74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 Korea TEL: +82-31-645-6300 FAX: +82-31-645-6401 # REPORT # FCC/ISED Permissive Change **Applicant Name:** JVCKENWOOD USA Corporation Address: 3970 Johns Creek Court, Ste. 100 Suwanee, GA 30024 Date of Issue: August 10, 2016 **Test Site/Location:** HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majang-myeo,Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA Report No.: HCT-R-1607-F029-1 HCT FRN: 0005866421 IC Recognition No.: 5944A-5 FCC ID: ALH442000 ISED: 282D-442000 APPLICANT: JVCKENWOOD USA Corporation FCC Model(s): NX-5400-K2, NX-5400-K3, NX-5400-F2, NX-5400-F3 ISED Model(s): NX-5400-K2 / NX-5400-K3 / TK-5430-F2 / TK-5430-F2 / VP5430-F2 / VP5430-F3 EUT Type: 700/800MHz P25 TRANSCEIVER with Bluetooth Frequency Range: FCC: 769-775, 799-805, 806-824, 851-869 MHz ISED: 768-776, 798 - 806, 806 - 824, 851-869 MHz FCC Rule Part(s): Part 90 and Part 2 ISED Rule: RSS- Gen Issue 4, RSS-119 Issue 12 The measurements shown in this report were made in accordance with the procedures specified in §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a) Report prepared by : Seul Ki Lee Test engineer of RF Team Approved by : Jong Seok Lee Manager of RF Team This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd. Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 2 of 40 # **Version** | TEST REPORT NO. | DATE | DESCRIPTION | |-------------------|-----------------|---| | HCT-R-1607-F029 | July 29, 2016 | - First Approval Report | | HCT-R-1607-F029-1 | August 10, 2016 | - Add the frequency range for ISED. - Add the Limit for Emission Mask on Page 17 - Add the Information for Type of Emission on Page 6 | | | | | | | | | # **Table of Contents** | 1. GENERAL INFORMATION | | |--|----| | 2. EUT DESCRIPTION | 4 | | 3. TEST METHODOLOGY | 5 | | 3.1 EUT CONFIGURATION | 5 | | 3.2 EUT EXERCISE | 5 | | 3.3 GENERAL TEST PROCEDURES | 5 | | 3.4 DESCRIPTION OF TEST MODES | 5 | | 3.5 Type of Emission(Necessary Bandwidth Calculations) | 6 | | 4. INSTRUMENT CALIBRATION | 6 | | 5. FACILITIES AND ACCREDITATIONS | 6 | | 5.1 FACILITIES | 6 | | 5.2 EQUIPMENT | 6 | | 6. SUMMARY TEST OF RESULTS | 7 | | 7. TEST RESULT | 8 | | 7.1 Carrier Output Power | 8 | | 7.2 Occupied Bandwidth | 10 | | 7.3 Emission Mask | 16 | | 7.4 Unwanted Emissions : Conducted Spurious Emission | 22 | | 7.5 Unwanted Emissions : Radiated Spurious Emission | 34 | | 8. LIST OF TEST EQUIPMENT | 39 | | 8.1 LIST OF TEST EQUIPMENT(Conducted Test) | 39 | | 8.2 LIST OF TEST EQUIPMENT(Radiated Test) | 40 | Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 4 of 40 # 1. GENERAL INFORMATION Applicant: JVCKENWOOD USA Corporation Address: 3970 Johns Creek Court, Ste. 100 Suwanee, GA 30024 FCC ID: ALH442000 ISED: 282D-442000 **EUT Type:** 700/800MHz P25 TRANSCEIVER with Bluetooth FCC Model name(s): NX-5400-K2, NX-5400-K3, NX-5400-F2, NX-5400-F3 ISED Model name(s): NX-5400-K2 / NX-5400-K3 / TK-5430-F2 / TK-5430-F2 / VP5430-F2 / VP5430-F3 **Date(s) of Tests:** July 01, 2016 ~ July 26, 2016 Place of Tests: HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Korea # 2. EUT DESCRIPTION | EUT Type | 700/800MHz P25 TRANSCEIVER with Bluetooth | |-----------------------|---| | FCC Model Name | NX-5400-K2, NX-5400-K3, NX-5400-F2, NX-5400-F3 | | IC Model Name | NX-5400-K2 / NX-5400-K3 / TK-5430-F2 / TK-5430-F2 / VP5430-F2 / VP5430-F3 | | Power Supply | DC 7.5 V | | Output Power | 3 W (Power output continuously variable to 1 W) | | Battery type | Li-ion Battery (EX-4621 / EX-4622 / EX-4623) | | Channel Bandwidth | FCC / ISED : 12.5 kHz | | Operating Temperature | -30 °C ~ +60 °C | | Frequency Range | FCC: 769-775, 799-805, 806-824, 851-869 MHz | | 1 requestey startige | ISED : 768-776, 798 - 806, 806 - 824, 851-869 MHz | | Test Frequency | FCC : 769.05 MHz, 815.05 MHz, 868.95 MHz | | | ISED : 768.05 MHz | Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 5 of 40 # 3. TEST METHODOLOGY TIA-603-D dated June 24, 2010 entitled "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards" were used in the measurement. #### 3.1 EUT CONFIGURATION The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application. #### 3.2 EUT EXERCISE The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the FCC Rules Part 2 and Part 90. #### 3.3 GENERAL TEST PROCEDURES #### **Radiated Emissions** Radiated emission measurements are performed in the Fully-anechoic chamber. The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-D-2010 Clause 2.2.17. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission. The level and position of the maximized emission is recorded with the spectrum analyzer using a positive peak detector. A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated. The power is calculated by the following formula; $$P_{d(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$$ Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna. The maximum EIRP is calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration #### 3.4 DESCRIPTION OF TEST MODES The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting is programmed. Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 6 of 40 # 3.5 Type of Emission(Necessary Bandwidth Calculations) 7K60FXD, 7K60FXE (DMR) | Modulation = 7K60FXD, 7K60FXE | | | | | | |-----------------------------------|----------------------------|--|--|--|--| | Digital information rate (R), bps | 9600 | | | | | | Maximum Deviation (D), kHz | 3.024 | | | | | | Signaling States (S) | 4 | | | | | | Constant Factor (K) | 0.463 | | | | | | Necessary Bandwidth (BN), kHz | (R/log ₂ S)+2DK | | | | | | Necessary Bandwidth (BN), kHz | 7.6 | | | | | #### Note: Type of modulation of the main carrier: F = Frequency Modulation Nature of signals modulating the main carrier: X = Cases not otherwise covered Type of information to be transmitted : E = Telephony(including sound broadcasting) D = Data transmission, telemetry, telecommand #### 4. INSTRUMENT CALIBRATION The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards. ### 5. FACILITIES AND ACCREDITATIONS #### **5.1 FACILITIES** The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. #### **5.2 EQUIPMENT** Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods." Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 7 of 40 # **6. SUMMARY TEST OF RESULTS** | Test Description | FCC Part | IC Part | Test Limit | Test Condition | Test | |----------------------------|----------------|-----------------|------------------|----------------|--------| | rest Description | Section(s) | Section(s) | iest Liiiit | rest Condition | Result | | Corrier DE Output Dawer | §90.205(i) | DCC440 :42/E 4) | | | PASS | | Carrier RF Output Power | §2.1046(a) | RSS119-i12(5.4) | Varies | | PASS | | Unwanted Emissions | §2.1051 | RSS119-i12(5.8) | valles | | PASS | | 99% Bandwidth(IC) | NA | NA | NA | CONDUCTED | PASS | | | §90.210, | | Varies | | | | Emission Mask | §90.543 | RSS119-i12(5.5) | | | PASS | | EIIIISSIOII WASK | §90.691 | K33119-112(3.3) | | | PASS | | | §2.1049(c)(1) | | | | | | Field Strength of Spurious | \$2.4052 | DCC440 :42/E 0) | Varias | | DASS | | Radiation | §2.1053 | RSS119-i12(5.8) | | | PASS | | Receiver Spurious | 247 (224) | 200.0 | | RADIATED | 5.00 | | Emissions | §15.109(a) | RSS-Gen | cf. Section 7.10 | | PASS | Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 8 of 40 # 7. TEST RESULT # 7.1 Carrier Output Power #### Definition The conducted carrier power output rating for a transmitter is the power available at the output terminals of the transmitter when the output terminals are connected to the standard transmitter load. ### **TEST CONFIGURATION** #### **TEST PROCEDURE** According to 2.2.1 in TIA-603-D Standard. - a) Connect the equipment as illustrated. - b) Measure the transmitter output power during the defined duty cycle(see 1.3.2). Correct for all losses in the RF path. - c) The value recorded in step b) is the conducted carrier output power rating. Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 9 of 40 # **■ TEST RESULTS** # For FCC | Mode Type o | Tyma af | Ohamal | | Carrier Output Power | | | | |-------------|----------|---|------------|----------------------|--------|--------|-------| | | • • | Type of Channel Emission Spacing | Freq.(MHz) | Low | | High | | | | | | | dBm | W | dBm | W | | Digital | 7//C0EVD | 7K60FXD,
7K60FXE 12.5 kHz 815.05
868.95 | 769.05 | 29.464 | 0.884 | 34.312 | 2.699 | | | 12.5 kl | | 815.05 | 29.104 | 0.814 | 34.236 | 2.652 | | | | | 29.863 | 0.969 | 34.843 | 3.050 | | # For ISED | Type of | Channal | Channal | | Carrier Output Power | | | | |----------|----------|-----------------|------------|----------------------|-------|--------|-------| | Mode | , · | Type of Channel | Freq.(MHz) | Low | | High | | | Emission | Spacing | | dBm | W | dBm | W | | | Digital | 7K60FXD, | 12.5 kHz | 768.05 | 29.420 | 0.875 | 34.406 | 2.758 | | Digital | 7K60FXE | 12.5 KHZ | 700.05 | 29.420 | 0.675 | 34.400 | 2.730 | Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 10 of 40 #### 7.2 Occupied Bandwidth #### Definition The transmitter sideband spectrum denotes the sideband power produced at a discrete frequency separation from the carrier up to the test bandwidth (see TIA-603-D Section 1.3.4.4) due to all sources of unwanted noise within the transmitter in a modulated condition. #### **TEST CONFIGURATION** #### TEST PROCEDURE According to TIA-603-D Section 2.2.11.2 / RSS-119 Section 5.5 - a) For EUT supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for +/- 2.5 kHz deviation (or 50 % modulation). (FM modulation). - b) With level constant, the signal level was increased 16 dB.. - c) For EUT supporting digital modulation, the digital modulation mode was operated to its maximum extent. - d) Adjust the spectrum analyzer for the following setting: - 1) RBW: 100Hz (Authorized Band 6 kHz), 100Hz (Authorized Band 11.25 kHz), 300Hz (Authorized Band 20 kHz) - oooniz (riamonizoa bana zo miz) - 4) Sweep Speed: Sweep Speed slow enough to maintain measurement calibration. 2) VBW: Video Bandwidth at least 10 times the resolution bandwidth. - 5) Sampling Time: 10 times - 6) Detector Mode = Positive Peak. - e) The occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results. Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 11 of 40 # LIMIT | Frequency Band (MHz) | Channel bandwidth (kHz) | Authorized Bandwidth (kHz) | | |----------------------|-------------------------|----------------------------|--| | 768 - 869 | 12.5 | 11.25 | | # **■ TEST RESULTS** Conducted 99% Bandwidth Measurements for 7K60FXD, 7K60FXE | Mode | | Measured Bandwidth | | |-----------------|-------------------|--------------------|------------| | Frequency [MHz] | Channel bandwidth | [kHz] | Setting | | 769.05 | | 7.466 | | | 815.05 | 12.5 kHz | 7.464 | High Dower | | 868.95 | | 7.469 | High Power | | 768.05 | | 7.444 | | | 769.05 | | 7.496 | | | 815.05 | 12.5 kHz | 7.465 | Low Power | | 868.95 | 12.5 KHZ | 7.470 | Low Power | | 768.05 | | 7.465 | | Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 12 of 40 #### ■ Plots of 99% Bandwidth #### 769.05 MHz_High #### 815.05 MHz High Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 13 of 40 ### 868.95 MHz_High ### 768.05 MHz_High Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 ### 769.05 MHz_Low ### 815.05 MHz_Low Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 15 of 40 ### 868.95 MHz_Low # 768.05 MHz_Low Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 16 of 40 #### 7.3 Emission Mask #### Definition The transmitter sideband spectrum denotes the sideband power produced at a discrete frequency separation from the carrier up to the test bandwidth (see 1.3.4.4) due to all sources of unwanted noise within the transmitter in a modulated condition. #### **■ TEST CONFIGURATION** #### **■ TEST PROCEDURE** According to 2.2.11 in TIA-603-D Standard. a) Connect the equipment as illustrated. Use the table to determine the spectrum analyzer resolution bandwidth: | Frequency Band
(MHz) | Mask for
Equipment with
Audio Low Pass
Filter | Mask for
Equipment
without Low Pass
Filter | Spectrum
Analyzer
Resolution
Bandwidth (Hz) | | |-------------------------|--|---|--|--| | 25-50 | В | С | 300 | | | 72-76 | В | С | 300 | | | 138-174 | NTIA | NTIA | 300 | | | 150-174 | В | С | 300 | | | 150-174 | D or E | D or E | 100 | | | 406-420 | NTIA | NTIA | 300 | | | 421-512 | В | C | 300 | | | 421-512 | D or E | D or E | 100 | | | 806-821/851-866 | B or EA | G or EA | 300 | | | 821-824/866-869 | В | Н | 300 | | | 896-901/935-940 | I | J | 300 | | - b) Adjust the spectrum analyzer for the following settings: - 1) Resolution Bandwidth per the above table Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 17 of 40 - 2) Video Bandwidth at least 10 times the resolution bandwidth. - 3) Sweep Speed slow enough to maintain measurement calibration. - 4) Detector Mode = Positive Peak. - 5) Span that will allow proper viewing of the test bandwidth (see 1.3.4.4). - c) Set the center frequency of the spectrum analyzer to the assigned transmitter frequency. Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0 dB reference for the measurement. - d) Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation. The input level shall be established at the frequency of maximum response of the audio modulating circuit. Transmitters employing digital modulation techniques that bypass the limiter and the audio low-pass filter shall be modulated as specified by the manufacturer. - e) Record the resulting spectrum analyzer presentation of the emission level with an on-line recording device or in a photograph. It is recommended that the emission limit (as given in 3.2.11) be drawn on the plotted graph or photograph. The spectrum analyzer presentation is the sideband spectrum. ### ■ Limit: Mask D Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows: - (1) On any frequency from the center of the authorized bandwidth f₀ to 5.625 kHz removed from f₀: Zero dB. - (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(f_d-2.88 kHz) dB. - (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation. - (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained. Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 18 of 40 #### Plots of Emission Mask FCC ## 769.05 MHz_High ### 815.05 MHz_High ## 868.95 MHz_High ### 769.05 MHz_Low Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 ### 815.05 MHz_Low #### 868.95 MHz_Low Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 21 of 40 #### Plots of Emission Mask ISED ## 768.05 MHz_High ### 768.05 MHz_Low Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 22 of 40 # 7.4 Unwanted Emissions: Conducted Spurious Emission #### Definition Conducted spurious emissions are emissions at the antenna terminals on a frequency or frequencies that are outside a band sufficient to ensure transmission of information of required quality for the class of communication desired. #### TEST CONFIGURATION #### **■ TEST PROCEDURE** According to 2.2.13 in TIA-603-D Standard. - e) Connect the equipment as illustrated, with the notch filter by-passed. - f) Set the center frequency of the spectrum analyzer to the assigned transmitter frequency, key the transmitter, and set the level of the carrier to the full scale reference line. - g) Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation. The input level shall be established at the frequency of maximum response of the audio modulation circuit. - h) Adjust the spectrum analyzer for the following settings: - 1) Resolution Bandwidth = 10 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1 GHz. - 2) Video Bandwidth ≥3 times the resolution bandwidth. - 3) Sweep Speed ≤2000 Hz per second. - 4) Detector Mode = mean or average power. - e) Adjust the center frequency of the spectrum analyzer for incremental coverage of the range from: - 1) The lowest radio frequency generated in the equipment to the carrier frequency minus the test bandwidth (see 1.3.4.4). - 2) The carrier frequency plus the test bandwidth to a frequency less than 2 times the carrier frequency. - f) Record the frequencies and levels of spurious emissions from step e). - g) Unkey the transmitter. Replace the transmitter under test with the signal generator and adjust the signal level to reproduce the frequencies and levels of every spurious emission recorded in step f). Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 23 of 40 Record the signal generator levels in dBm. - h) Insert the notch filter. - i) Adjust the spectrum analyzer for the following settings: - 1) Resolution Bandwidth = 10 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1 GHz. - 2) Video Bandwidth ≥3 times the resolution bandwidth. - 3) Sweep Speed ≤2000 Hz per second. - 4) Detector Mode = mean or average power. - j) Key the transmitter. Adjust the center frequency of the spectrum analyzer for incremental coverage of the range from a frequency equal to 2 times the carrier frequency and to the tenth harmonic of the carrier frequency. #### **■** LIMIT | Frequency Band (MHz) | Channel bandwidth (kHz) | Worst Limit (dB) | | |----------------------|-------------------------|-------------------|--| | 768 - 869 | 12.5 | 50+10Log(P) or 70 | | #### Note 1. Correct Level (dBm): Substitute SG Level (dBm) 2. Emission Level (dBc): Correct Level – 10Log(P*1000) 3. P = Carrier Output Power(W) (P value, please refer to Section 7.1) Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 24 of 40 # **■ TEST RESULTS For FCC** # 7K60FXD, 7K60FXE | No. | Frequency
(MHz) | Band | Setting | Spurious
Frequency
(MHz) | Correct
Level
(dBm) | Emission
Level
(dBc) | Limit
(dBc) | Margin
(dB) | |-----|--------------------|--------|------------|--------------------------------|---------------------------|----------------------------|----------------|----------------| | | | | | 885.54 | -56.602 | -90.914 | -54.312 | 36.602 | | 1 | 769.05 | Low | | 942.77 | -57.569 | -91.881 | -54.312 | 37.569 | | | | | | 5725.40 | -36.461 | -70.773 | -54.312 | 16.461 | | | | | | 737.13 | -57.311 | -91.547 | -54.236 | 37.311 | | 2 | 815.05 | Middle | High Power | 892.33 | -57.878 | -92.114 | -54.236 | 37.878 | | | | | | 7408.90 | -36.500 | -70.736 | -54.236 | 16.5 | | | | | | 810.85 | -51.854 | -86.697 | -54.843 | 31.854 | | 3 | 868.95 | High | | 927.25 | -53.665 | -88.508 | -54.843 | 33.665 | | | | | | 6318.30 | -36.453 | -71.296 | -54.843 | 16.453 | | | | | | 942.77 | -58.179 | -87.643 | -49.464 | 38.179 | | 4 | 769.05 | Low | | 893.30 | -58.296 | -87.760 | -49.464 | 38.296 | | | | | | 6312.40 | -36.496 | -65.960 | -49.464 | 16.496 | | | | | | 738.10 | -58.032 | -87.136 | -49.104 | 38.032 | | 5 | 815.05 | Middle | Low Power | 896.21 | -58.374 | -87.478 | -49.104 | 38.374 | | | | | | 7337.40 | -36.490 | -65.594 | -49.104 | 16.49 | | | | | | 810.85 | -56.277 | -86.140 | -49.863 | 36.277 | | 6 | 868.95 | High | | 927.25 | -57.334 | -87.197 | -49.863 | 37.334 | | | | | | 5386.30 | -36.454 | -66.317 | -49.863 | 16.454 | Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 25 of 40 # **■ TEST RESULTS For ISED** # 7K60FXD, 7K60FXE | No. | Frequency
(MHz) | Band | Setting | Spurious
Frequency
(MHz) | Correct
Level
(dBm) | Emission
Level
(dBc) | Limit
(dBc) | Margin
(dB) | |-----|--------------------|------|------------|--------------------------------|---------------------------|----------------------------|----------------|----------------| | | | | | 884.57 | -56.686 | -91.092 | -54.843 | 36.249 | | 1 | 768.05 | - | High Power | 826.37 | -57.149 | -91.555 | -54.843 | 36.712 | | | | | 6307.90 | -36.462 | -70.868 | -54.843 | 16.025 | | | | | | | 826.37 | -57.863 | -87.283 | -49.863 | 37.42 | | 4 | 768.05 | - | Low Power | 884.57 | -58.271 | -87.691 | -49.863 | 37.828 | | | | | | 7412.50 | -36.480 | -65.900 | -49.863 | 16.037 | Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 26 of 40 # **■ Plots of Unwanted Emissions : Conducted Spurious Emission FCC** (769.05 MHz)_High Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 27 of 40 ### (815.05 MHz)_High Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 ### (868.95 MHz)_High Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 29 of 40 ### (769.05MHz)_Low Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 ## (815.05 MHz)_Low Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 31 of 40 ### (868.95 MHz)_Low Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 32 of 40 ## **■ Plots of Unwanted Emissions : Conducted Spurious Emission ISED** (768.05MHz)_High Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 33 of 40 ### (768.05 MHz)_Low Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 34 of 40 # 7.5 Unwanted Emissions : Radiated Spurious Emission #### Definition Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies that are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired. #### **TEST CONFIGURATION** #### Below 1 GHz ### Above 1 GHz # **TEST PROCEDURE USED** According to 2.2.12 in TIA-603-D Standard. - a) Connect the equipment as illustrated. - b) Adjust the spectrum analyzer for the following settings: - 1) Resolution Bandwidth = 10 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz. - 2) Video Bandwidth = 300 kHz for spurious emissions below 1 GHz, and 3 MHz for spurious emissions Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 35 of 40 above 1 GHz. - 3) Sweep Speed slow enough to maintain measurement calibration. - 4) Detector Mode = Positive Peak. - c) Place the transmitter to be tested on the turntable in the standard test site, or an FCC listed site compliant with ANSI C63.4-2001 clause 5.4. The transmitter is transmitting into a nonradiating load that is placed on the turntable. The RF cable to this load should be of minimum length. For transmitters with integral antennas, the tests are to be run with the unit operating into the integral antenna. - d) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to ± the test bandwidth (see 1.3.4.4). - e) Key the transmitter. - f) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Then the turntable should be rotated 360° to determine the maximum reading. - Repeat this procedure to obtain the highest possible reading. Record this maximum reading. - g) Repeat step f) for each spurious frequency with the test antenna polarized vertically. - h) Reconnect the equipment as illustrated. - i) Keep the spectrum analyzer adjusted as in step b). - j) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. - k) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. - I) Repeat step k) with both antennas vertically polarized for each spurious frequency. - m) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps k) and l) by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB) where: Pd is the dipole equivalent power and *Pg* is the generator output power into the substitution antenna. Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 36 of 40 n) The *Pd* levels record in step m) are the absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following: Radiated spurious emissions (dB) = 10*log₁₀(TX power in watts/0.001)- the levels in step m) ### LIMIT | Frequency Band (MHz) | Channel bandwidth (kHz) | Worst Limit (dBm) | |----------------------|-------------------------|-------------------| | 768 - 869 | 12.5 | -20 | # Operating Mode | EUT Type | Modulation | Potton/ | Test frequency | |--------------|------------------|---------|--------------------| | (Worst case) | Modulation | Battery | (MHz) | | | 7K60FXD, 7K60FXE | | 768.05(ISED) | | Stand alone | | EV 4624 | 769.05(FCC) | | Stand alone | | EX-4621 | 815.05(FCC / ISED) | | | | | 868.95(FCC / ISED) | Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 37 of 40 ### **■ TEST RESULTS For FCC** # 7K60FXD, 7K60FXE Frequency: 769.05 Battery: EX-4621 | Freg(MHz) | Reading[dBm] | Factor(dB) | Pol | Result(dBm) | Limit(dB) | Margin(dB) | | |-----------|--------------|------------|-----|-------------|-----------|------------|--| | 769.05 | -49.05 | 31.81 | X-H | -17.24 | - | - | | | No peak | | | | | | | | # 7K60FXD, 7K60FXE Frequency: 815.05.05 Battery: EX-4621 | Freq(MHz) | Reading[dBm] | Factor(dBm) | Pol | Result(dB) | Limit(dB) | Margin(dB) | | | |-----------|--------------|-------------|-----|------------|-----------|------------|--|--| | 815.05 | -48.34 | 32.44 | X-H | -15.90 | - | - | | | | No peak | | | | | | | | | # 7K60FXD, 7K60FXE Frequency: 868.95 Battery: EX-4621 | Freq(MHz) | Reading[dBm] | Factor(dBm) | Pol | Result(dB) | Limit(dB) | Margin(dB) | | |-----------|--------------|-------------|-----|------------|-----------|------------|--| | 868.95 | -42.86 | 32.28 | X-H | -10.58 | - | - | | | No peak | | | | | | | | # <u>Note</u> 1. Result (dBm) = Reading + Factor 2. Limit (dBm) = -20 Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 38 of 40 # **■ TEST RESULTS For ISED** 7K60FXD, 7K60FXE Frequency: 768.05 Battery: EX-4621 | Freq(MHz) | Reading[dBm] | Factor(dBm) | Pol | Result(dB) | Limit(dB) | Margin(dB) | | |-----------|--------------|-------------|-----|------------|-----------|------------|--| | 768.05 | -49.08 | 31.81 | X-H | -17.27 | - | - | | | No peak | | | | | | | | # <u>Note</u> 1. Result (dBm) = Reading + Factor 2. Limit (dBm) = -20 Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 39 of 40 # 8. LIST OF TEST EQUIPMENT # 8.1 LIST OF TEST EQUIPMENT(Conducted Test) | Manufacturer | Model / Equipment | Calibration | Calibration | Serial No. | | |-----------------|---------------------------------------|-------------|-------------|---------------|--| | Manufacturer | Model / Equipment | Date | Interval | Cenarivo. | | | Agilent | N9020A / Signal Analyzer | 06/24/2016 | Annual | MY51110085 | | | Agilent | N9030A / Signal Analyzer | 11/24/2015 | Annual | MY49431210 | | | Agilent | N1911A / Power Meter | 03/11/2016 | Annual | MY45100523 | | | Agilent | N1921A / Power Sensor | 03/11/2016 | Annual | MY52260025 | | | Hewlett Packard | E3632A / DC Power Supply | 03/09/2016 | Annual | KR75303962 | | | Neng Yeol | NY-THR18750 / Temp & Humidity Chamber | 11/04/2015 | Annual | NY-200912201A | | | Agilent | 8498A / Attenuator(30 dB) | 02/16/2016 | Annual | 51162 | | Report No.: HCT-R-1607-F029-1 Model: NX-5400-K2 Page 40 of 40 # 8.2 LIST OF TEST EQUIPMENT(Radiated Test) | Manufacture | Model/ Equipment | Serial
Number | Calibration
Interval | Calibration
Due | |----------------|-----------------------------------|------------------|-------------------------|--------------------| | CERNEX | CBLU1183540B-01/ POWER AMP | 25540 | Annual | 05/13/2017 | | Wainwright | WHKX 10-900-1000-15000-40SS/H.P.F | 5 | Annual | 08/11/2016 | | Schwarzbeck | BBHA 9120D/ Horn Antenna | 9210D-1299 | Biennial | 10/16/2016 | | REOHDE&SCHWARZ | FSV40-N/Signal Analyzer | 101068-SZ | Annual | 09/23/2016 | | Schwarzbeck | VULB9160/ Bilog Antenna | 3368 | Biennial | 10/10/2016 | | Agilent | 8498A / Attenuator(30 dB) | 51162 | Annual | 02/16/2017 | | narda | termination | - | - | - |