

FCC Test Report

Part 15 subpart C

FCC ID:2AM8R-D450I

Client Information:

*Applicant:	Netradyne Inc
*Applicant add.:	9171 Towne Centre Drive, Suite 110, San Diego, CA 92122
Product Information:	
Sampling Details:	The below Test Item provided by applicant
*EUT Name:	Driveri
*Model No.:	D-450
*Brand Name:	Mnetradyne
*Series Model:	D-450A,D-455
Standards:	FCC PART 15 Subpart C: 2013 section 15.247

AA Electro Magnetic Test Laboratory Private Limited

Add.: Plot No 174, Udyog Vihar - Phase 4, Sector 18, Gurgaon, Haryana, India

Date of Receipt:	Aug 30, 2024	Date of Test: Aug 30 ~ Oct. 18, 2024
Date of Issue:	Nov. 20, 2024	Test Result: Pass
Declaration of Con	nformity:	Declaration of conformity of the results is based as per the standard
		limits

Disclaimer: The * Information are provided by Manufacturer and it is verified through the Request form and Marking Label, AA Electro Magnetic Test Laboratory is not responsible for the above information accuracy. This device described above has been tested by AA Electro Magnetic Test Laboratory Private Limited, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

*This test report must not be used by the client to claim product endorsement by any agency of the U.S. government.

Prepared By (+ signature) Ankur Kumar: Reviewed & Approved by: (+ signature) Dr. Lenin Raja (Authorized Representative)(/ lenin83/)

Dolog

1 | Page

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India

Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com Decision Rule Used: Simple Acceptance (i.e., w = 0, Acceptance Limit = Tolerance Limit) as Per ILAC-G8:09/2019 AAEMT/A2LA/TRF/ FCC-15C/24_01_REV0

Page

Report No.: AAEMT/RF/240830-01-01

1 Contents

1 CC	ONTENTS	2
2 VE	ERSION	4
	EST SUMMARY	
3.1 3.2	COMPLIANCE WITH FCC PART 15 SUBPART C Measurement Uncertainty	
3.2 3.3	TEST LOCATION	
4 TE	EST FACILITY	
4.1	DEVIATION FROM STANDARD	7
4.2	ABNORMALITIES FROM STANDARD CONDITIONS	7
5 GE	ENERAL INFORMATION	8
5.1	GENERAL DESCRIPTION OF EUT	8
5.2	EUT PERIPHERAL LIST	10
5.3	TEST PERIPHERAL LIST	10
6 EQ	QUIPMENTS LIST FOR ALL TEST ITEMS	11
7 TE	EST RESULT	
7.1	DESCRIPTION OF TEST CONDITIONS	
7.2	ANTENNA REQUIREMENT	
7.2		
7.2		
7.3	CONDUCTION EMISSIONS MEASUREMENT	15
7.3	3.1 Applied procedures / Limit	15
7.3	3.2 Test procedure	15
	3.3Test results	
7.6	RADIATED EMISSIONS MEASUREMENT	
7.6		
7.6	1	
7.6	L Contraction of the second seco	
7.6		
	5.2 TEST RESULTS (Restricted Bands Requirements)	
7.7	BANDWIDTH TEST	
7.7 7.7		
7.7 7.7	1	
7.7 7.7		
7.7	•	

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India

Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule Used: Simple Acceptance (i.e., w = 0, Acceptance Limit = Tolerance Limit) as Per ILAC-G8:09/2019 AAEMT/A2LA/TRF/ FCC-15C/24_01_REV0

ak Power Density	40
Applied procedures / Limit	40
Test procedure	40
Deviation from standard	40
Test results	41
AXIMUM PEAK OUTPUT POWER	46
Applied procedures / Limit	46
Test procedure	46
Deviation from standard	46
Test setup	46
Test results	47
ND EDGE	48
Applied procedures / Limit	48
Test procedure	48
Deviation from standard	48
Test setup	48
Test results	49
NDUCTED SPURIOUS EMISSIONS	51
Applied procedures / Limit	51
Test procedure	51
Deviation from standard	51
Test setup	51
Test results	52
	Applied procedures / Limit Test procedure Deviation from standard Test results AXIMUM PEAK OUTPUT POWER Applied procedures / Limit Test procedure Deviation from standard Test results ND EDGE Applied procedures / Limit Test procedure Deviation from standard Test setup Test results

2 Version

	Revision Record							
VersionChapterDateModifierRemark								

3 Test Summary

3.1 Compliance with FCC Part 15 subpart C

Test	Test Requirement	Standard Paragraph	Result		
Antenna Requirement	FCC Part 15 C:2013	Section 15.247(c)	PASS		
Conduction Emissions	FCC Part 15 C:2013	Section 15.207(a)	PASS		
Radiated Emissions	FCC Part 15 C:2013	Section 15.247(d)	PASS		
Occupied Bandwidth	FCC Part 15 C:2013	Section 15.247(a)(2)	PASS		
Peak power density	FCC Part 15 C:2013	Section 15.247(e)	PASS		
Maximum Peak Output Power	FCC Part 15 C:2013	Section 15.247(b)(1)	PASS		
Band edge	FCC Part 15 C:2013	Section 15.247(d)	PASS		
Conducted Spurious Emissions	FCC Part 15 C:2013	Section 15.247(d)	PASS		
Note:					
(1) Reference to the	Reference to the KDB 558074 D01 DTS Meas Guidance v03r03				
(2) Reference to A	Reference to ANSI C63.4:2013.				

Remark:

N/A: not applicable. Refer to the relative section for the details.

EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

3.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, The following measurements uncertainty Levels have estimated based on ANSI C63.4:2013, the maximum value of the uncertainty as below

No.	Item	Uncertainty	
1	Conducted Emission Test	2.69dB	
2	Radiated Emission Test	3.09dB	

3.3 Test Location

All tests were performed at:

AA Electro Magnetic Test Laboratory Private Limited

Plot No 174, Udyog Vihar - Phase 4, Sector 18, Gurgaon, Haryana, India

Tel.: +91-0124-4235350

4 Test Facility

The test facility is recognized, certified or accredited by the following organizations:

ILAC / NABL Accreditation No.: TC-8597

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by National Accreditation Board for Testing and Calibration Laboratories (NABL).

ILAC -A2LA Accreditation No.: 5593.01

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered American Association of Laboratory Accreditation (A2LA.)

FCC- Recognition No.: 137777

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Federal Communications Commission (FCC).

ISED Recognition No.: 26046

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Institute for Social and Economic Development.(ISED)

VCCI- Registration No: 4053

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Voluntary Control Council for Interference.(VCCI)

TEC Designation No.: IND063

Three 3m Semi-Anechoic Chamber, 1 full-Anechoic chamber and 2 Shielding Rooms of AA Electro Magnetic Test Laboratory Private Limited have been registered by Telecommunication Engineering (TEC) Center.

BIS Recognition No: 816586

BIS recognized as per CRS scheme for IT electronics, LED control gears, Lamp, Inverter / UPS are recognized as per LRS 2020.

4.1 Deviation from standard

None

4.2 Abnormalities from standard conditions

None

5 General Information

5.1 General Description of EUT

*Manufacturer:	Netradyne Inc
*Manufacturer Address:	9171 Towne Centre Drive, Suite 110, San Diego, CA 92122
*EUT Name:	Driveri
*Model No:	D-450
*Brand Name:	Mnetradyne
*Serial No:	103302400025
*Derivative model No.:	D-450A,D-455
Operation frequency:	2402 MHz to 2480 MHz
Number of Channels:	40
Modulation Technology:	GSFK
*Antenna Type:	Flexible PCB Antenna
*Antenna Gain:	3dBi
*H/W No.:	103-00-00006
*S/W No.:	13.0.19
Power Supply Range:	Input of AC Adapter: AC 100-240V, 0.5A, 50-60Hz Output of AC Adapter/Input of EUT : DC 12V, 5A
Output power (max) :	7.84 dBm
Condition of Sample on receipt:	Good
Opinions and Interpretations:	See the specific Note / Annexure if any in the whole /full report/NA
Note:	 For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. Antenna gain and antenna type provided by manufacturer.

	Description of Channel:						
Channel	Frequency (MHz)	Channel	Frequency (MHz)				
00	2402	20	2442				
01	2404	21	2444				
02	2406	22	2446				
03	2408	23	2448				
04	2410	24	2450				
05	2412	25	2452				
06	2414	26	2454				
07	2416	27	2456				
08	2418	28	2458				
09	2420	29	2460				
10	2422	30	2462				
11	2424	31	2464				
12	2426	32	2466				
13	2428	33	2468				
14	2430	34	2470				
15	2432	35	2472				
16	2434	36	2474				
17	2436	37	2476				
18	2438	38	2478				
19	2440	39	2480				

5.2 EUT Peripheral List

No.	Equipment	Manufacturer	FCC ID	Model No.	Serial No.	Power cord	signal cable
1	1 AC ADAPTER	DELTA ELECTRONICS,		LA-45WLAJI		1 meter	
		INC.					

5.3 Test Peripheral List

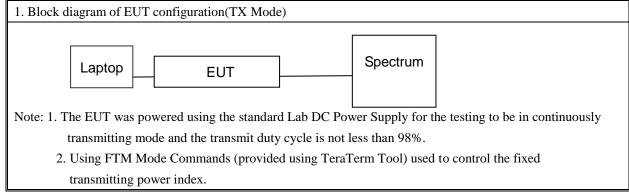
No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	signal cable
1	Laptop	DELL	N/A	Latitude 3490	5M2Z1W2	2m unshielded	N/A

6 Equipments List for All Test Items

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal.Due Date
1	Spectrum Analyzer	Rohde and Schwarz	FSP	101163	2023/02/13	2025/02/13
2	Loop antenna	DAZE Beijing	ZN30900C	18052	2023/09/15	2026/09/15
3	Hi power horn antenna	DAZE Beijing	ZN30700	18012	2023/09/11	2026/09/10
4	MXA Signal Analyzer	Keysight	N9020A	6272323218	2023/07/27	2025/07/27
5	Horn antenna	DAZE Beijing	ZN30703	18005	2023/09/11	2026/09/10
6	Pre amplifier	KELIANDA	LNA-0009295	-	2024/01/10	2025/01/10
7	Pre amplifier	KELIANDA	CF-00218	-	2024/01/10	2025/01/10
8	Biconical Antenna	DAZE Beijing	ZN30505C	17038	2023/09/11	2026/09/10
9	EMI-RECEIVER	Schwarzbeck	FCKL	1528194	2024/01/10	2025/01/10
10	LISN	Kyoritsu	KNW-407	8-1789-5	2024/01/10	2025/01/10
11	Network-LISN	SCHWAR ZBECK	NNBM8125	81251314	2024/01/10	2025/01/10
12	Network-LISN	SCHWAR ZBECK	NNBM8125	81251315	2024/01/10	2025/01/10
13	PULSELIMITER	Rohde and Schwarz	ESH3-Z2	100681	-	-
14	50Ω Coaxial Switch	DAIWA	1565157	-	-	-
15	50 Ω Coaxial Switch	-	-	-	-	-
16	Wireless signal power meter	DARE!!	RPR3006W	RFSW190220	2024/01/13	2025/01/13
17	Signal Generator	KEYSIGHT	N5181A	512071	2024/01/10	2026/01/10
18	RF Vector Signal Generator	Keysight	N5182B	512094	2024/01/10	2026/01/10

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India

19	Spectrum analyzer	R&S	FSV-40N	101385	2023/04/28	2025/04/28
20	Radio Communication Tester	R&S	CMW 500	124589	2023/09/08	2025/09/08
				837017/004	2023/09/08	2025/09/08
21	Signal Generator	R&S	SMP02	836593/005		
22	DC Regulated Power	Metravi	RPS-3005	669076	2023/12/12	2024/12/11



7 Test Result

7.1 Description of Test conditions

(1) EUT was tested in normal configuration (Please See following Block diagram)

(2) E.U.T. test conditions:

15.31(e): For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

15.32: Power supplies and CPU boards used with personal computers and for which separate authorizations are required to be obtained shall be tested as follows: Testing shall be in accordance with the procedures specified in Section 15.31 of this part.

(3) Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than

TV broadcast receivers, shall be performed and. If required reported for each band in which

the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over which device operates	Number of frequencies	Location in the range of operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

(4) Frequency range of radiated measurements:

According to the 15.33, the test range will be up to the tenth harmonic of the highest fundamental frequency.

(5) Pre-test the EUT in all transmitting mode at the lowest, middle and highest channel with different data rate and conducted to determine the worst-case mode, only the worst-case results are recorded in this report.

7.2 Antenna Requirement

7.2.1 Standard requirement

15.203 requirements: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

7.2.2 EUT Antenna

The antenna is a Flexible PCB Antenna with Cable which is connected to the board using a N-type to U.FL cable which is connected to the board via U.FL connector. Antenna gain is maximum 3dBi from 2.4GHz to 2.5 GHz.

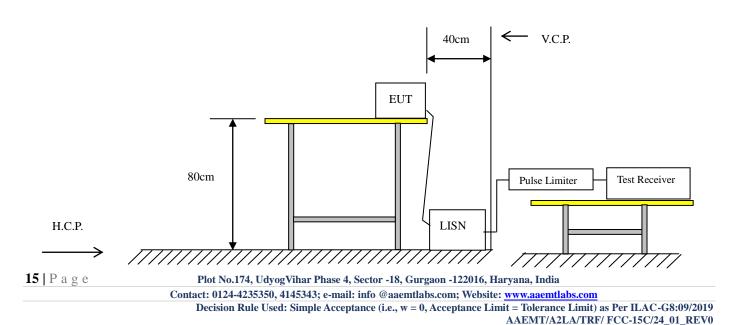
7.3 Conduction Emissions Measurement

7.3.1 Applied procedures / Limit

Frequency of Emission (MHz)	Conducted Limit (dBµV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Note: Decreases with the logarithm of the frequency.

7.3.2 Test procedure

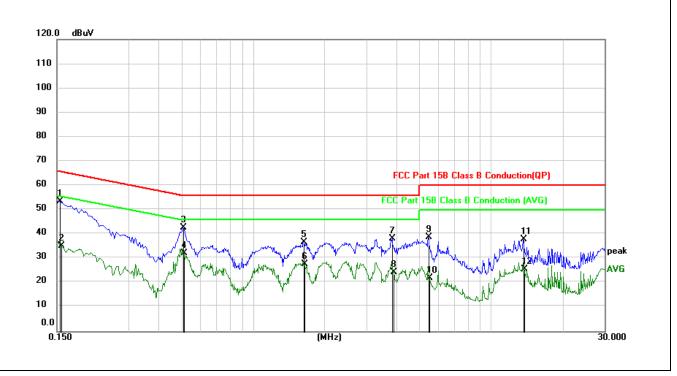

1. The mains terminal disturbance voltage test was conducted in a shielded room.

2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

Test setup



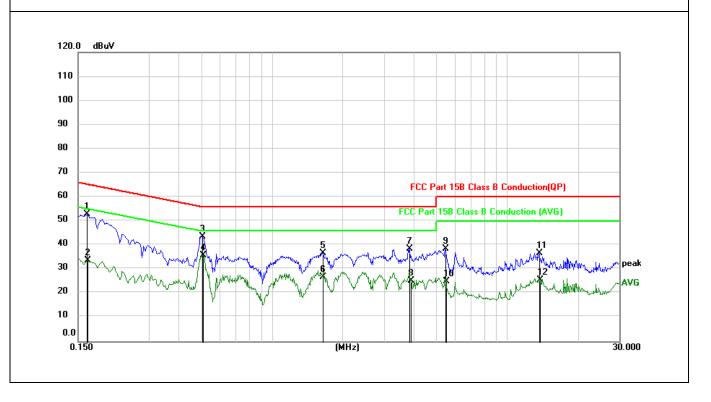
7.3.3Test results

EUT:	Driveri	Model Name. :	D-450
Temperature:	25.8 °C	Relative Humidity:	52%
Pressure:	1010hPa	Test Date :	2024-09-02
Test Mode:	TX CH00 (worst case)	Phase :	Line
Test Voltage :	110VAC,60Hz		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1544	42.91	10.71	53.62	65.75	-12.13	QP
2		0.1564	24.56	10.80	35.36	55.65	-20.29	AVG
3		0.5100	31.82	10.90	42.72	56.00	-13.28	QP
4		0.5143	21.36	10.89	32.25	46.00	-13.75	AVG
5		1.6304	26.22	10.41	36.63	56.00	-19.37	QP
6		1.6484	17.21	10.41	27.62	46.00	-18.38	AVG
7		3.8490	27.76	10.59	38.35	56.00	-17.65	QP
8		3.8894	14.01	10.57	24.58	46.00	-21.42	AVG
9		5.4600	28.37	10.51	38.88	60.00	-21.12	QP
10		5.5274	11.46	10.51	21.97	50.00	-28.03	AVG
11		13.6320	26.98	10.84	37.82	60.00	-22.18	QP
12		13.7713	14.90	10.84	25.74	50.00	-24.26	AVG

Remark: Factor = LISN factor + Cable Loss + Pulse limiter factor.

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule Used: Simple Acceptance (i.e., w = 0, Acceptance Limit = Tolerance Limit) as Per ILAC-G8:09/2019 AAEMT/A2LA/TRF/ FCC-15C/24_01_REV0



EUT:	Driveri	Model Name. :	D-450
Temperature:	25.8 °C	Relative Humidity:	52%
Pressure:	1010hPa	Test Date :	2024-09-02
Test Mode:	TX CH00 (worst case)	Phase :	Neutral
Test Voltage :	110VAC,60Hz		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1635	41.93	10.89	52.82	65.28	-12.46	QP
2		0.1650	22.72	10.95	33.67	55.20	-21.53	AVG
3		0.5055	32.96	10.73	43.69	56.00	-12.31	QP
4	*	0.5100	25.07	10.73	35.80	46.00	-10.20	AVG
5		1.6394	26.52	10.31	36.83	56.00	-19.17	QP
6		1.6484	16.41	10.31	26.72	46.00	-19.28	AVG
7		3.8445	28.11	10.43	38.54	56.00	-17.46	QP
8		3.8894	14.94	10.41	25.35	46.00	-20.65	AVG
9		5.4555	28.39	10.29	38.68	60.00	-21.32	QP
10		5.4960	14.84	10.29	25.13	50.00	-24.87	AVG
11		13.6275	26.58	10.29	36.87	60.00	-23.13	QP
12		13.7759	15.33	10.29	25.62	50.00	-24.38	AVG

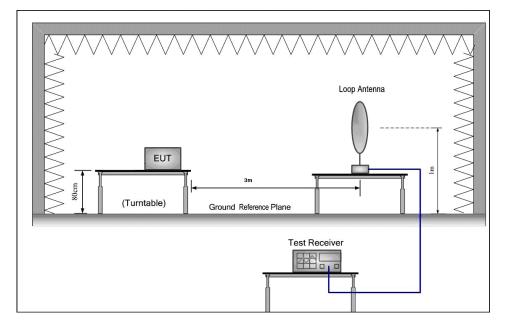
Remark: Factor = LISN factor + Cable Loss + Pulse limiter factor.

17 | Page

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule Used: Simple Acceptance (i.e., w = 0, Acceptance Limit = Tolerance Limit) as Per ILAC-G8:09/2019 AAEMT/A2LA/TRF/ FCC-15C/24_01_REV0

7.6 Radiated Emissions Measurement

7.6.1 Applied procedures / Limit

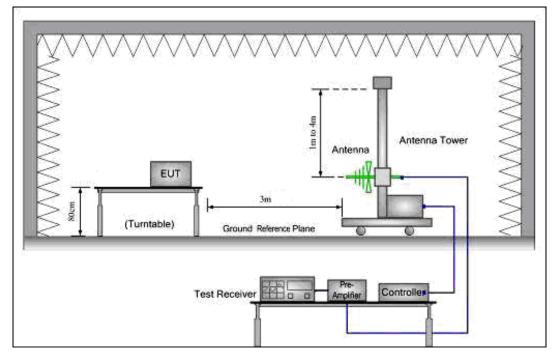

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

	Field Stree	ngth	Measurement
Frequency of Emission (MHz)	μV/m	dBµV/m	Distance (meters)
0.009-0.49	2400/F(kHz)		300
0.49-1.705	24000/F(kHz)		30
1.705-30	30		30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

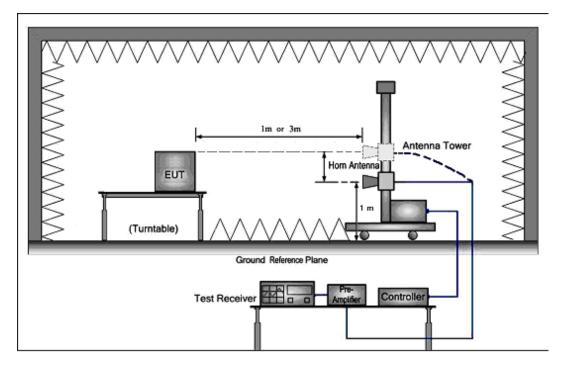
7.6.2 Test setup

Test Configuration:

1) 9 kHz to 30 MHz emissions:



Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule Used: Simple Acceptance (i.e., w = 0, Acceptance Limit = Tolerance Limit) as Per ILAC-G8:09/2019 AAEMT/A2LA/TRF/ FCC-15C/24_01_REV0



2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 25 GHz emissions:

7.6.3 Test procedure

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter, for the test frequency of above 1GHz, horn antenna opening in the test would have been facing the EUT when rise or fall) and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The resolution bandwidth and video bandwidth of the test receiver was 1MHz and 1MHz for Peak detection at frequency above 1GHz.
- g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz)
- h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
- i. Repeat above procedures until all frequencies measured was complete.

For measurement at frequency above 1GHz

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For Average measurement at frequency above 1GHz.

The resolution bandwidth of the test receiver was 1MHz; due to the shortest pulse width T is 116us, according the video bandwidth should not smaller than 1/T, so the video bandwidth is 10Hz.

In 18GHz to 25GHz, The EUT was checked by Horn ANT. But the test result at least have 20dB margin. The EUT was tested in Chamber Site.

7.6.4 Test Result

Radiated Emissions Test Data Below 30MHz

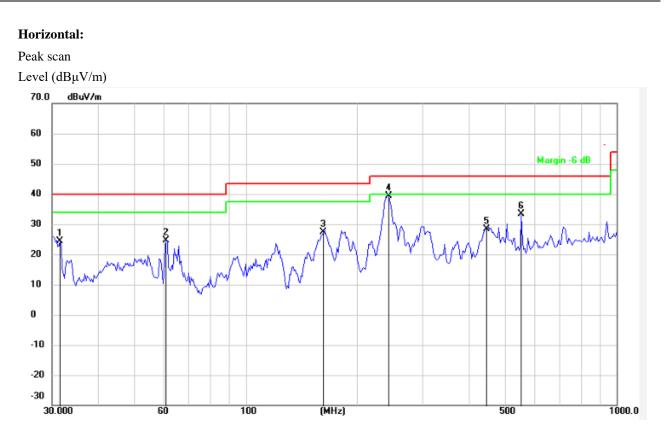
EUT:	Driveri	Model Name. :	D-450		
Temperature:	25.4 °C	Relative Humidity:	53%		
Pressure:	1010hPa	Test Date :	2024-09-24		
Test Mode :	ТХ	Test Voltage :	110V AC, 60Hz		
Measurement Distance	3 m	Frequency Range	9KHz to 30MHz		
RBW/VBW	9KHz~150KHz/RB 200Hz for QP, 150KHz~30MHz/RB 9KHz for QP				

No emission found between lowest internal used/generated frequencies to 30MHz.


Radiated Emissions Test Data 30MHz-1000MHz

EUT:	Driveri	Model Name. :	D-450		
Temperature:	25.4 ℃	Relative Humidity:	53%		
Pressure:	1010hPa	Test Date :	2024-09-24		
Test Mode :	TX: CH00 , CH19, CH39	Test Voltage :	110V AC, 60Hz		
Measurement Distance	3 m	Frequency Range	30MHz to 1GHz		
RBW/VBW	100KHz / 300KHz for spectrum, RBW=120KHz for receiver.				

Test at Channel 00 (2.402 GHz) in transmitting status

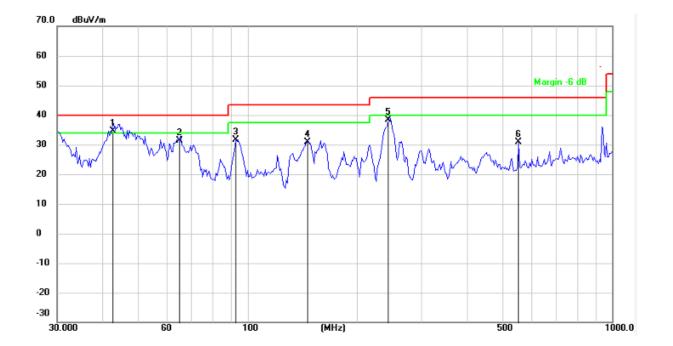


Quasi-peak measurement

No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	43.5380	-11.75	48.08	36.33	40.00	-3.67	QP
2	93.6532	-12.35	43.52	31.17	43.50	-12.33	QP
3	147.8747	-15.45	46.41	30.96	43.50	-12.54	QP
4	160.8852	-14.74	46.25	31.51	43.50	-11.99	QP
5	243.5431	-10.38	48.23	37.85	46.00	-8.15	QP
6	938.7139	0.35	34.75	35.10	46.00	-10.90	QP

Quasi-peak measurement

No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	31.5126	-10.95	35.37	24.42	40.00	-15.58	QP
2	61.0041	-10.45	35.13	24.68	40.00	-15.32	QP
3	162.0197	-12.67	39.98	27.31	43.50	-16.19	QP
4	243.5431	-8.38	47.79	39.41	46.00	-6.59	QP
5	442.5722	-3.07	31.43	28.36	46.00	-17.64	QP
6	554.1708	-0.95	34.39	33.44	46.00	-12.56	QP



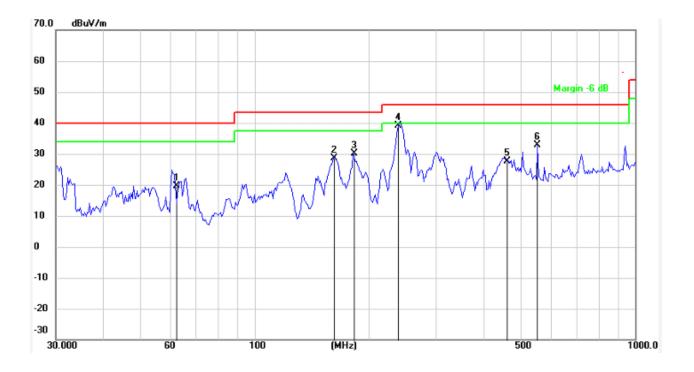
Test at Channel 39 (2.480 GHz) in transmitting status (Worst Case)

30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement

Vertical:

Peak scan Level (dBµV/m)

Quasi-peak measurement


No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	42.3314	-11.73	46.33	34.60	40.00	-5.40	QP
2	64.9869	-14.03	45.43	31.40	40.00	-8.60	QP
3	92.9974	-12.44	44.06	31.62	43.50	-11.88	QP
4	145.8109	-15.50	46.43	30.93	43.50	-12.57	QP
5	243.5431	-10.38	48.83	38.45	46.00	-7.55	QP
6	554.1708	-2.95	33.93	30.98	46.00	-15.02	QP

Horizontal:

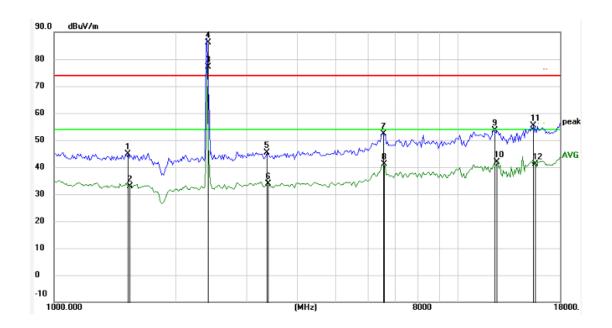
Peak scan Level (dBµV/m) Quasi-peak measurement

No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	61.8676	-10.79	30.52	19.73	40.00	-20.27	QP
2	160.8852	-12.74	41.49	28.75	43.50	-14.75	QP
3	181.3000	-11.52	41.66	30.14	43.50	-13.36	QP
4	238.4626	-8.61	47.62	39.01	46.00	-6.99	QP
5	461.6313	-2.66	30.21	27.55	46.00	-18.45	QP
6	554.1708	-0.95	33.94	32.99	46.00	-13.01	QP

Radiated Emissions Test Data Above 1GHz

802.11b mode with 11Mbps data rate

EUT:	Driveri	Model Name. :	D-450			
Temperature:	25.4 °C	Relative Humidity:	53%			
Pressure:	1010hPa	Test Date :	2024-09-24			
Test Mode :	TX: CH00 , CH19, CH39	Test Voltage :	110V AC, 60Hz			
Measurement Distance	3 m	Frequency Range	1GHz to 25GHz			
RBW/VBW	Spurious emission: 1MHz/1MHz for Peak, 1MHz/10Hz for Average.					
KBW/VBW	non-restricted band: 100KHz/300k	non-restricted band: 100KHz/300KHz for Peak.				



Test at Channel 00 (2.402 GHz) in transmitting status (Worst Case)

1000 MHz~18000 MHz Spurious Emissions. Quasi-Peak Measurement

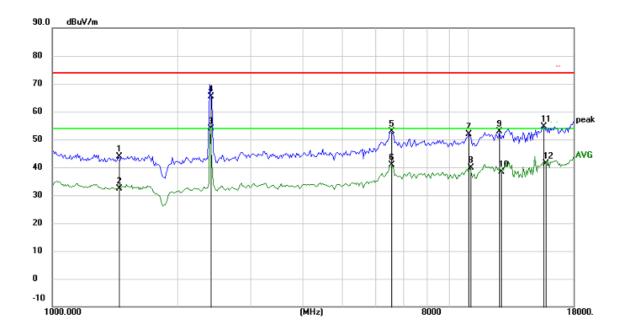
Vertical:

Peak scan Level (dBµV/m)

No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1526.290	-3.88	48.87	44.99	74.00	-29.01	peak
2	1544.074	-3.87	36.78	32.91	54.00	-21.09	AVG
3	2398.016	-2.77	79.90	77.13	54.00	23.13	AVG
4	2402.000	-2.76	89.01	86.25	74.00	12.25	peak
5	3374.978	-1.33	46.79	45.46	74.00	-28.54	peak
6	3394.584	-1.30	35.18	33.88	54.00	-20.12	AVG
7	6532.008	-5.03	57.33	52.30	74.00	-21.70	peak
8	6569.953	-3.85	45.07	41.22	54.00	-12.78	AVG
9	12352.648	8.42	45.22	53.64	74.00	-20.36	peak
10	12569.175	8.44	33.53	41.97	54.00	-12.03	AVG
11	15483.442	9.99	45.41	55.40	74.00	-18.60	peak
12	15573.388	9.93	31.10	41.03	54.00	-12.97	AVG

*Maximum Data

Note: Marker 3 & 4 is intentional Frequency from EUT, Hence Considered as Pass.


AAEMT/A2LA/TRF/ FCC-15C/24_01_REV0

Horizontal:

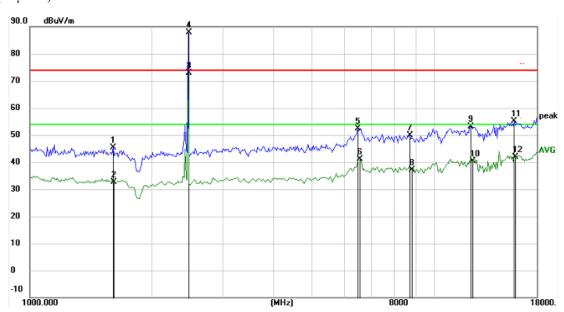
Peak scan Level (dBµV/m)

No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1440.394	21.81	22.00	43.81	74.00	-30.19	peak
2	1440.394	21.81	10.68	32.49	54.00	-21.51	AVG
3	2398.016	24.68	29.16	53.84	54.00	-0.16	AVG
4	2402.000	24.71	40.73	65.44	74.00	-8.56	peak
5	6532.008	29.99	22.82	52.81	74.00	-21.19	peak
6	6532.008	29.99	10.86	40.85	54.00	-13.15	AVG
7	10085.905	43.48	8.45	51.93	74.00	-22.07	peak
8	10144.496	43.52	-3.53	39.99	54.00	-14.01	AVG
9	11930.718	47.19	5.68	52.87	74.00	-21.13	peak
10	12069.735	47.22	-8.87	38.35	54.00	-15.65	AVG
11	15305.107	48.93	5.72	54.65	74.00	-19.35	peak
12	15394.017	48.80	-7.50	41.30	54.00	-12.70	AVG

*Maximum Data

Note: Marker 3 & 4 is intentional Frequency from EUT, Hence Considered as Pass.

29 | P a g e


Test at Channel 39 (2.480 GHz) in transmitting status (Worst Case)

1000 MHz~18000 MHz Spurious Emissions. Quasi-Peak Measurement

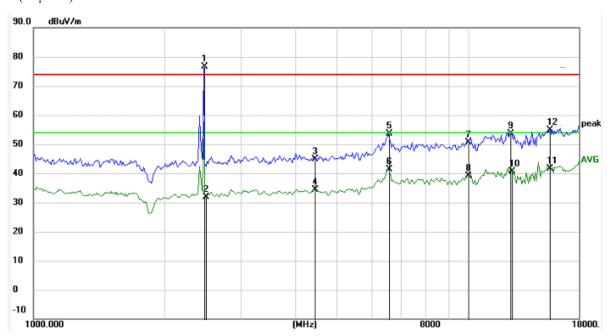
Vertical:

Peak scan

Level (dBµV/m)

No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1607.967	-3.84	49.34	45.50	74.00	-28.50	peak
2	1617.308	-3.82	36.51	32.69	54.00	-21.31	AVG
3	2468.482	-2.70	75.55	72.85	54.00	18.85	AVG
4	2480.000	-2.69	90.54	87.85	74.00	13.85	peak
5	6494.281	8.59	43.82	52.41	74.00	-21.59	peak
6	6532.008	-5.03	46.11	41.08	54.00	-12.92	AVG
7	8726.206	3.43	46.44	49.87	74.00	-24.13	peak
8	8827.884	3.41	33.81	37.22	54.00	-16.78	AVG
9	12281.304	8.41	44.78	53.19	74.00	-20.81	peak
10	12424.406	8.43	32.06	40.49	54.00	-13.51	AVG
11	15846.371	9.69	45.47	55.16	74.00	-18.84	peak
12	15938.425	9.60	32.27	41.87	54.00	-12.13	AVG

*Maximum Data


Note: Marker 3 & 4 is intentional Frequency from EUT, Hence Considered as Pass.

Horizontal:

No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2480.000	25.00	51.66	76.66	74.00	2.66	peak
2	2497.244	25.06	6.87	31.93	54.00	-22.07	AVG
3	4431.014	31.50	13.47	44.97	74.00	-29.03	peak
4	4431.014	31.50	2.92	34.42	54.00	-19.58	AVG
5	6569.953	31.25	22.34	53.59	74.00	-20.41	peak
6	6569.953	31.25	10.07	41.32	54.00	-12.68	AVG
7	10027.653	43.44	7.23	50.67	74.00	-23.33	peak
8	10027.653	43.44	-4.43	39.01	54.00	-14.99	AVG
9	12569.175	47.75	5.92	53.67	74.00	-20.33	peak
10	12642.191	47.82	-7.21	40.61	54.00	-13.39	AVG
11	15394.017	48.80	-7.25	41.55	54.00	-12.45	AVG
12	15483.442	48.67	6.20	54.87	74.00	-19.13	peak

*Maximum Data

Note: Marker 1 is intentional Frequency from EUT, Hence Considered as Pass.

Remark:

1) .For this intentional radiator operates below 25 GHz. The spectrum shall be investigated to the tenth

Harmonics of the highest fundamental frequency. And above the third harmonic of this intentional radiator, the disturbance is very low. So the test result only displays to 3rd harmonic.

2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

Test result: The unit does meet the FCC requirements.

7.6.2 TEST RESULTS (Restricted Bands Requirements)

EUT:	Driveri	Model Name. :	D-450			
Temperature:	25.4 °C	Relative Humidity:	53%			
Pressure:	1010hPa	Test Date :	2024-09-30			
Test Mode :	ТХ	Test Voltage :	110V AC, 60Hz			
RBW/VBW	1MHz/1MHz for Peak, 1MHz/10Hz for	1MHz/1MHz for Peak, 1MHz/10Hz for Average.				
Note:	 The transmitter was setup to transmeasured at 2310-2390 MHz. The transmitter was setup to transmeasured at 2483.5-2500 MHz. The data of 2390MHz and 2483.5M 	nit at the highest char				

Test	Ant Dol	Ant.Pol. Freq.		ding	Apt/CE Act		Limit		
Mode	H/V (MH	(MHz)	Peak	AV		Peak	AV	Peak	AV
Mode	Π/ V		(dBuv)	(dBuv)	CI (ub)	t/CF (dB) Peak (dBuv/m) .79 39.23 .79 40.48 4.98 41.70	(dBuv/m)	(dBuv/m)	(dBuv/m)
	Н	2390	45.02	36.00	-5.79	39.23	30.21	74	54
TX	V	2390	46.27	38.35	-5.79	40.48	32.56	74	54
	Н	2483.5	46.68	32.93	-s4.98	41.70	27.95	74	54
	V	2483.5	45.89	34.25	-4.98	40.91	29.27	74	54

7.7 BANDWIDTH TEST

7.7.2 Applied procedures / Limit

15.247(a) (2) Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

7.7.3 Test procedure

- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW= 100KHz, VBW≧3×RBW, Sweep time = Auto, Detector Function = Peak, centering on a hopping channel Trace = Max Hold.
- d Mark the peak frequency and -6 dB points bandwidth.

7.7.4 Deviation from standard

No deviation.

7.7.5 Test setup

7.7.6 Test results

EUT:	Driveri	Model Name. : D-450
Temperature:	25.8 °C	Relative Humidity: 56%
Pressure:	1010 hPa	Test Power : 110V AC, 60Hz
Test Mode :	Тх	

1MBPS

Test Mode	Test Channel	Frequency	6 dB Bandwidth	Limit
	Test chumer	(MHz)	(KHz)	(kHz)
	CH00	2402	666	≥500
Тх	CH19	2440	658	≥500
	CH39	2480	658	≥500

2MBPS

Test Mode	Test Channel	Frequency	6 dB Bandwidth	Limit
	Test chamer	(MHz)	(KHz)	(kHz)
	CH00	2402	1132	≥500
Tx	CH19	2440	1132	≥500
	CH39	2480	966	≥500

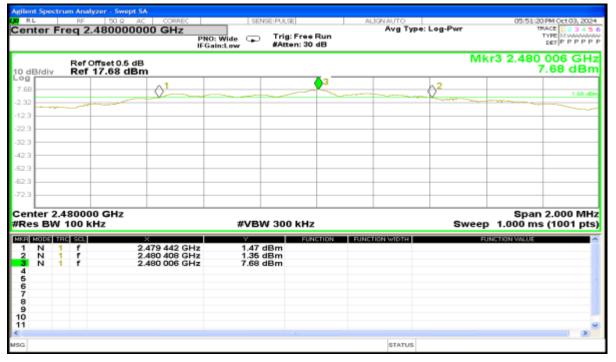
<u>1MBPS</u>

The Lowest Channel 00: 2402 MHz

The Middle Channel 19: 2440 MHz

The High Channel 39: 2480MHz

<u>2MBPS</u>



The Middle Channel 19: 2440 MHz

The High Channel 39: 2480MHz

7.8 Peak Power Density

7.8.2 Applied procedures / Limit

15.247(a) (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

7.8.3 Test procedure

- a. The testing follows Measurement procedure 10.2 Method PKPSD of FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Connected the antenna port to the Spectrum Analyzer, set the Spectrum Analyzer as center frequency to channel center frequency, span=1.5 times the bandwith, detector = peak

3kHz≤RBW≤100kHz, VBW≥3×RBW kHz, Sweep time=Auto.

- d. Trace mode = max hold. Mark the peak.
- e. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.8.4 Deviation from standard

No deviation.

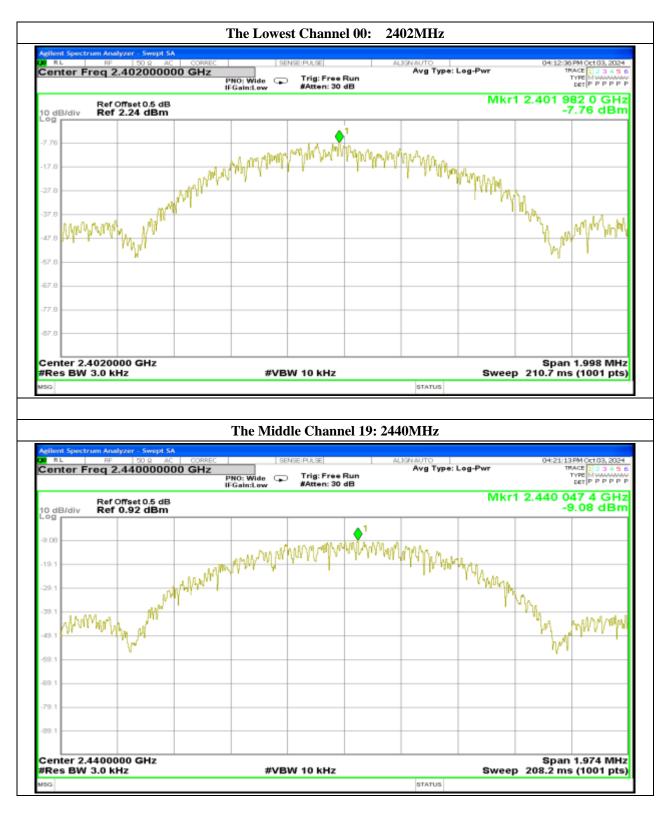
7.8.5 Test results

EUT:	Driveri	Model Name. :	D-450
Temperature:	25.8 °C	Relative Humidity:	56%
Pressure:	1010 hPa	Test Power :	110V AC, 60Hz
Test Mode :	TX		

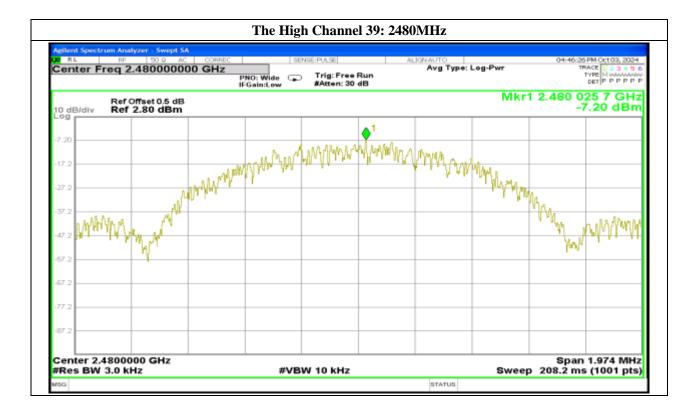
1MBPS

Test Mode	Channel frequency (MHz)	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
	2402	-7.76	8	Pass
TX	2440	-9.08	8	Pass
	2480	-7.20	8	Pass

Note: The cable loss is 1.0dB

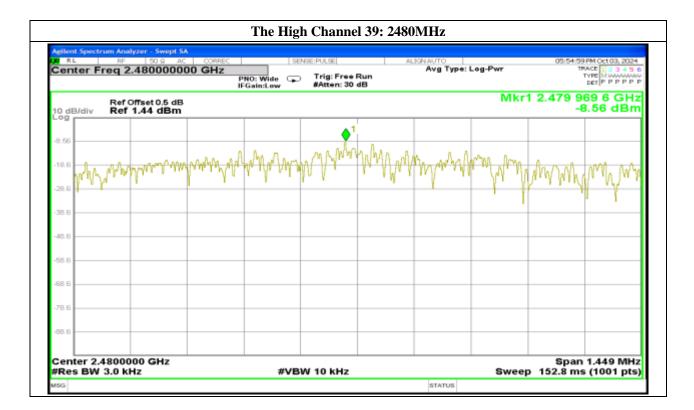

2MBPS

Test Mode	Channel frequency (MHz)	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
	2402	-9.30	8	Pass
TX	2440	-10.90	8	Pass
	2480	-8.56	8	Pass


<u>1MBPS</u>

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule Used: Simple Acceptance (i.e., w = 0, Acceptance Limit = Tolerance Limit) as Per ILAC-G8:09/2019 AAEMT/A2LA/TRF/ FCC-15C/24_01_REV0





<u>2MBPS</u>

7.9 Maximum Peak Output Power

7.9.2 Applied procedures / Limit

15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

7.9.3 Test procedure

- a The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW≥Bandwidth, VBW≥3×RBW, Sweep time = Auto, Span≥3×RBW,
- d Detector = peak. Trace mode = max hold.
- e. Use peak marker function to determine the peak amplitude level.

7.9.4 Deviation from standard

No deviation.

7.9.5 Test setup

7.9.6 Test results

EUT:	Driveri	Model Name. :	D-450
Temperature:	25.4 °C	Relative Humidity:	55%
Pressure:	1010 hPa	Test Power :	110V AC, 60Hz
Test Mode :	TX		
Note: N/A			

1MBPS

Test Mode	Frequency	Peak Output Power (dBm)	Limit (dBm)	Result
Tx	2402 MHz	7.74	30	Pass
	2440 MHz	7.16	30	Pass
	2480 MHz	7.66	30	Pass

2MBPS

Test Mode	Frequency	Peak Output Power (dBm)	Limit (dBm)	Result
Tx	2402 MHz	7.70	30	Pass
	2440 MHz	7.20	30	Pass
	2480 MHz	7.84	30	Pass

Note: The cable loss is 1.0dB

7.10 Band edge

7.10.2 Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

7.10.3Test procedure

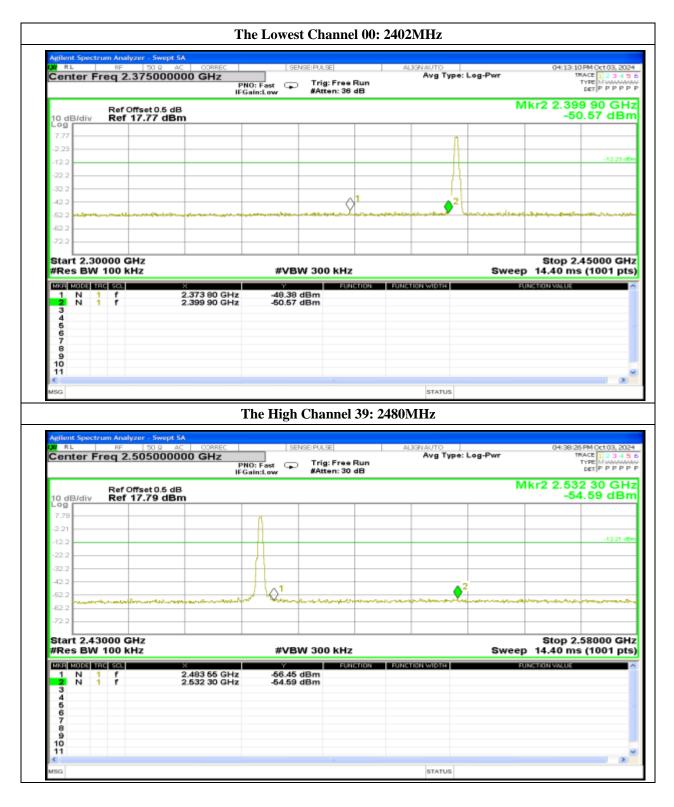
- a The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW=100kHz, VBW≧300kHz, Sweep time=Auto, Detector Function=Peak.
- d. The band edges was measured and recorded Result:

The Lower Edges attenuated more than 20dB. The Upper Edges attenuated more than 20dB.

7.10.4 Deviation from standard

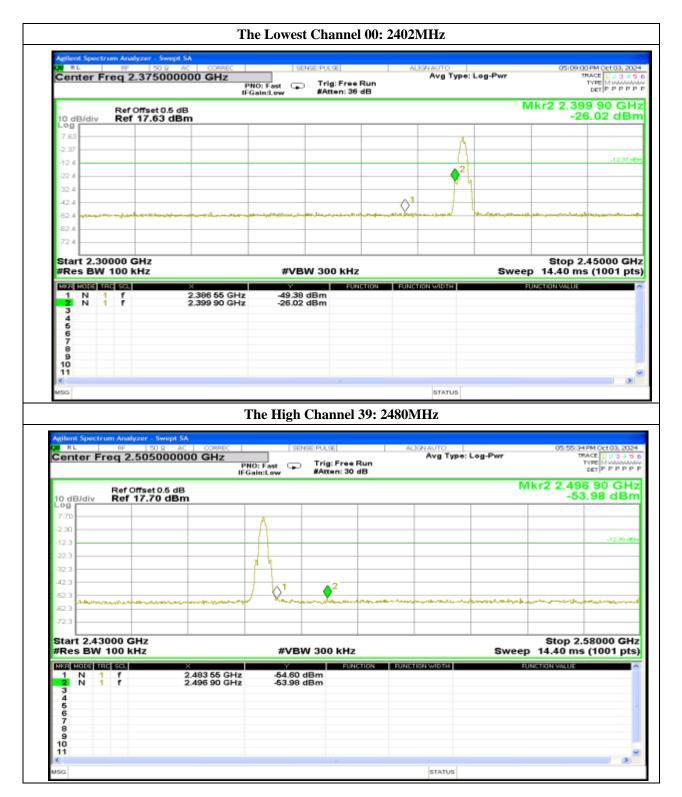
No deviation.

7.10.5Test setup



7.10.6Test results

1MBPS


49 | P a g e

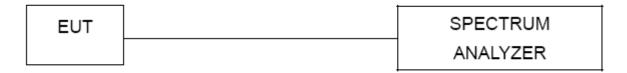
Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule Used: Simple Acceptance (i.e., w = 0, Acceptance Limit = Tolerance Limit) as Per ILAC-G8:09/2019 AAEMT/A2LA/TRF/ FCC-15C/24_01_REV0

2MBPS

7.11 Conducted Spurious Emissions

7.11.2 Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

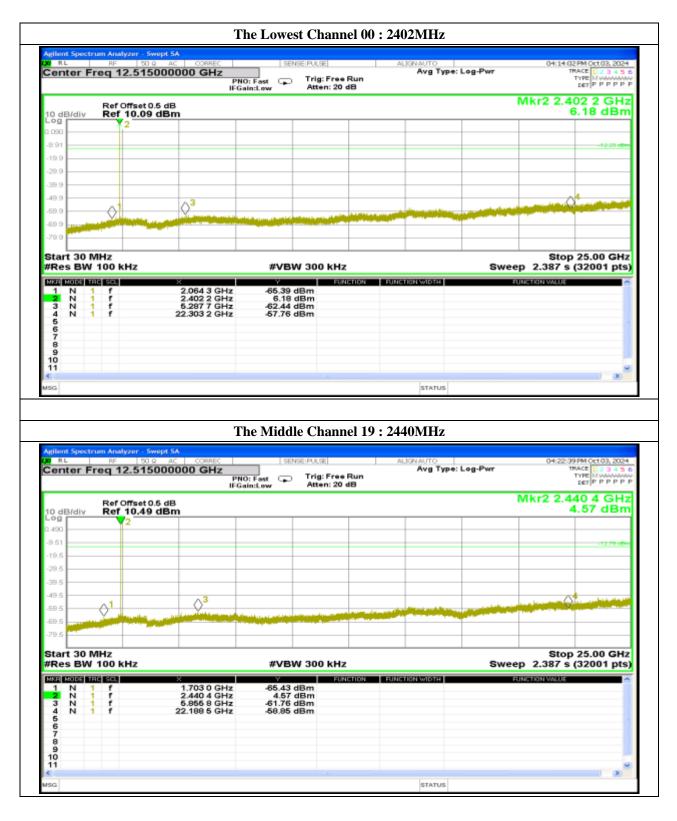

7.11.4 Test procedure

- a. The testing follows FCC KDB publication No. 558074 D01 DTS Meas. Guidance v03r03
- b. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- c. Spectrum Setting: RBW=100kHz, VBW=300kHz, Sweep time=Auto, Detector Function=Peak, sweep points \geq investigated frequency range/RBW.

7.11.5Deviation from standard

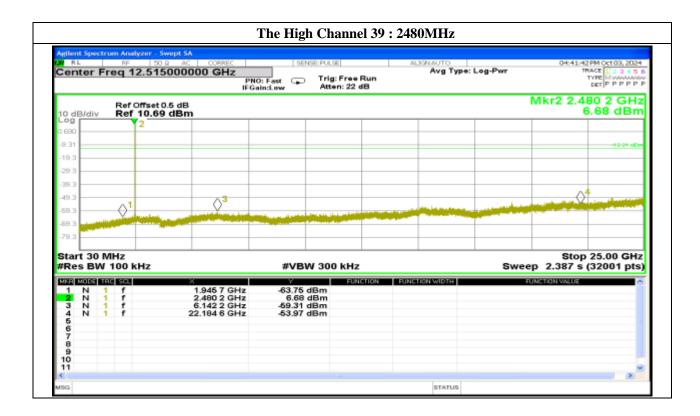
No deviation.

7.11.6Test setup



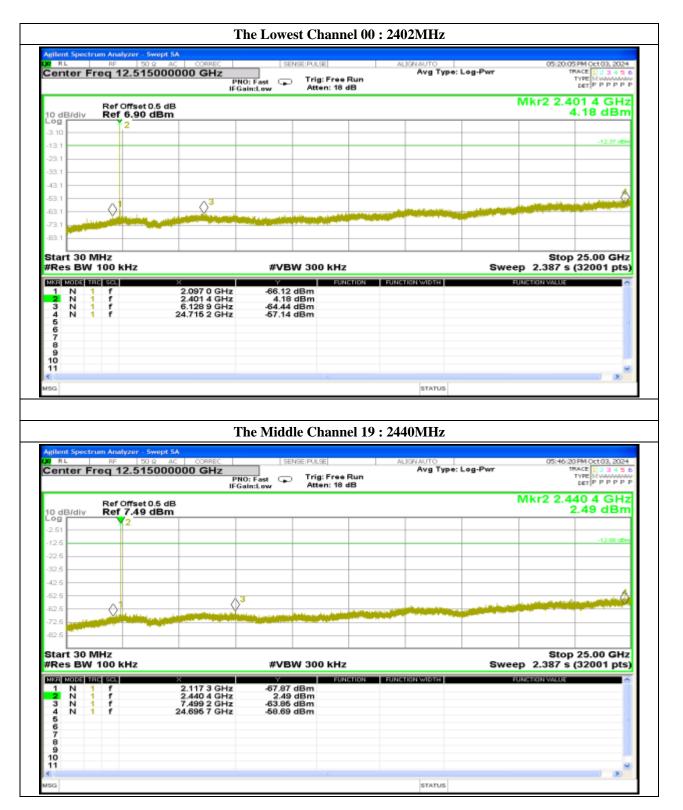
7.11.7Test results

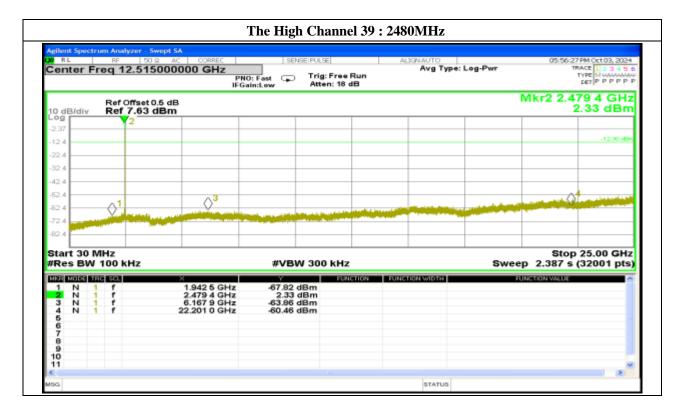
1MBPS



52 | P a g e

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule Used: Simple Acceptance (i.e., w = 0, Acceptance Limit = Tolerance Limit) as Per ILAC-G8:09/2019 AAEMT/A2LA/TRF/ FCC-15C/24_01_REV0





2MBPS

End of Report

55 | P a g e