Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Client **TMC Auden** #### **CALIBRATION CERTIFICATE** Object(s) ET3DV6 - SN:1600 Calibration procedure(s) QA CAL-01.v2 Calibration procedure for dosimetric E-field probes Calibration date: January 16, 2004 Condition of the calibrated item In Tolerance (according to the specific calibration document) This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%. Calibration Equipment used (M&TE critical for calibration) | Model Type | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-----------------------------------|----------------|---|------------------------| | Power meter EPM E4419B | GB41293874 | 2-Apr-03 (METAS, No 252-0250) | Apr-04 | | Power sensor E4412A | MY41495277 | 2-Apr-03 (METAS, No 252-0250) | Apr-04 | | Reference 20 dB Attenuator | SN: 5086 (20b) | 3-Apr-03 (METAS, No. 251-0340) | Apr-04 | | Fluke Process Calibrator Type 702 | SN: 6295803 | 8-Sep-03 (Sintrel SCS No. E-030020) | Sep-04 | | Power sensor HP 8481A | MY41092180 | 18-Sep-02 (SPEAG, in house check Oct-03) | In house check: Oct 05 | | RF generator HP 8684C | US3642U01700 | 4-Aug-99 (SPEAG, in house check Aug-02) | In house check: Aug-05 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (SPEAG, in house check Oct-03) | In house check: Oct 05 | | | | | | Calibrated by: Name Function Nico Vetterli Technician Signature Approved by: Katja Pokovic Laboratory Director Date issued: January 21, 2004 This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed. # Probe ET3DV6 SN:1600 Manufactured: July 30, 2001 Last calibrated: Recalibrated: September 4, 2001 January 16, 2004 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) ## DASY - Parameters of Probe: ET3DV6 SN:1600 Sensitivity in Free Space Diode Compression A 94 mV NomX 1.77 μ V/(V/m)² NomY 1.42 μ V/(V/m)² NomZ 1.73 μ V/(V/m)² DCP Y 94 mV DCP X Sensitivity in Tissue Simulating Liquid (Conversion Factors) Plese see Page 7. **Boundary Effect** Head 900 MHz Typical SAR gradient: 5 % per mm | Sensor Cener t | o Phantom Surface Distance | 3.7 mm | 4.7 mm | | |-----------------------|------------------------------|--------|--------|--| | SAR _{be} [%] | Without Correction Algorithm | 9.4 | 5.3 | | | SAR be [%] | With Correction Algorithm | 0.2 | 0.3 | | Head 1800 MHz Typical SAR gradient: 10 % per mm | Sensor to Surf | ace Distance | 3.7 mm | 4.7 mm | |-----------------------|------------------------------|--------|--------| | SAR be [%] | Without Correction Algorithm | 14.9 | 10.3 | | SAR _{be} [%] | With Correction Algorithm | 0.2 | 0.1 | Sensor Offset Probe Tip to Sensor Center Optical Surface Detection **2.7** mm in tolerance The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A numerical linearization parameter: uncertainty not required ## Frequency Response of E-Field (TEM-Cell:ifi110, Waveguide R22) ## Receiving Pattern (ϕ), θ = 0° Axial Isotropy Error < ± 0.2 dB # Dynamic Range f(SAR_{head}) (Waveguide R22) Probe Linearity < ± 0.2 dB ### **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^B | Tissue | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|--------|--------------|--------------|-------|-------|--------------------| | 900 | 800-1000 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.44 | 2.22 | 6.36 ± 11.3% (k=2) | | 1800 | 1710-1910 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.48 | 2.87 | 5.04 ± 11.7% (k=2) | ^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band. ## **Deviation from Isotropy in HSL** Error (θ, ϕ), f = 900 MHz Spherical Isotropy Error < ± 0.4 dB