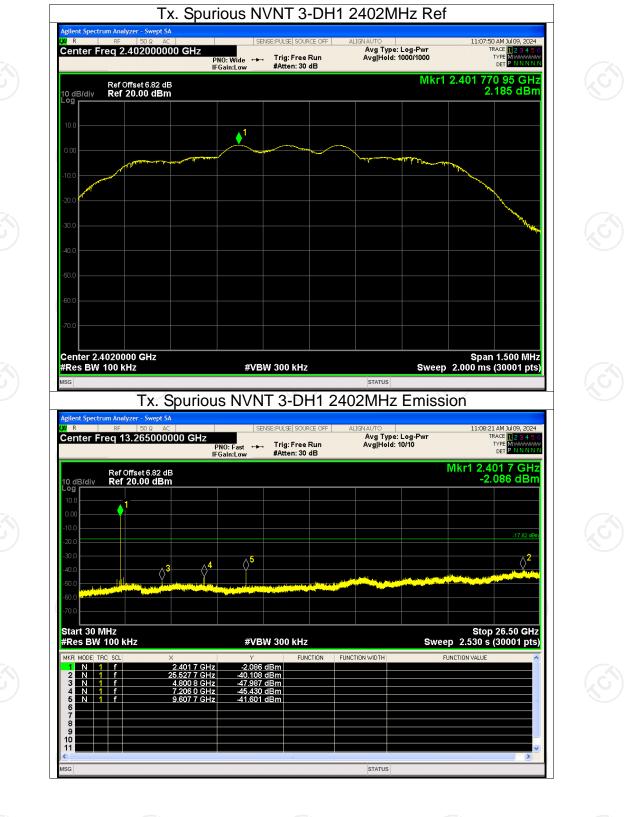
Page 65 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

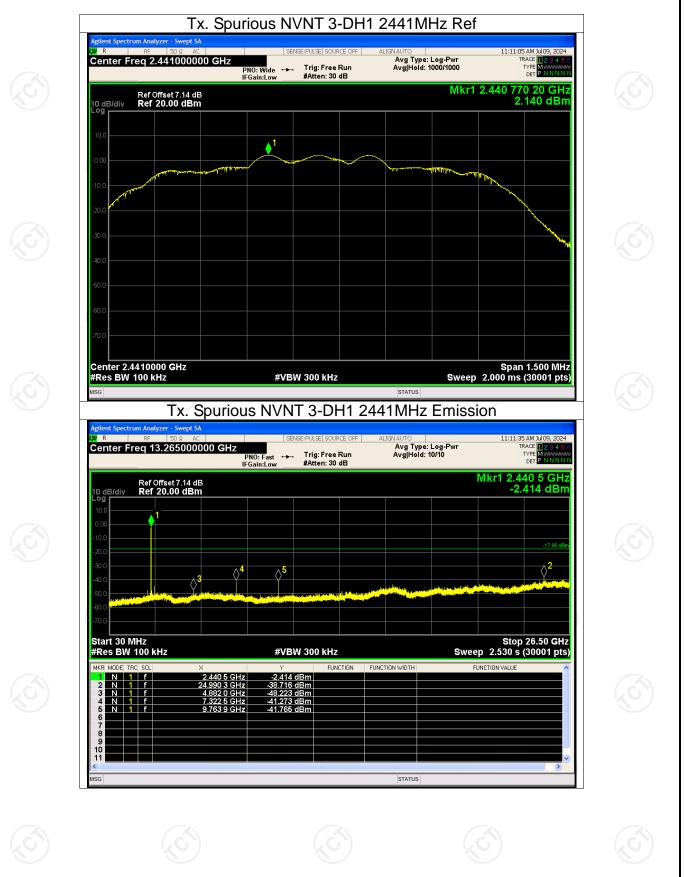
Page 66 of 96

Report No.: TCT240704E029

Page 68 of 96


Report No.: TCT240704E029

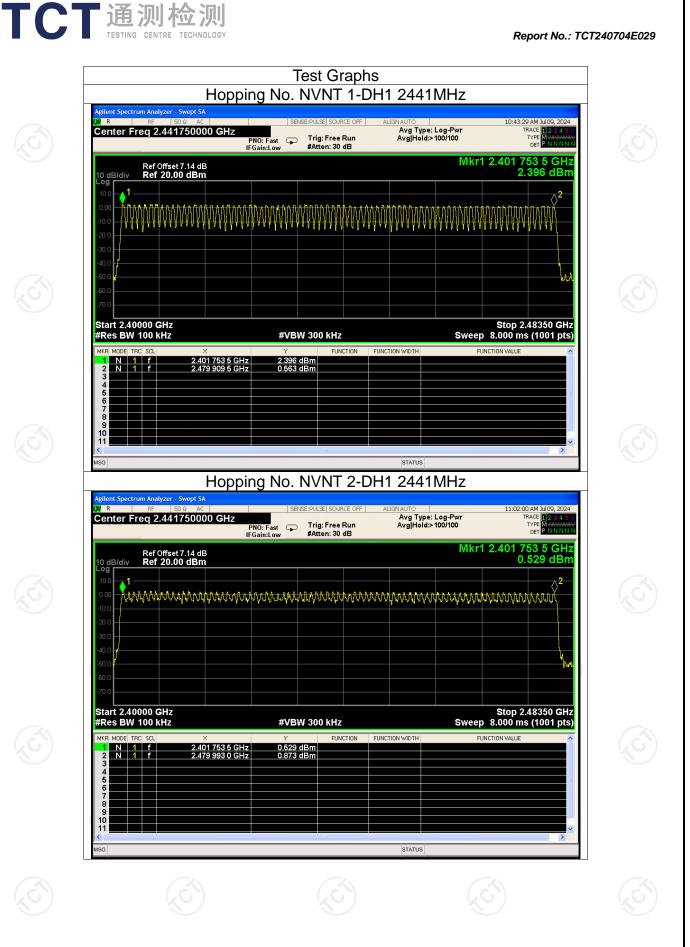
Page 70 of 96


Page 71 of 96

Report No.: TCT240704E029

Page 72 of 96

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

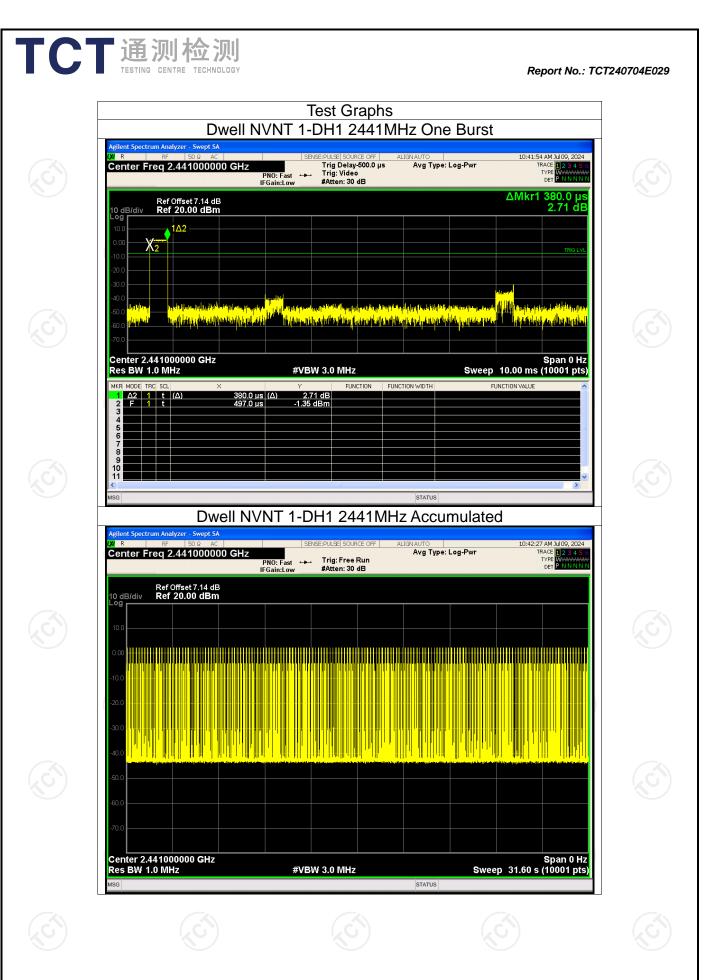

Report No.: TCT240704E029

Page 73 of 96

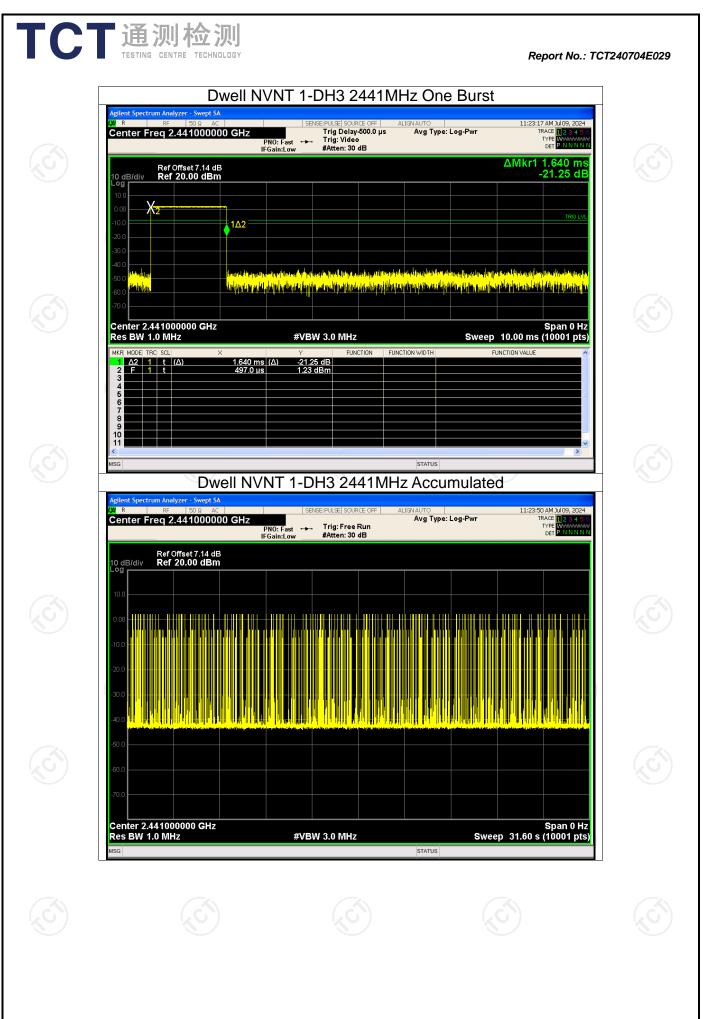
Page 74 of 96

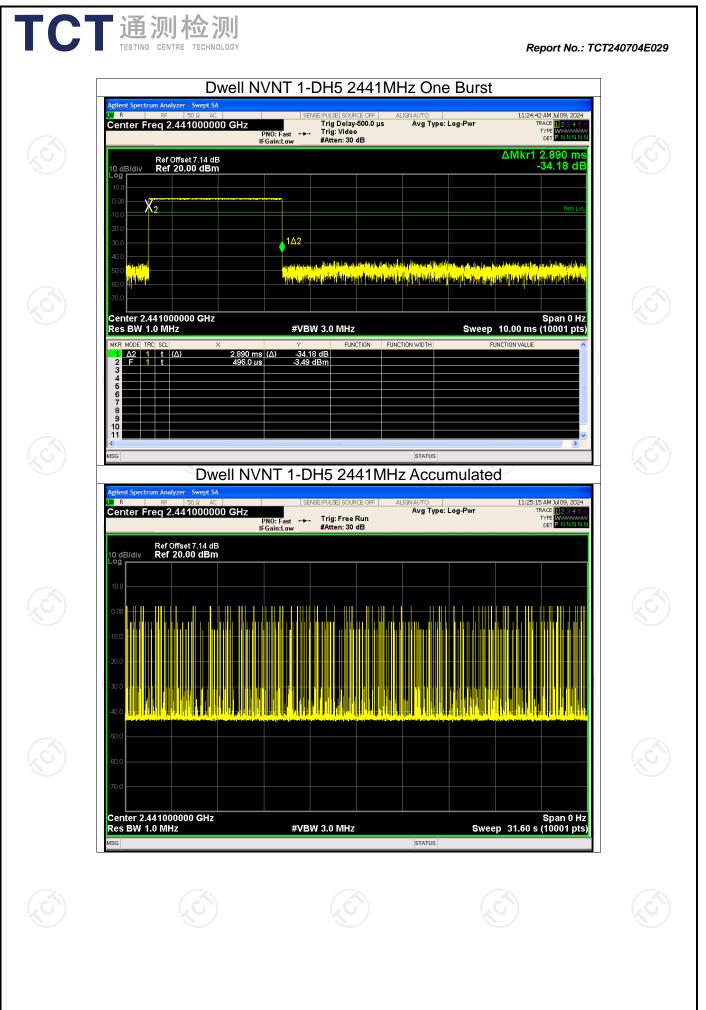
TC		则检测				Re	port No.: TCT2	240704E029	
	ConditionMoNVNT1-DNVNT2-DNVNT3-D		11 79 11 79			Limit 15 15 15	Pas Pas	Verdict Pass Pass Pass	
<u>Hotli</u>	ne: 400-6611	-140 Tel: 86	- <u>755-27673</u>	3339 Fax:	<u>86-755-2767</u>	<u>3332 http:</u>	Page //www.tct-la	75 of 96 1b.com	

Page 76 of 96

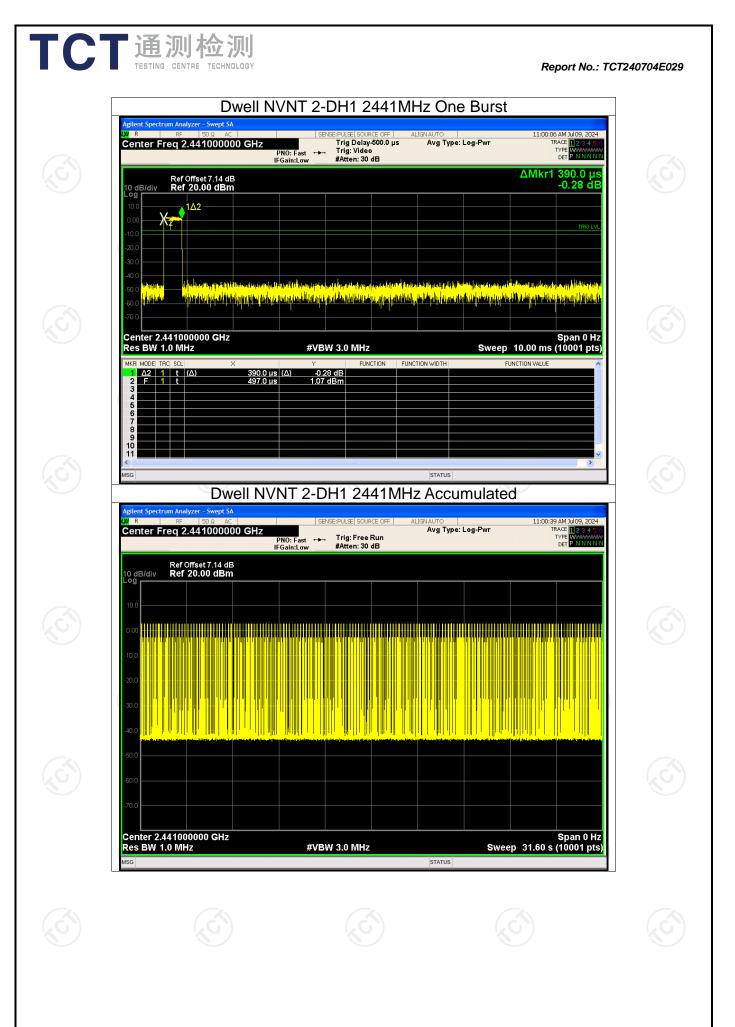

): Fast	11:20:50 AM 3U 09, 2024 Type: Log-Pwr old>100/100 TrACE 12:345 G TYPE PNNNNN Mkr1 2.401 753 5 GHz 1.115 dBm
#VBW 300 kHz Function Function width -3.346 dBm - - -	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)
STATU	3

ТСТ	通测检测
	TESTING CENTRE TECHNOLOGY

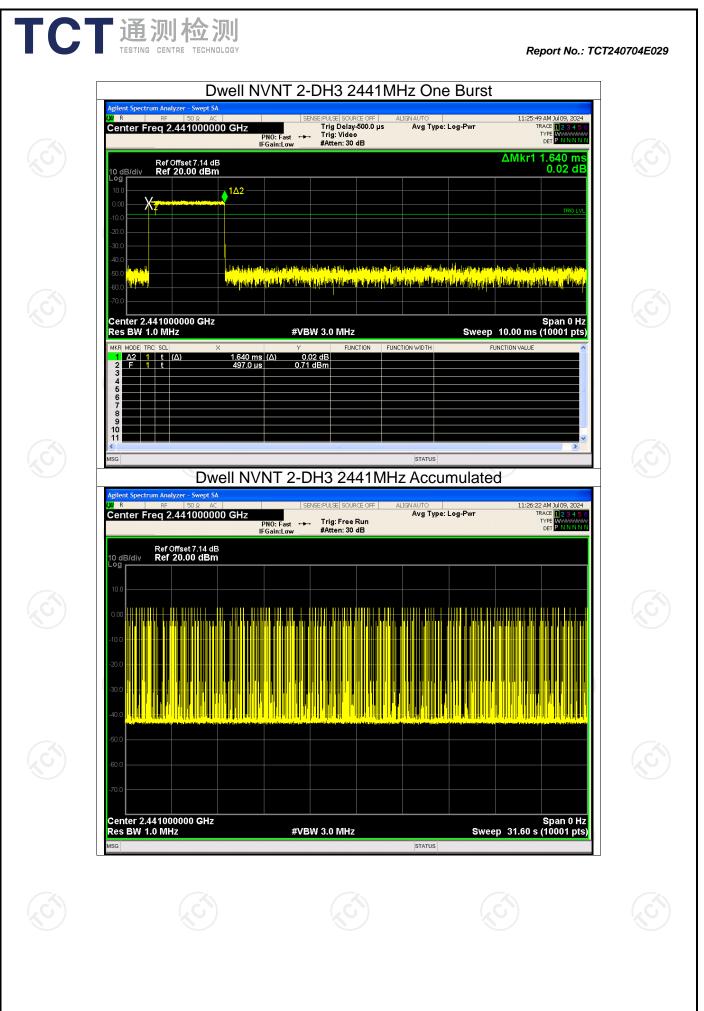

Report No.: TCT240704E029

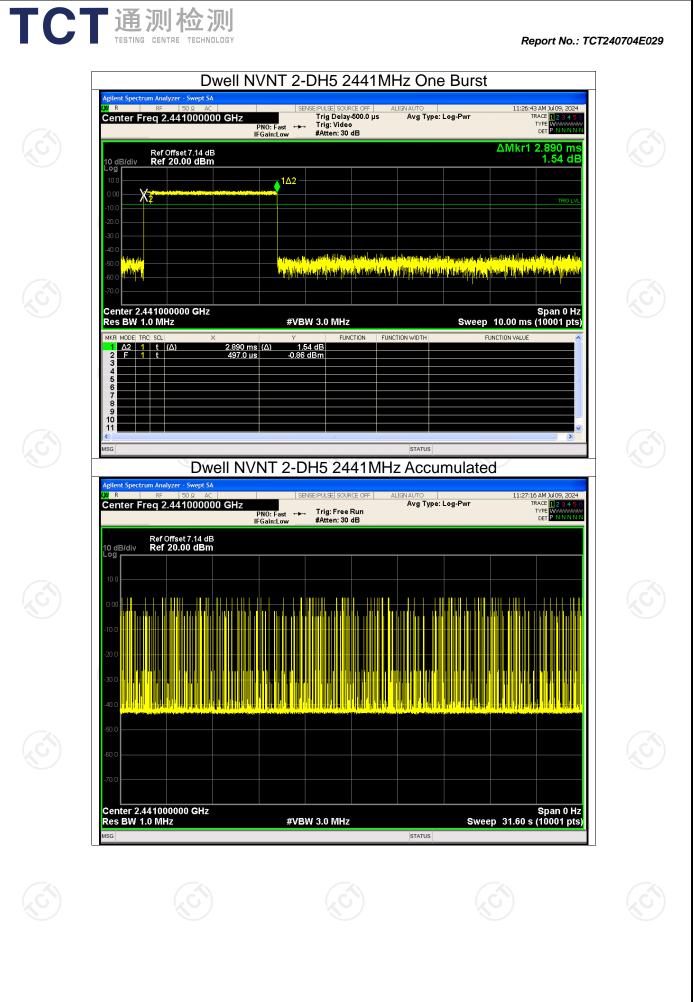

			Dwe	II Time				
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.38	120.46	317	31600	400	Pass
NVNT	1-DH3	2441	1.64	267.32	163	31600	400	Pass
NVNT	1-DH5	2441	2.89	309.23	107	31600	400	Pass
NVNT 🐇	2-DH1	2441	0.39	122.85	315	31600	400	Pass
NVNT	2-DH3	2441	1.64	267.32	163	31600	400	Pass
NVNT	2-DH5	2441	2.89	300.56	104	31600	400	Pass
NVNT	3-DH1	2441	0.39	123.63	317	31600	400	Pass
NVNT	3-DH3	2441	1.64	275.52	168	31600	400	Pass
NVNT	3-DH5	2441	2.89	335.24	116	31600	400	Pass

Page 78 of 96



Page 79 of 96




Page 81 of 96

Page 82 of 96

Page 83 of 96

Page 84 of 96

C	ESTING CENTRE TECHNOLOGY Report No.: TCT Dwell NVNT 3-DH1 2441MHz One Burst	7240704E02
	Aglent Spectrum Analyzer - Swept SA Sense:PULSE SOURCE OFF ALIGNAUTO 11:05:24 AM M/09, 2024 Center Freq 2.4410000000 GHz Trig Delay-500.0 μs Avg Type: Log-Pwr TRACE 12:3 4 5 0 PNO: Fast → Trig: Video Trig: Video Trig: Video Trig: Video	
	IFGain:Low #Atten: 30 dB Der particului Ref Offset 7.14 dB AMkr1 390.0 µs 10 dB/div Ref 20.00 dBm 3.46 dB	
	0.00 100 100 100 100 100 100 100 100 100	
	-50.0 -60.0	
	Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.00 ms (10001 pts)	
	MKR MODE TC: ScL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 Δ2 1 t (Δ) 3.46 dB	
	2 F 1 t 496.0 μs -2.54 dBm 3 -	
	6 6 6 7 1 1 8 1 1 9 1 1	
	Dwell NVNT 3-DH1 2441MHz Accumulated	
	Agilent Spectrum Analyzer - Swept SA City R RF S0 @ Ac SENSE:PULSE SOURCE OFF ALIGNAUTO 11:05:57 AM Jul09, 2024 Center Freq 2.4410000000 GHz PN0: East PN0: Fast PN0: Fast	
	IFGain:Low #Atten: 30 dB Der 2011/0000	
	10 dB/div Ref 20.00 dBm	
	-20.0	
	-60.0	
	.70.0	
	Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 31.60 s (10001 pts)	
	MSG	

_

Page 85 of 96