Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z21-60001 Page 5 of 9 ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z21-60001 Page 6 of 9 ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z21-60001 Page 7 of 9 ## **Conversion Factor Assessment** ## f=750 MHz,WGLS R9(H_convF) f=1750 MHz,WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z21-60001 Page 8 of 9 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7517 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 17.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z21-60001 Page 9 of 9 ### No.I21Z70098-SEM01 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client CTTL Certificate No: Z20-60201 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 7548 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: June 16, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No. | .) Scheduled Calibration | |--------------------------|-------------|--|--------------------------| | Power Meter NRP2 | 101919 | 18-Jun-19(CTTL, No.J19X05125) | Jun-20 | | Power sensor NRP-Z91 | 101547 | 18-Jun-19(CTTL, No.J19X05125) | Jun-20 | | Power sensor NRP-Z91 | 101548 | 18-Jun-19(CTTL, No.J19X05125) | Jun-20 | | Reference 10dBAttenuator | 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenuator | 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG, No.EX3-3617_Jan | | | DAE4 | SN 1556 | 4-Feb-20(SPEAG, No.DAE4-1556_Fe | | | 0 | | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3700A | 6201052605 | 18-Jun-19(CTTL, No.J19X05127) | Jun-20 | | Network Analyzer E5071C | MY46110673 | 10-Feb-20(CTTL, No.J20X00515) | Feb-21 | | | ame | Function | Signature | | Calibrated by: | u Zongying | SAR Test Engineer | 1 th | | Reviewed by: | in Hao | SAR Test Engineer | - AND SHA | | Approved by: | | | THE AT USA | | Approved by. | i Dianyuan | SAR Project Leader | 30102 | | | | | | Issued: June 18, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60201 Page 1 of 9 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z20-60201 Page 2 of 9 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.60 | 0.69 | 0.62 | ±10.0% | | DCP(mV) ^B | 100.0 | 100.5 | 101.7 | | #### **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |-----|---------------|---|-----|------|-----|------|-------|------------------| | | System Name | | dB | dBõV | | dB | mV | (<i>k</i> =2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 202.1 | ±2.7% | | | | Y | 0.0 | 0.0 | 1.0 | | 212.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 205.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.17 | 10.17 | 10.17 | 0.40 | 0.75 | ±12.1% | | 900 | 41.5 | 0.97 | 9.73 | 9.73 | 9.73 | 0.17 | 1.29 | ±12.1% | | 1450 | 40.5 | 1.20 | 8.60 | 8.60 | 8.60 | 0.22 | 1.00 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.24 | 8.24 | 8.24 | 0.25 | 1.06 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.85 | 7.85 | 7.85 | 0.29 | 0.99 | ±12.1% | | 2000 | 40.0 | 1.40 | 8.00 | 8.00 | 8.00 | 0.23 | 1.14 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.61 | 7.61 | 7.61 | 0.62 | 0.67 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.40 | 7.40 | 7.40 | 0.55 | 0.72 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.17 | 7.17 | 7.17 | 0.61 | 0.68 | ±12.1% | | 3300 | 38.2 | 2.71 | 6.80 | 6.80 | 6.80 | 0.41 | 0.96 | ±13.3% | | 3500 | 37.9 | 2.91 | 6.75 | 6.75 | 6.75 | 0.45 | 0.90 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.50 | 6.50 | 6.50 | 0.44 | 0.97 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.40 | 6.40 | 6.40 | 0.40 | 1.15 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.32 | 6.32 | 6.32 | 0.35 | 1.30 | ±13.3% | | 4200 | 37.1 | 3.63 | 6.25 | 6.25 | 6.25 | 0.35 | 1.25 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.11 | 6.11 | 6.11 | 0.35 | 1.23 | ±13.3% | | 4600 | 36.7 | 4.04 | 5.99 | 5.99 | 5.99 | 0.40 | 1.30 | ±13.3% | | 4800 | 36.4 | 4.25 | 5.94 | 5.94 | 5.94 | 0.40 | 1.35 | ±13.3% | | 4950 | 36.3 | 4.40 | 5.81 | 5.81 | 5.81 | 0.40 | 1.35 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.08 | 5.08 | 5.08 | 0.45 | 1.30 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.70 | 4.70 | 4.70 | 0.45 | 1.42 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.77 | 4.77 | 4.77 | 0.45 | 1.40 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z20-60201 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z20-60201 Page 5 of 9 ## Receiving Pattern (Φ), θ =0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2) Certificate No:Z20-60201 Page 6 of 9 ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z20-60201 Page 7 of 9 ## **Conversion Factor Assessment** ## f=750 MHz,WGLS R9(H_convF) ## f=1750 MHz,WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: $\pm 3.2\%$ (k=2) Certificate No:Z20-60201 Page 8 of 9 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 150.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z20-60201 ## **ANNEX H** Dipole Calibration Certificate ### 750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL-BJ (Auden) Certificate No: D750V3-1017_Jul20 | | ERTIFICATI | | | | | |--|--|---|--|--|--| | Object | D750V3 - SN:1017 | | | | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Source | s between 0.7-3 GHz | | | | | | | | | | | Calibration date: | July 24, 2020 | | | | | | This calibration certificate docume | ants the traceability to not | ional standardakiak a.a.liaa da atau i | | | | | The measurements and the uncer | tainties with confidence p | ional standards, which realize the physical ur
probability are given on the following pages ar | nits of measurements (SI). Indicate are part of the certificate. | | | | All calibrations have been conduct | ed in the closed laborato | ry facility: environment temperature (22 ± 3)° | C and humidity < 70% | | | | Calibration Equipment used (M&T) | | , | o and harmony (70%. | | | | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | | | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | | | ower sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | | | Comp NI malamantah anadahan ka | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | | | Type-N mismatch combination | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | | | | | | | | | | Reference Probe EX3DV4 DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | | Reference Probe EX3DV4
DAE4
Secondary Standards | ID# | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) | | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | ID #
SN: GB39512475 | | Dec-20
Scheduled Check | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | ID #
SN: GB39512475
SN: US37292783 | Check Date (in house) | Dec-20 Scheduled Check In house check: Oct-20 | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | Check Date (in house) 30-Oct-14 (in house check Feb-19) | Dec-20 Scheduled Check In house check: Oct-20 | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Reference Probe EX3DV4 Re | ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 | Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Scheduled Check In house check: Oct-20 Signature | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function | Scheduled Check In house check: Oct-20 Signature | | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Michael Weber | Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function Laboratory Technician | Dec-20 Scheduled Check In house check: Oct-20 | | | Certificate No: D750V3-1017_Jul20 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSI tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | Certificate No: D750V3-1017 Jul20 | Page 2 of 8 | | |-----------------------------------|-------------|--| ## **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | V32.10.4 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | with Spacer | | Frequency | 750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.3 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.47 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.53 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.5 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.23 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.85 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.84 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1017_Jul20 Page 3 of 8