

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE191005205V01

FCC REPORT (BLE)

Applicant: Shenzhen Youmi Intelligent Technology Co., Ltd.

Address of Applicant: 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan

District, Shenzhen City, China

Equipment Under Test (EUT)

Product Name: Smart phone

Model No.: F2, F2 GT, Power 3, Power GT, S5 Pro, UMIDIGI X Pro

Trade mark: UMIDIGI

FCC ID: 2ATZ4F2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 18 Oct., 2019

Date of Test: 18 Oct., to 27 Nov., 2019

Date of report issued: 27 Nov., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	18 Nov., 2019	Original
01	27 Nov., 2019	Retest 6dB

Test Engineer Tested by: 27 Nov., 2019

Reviewed by: 27 Nov., 2019 Date:

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4		ST SUMMARY	_
		NERAL INFORMATION	
5	GE		
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	16
	6.6	BAND EDGE	18
	6.6.	1 Conducted Emission Method	18
	6.6.	2 Radiated Emission Method	20
	6.7	Spurious Emission	25
	6.7.	1 Conducted Emission Method	25
	6.7.	2 Radiated Emission Method	27
7	TES	ST SETUP PHOTO	32
0	E117	CONSTRUCTIONAL DETAILS	າາ

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014
ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Shenzhen Youmi Intelligent Technology Co., Ltd.
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China
Manufacturer:	Shenzhen Youmi Electronic Digital Co., Ltd.
Address:	406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China

5.2 General Description of E.U.T.

-	
Product Name:	Smart phone
Model No.:	F2, F2 GT, Power 3, Power GT, S5 Pro, UMIDIGI X Pro
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.89 dBi
Power supply:	Rechargeable Li-polymer Battery DC3.85V-5150mAh
AC adapter:	Model: HJ-FC010K7-US
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 5.0V, 2A
	DC 9.0V, 2A
	DC 12.0V, 1.5A
Remark:	Model No.: F2, F2 GT, Power 3, Power GT, S5 Pro, UMIDIGI X Pro were
	identical inside, the electrical circuit design, layout, components used and
	internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible
	defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 5 of 33

Report No: CCISE191005205V01

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

Νc

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

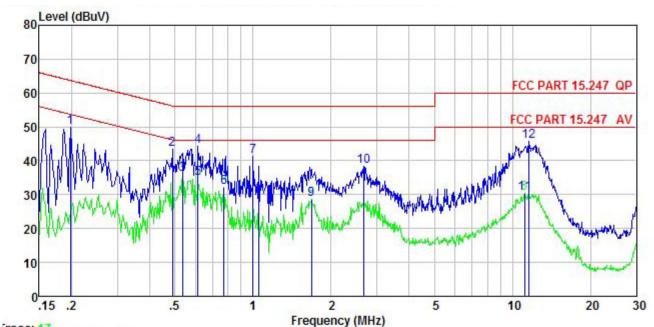
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.89 dBi.

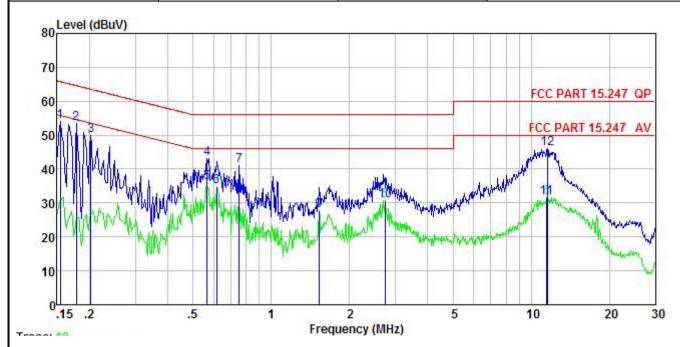

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:		Limit (dBuV)			
Limit.	Frequency range (MHz) Quasi-peak Average				
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	0.5-5 56 46			
	5-30	60	50		
	* Decreases with the logar				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10-2013 on conducted measurement. 				
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments:	Refer to section 5.9 for de	tails			
Test mode:	Refer to section 5.3 for details				
Test results:	Passed	Passed			

Measurement Data:

Product name:	Smart phone	Product model:	F2
Test by:	Carey	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

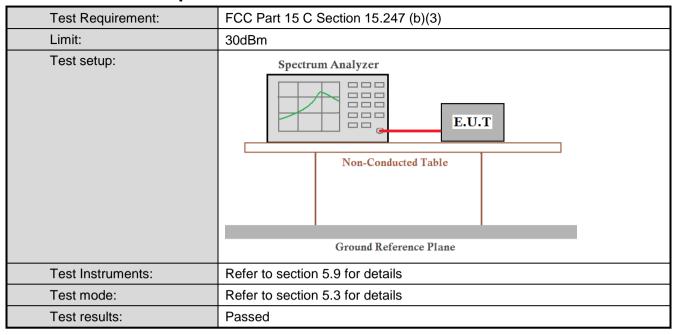
-	_
race:	-
Talle.	-


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>ab</u>	<u>ab</u>	dBu∇	dBu⊽	<u>ab</u>	
1	0.198	39.67	-0.41	10.76	50.02	63.71	-13.69	QP
2	0.489	32.97	-0.39	10.76	43.34	56.19	-12.85	QP
3	0.535	25.65	-0.39	10.76	36.02	46.00	-9.98	Average
1 2 3 4 5 6 7 8 9	0.614	33.95	-0.38	10.77	44.34	56.00	-11.66	
5	0.614	24.35	-0.38	10.77	34.74	46.00	-11.26	Average
6	0.771	21.73	-0.38	10.80	32.15			Average
7	1.000	30.84	-0.38	10.87	41.33	56.00	-14.67	QP
8	1.049	19.08	-0.38	10.88	29.58	46.00	-16.42	Average
9	1.680	18.09	-0.40	10.94	28.63	46.00	-17.37	Average
10	2.664	27.88	-0.43	10.93	38.38		-17.62	
11	11.139	20.05	-0.63	10.93	30.35	50.00	-19.65	Average
12	11.559	35.58	-0.64	10.93	45.87		-14.13	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

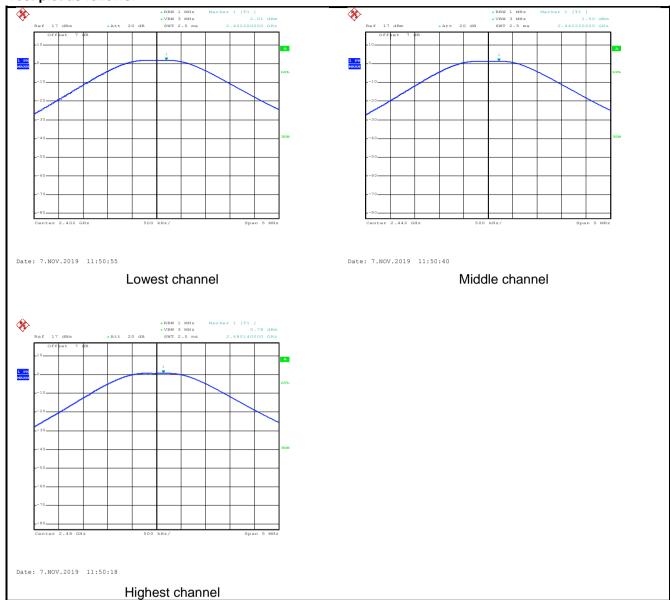
Product name:	Smart phone	Product model:	F2
Test by:	Carey	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	<u>ab</u>	dBu₹	dBu∜	<u>ab</u>	
1 2 3 4 5 6 7 8 9 10 11	0.154 0.178 0.202 0.567 0.567 0.617 0.751 1.527 2.736 11.498	25.82 24.57 30.83 22.27 17.43 20.57	-0.65 -0.65 -0.64 -0.64 -0.65 -0.65	10.76 10.76 10.77 10.79 10.79 10.93 10.93	54. 11 53. 54 49. 78 43. 24 35. 93 34. 70 40. 98 32. 42 27. 71 30. 83 31. 53	64.59 63.54 56.00 46.00 56.00 46.00 46.00 46.00	-11.30 -15.02 -13.58 -18.29 -15.17	QP QP QP Average Average
12	11.559	36.02	-0.80	10.93	46.15		-13.85	

Notes

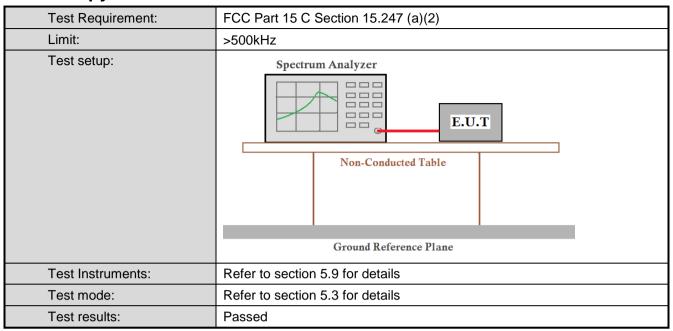
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power



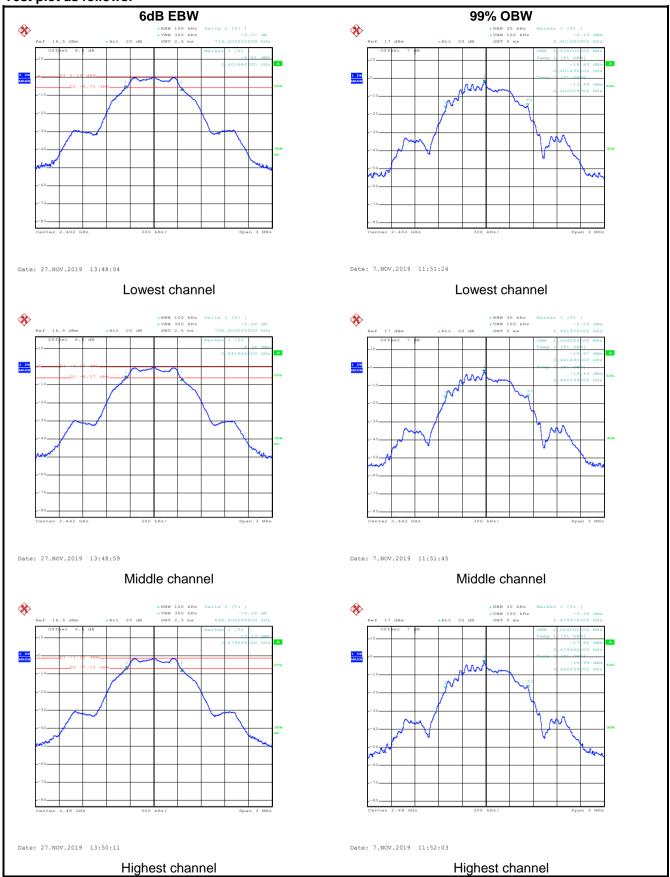
Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	2.01		
Middle	1.50	30.00	Pass
Highest	0.78		



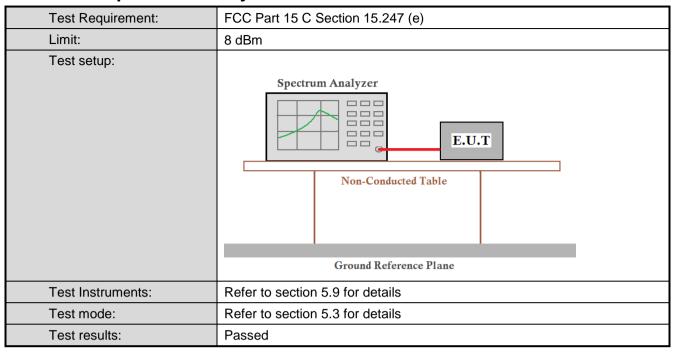
Test plot as follows:

6.4 Occupy Bandwidth



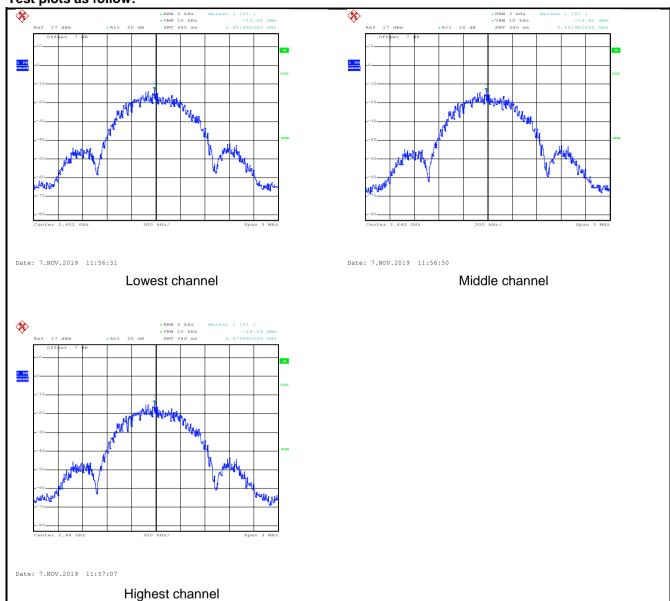
Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.714		
Middle	0.708	>500	Pass
Highest	0.696		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.038		
Middle	1.044	N/A	N/A
Highest	1.044		



Test plot as follows:

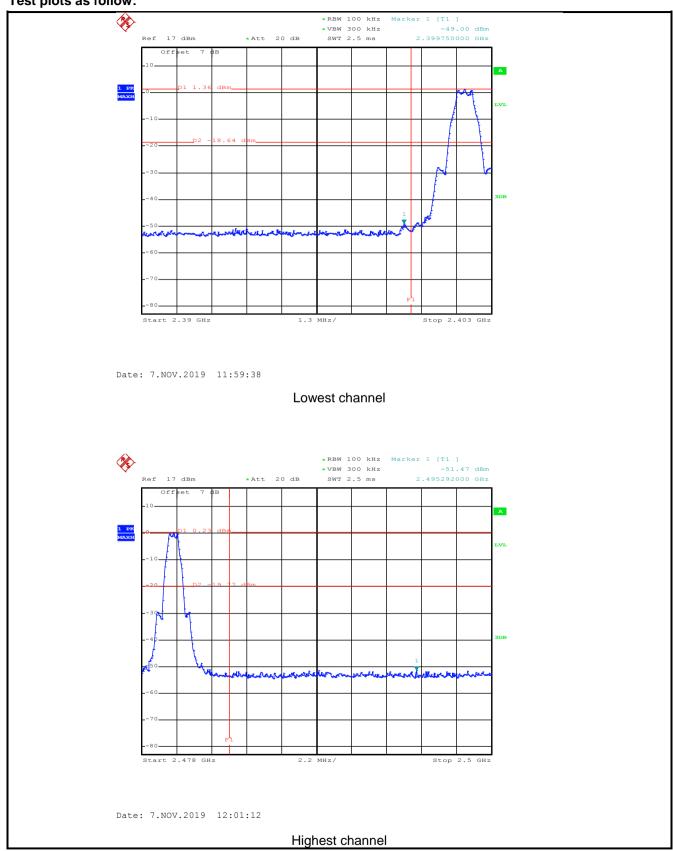
6.5 Power Spectral Density



Measurement Data:

modean on to the Data			
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-13.06		
Middle	-13.62	8.00	Pass
Highest	-14.29		

Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plots as follow:

6.6.2 Radiated Emission Method

Above 1GHz Peak 1MHz 3MHz Peak Varage Value	6.6.2 Radiated Emission I	vietnoa								
Test Distance: Receiver setup: Frequency Detector RBW VBW Rema	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209								
Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz RMS 1MHz 3MHz Average Value Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz T4.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 degret to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ant tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and then the antenna was tuned to heights from 1 meter to meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and	Test Frequency Range:	2.3GHz to 2.5GHz								
Above 1GHz Peak 1MHz 3MHz Peak Varage Value	Test Distance:	3m	1							
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ant tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its worse case and then the antenna was tuned to heights from 1 meter to meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Peak Detect Function Peak Detect Function and Peak Detect Function and Peak Detect Function and Peak Detect Function Peak Detect Function and Peak Detect Function Peak Dete	Receiver setup:	Frequency				Remark				
Limit: Frequency Limit (dBuV/m @3m) Remark		Above 1GHz				Peak Value				
Above 1GHz 54.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ant tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and then the antenna was tuned to heights from 1 meter to meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and						Average Value				
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 degret to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ant tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and then the antenna was tuned to heights from 1 meter to meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and	Limit:	Frequer	icy L	,						
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antended tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and then the antenna was tuned to heights from 1 meter to meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and		Above 10	GHz —							
6. If the emission level of the EUT in peak mode was 10 dB lower the limit specified, then testing could be stopped and the peak voof the EUT would be reported. Otherwise the emissions that did have 10 dB margin would be re-tested one by one using peak, or peak or average method as specified and then reported in a data sheet.		 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 								
Test setup: Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver	Test setup:	150cm	furntable) Grou	3m and Reference Plane						
Test Instruments: Refer to section 5.9 for details	Test Instruments:	Refer to section	on 5.9 for deta	ails						
Test mode: Refer to section 5.3 for details										
Test results: Passed	Test results:	Passed								

roduc	t Name:	Sma	rt phone			P	roduct m	odel:	F2			
est By	y:	Care	÷y	_		T	Test mode:		BLE Tx m	BLE Tx mode		
est Ch	nannel:	Lowe	est channe	əl		Р	olarizatio	n:	Vertical			
est Vo	oltage:	AC 1	20/60Hz			E	nvironme	ent:	Temp: 24	°C Hı	uni: 57%	
1.0	avel (dRuV/m)					•						
110	evel (dBuV/m)											
100											-	
											\wedge	
80									FC	PART	15 (PK)	
60			^			_			FC	PART	15 (AV)	
~			Amy ma			-	سكمم		- Andrews	-	-	
40												
20											-	
023	310 2320				2350						2404	
						iency (MH	łz)					
	Freq		intenna Factor					Over Limit	Remark			
	MHz						dBu√/m					
1	2390.000						74.00		Do ale			
1 2	2390.000	12.83	27.07	4.69	0.00	0J. (8 46 97	F4.00	7 72	reak Average			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct I	Name:	Smart	phone		I	Product m	nodel:	F2	2		
st By:	Carey		1	Test mode:			BLE Tx mode				
st Cha	nnel:	Lowes	t channel		ı	Polarizatio	on:	Но	orizontal		
st Volt	age:	AC 12	0/60Hz		i	Environm	ent:	Те	emp: 24℃	Huni: 57	%
	evel (dBuV/n	n)									
SET 100 C	CTCI (GDGV/II	,						7			
100									-	1403	- 63
80									FCC	PART 15 (PI	C)
											1
60		1000					Antique la		FC(PART 15 (A)	/)
			~~~	~~~	Carrie Contract	2000	~~~	JA - U V	ma	~~~	
40					- 4						-0
20											
02	310 2320	)			2350		н			2	404
						ency (MHz	2)				
		ReadA	int enna	Cable	Preamp		Limit	Over			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark		
	MHz	dBu₹	<u>dB</u> /m	₫B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>			
	2390.000	20.30		4.69				-20.25			
2 :	2390.000	12.39	27.08	4.69	0.00	45.84	54.00	-8.16	Average		

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Smart phone	Product model:	F2		
Test By:	Carey Test mode: BLE Tx mode				
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
1					
110 Level (dBuV/m	); 56				
100					
80	\		FCC PART 15 (PK)		
/			PCC PART 15 (PR)		
60		2000000	500 BART 45 (NB		
			ECC PART 15 (AV)		
40					
40					
20					
20					
⁰ 2478	112722	A second second	2500		
	Frequer	ncy (MHz)			

dB dBuV/m dBuV/m

0.00 55.01 74.00 -18.99 Peak 0.00 46.31 54.00 -7.69 Average

#### Remark:

MHz

2483.500

2483.500 21.14

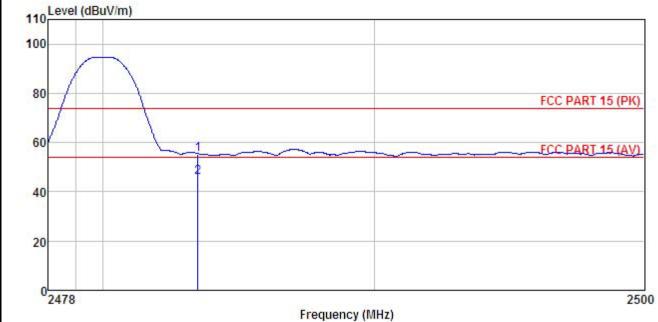
12.44

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

4.81

4.81

dB/m


27.36

27.36

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Smart phone	Product model:	F2
Test By:	Carey	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
110 Level (dBuV/m)			

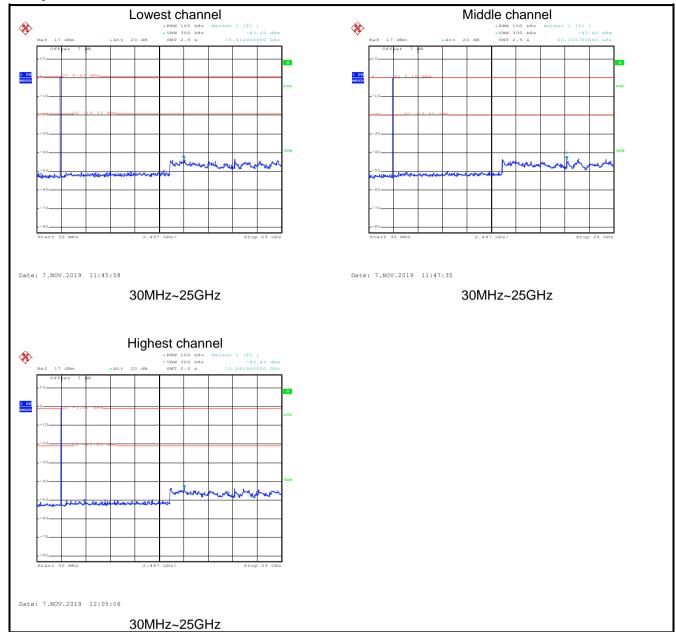


	Freq		Antenna Factor					
2	MHz	dBu∜	<u>dB</u> /m	 <u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500					74.00 54.00		

#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



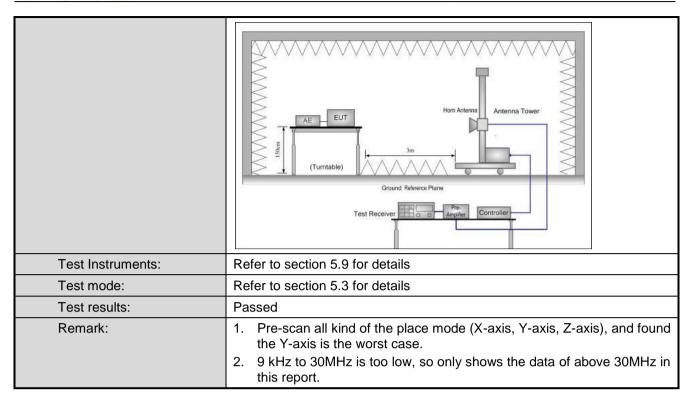

# 6.7 Spurious Emission

## 6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spre spectrum intentional radiator is operating, the radio frequency power the is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level the desired power, based on either an RF conducted or a radiate measurement.						
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						



#### Test plot as follows:

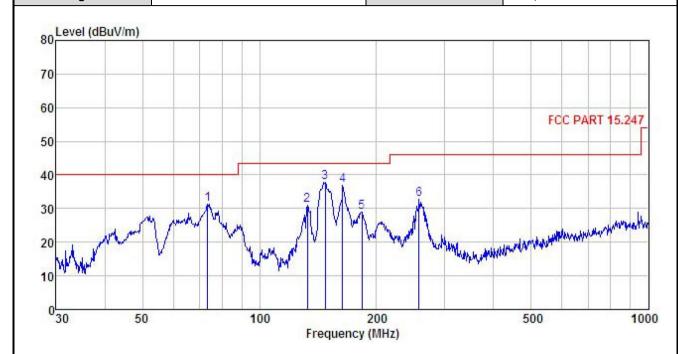





#### 6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	5 and 15.2 <mark>09</mark>	1					
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m	3m							
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3M		Peak Value			
	Above 10112	RMS	1MHz	3M	Hz	Average Value			
Limit:	Frequency	/ Li	mit (dBuV/m @	3m)		Remark			
	30MHz-88M		40.0			Quasi-peak Value			
	88MHz-216N		43.5			Quasi-peak Value			
	216MHz-960I		46.0			Quasi-peak Value			
	960MHz-1G	Hz	54.0		(,	Quasi-peak Value			
	Above 1GF	łz —	54.0 74.0			Average Value Peak Value			
Test Procedure:	1GHz)/1.5r The table of highest rad 2. The EUT antenna, we tower. 3. The antenna Both horizon make the normake the normake the normake the interest and to find the interest and the interest and the interest and	m(above 1GHwas rotated 3 iation. was set 3 minimum reasurement. Suspected en the ante deceiver system and width with sion level of the could be reasurement. It would be reasurement and well the rotatable maximum reasurement and with the rotatable and width with sion level of the could be reasurement.	dz) above the 360 degrees to seters away unted on the standard from one the maximutical polarization was tuned ding.  In Maximum Hore EUT in percesting could be ported. Other discould be re-tested.	e groun to deter from the top of a ne met um val tions of EUT wa ed to he from 0 to Pea lold Mo ak mod oe stop wise the d one b	and at a rmine a varianter to fixed the a control of the	table 0.8m(below a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data			
Test setup:	Below 1GHz  Turn Table  Ground Plane  Above 1GHz	3m 4m  4m  0.8m 1m			Antenna  Search Antenn  Test ceiver	1			








#### Measurement Data (worst case):

#### **Below 1GHz:**

Product Name:	Smart phone	Product model:	F2
Test By:	Carey	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor				Limit		Remark
	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	$\overline{dB} \overline{uV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	73.617	51.52	7.98	1.61	29.69	31.42	40.00	-8.58	QP
2	132.685	48.06	9.99	2.32	29.31	31.06	43.50	-12.44	QP
3	147.404	55.49	9.05	2.49	29.23	37.80	43.50	-5.70	QP
4	163.755	53.97	9.42	2.62	29.10	36.91	43.50	-6.59	QP
5	183.201	45.06	10.08	2.75	28.95	28.94	43.50	-14.56	QP
6	257.422	45.69	12.85	2.83	28.53	32.84	46.00	-13.16	QP

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



oauct	Smart phone				Pro	oduct mo	del:	F2	F2			
st By:	t By: Carey					Test mode:				BLE Tx mode  Horizontal		
st Fred	st Frequency: 30 MH			~ 1 GHz			Polarization:					
st Volt	: Voltage: AC 120/60Hz				-	En	vironmen	t:	Temp:	<b>24℃</b>	Huni:	57%
Lo	evel (dBuV/m	1										
80	ever (dbdv/iii	"										1
70												
0.00												
60									F	C PAF	RT 15.247	
50											T	
										1		
40		+										Ī
30											6.	
0.3488			1 2				4	5		السلادين	No report the	
20	1	Marilla	12	l ku	. 1	3 Nwa 1		5 Mr. was A	AND	NAME OF THE PARTY	a second separate line	
20	Maderial State of the	March Congress	12	hall which	Mun	3 Whydan	water the same	5 Maryanya M	Aphi the later to	and the state of t	aser specifiche	
20	aphrodis .	work of the same	12	hamar han	Mundy	3 Notyphysia	www.	5 Maryana	Not the Marie of the State of t	AND	was specified	
20	aphrodis .	50	12	100	Municipal	3 W\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	water the same	5 Maryanya	<b>300</b>	AND	100	
20	aphrodis .	Hira	1.2 m	100	Freque	200 ncy (MHz		5 Wymyn		and the state of		
20	aphrodis .	50			20	700		5 Nymyn Over		and the second		
20	h/wd/	50 Read/	Interna Factor	Cable	20	ncy (MHz	) Limit	Over		and the second		
20	h/wd/	50 Read/	Antenna	Cable	Preamp Factor	ncy (MHz Level	) Limit	Over	500	A CONTRACTOR OF THE CONTRACTOR		
10 0 30	Freq	Read/ Level dBuV 43.61	Antenna Factor ——dB/m 7.89	Cable Loss ——————————————————————————————————	Preamp Factor dB	Level dBuV/m 23.45	Limit Line dBuV/m	Over Limit	500 Remark	A STATE OF THE STA		
10 0 30	Freq MHz 74.396 80.644	50  Read/ Level  dBuV  43.61 43.51	Antenna Factor  dB/m  7.89 7.68	Cable Loss dB 1.63 1.69	Preamp Factor ————————————————————————————————————	Level  dBuV/m 23.45 23.24	Limit Line dBuV/m 40.00	Over Limit ———————————————————————————————————	500 Remark	AND THE PARTY OF T		
10 0 30	Freq MHz 74.396 80.644 167.237	50  Read/ Level  dBuV  43.61 43.51 36.67	Antenna Factor ————————————————————————————————————	Cable Loss dB 1.63 1.69 2.64	Preamp Factor ————————————————————————————————————	Level  dBuV/m  23.45 23.24 19.78	Limit Line dBuV/m 40.00 40.00 43.50	Over Limit ———————————————————————————————————	500 Remark 			
20	Freq MHz 74.396 80.644	50  Read/ Level  dBuV  43.61 43.51	Antenna Factor  dB/m  7.89 7.68	Cable Loss dB 1.63 1.69	Preamp Factor ————————————————————————————————————	Level  dBuV/m 23.45 23.24	Limit Line dBuV/m 40.00 40.00 43.50 46.00	Over Limit ———————————————————————————————————	500 Remark QP QP QP QP QP			

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



#### **Above 1GHz**

Test channel: Lowest channel										
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	60.26	30.85	6.80	41.81	56.10	74.00	-17.90	Vertical		
4804.00	67.26	30.85	6.80	41.81	63.10	74.00	-10.90	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	41.60	30.85	6.80	41.81	37.44	54.00	-16.56	Vertical		
4804.00	43.47	30.85	6.80	41.81	39.31	54.00	-14.69	Horizontal		
			Test ch	nannel: Midd	lle channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	59.48	31.20	6.86	41.84	55.70	74.00	-18.30	Vertical		
4884.00	66.41	31.20	6.86	41.84	62.63	74.00	-11.37	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		

Test channel: Highest channel											
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	60.48	31.63	6.91	41.87	57.15	74.00	-16.85	Vertical			
4960.00	67.32	31.63	6.91	41.87	63.99	74.00	-10.01	Horizontal			
			Dete	ctor: Averaç	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	41.58	31.63	6.91	41.87	38.25	54.00	-15.75	Vertical			
4960.00	43.02	31.63	6.91	41.87	39.69	54.00	-14.31	Horizontal			

41.84

41.84

37.47

39.30

54.00

54.00

-16.53

-14.70

#### Remark.

4884.00

4884.00

41.25

43.08

31.20

31.20

6.86

6.86

Project No.: CCISE1910052

Vertical

Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.