Intermec Technologies Corporation 6820 Printer July 10, 2005 Report No. ITRM0084 Report Prepared By www.nwemc.com 1-888-EMI-CERT © 2005 Northwest EMC, Inc 22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124 ### **Certificate of Test** Issue Date: July 10, 2005 Intermec Technologies Corporation Model: 6820 Printer | Emissions | | | | | | |---|-----------------|-------------|--|--|--| | Specification Test Method Pass Fail | | | | | | | FCC 15.207 AC Powerline Conducted Emissions:2005-04 | ANSI C63.4:2003 | \boxtimes | | | | | FCC 15.247(d) Spurious Radiated Emissions:2005-04 | ANSI C63.4:2003 | \boxtimes | | | | Modifications made to the product See the Modifications section of this report #### Test Facility The measurement facility used to collect the data is located at: Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826 This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada. Approved By: Greg Kiemel, Director of Engineering This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test. # **Revision History** Revision 05/05/03 | Revision
Number | Description | Date | Page Number | |--------------------|-------------|------|-------------| | | | | | | 00 | None | | | **FCC:** Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962. **NVLAP:** Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. 200629-0 200630-0 200676-0 **Industry Canada:** Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. **CAB:** Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement. **TÜV Product Service:** Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C. **TÜV Rheinland:** Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992. **NEMKO:** Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119). **Technology International:** Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment, Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request. **Australia/New Zealand:** The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP). **VCCI:** Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761).* **BSMI:** Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017. **GOST:** Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification ### **SCOPE** For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp #### What is measurement uncertainty? When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The following documents were the basis for determining the uncertainty levels of our measurements: - "ISO Guide to the Expression of Uncertainty in Measurements", October 1993 - "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994 - "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000 #### How might measurement uncertainty be applied to test results? If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below. #### **Test Result Scenarios:** Case A: Product complies. Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies. Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply. Case D: Product does not comply. # **Measurement Uncertainty** | Radiated Emissions ≤ 1 GHz | | Value (| dB) | | | | | |---------------------------------------|-----------------------|---------|--------|---------|--------|--------|--------| | | Probability Biconical | | Log Pe | eriodic | D | ipole | | | | Distribution | Ante | enna | Ante | enna | An | tenna | | Test Distance | | 3m | 10m | 3m | 10m | 3m | 10m | | Combined standard | normal | + 1.86 | + 1.82 | + 2.23 | + 1.29 | + 1.31 | + 1.25 | | uncertainty u _c (y) | | - 1.88 | - 1.87 | - 1.41 | - 1.26 | - 1.27 | - 1.25 | | Expanded uncertainty <i>U</i> | normal (k=2) | + 3.72 | + 3.64 | + 4.46 | + 2.59 | + 2.61 | + 2.49 | | (level of confidence ≈ 95%) | | - 3.77 | - 3.73 | -2.81 | - 2.52 | - 2.55 | - 2.49 | | Radiated Emissions > 1 GHz | Value (dB) | | | |---|-----------------------------|-----------------------------|--------------------------| | | Probability
Distribution | Without High
Pass Filter | With High
Pass Filter | | Combined standard uncertainty $u_c(y)$ | normal | + 1.29
- 1.25 | + 1.38
- 1.35 | | Expanded uncertainty
<i>U</i> (level of confidence ≈ 95%) | normal (k=2) | + 2.57
- 2.51 | + 2.76
2.70 | | Conducted Emissions | | | |--|----------------|----------| | | Probability | Value | | | Distribution | (+/- dB) | | Combined standard uncertainty <i>uc(y)</i> | normal | 1.48 | | Expanded uncertainty U (level of confidence ≈ 95 %) | normal (k = 2) | 2.97 | | Radiated Immunity | | | |--|----------------|----------| | | Probability | Value | | | Distribution | (+/- dB) | | Combined standard uncertainty uc(y) | normal | 1.05 | | Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %) | normal (k = 2) | 2.11 | | Conducted Immunity | | | | | | |---|-----------------|----------|--|--|--| | | Probability | Value | | | | | | Distribution | (+/- dB) | | | | | Combined standard uncertainty <i>uc(y</i>) | normal | 1.05 | | | | | Expanded uncertainty U | normal (k = 2) | 2.10 | | | | | (level of confidence ≈ 95 %) | Horriai (K = 2) | 2.10 | | | | #### Legend $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%. # **Facilities** ### California # Orange County Facility Labs OC01 - OC13 41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826 ### Oregon # **Evergreen Facility** Labs EV01 – EV10 22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826 ### Oregon # Trails End Facility ### Labs TE01 - TE03 30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735 # Washington # **Sultan Facility** # Labs SU01 - SU07 14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536 # **Product Description** Revision 10/3/03 | Party Requesting the Test | | |--------------------------------|-----------------------------------| | Company Name: | Intermec Technologies Corporation | | Address: | 550 Second St. SE | | City, State, Zip: | Cedar Rapids, IA 52401-2023 | | Test Requested By: | Scott Holub | | Model: | 6820 Printer | | First Date of Test: | 06-20-2005 | | Last Date of Test: | 06-24-2005 | | Receipt Date of Samples: | 06-20-2005 | | Equipment Design Stage: | Production | | Equipment Condition: | No visual damage. | #### **Information Provided by the Party Requesting the Test** | Clocks/Oscillators: | Not provided. | |---------------------|---------------| | I/O Ports: | Serial | # Functional Description of the EUT (Equipment Under Test): Bluetooth Enabled Printer. #### **Client Justification for EUT Selection:** Representative of a production sample #### **Client Justification for Test Selection:** This printer was previously certified under FCC 15.247 (FCC ID: EHABTS080-1). Now the enclosure has been modified to accept a larger docking port required by a new hand-held terminal, the Intermec CK60. No other changes have been made to the radio or its antenna. So only spurious radiated emissions and AC powerline conducted emissions were measured. No other tests were affected. #### **EUT Photo** # **Modifications** | | Equipment modifications | | | | | | | |------|--|------------|---|----------------------------------|--------------------------------|--|--| | Item | Test | Date | Modification | Note | Disposition of EUT | | | | 1 | Spurious
Radiated
Emissions | 06/20/2005 | No EMI suppression devices were added or modified during this test. | Same configuration as delivered. | EUT remained at Northwest EMC. | | | | 2 | AC Powerline
Conducted
Emissions | 06/24/2005 | No EMI suppression devices were added or modified during this test. | Same configuration as delivered. | EUT remained at Northwest EMC. | | | # **Spurious Radiated Emissions** Revision 10/1/03 #### **Justification** The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates. | Channels in Specified Band Investigated: | | |--|--| | High | | | Mid | | | Low | | # **Operating Modes Investigated:** No Hop #### **Data Rates Investigated:** Maximum #### **Output Power Setting(s) Investigated:** Maximum #### **Power Input Settings Investigated:** 120 VAC, 60 Hz. | Frequency Range Investigated | | | | | | |------------------------------|--------|----------------|--------|--|--| | Start Frequency | 30 MHz | Stop Frequency | 26 GHz | | | | Software\Firmware Applied During Test | | | | | | | | | | | | | |---------------------------------------|------------------------------|------------------------------|---------------------|--|--|--|--|--|--|--|--|--| | Exercise software | Bluetest | Version | Unknown | | | | | | | | | | | Description | | | | | | | | | | | | | | The system was tested us | ing special test software to | exercise the functions of th | e device during the | | | | | | | | | | | testing including transmit r | node, channel frequency, a | and power. | | | | | | | | | | | | EUT and Peripherals | | | | |---------------------|-----------------------------------|-------------------|---------------| | Description | Manufacturer | Model/Part Number | Serial Number | | EUT- 6820 Printer | Intermec Technologies Corporation | 6820 | unknown | | AC Adapter | Intermec Technologies Corporation | 851-064-001 | 0001771 | | Handheld Computer | Intermec Technologies Corporation | CK61 | 33390400263 | # **Spurious Radiated Emissions** Revision 10/1/03 | Remote Equipment Outside of Test Setup Boundary | | | | | | | | | | | | | | |--|------------------------------------|---|------------------------------|--|--|--|--|--|--|--|--|--|--| | Description Manufacturer Model/Part Number Serial Number | | | | | | | | | | | | | | | Laptop PC | Dell | TS30GI | Unknown | | | | | | | | | | | | Equipment isolated from the | EUT so as not to contribute to the | ne measurement result is considered to be out | side the test setup boundary | | | | | | | | | | | | Cables | | | | | | |------------|--------|------------|---------|-------------------|--------------| | Cable Type | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 | | Serial | Yes | 5.0 | No | EUT- 6820 Printer | Laptop PC | | DC Leads | No | 1.6 | No | EUT- 6820 Printer | AC Adapter | | AC Power | No | 2.0 | No | AC Adapter | AC Mains | | Measurement Equip | oment | | | | | |--------------------|--------------------|----------------------|------------|------------|----------| | Description | Manufacturer | Model | Identifier | Last Cal | Interval | | Spectrum Analyzer | Agilent | E4446A | AAQ | 04/08/2005 | 13 mo | | Antenna, Biconilog | EMCO | 3141 | AXE | 12/03/2003 | 24 mo | | Pre-Amplifier | Amplifier Research | LN1000A | APS | 03/01/2005 | 13 mo | | Antenna, Horn | EMCO | 3115 | AHC | 09/07/2004 | 12 mo | | Pre-Amplifier | Miteq | AMF-4D-005180-24-10P | APJ | 05/05/2005 | 3 mo | | Pre-Amplifier | Miteq | AMF-4D-005180-24-10P | APC | 02/17/2005 | 13 mo | | Antenna, Horn | EMCO | 3160-08 | AHK | NCR | NA | | Antenna, Horn | EMCO | 3160-09 | AHG | NCR | NA | | Pre-Amplifier | Miteq | JSD4-18002600-26-8P | APU | 02/15/2005 | 13 mo | | High Pass Filter | Micro-Tronics | HPM50111 | HFO | 03/09/2005 | 13 mo | | Attenuator | Coaxicom | 66702 5910-20 | RBJ | 02/25/2005 | 13 mo | #### **Test Description** **Requirement:** The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209. <u>Configuration</u>: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity. # Spurious Radiated Emissions Revision 10/1/03 | Bandwidths Used for Me | asurements | | | | | | | | |--------------------------|---------------------------|-----------------------------|------------------------|--|--|--|--|--| | Frequency Range
(MHz) | Peak Data
(kHz) | Quasi-Peak Data
(kHz) | Average Data
(kHz) | | | | | | | 0.01 - 0.15 | 1.0 | 0.2 | 0.2 | | | | | | | 0.15 - 30.0 | 10.0 | 9.0 | 9.0 | | | | | | | 30.0 – 1000 | 100.0 | 120.0 | 120.0 | | | | | | | Above 1000 | 1000.0 | N/A 1000.0 | | | | | | | | Measurements were n | nade using the bandwidths | and detectors specified. No | video filter was used. | | | | | | Completed by: Holy Arling | NORTHWEST EMC | | | | | | R/ | ٩Ľ |)I | Δ7 | TE | D |) [| ΞN | ΛI | S | SI | C | N | IS | I | Α | ١T | Ά | S | Н | Ε | E. |
Т | | | | | | Р | SA 2 | | .6.17 E
I 2005 | | | |---|---------|-------|--------|-------|------|-----------------|------|----------|----------------|------|-----|-------|-----|-----|------|-----|-----|-------|------|------|------|--------|------|----|------|----------|------------|--------|------|-----|-------|-------|-----|------|-------|-----|-------------------|-------|-------------------| | | UT- | 6820 | Prin | iter | Wor | k Or | der: | Ιπ | RM | 0084 | 1 | | | | | Serial Num | /20/ | | | | | | | Custo | | Inter | mec | Tecl | hnc | logi | es (| Cori | nor | atic | n | | | | | | | | | | | | | | | | | | T | emr | erat | | | | - | | | | | | Attend | | | | | | | - | <u> </u> | P O · · | umi | | | | | | | | ANSI C63.4:2003 | | Pro | | 10110 | _ | - | Saro | met | | | | | | | | | | 741401 000.4.2000 | | Tested | | Hally | Λel | hkan | nai | had | | | | | | | | | | | | D | 24/0 | r. 1 | 20\ | /AC | . 60 | Нz | | | _ | Jaic | met | | Job S | | | | | | | | | | TEST SPECIFIC | ΔTI | ONS | ASI | ikaii | IIG | iiau | | | | | | | | | | | | - | JWE | | est | | | | | | | | | Ť | JOD (| JILE. | | 701 | | | | | | | FCC 15.247(d) S | Spuri | ous | Rad | iated | l En | niss | ion | s:20 | 05- | 04 | | | | | | | | | | | ANS | | | | 03 | | | | | | | | | | | | | | | | Antenna Heigh | | | | | 1 - | 4 | | | | | | | | | | | Τc | et I | Dief | an | ce (| m) | | | 3 | | | | | | | | | | | | | | | | COMMENTS | L(S) (I | 11) | | | 1 - | 4 | | | | | | | | | | | 16 | 31 1 | ופוע | an | CE (| 111) | | | 3 | | | | | | | | | | | | | | | | EUT OPERATIN
Transmitting Blueto
DEVIATIONS F
No deviations. | ooth H | igh C | hanne | | DAR | D | Run# | | | | 1 | | | П | • | | | | | | | | | | | | , | | | Λ | | in | 1 | | 0 | | | | | | | | | | | | | | | | | Configuration # | ŧ | | | | | | | | | | | | | | 11 | | Ph- | 1 10 | 1 | 1 | In | 7/1 | ~ | | | | | | | | | | | | | | | | | | Results | | | Р | ass | | | | | | S | ign | atui | e | 1 | 7 | 0 | 0 | 1 | | | 1 | 80.0 _T | 1 | 1 † | + | t | | | | 70.0 - | 60.0 - | 1 | | | | | | | | | | | 50.0 | | | | | | | 1 | | | | F | | | | | | | | | | | | | | | H | | | | | | | | | | F | | | | | W//Nng 40.0 - | • | • | | | | | | | | | | 30.0 - | 20.0 - | - | | | | 10.0 - | - | 0.0 + | | | 4 | | | Ц | | | | + | | | | + | | | | + | | | | + | | | | \vdash | | | 4 | | | | + | | | | - | | | | 2400 | 000 | 24 | 10.4 | 200 | 2 | 420
' | 00 | Λ. | 245 | · · | ากก | ٠. | 24/ | 0.0 | 200 | , , | 215 | 50.0 | 200 | | 215 | · · | 000 | 2 | 17 | Դ Ռ | Λ Λ | 2 | 100 | 004 | n 1 | 240 | | 200 | 21 | 501 | 000 | n | | | 2400 | .000 | 24 | 10.0 | 500 | ۷. | 1 20 | .00 | υ. | 243 | 0.0 | JUC | , . | 244 | Ю.(| JUC | , 2 | | ЛН: | | , | 240 | .U.C | 000 | ۷. | 470 | J.U | 00 | 24 | ŧ0U. | .00 | U 2 | 249 | 0.0 | 000 | 23 | 300 |).00 | U | | | | I | | | | | | Π | | | Т | | | 丁 | | | | П | Exte | rnal | T | | | П | | | | _ C | istar | nce | Π | | | T | | | C | ompar | ed to | | | Freq | | | litude | | Fact | | | ٩zim | | 1 | | ight | | | stan | | A | ttenu | | n | Po | larity | ′ | De | tect | or | Ac | ljustn | | | djust | | | | Limit | | Spe | c. | <u></u> | | (MHz) | | (dE | BuV) | | (dB | 3) | (0 | degre | es) | L | (me | ters) | | (m | eter | s) | L | (dE | В) | | | | | | | | L | (dB |) | _ | dBuV. | m | L | dBu∖ | //m | L | (dB |) | Comments | | 2483.500 | | 24 | 1.6 | | -2. | 3 | | 147 | .0 | | 1. | .1 | | | 3.0 | | | 20 | .0 | | H-I | Hor | n | | ΑV | | | 0.0 |) | | 42.3 | 3 | | 54. | .0 | | -11. | 7 | EUT Horizontal | | 2483.500 | | 24 | 1.6 | | -2. | 3 | | 149 | .0 | | 1. | .5 | | | 3.0 | | | 20 | .0 | | V-I | Hori | n | | ΑV | | | 0.0 |) | | 42.3 | 3 | | 54. | .0 | | -11. | 7 | EUT Vertical | | 2483.500 | | 39 | 9.3 | | -2. | 3 | | 149 | .0 | | 1. | .5 | | | 3.0 | | | 20 | .0 | | V-I | Hori | n | | PΚ | | | 0.0 |) | | 57.0 | | | 74. | .0 | | -17. | .0 | EUT Vertical | | 2483.500 | | | 3.7 | | -2. | 3 | | 147 | .0 | | 1 | | | | 3.0 | | | 20 | | | H-I | Hor | n | | PK | | | 0.0 |) | | 56.4 | | | 74. | .0 | | -17. | 6 | EUT Horizontal | | NORTHWES
EMC | | | R | ADIAT | ED E | MISS | IONS I | DATA | SHE | ET | | | 05.6.17 BETA
EMI 2005.6.19 | | |---|--------------------|---------------------|----------------|-------------------|--------------------|----------------------|-----------------------|------------------|----------|--------------------|-----------------------|-----------------------|-------------------------------|-----------------------------| | | | 6820 Print | er | | | | | | | v | | ITRM0084 | | | | Serial N | | | | | | | | | | _ | | 06/20/05 | | | | | stomer:
endees: | | ecnnolog | ies Corpora | iion | | | | | Те | mperature
Humidity | | | ANSI C63.4:200 | | | roject: | Itolic | | | | | | | | Barometri | ic Pressure | | | 711101 000.4.200 | | Tes | ted by: | Holly Ash | kannejhad | | | | Power: | 120VAC, 6 | 0Hz | | Job Site | | |] | | TEST SPECI | | | | | | | | Test Metho | | | | | | | | FCC 15.247(d | | | ated Emiss | ions:2005-0 | 4 | | | ANSI C63.4 | 1:2003 | | | | | | | Antenna Hei | | (m) | 1 - 4 | | | | Test Distar | nce (m) | 3 | | | | | | | COMMENTS EUT OPERA | TING N | | | | | | | | | | | | | | | Transmitting Blue DEVIATIONS No deviations. | | | | | | | | | | | | | | | | Run# | | ; | 3 | | | | / a ^ | 1. | 10 | | | | | | | Configuratio
Results | n# | Pa | ass | _ | Signature | H | oly S | huyl | ~ | | | | | | | 80.0 |) | | | | | | | | | | | | | | | 70.0 | H | | | | | | | | | | | | + | | | 70.0 | 1 | | | | | | | | | | | | | | | 60.0 | ! | | | | | | | | | | | | _ | | | 50.0 | * | | | | • | | | | | | | | | | | w//ngp | + | | | | | | | | | | | | | | | 3 0.0 | , 📙 | | | | • | | | | | | | | | | | 20.0 | , 📙 | | | | | | | | | | | | | | | 10.0 | , 🕌 | | | | | | | | | | | | | | | 0.0 | , 🏻 | | | | | | | | | | | | | | | 490 | 00.00 | 590 | 00.000 | 6900.000 | 790 | 00.000 | 8900.00
MHz | 0 990 | 00.000 | 10900.00 | 00 11 | 900.000 | | | | | | Ι | 1 | | | Π | External | 1 | | Distance | | <u> </u> | Compared to | | | Freq
(MHz) | | Amplitude
(dBuV) | Factor
(dB) | Azimuth (degrees) | Height
(meters) | Distance
(meters) | Attenuation (dB) | Polarity | Detector | Adjustment
(dB) | Adjusted
dBuV/m | Spec. Limit
dBuV/m | Spec.
(dB) | Comments | | 4960.02 | | 42.3 | 6.4 | 79.0 | 1.1 | 3.0 | 0.0 | V-Horn | AV | 0.0 | 48.7 | 54.0 | -5.3 | EUT Vertica | | 4959.89
4961.64 | | 40.2
52.7 | 6.4
6.4 | 159.0
79.0 | 1.0
1.1 | 3.0
3.0 | 0.0
0.0 | H-Horn
V-Horn | AV
PK | 0.0
0.0 | 46.6
59.1 | 54.0
74.0 | -7.4
-14.9 | EUT Horizont
EUT Vertica | | 4959.53 | | 51.3 | 6.4 | 159.0 | 1.0 | 3.0 | 0.0 | H-Horn | PK | 0.0 | 57.7 | 74.0 | -16.3 | EUT Horizont | | 12403.89 | 90 | 18.6 | 17.1 | 53.0 | 2.1 | 3.0 | 0.0 | H-Horn | AV | 0.0 | 35.7 | 54.0 | -18.3 | EUT Horizont | | 12400.72 | | 18.4 | 17.1 | 40.0 | 1.0 | 3.0 | 0.0 | V-Horn | AV | 0.0 | 35.5 | 54.0 | -18.5 | EUT Vertica | | 7436.67 | | 21.1 | 12.0 | 298.0 | 3.2 | 3.0 | 0.0 | H-Horn | AV | 0.0 | 33.1 | 54.0 | -20.9 | EUT Horizont | | 7439.08 | | 21.1 | 12.0 | 207.0
40.0 | 1.0 | 3.0 | 0.0 | V-Horn | AV | 0.0 | 33.1 | 54.0 | -20.9 | EUT Vertica | | 12402.2°
12402.2° | | 32.5
32.1 | 17.1
17.1 | 40.0
53.0 | 1.0
2.1 | 3.0
3.0 | 0.0
0.0 | V-Horn
H-Horn | PK
PK | 0.0
0.0 | 49.6
49.2 | 74.0
74.0 | -24.4
-24.8 | EUT Vertica
EUT Horizont | | 7437.74 | | 35.0 | 12.0 | 207.0 | 1.0 | 3.0 | 0.0 | V-Horn | PK | 0.0 | 47.0 | 74.0 | -24.0 | EUT Vertica | | 7440.96 | | 34.8 | 12.0 | 298.0 | 3.2 | 3.0 | 0.0 | H-Horn | PK | 0.0 | 46.8 | 74.0 | -27.2 | EUT Horizont | | NORTHWEST EMC | | | R | ADIA | TE | D EI | MISS | SIONS | DATA | SHE | ET | | PSA | 2005.6.17 BETA
EMI 2005.6.19 | | |--|--------|----------------|-------------|---------------------|---------|----------------|------------|---------------|------------------|----------|-------------|--------------------------|---------------------|---------------------------------|--------------------------------| | | | 6820 Printe | er | | | | | | | | W | ork Order: | | | | | Serial Num
Custo | | Intermec T | echnolog | aies Corne | oration | | | | | | Te | Date:
mperature: | 06/20/05
24 | | | | Attend | lees: | | | , | | | | | | | | Humidity: | 43% | | ANSI C63.4:2003 | | | ject: | Holly Ashl | anneiha | 4 | | | | Dower | 120VAC, 6 | 60Hz | Barometri | ic Pressure
Job Site: | | | | | TEST SPECIFIC | | | aillejild | u | | | | rower: | Test Metho | | | Job Site: | L V U I | | | | TEST PARAME
Antenna Heigh
COMMENTS | TER | s | ted Emiss | sions:200 | 5-04 | | | Test Dista | ANSI C63. | 4:2003 | | | | | | | EUT OPERATIN
Transmitting Bluet
DEVIATIONS F |
ooth N | Mid Channel | NDARD | | | | | | | | | | | | | | No deviations. | | | 1 | | | | | | | | | | | | | | Run #
Configuration # | tt. | | 1 | - | | | 11 | o. A | lin1- | 9 | | | | | | | Configuration ?
Results | , | Pa | ss | - | Sia | nature | H | oly An | Y | | | | | | | | | | | | - | - 3 | | | | | | | | | | ı | | 80.0 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 70.0 | 60.0 - | | | | | | | | | | | | | | | | | 00.0 | * | | | | | | | | | | | | | | | | + | | | | | | | | | | | | | | | | | 50.0 | | | | | | | | | | | | | | * | | | ٤ | | | | | | | | | | | | | | • | | | W//N9 | | | | | | | | | | | | | | | | | ġ | | | | | | | | | | | | | | | | | 30.0 - | | | | | | | | | | | | | | * | | | 30.0 | 20.0 | 10.0 | 0.0 | | | | | | | | | | | | | | | | | 4800 | .000 | _ | 5300 | .000 | | 5800 | 0.000 | 6 | 300.000 | | 6800.000 | | 7300 | .000 | | | 1000 | .000 | | 2000 | | | 2000 | | | | | 3000.000 | | . 550 | | | | | | | | | | | | MHz | | | | | | | | | | ı | 1 | | 1 | | | | External | 1 | 1 | Distance | | | Compared to | | | Freq | | Amplitude | Factor | Azimuth
(dograda | | Height | Distance | e Attenuation | Polarity | Detector | Adjustment | Adjusted | Spec. Lim
dBuV/m | it Spec. | 0 | | (MHz)
4883.933 | | (dBuV)
42.3 | (dB)
6.2 | (degrees | | neters)
1.2 | (meters |) (dB)
0.0 | V-Horn | AV | (dB)
0.0 | dBuV/m
48.5 | 54.0 | (dB)
-5.5 | Comments
EUT Vertical | | 4884.042 | | 41.8 | 6.2 | 49.0 | | 1.1 | 3.0 | 0.0 | H-Horn | AV | 0.0 | 48.0 | 54.0 | -6.0 | EUT Horizontal | | 4884.987
4884.042 | | 52.8
50.8 | 6.2
6.2 | 66.0
49.0 | | 1.2
1.1 | 3.0
3.0 | 0.0
0.0 | V-Horn
H-Horn | PK
PK | 0.0
0.0 | 59.0
57.0 | 74.0
74.0 | -15.0
-17.0 | EUT Vertical
EUT Horizontal | | 7327.671 | | 22.3 | 6.∠
11.9 | 93.0 | | 1.1 | 3.0 | 0.0 | H-Horn | AV | 0.0 | 34.2 | 54.0 | -17.0 | EUT Horizontal | | 7326.225 | | 21.4 | 11.9 | 261.0 | | 1.2 | 3.0 | 0.0 | V-Horn | AV | 0.0 | 33.3 | 54.0 | -20.7 | EUT Vertical | | 7327.141 | | 35.8 | 11.8 | 93.0 | | 1.9 | 3.0 | 0.0 | H-Horn | PK | 0.0 | 47.6 | 74.0 | -26.4 | EUT Horizontal | | 7326.959 | | 34.8 | 11.8 | 261.0 | | 1.2 | 3.0 | 0.0 | V-Horn | PK | 0.0 | 46.6 | 74.0 | -27.4 | EUT Vertical | | NORTHWEST EMC | | | RA | ADIAT | ED E | MISS | IONS | DATA | SHE | EΤ | | | 05.6.17 BETA
EMI 2005.6.19 | | |--|----------|---------------------|-----------------------|-------------------|-----------------|----------------------|---------------------|-------------------------|----------|--------------------|----------------------|-----------------------|-------------------------------|-------------------------------| | | | 6820 Print | er | | | | | | | V | | ITRM0084 | | | | Serial Nur | | Intermec T | -
-
-
-
- | ies Corpora | tion | | | | | Te | Date:
emperature: | 06/20/05 | | | | Atten | | | comologi | .00 001 por a | | | | | | 16 | Humidity: | | | ANSI C63.4:200 | | | oject: | | | | | | | | | Barometr | ic Pressure | | | | | Teste
TEST SPECIFI | | | kannejhad | | | | Power: | 120VAC, 6
Test Metho | | | Job Site: | EV01 | | | | FCC 15.247(d) | | | ted Emiss | ions:2005-0 | 4 | | | ANSI C63.4 | | | | | | | | TEST PARAMI
Antenna Heigi
COMMENTS | | | 1 - 4 | | | | Test Distar | nce (m) | 3 | | | | | | | EUT OPERATI | | | | | | | | | | | | | | | | DEVIATIONS F | | | NDARD | | | | | | | | | | | | | No deviations. | | | 5 | ı | | | | | - | | | | | | | Run # | # | | , | - | | 11 | o 1 | lin1. | 0 | | | | | | | Configuration
Results | # | Pa | ISS | 1 | Signature | Ho | ly A | 7 | | | | | | | | results | | | | | | 20.000 | A-100m | | | | | | | | | 80.0 - | | | | | | | | | | | | | \neg | | | | | | | | | | | | | | | | | | | 70.0 - | | | | | | | | | | | | | T | | | 70.0 - | 60.0 - | | | | | | | | | | | | | - | | | | Щ | | | | | | | | | | | | 4 | | | 50.0 - | | | | | | | | | | | | 4 | <u> </u> | | | | | | | | | | | | | | | | | | | Š 40 0 | | • | | | | | | | | | | | | | | W//Ngp | | | | | | | | | | | | | | | | ਰ | | | | | | | | | | | | | | | | 30.0 - | | | | | | | | | | | | | + | | | | | | | | | | | | | | | | | | | 20.0 - | | | | | | | | | | | | | _ | | | 20.0 | | | | | | | | | | | | | | | | 40.0 | | | | | | | | | | | | | | | | 10.0 - | 0.0 - | \vdash | | + | \Box | | | | | + | | | + | _ | | | 4500 | 0.000 | 550 | 0.000 | 6500.000 | 750 | 00.000 | 8500.00 | 0 950 | 00.000 | 10500.0 | 00 11 | 500.000 | | | | | | | | | | | MHz | | | | | | | | | | | | | | | | External | | | Distance | | | Compared to | | | Freq
(MHz) | | Amplitude
(dBuV) | Factor
(dB) | Azimuth (degrees) | Height (meters) | Distance
(meters) | Attenuation
(dB) | Polarity | Detector | Adjustment
(dB) | Adjusted
dBuV/m | Spec. Limit
dBuV/m | Spec.
(dB) | Comments | | 4803.942 | | 37.0 | 5.8 | 82.0 | 1.3 | 3.0 | 0.0 | V-Horn | AV | 0.0 | 42.8 | 54.0 | -11.2 | EUT Vertical | | 4803.594 | | 36.8 | 5.8 | 103.0 | 1.8 | 3.0 | 0.0 | H-Horn | AV | 0.0 | 42.6 | 54.0 | -11.4 | EUT Horizonta | | 12011.190
12009.340 | | 20.1
20.0 | 17.3
17.3 | 189.0
151.0 | 1.0
1.3 | 3.0
3.0 | 0.0
0.0 | V-Horn
H-Horn | AV
AV | 0.0
0.0 | 37.4
37.3 | 54.0
54.0 | -16.6
-16.7 | EUT Vertical
EUT Horizonta | | 4804.531 | ' | 49.3 | 5.8 | 82.0 | 1.3 | 3.0 | 0.0 | V-Horn | PK | 0.0 | 55.1 | 74.0 | -18.9 | EUT Vertical | | 4805.429 | | 47.7 | 5.8 | 103.0 | 1.8 | 3.0 | 0.0 | H-Horn | PK | 0.0 | 53.5 | 74.0 | -20.5 | EUT Horizonta | | 12007.530
12008.080 | | 33.9 | 17.3 | 189.0 | 1.0 | 3.0 | 0.0 | V-Horn | PK | 0.0 | 51.2 | 74.0 | -22.8 | EUT Vertical | | 12008.080 | ' | 33.9 | 17.3 | 151.0 | 1.3 | 3.0 | 0.0 | H-Horn | PK | 0.0 | 51.2 | 74.0 | -22.8 | EUT Horizonta | # **AC Powerline Conducted Emissions** Revision 10/1/03 #### Justification The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates. | Channels in Specified Band Investigated: | | |--|--| | High | | | Mid | | | Low | | # Operating Modes Investigated: No Hop #### **Data Rates Investigated:** Maximum #### **Output Power Setting(s) Investigated:** Maximum #### **Power Input Settings Investigated:** 120 VAC, 60 Hz. | Software\Firmware Appli | Software\Firmware Applied During Test | | | | | | | | | | | | |------------------------------|---------------------------------------|------------------------------|---------------------|--|--|--|--|--|--|--|--|--| | Exercise software | Bluetest | Version | Unknown | | | | | | | | | | | Description | | | | | | | | | | | | | | The system was tested us | ing special test software to | exercise the functions of th | e device during the | | | | | | | | | | | testing including transmit n | node, channel frequency, a | and power. | - | | | | | | | | | | | EUT and Peripherals | | | | |---------------------|-----------------------------------|-------------------|---------------| | Description | Manufacturer | Model/Part Number | Serial Number | | EUT- 6820 Printer | Intermec Technologies Corporation | 6820 | Unknown | | AC Adapter | Intermec Technologies Corporation | 851-064-001 | 0000413 | | Handheld Computer | Intermec Technologies Corporation | CK61 | 33390400263 | | Remote Equipment | Outside of Test Setup E | Boundary | | |-----------------------------|------------------------------------|---|------------------------------| | Description | Manufacturer | Model/Part Number | Serial Number | | Laptop PC | Dell | TS30GI | Unknown | | Equipment isolated from the | EUT so as not to contribute to the | ne measurement result is considered to be out | side the test setup boundary | # **AC Powerline Conducted Emissions** Revision 10/1/03 | Cables | | | | | | |------------|--------|------------|---------|-------------------|--------------| | Cable Type | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 | | Serial | Yes | 5.0 | No | EUT- 6820 Printer | Laptop PC | | DC Leads | No | 1.6 | No | EUT- 6820 Printer | AC Adapter | | AC Power | No | 2.0 | No | AC Adapter | AC Mains | | Measurement Equipm | nent | | | | | |--------------------|--------------|------------------|------------|------------|----------| | Description | Manufacturer | Model | Identifier | Last Cal | Interval | | LISN | Solar | 9252-50-R-24-BNC | LIP | 12/29/2004 | 13 mo | | High Pass Filter | TTE | H97-100k-50-720B | HFC | 12/29/2004 | 13 mo | | Spectrum Analyzer | Agilent | E4446A | AAQ | 04/08/2005 | 13 mo | #### **Test Description** **Requirement:** Per 47 15.207(d), if the EUT is connected to the AC power line indirectly, obtaining its power from another device that is connected to the AC power line, then it should be tested to demonstrate compliance with the conducted limits of 15.207. <u>Configuration:</u> The EUT will be powered from a device that could be connected to the AC power line. Therefore, the measurements were made on the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance
with ANSI C63.4-2003. Holy Arling | | THWEST
MC | C | ONE |)UC | T | ΕC | E | MIS | SS | ION | S | D/ | 4 T. | Α : | SHE | Ε | T | | | |)5.6.24
)5.5.05 | |--------------|----------------|---------------------|-------------|------------|----------|----------|---------------|---------------|------------|---------------------|----------|-----------|-------------|-------------------------------|------------|----------|------------------|--------------|--------------|----------|--------------------| | | | : 6820 Print | er | | | | | | | | | | | | | Wor | k Order: | ITRM | 0084 | | | | Seri | ial Number | : | | | | | | | | | | | | | | | Date: | 06/24/ | /05 | | | | | Customer | : Intermec 1 | echnolo | gies Co | rpora | tion | | | | | | | | | | Temp | erature: | 26 | | | | | | Attendees | | | | | | | | | | | | | | | | umidity: | | | | | | Cus | st. Ref. No. | | | | | | | | | _ | 14001 | | | | Barom | | ressure | | | | | | TECT OF | | : Holly Ashl | kannejha | d | | | | | | Power | 120\ | AC, | 60Hz | | | • | Job Site: | EV01 | | | | | | PECIFICAT | FCC 15.20 | 7 AC Box | vorlino | Cond | ueto | d Emic | cione: | 2005 (| 14 | Ma | athod | ANG | CG2 | 4:2003 | | | | | | | | op. | ecincation | . FCC 13.20 | / AC FO | wernine | Cond | ucte | u Ellis | 5510115.2 | 2005-0 |) + | 1010 | stilou | ANO | C03. | 4.2003 | | | | | | | | SAMPLE | CALCUL | ATIONS | Radiate | ed Emissions | : Field Strength | = Measure | d Level + | Antenn | a Fact | tor + Cal | ole Factor | - Ampli | ifier Gain + | Distanc | ce Adju | stment f | actor - | External A | Attenua | tion | | | | | | Conducte | ed Emissions | : Adjusted Leve | el = Measur | ed Level - | + Transo | ducer F | Factor + | Cable Att | enuatio | n Factor + | Externa | l Atten | uator | | | | | | | | | | New AC Ac | | 851-064-001. S | N: 0000413 | ERATING | Low Channel | ND A D D | No deviation | ons. | M TEST STA | ANDARD | | | | | | | | | | | | Line | | | Run # | | | | | Pass | <u> </u> | | | | | | | | | | | | | | Line | L1 | | Kull # | 1 | | | | Other | | | | | | | | | | | Т | | | | | | | | | | | | Other | | | | | | | | | | | | | H | fly | A | ling | N | 7 | | | | | Ω | 80 | | | | | | | | | | | | | | 16 | sted E | зу: | | | | | | | .5 | 7 | 70 | 6 | 50 | 5 | 50 | Angp 4 | 10 | mylly | , il k/ | /\w | \\^ | | Wal. | ای امد | A AAAA amba d | Laskla. | | | | اساران | ر افادر عا | أد ماهسس | <u>.</u> | | | | | | | 3 | 30 | | ₩. | V | 77 | 144 | HIM | M/M-m/q/ | :Nahal-Aid | A HAMANINA MARINA | | The sales | | المناط | | | • | | | | | | 2 | 20 | 1 | 0 | 0 | 0.1 | | | | | 1 | | | ı | MHz | | | 10 |) | | | | | | 10 | 00 | | | | | | | | 1 | | | | External | 1 | | | | | | | I | | Compa | ared to | | | req
(Mz) | Amplitude
(dBuV) | | | | | sducer
dB) | Cable
(dB) | | Attenuation
(dB) | | | (blank eq | ector
ual peaks
m scan) | | A | Adjusted
dBuV | Spec.
dBu | | Sp
(d | ec.
B) | | <u> </u> | 0.192 |) 075 | | | | <u> </u> | 0.0 | | 0.2 | 20.0 | <u> </u> | | | | | | 477 | | 52 O | | 6.0 | | | 0.192 | | | | | | 0.0 | | 0.2
0.3 | 20.0
20.0 | | | | | | | 47.7
37.4 | | 53.9
46.0 | | -6.2
-8.6 | | | 0.720 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | | 37.4
45.4 | | 54.2 | | -8.8 | | | 0.167 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 37.3 | | 46.4 | | -0.0
-9.0 | | | 0.82 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | | 36.9 | | 46.0 | | -9.1 | | | 0.586 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | | 36.9 | | 46.0 | | -9.1 | | | 0.717 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | | 36.8 | | 46.0 | | -9.2 | | | 0.859 | 9 16.0 | | | | | 0.0 | | 0.3 | 20.0 |) | | | | | | 36.3 | | 46.0 | | -9.7 | | | 0.245 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 41.9 | | 51.9 | | -10.0 | | | 0.185 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 44.2 | | 54.3 | | -10.0 | | | 0.205 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 43.0 | | 53.4 | | -10.4 | | | 0.786 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | | 35.6 | | 46.0 | | -10.4 | | | 0.424 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 36.7 | | 47.4 | | -10.6 | | | 0.440 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 36.3 | | 47.1 | | -10.7 | | | 0.69′
0.40₄ | | | | | | 0.0 | | 0.3
0.2 | 20.0
20.0 | | | | | | | 35.2
36.9 | | 46.0
47.8 | | -10.8
-10.8 | | | 0.402 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 36.9
42.2 | | 53.2 | | -10.8 | | | 0.210 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 44.4 | | 55.8 | | -11.3 | | | 0.68 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | | 34.5 | | 46.0 | | -11.5 | | | THWEST | C | ONI | DUC | СТ | ΕC | Ε | MI | SS | 101 | IS | D | 4 T. | Α : | SHE | ΕT | | | 2005.6.24
2005.5.05 | |--------------|----------------------|---|-----------------------|-------------|----------|---------|-------------------|------------|-----------|-------------------------|-----------|----------|----------------|----------------------|---------------|--------------|-----------|----|------------------------| | | | 6820 Pri | nter | | | | | | | | | | | | | Work Order | : ITRM00 | 34 | | | Seri | ial Number: | | | | | | | | | | | | | | | Date | 06/24/05 | | | | | Customer | Intermed | Technol | ogies C | orpora | ation | | | | | | | | | To | emperature | | | | | | Attendees | | | | | | | | | | | | | | | Humidity | | | | | Cus | st. Ref. No.: | | h l - a - a - a - l - | | | | | | | D | 4201 | /^^ | COL 1- | | Baromet | ric Pressure | | | | | TEST SD | Tested by: | Holly As | nkannejh | ad | | | | | | Power | : 120\ | AC, | 60HZ | | | Job Site | : EV01 | | | | | ecification: | | 07 AC Pa | werline | Cond | luctor | d Fmis | eione. | 2005-0 | 14 | M | ethod | · ANS | LC63 | 4:2003 | | | | | | ٥, | | 1 00 13.2 | .07 40 1 0 | wermie | 00110 | ucic | u Liiiis | 310113. | 2005 | . | | | | 000. | 1.2003 | | | | | | SAMPLE | CALCUL | ATIONS | | | | | | | | | | | | | | | | | | | Radiate | ed Emissions | Field Streng | gth = Measu | red Level + | - Antenr | na Fact | tor + Cal | ole Factor | r - Ampl | ifier Gain + | Distan | ce Adju | ıstment | Factor + | External Atte | enuation | | | | | | ed Emissions | : Adjusted Le | vel = Measu | red Level | + Trans | ducer f | Factor + | Cable At | tenuatio | n Factor + | Externa | al Atter | nuator | | | | | | | | New AC Ad | NTS
daptor: MN: 8 | 851-064-001. | SN: 000041 | 3. | | | | | | | | | | | | | | | | | | RATING I | | al. | | | | | | | | | | | | | | | | | | | ng Bluetooth | | | 1 | | | | | | | | | | | | | | | | | No deviation | | W ILSI S | IANDANI | | | | | | | | | | | | | | | | | | RESULT: | S | | | | | | | | | | | | | | Line | | Run# | | | | Pass | | | | | | | | | | | | | | | | N | | 2 | | | Other | | | | | | | | | | | _ | | | | | | | | | | Other | | | | | | | | | | | | | 4 | fly | All | ed Bv: | 7 | | | | 8 | 0 | | | | | | | | | | | | | | 1630 | ва Бу. | | | | | 7 | -n | ' | 0 | 6 | 0 | | | _ | | | | | | | | | | | | | | | | | 5 | 0 | ABDu 4 | .0 | AN DAY | η ,,, | 19/1 | A | | h /h-vh-vi | √nn\∧hn⊿ | ALDA. | 11 1 | | | | | | | | | | | | 0 | | M. J | | W | # | • | 1 di Alia | and dirth | Hadankaphaph | Velop 194 | | ر
داری دران | l Halaadi
Halaadi | | | | | | | 2 | 0 | | ' W | 1 | 1 1 | | | | | | | | | | | - | | | | | 1 | 0 | 0 ├──
0.1 | | | | | 1 | | | | | | | 10 | <u> </u> | | | | | 100 | | | 0.1 | | | | | | | | I | MHz | | | | J | | | | | 100 | | | req | Amplitude | 1 | | | | sducer | Cabl | | External
Attenuation | | | | ector
qual peaks | | Adjusted | Spec. Lim | | mpared to
Spec. | | (M | 1Hz) | (dBuV) | 7 | | | (| dB) | (dB) | | (dB) | | | [PK] fre | om scan) | | dBuV | dBuV | 7 | (dB) | | | 0.197
0.498 | | | | | | 0.0 | | 0.2 | 20.0
20.0 | | | | | | 47.9
40.0 | | | -5.8
-6.0 | | | 0.498 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | 40.0 | | | -6.0
-6.0 | | | 0.416 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | 41.4 | | | -6.1 | | | 0.444 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | 40.7 | | | -6.2 | | | 0.461 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | 40.3 | | | -6.3 | | | 0.469 | 19. | 8 | | | | 0.0 | | 0.2 | 20.0 |) | | | | | 40.0 |) 46 | | -6.5 | | | 0.613 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | 39.3 | | | -6.7 | | | 0.423 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | 40.4 | | | -7.0 | | | 0.407 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | 40.3 | | | -7.4 | | | 0.402 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | 40.2 | | | -7.6 | | | 0.603 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | 38.3 | | | -7.7
-7.8 | | | 0.448
0.753 | | | | | | 0.0 | | 0.2 | 20.0
20.0 | | | | | | 39.1
38.2 | | | -7.8
-7.8 | | | 0.753 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | 38.2
39.2 | | | -7.8
-7.8 | | | 1.135 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | 37.8 | | | -8.2 | | | 1.037 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | 37.7 | | | -8.3 | | | 0.391 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | 39.5 | | | -8.5 | | | 1.015 | 17. | 1 | | | | 0.0 | | 0.3 | 20.0 |) | | | | | 37.4 | 46 | .0 | -8.6 | | | ORTHWES | | | CC | N | DU | C | T | ΕĮ |) E | MIS | SS | 101 | 15 | S D | Α | ТА | SHE | ΕT | | | | | 5.6.24
5.5.05 | |----------|---------------
--|----------|--------------|---------|----------|------------|-------|----------|-------------|------------|------------|-------------------------|---------|---------|-------------------|-----------------------------------|---------------------------|-----------------------|---------|------------|---------|-------------|------------------| | | | EUT: | 6820 | Printer | | | | | | | | | | | | | | | Work Orde | _ | | 4 | | | | S | erial N | umber: | | | | | | | | | | | | | | | | | Dat | e: 06 | 6/24/05 | | | | | | | tomer: | | пес Те | chnolo | ogies | Cor | pora | tion | 1 | | | | | | | | Т | emperatur | | | | | | | | | ndees: | None | | | | | | | | | | | | | | | | Humidit | _ | | | | | | C | Cust. Re | et. No.:
ted by: | Hally | Achka | nneih | he | | | | | | _ | Powe | . 12 | 20VAC | , 601 | 17 | Baromet | ric Pressu
Job Sit | | | | | | | TEST S | | FICATION OF THE PROPERTY TH | | ASIIKa | milejna | au | | | | | | | rowe | . 12 | OVAC | , 0 01 | 12 | | 300 31 | e. E | VUI | | | | | | | | | 5.207 | AC Po | werli | ne C | ond | ucte | d Emi | ssions:2 | 2005- | -04 | | Meth | od: A | NSI C63 | .4:2003 | | | | | | | | 0.445 | | | TION | SAMPL | | | | | Measur | ed Lev | οΙ + Δ | ntenn | a Far | rtor + Ca | ble Factor | - Amn | lifier Gain | + Dist | tance A | diustm | ent Factor | + External Atte | nuation | | | | | | | | | | | - | | | | | | | | | on Factor - | | | | | LXIOMATA | ridation | | | | | | | СОММ | New AC | Adapto | r: MN: 85 | 51-064-0 | 001. SN: | 000041 | 3. | EUT O | Transmi | tting Bl | uetooth I | Mid Cha | innel | DEVIA | TIONS | FROM | TEST | STAN | IDARI | No devia | | | 0 | 017.0 | RESUL | LTS | | | | | | | | | | | | | | | | | Line | | R | un # | | | | | Pass | | | | | | | | | | | | | | | | | | | N | | | 3 | | | | Other | | | | | | | | | | | | | | T | , . | , sil | 1 | 0 | - | Lle | , And | my | 7 | 100 | | | | | _ | Test | ed By: | | | | | | | | 80 г | | | | | | | | | , | | | | | | | | | | | | | | | | | 00 | 70 | | | | | | | | - | | | | | | | | | | | | | | + | 60 | | | | | | | | Η. | | | | | | | | | | | | | | | | | | | • | 50 | 30 | > | | | / | | ١. | dBuV | 40 | | N 🗚 🖺 | u A | ٨., | 1 | | | - | | | | | | | | | | | | | | + | | | ᇴ | | | | WI/ | M., IM | 11./1 | ιM | I۸I | AA. | ₩ ₩₩ | mahahah | W 40 a | Maryaphy | | | | | | | | | | | | | | | | M V | " | ľ | M | MI, | UN | M | ' | | ווייציי | MMMMANA. | . | | | سر معلقه | والمراويان | | | | | | | | | 30 | | 1 1 | 1 | 1 | 'W | " " | М | | | | | 1111 | 144 | | , salat. | a de la constitución | والمؤسوس والمأكل أرويا أو | lin libra | | | | | | | | | | | V | | 1 | | "T | ' | • | | | | . 1.1 | | " | | | | | | | | | | | 20 | Ш | | | | _ | 10 | | | | | | | | - | | | | | | | | | | | | | | + | 0 | Щ | | | | 0.1 | 1 | | | | | | | | 1 | | | | | | | 10 | | | | | | 10 | 0 | | | | | | | | | | | | | | | 8411- | | | | | | | | | | | • | | | | | | | | | | | | | | | MHz | F | - | | | | 1 | | | | 1 | | | | | Freq | | Ampli | tude | | | | | Tra | nsducer | Cable | , | External
Attenuation | , | | | Detector | | Adjusted | ء ا ا | Spec. Limi | | ompa
Spe | red to | | | (MHz) | | (dBu | | | | | | | (dB) | (dB) | | (dB) | | | (b | ank equal peaks
PK] from scan) | | dBuV | ľ | dBuV | | (dE | | | | · · · · · · · | | | | | \perp | | | L | | | | | \perp | | \perp | Ay nom scan) | | | \perp | | \perp | | | | | | 0.417 | | 20.9 | | | | | | 0.0 | | 0.2 | 20. | | | | | | 41 | | 47. | | | -6.4 | | | | 0.335 | | 22.7 | | | | | | 0.0 | | 0.2 | 20. | | | | | | 42 | | 49. | | | -6.4 | | | | 0.481
0.410 | | 19.0 | | | | | | 0.0 | | 0.2 | 20. | | | | | | 39 | | 46. | | | -7.1 | | | | 0.410 | | 20.3
18.6 | | | | | | 0.0 | | 0.2
0.3 | 20.
20. | | | | | | 40
38 | | 47.
46. | | | -7.1
-7.1 | | | | 0.511 | | 18.4 | | | | | | 0.0 | | 0.3 | 20. | | | | | | 38 | | 46. | | | -7.1
-7.4 | | | | 0.628 | | 18.3 | | | | | | 0.0 | | 0.3 | 20. | | | | | | 38 | | 46. | | | -7.4 | | | | 0.702 | | 18.2 | | | | | | 0.0 | | 0.3 | 20. | | | | | | 38 | | 46. | | | -7.5 | | | | 0.325 | | 21.5 | | | | | | 0.0 | | 0.2 | 20. | | | | | | 41 | | 49. | | | -7.9 | | | | 1.075 | | 17.8 | | | | | | 0.0 | | 0.3 | 20. | | | | | | 38 | | 46. | | | -7.9 | | | | 0.954 | | 17.7 | | | | | | 0.0 | | 0.3 | 20. | | | | | | 38 | | 46. | | | -8.0 | | | | 0.884 | | 17.6 | | | | | | 0.0 | | 0.3 | 20. | | | | | | 37 | | 46. | | | -8.1 | | | | 1.000 | | 17.5 | | | | | | 0.0 | | 0.3 | 20. | | | | | | 37 | | 46. | | | -8.2 | | | | 1.475
0.985 | | 17.2
17.1 | | | | | | 0.0 | | 0.3 | 20.
20. | | | | | | 37
37 | | 46.
46. | | | -8.5
-8.6 | | | | 1.655 | | 17.1
17.0 | | | | | | 0.0 | | 0.3
0.4 | 20.
20. | | | | | | 37
37 | | 46.
46. | | | -8.6
-8.6 | | | | 1.025 | | 17.0 | | | | | | 0.0 | | 0.4 | 20. | | | | | | 37 | | 46. | | | -8.7 | | | | 0.391 | | 19.1 | | | | | | 0.0 | | 0.2 | 20. | | | | | | 39 | | 48. | | | -8.7 | | | | 0.879 | | 16.9 | | | | | | 0.0 | | 0.3 | 20. | | | | | | 37 | | 46. | | | -8.8 | | | RTHWES | | (| CC | N | DU | IC | Т | Εľ | ΣE | MIS | SS | ION | S | D | A | ΤА | SHE | E | T | | | | 005.6.24
005.5.05 | |--------------------|----------|----------------|---|--------------|---------|---------------|---------|--------|-------|--|---------------|------------|---------------------|-------------|----------|--------|-----------------------------|------------|--------|-----------------------|-------|----------------|---|----------------------| | | | | 6820 F | rinter | | | | | | | | | | | | | | | Wo | ork Order: | ITRN | 0084 | | | | Se | erial Nu | 06/24 | l/05 | | | | | | tomer: | | ec Te | chnolo | gies | Cor | pora | tion | | | | | | | | | | | perature: | | | | | | С | ust. Re | | None | | | | | | | | | | | | | | | Baron | | Humidity:
Pressure | | <u> </u> | | | | | | ted by: | Holly | Ashka | nnejha | ad | | | | | | | Power: | 120 | VAC | , 60H | łz | 24.01. | | Job Site: | | | | | | TEST S | , | specific | cation: | FCC 1 | 5.207 | AC Po | werli | ne C | ond | ucte | d Emis | ssions:2 | 2005- | 04 | N | /letho | d: A | NSI C63 | .4:2003 | | | | | | | | SAMPL | E CAI | LCULA | TIONS | - | | | | | | | | | lifier Gain + | | | - | | + External | Attenu | ation | | | | | | Condu
COMM | | issions: | Adjusted | Level = | = Measu | red Lev | /el + 1 | Transo | ducer | Factor + | Cable Atte | enuatio | on Factor + | Exterr | nal Atte | enuato | or | | | | | | | | | New AC | | r: MN: 85 | 1-064-0 | 01. SN: | 0000413 | 3. | | | | | | | | | | | |
| | | | | | | | | - | EUT O | DEDAT | FINIC M | ODES | EUT OF
Transmit | l | 9 = | DEVIA | TIONS | FROM | TEST | STAN | IDARD | No devia | tions. | RESUL
Pass | TS | | | | | | | | | | | | | | | | | Line | L1 | | Run | | 4 | | | 1 455 | | | | | | | | | | | | | | | | | | 1 | LI | | | | · | | | Other | | | | | | | | | | | | | | П | | | | | U 100 | | 2 | 1/ 1 | Λ | 1 | 1 | + | foli | 1 /2 | / | , , | | ested | | | | • | , | | | | | | | 80 | ٦ | 70 | 60 | | | | | | | | | | | | | Т | | | | | | | | | | 1 | | | | • | 50 | | | | | | | | | | | | | _ | | | | | | | | | | - | | _ | | • | ۱ ۱ | | | \rightarrow | 3 | 40 | | \ /\ | .N. | أللند | . h | dBuV | 40 | | \ N1 | Mund | | 416 | ۸. | d a | , M | M ortune | | | | | | | | | | | | | | | | | | | \ <u> </u> | \ | ין יוש | M | 1 | " / | ηŊ | , | Mhhhar | ₩₩ | nikki . | . | | | da stat . | a Lea | .du | | | | | | | | 30 | | 14 | V | - | Ш | -1 | М. | Н | | • | - " | 1614/14 | Wald | | int it | TIPE | chia di | | distr | | | | 1 | | | | | ١. | 7 | | IV | | N | 1 | | | | | | | , I | | | | 10-41 | | | | | | | 20 | - | 10 | 10 | 0 | 4 | | | 0.1 | | | | | | | | 1 | l | | | | | | | 10 | | | | | | 1 | 00 | | | | | | | | | | | | | | | MHz | _ | | | | | | | | | | | | External | | | 1 | | | | | | | | pared to | | | Freq | | Amplit
(dBu | | | | | | | nsducer
(dB) | Cable
(dB) | | Attenuation
(dB) | | | (bl | Detector
ank equal peaks | 3 | | Adjusted
dBuV | | . Limit
luV | | pec.
(dB) | | 1 ' | (MHz) | | (UDU | •, | | | | | ' | (30) | (ub) | | (GD) | | | 1 | PK] from scan) | | | aba v | uE | .u v | | ردی | | | | 0.468 | | 22.2 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | • | | 42.4 | | 46.6 | | -4.1 | | | | 0.479 | | 21.0 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 41.2 | | 46.4 | | -5.1 | | | | 0.527
0.385 | | 19.8
21.9 | | | | | | 0.0 | | 0.2
0.2 | 20.0
20.0 | | | | | | | 40.0
42.1 | | 46.0
48.2 | | -6.0
-6.0 | | | | 0.200 | | 27.2 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 47.4 | | 53.6 | | -6.2 | | | | 0.375 | | 21.7 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 41.9 | | 48.4 | | -6.5 | | | | 0.688 | | 19.1
21.5 | | | | | | 0.0 | | 0.3
0.2 | 20.0
20.0 | | | | | | | 39.4
41.7 | | 46.0
48.6 | | -6.6
-6.8 | | | | 0.368 | | 21.5
20.4 | | | | | | 0.0 | | 0.2
0.2 | 20.0 | | | | | | | 40.6 | | 48.6 | | -0.8
-7.0 | | | | 0.419 | : | 20.2 | | | | | | 0.0 | | 0.2 | 20.0 |) | | | | | | 40.4 | | 47.5 | | -7.0 | | | | 0.445 | | 19.4 | | | | | | 0.0 | | 0.2 | 20.0 | | | | | | | 39.6 | | 47.0 | | -7.3 | | | | 0.361 0.353 | | 20.9
20.6 | | | | | | 0.0 | | 0.2
0.2 | 20.0
20.0 | | | | | | | 41.1
40.8 | | 48.7
48.9 | | -7.6
-8.1 | | | | 0.353 | | 20.6
17.7 | | | | | | 0.0 | | 0.2
0.2 | 20.0 | | | | | | | 40.8
37.9 | | 46.0 | | -8.1
-8.1 | | | | 1.019 | | 17.5 | | | | | | 0.0 | | 0.3 | 20.0 |) | | | | | | 37.8 | | 46.0 | | -8.2 | | | | 0.965 | | 17.5 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | | 37.8 | | 46.0 | | -8.2 | | | | 0.931 | | 17.5
17.5 | | | | | | 0.0 | | 0.3
0.3 | 20.0
20.0 | | | | | | | 37.8
37.8 | | 46.0
46.0 | | -8.2
-8.2 | | | | 0.492 | | 17.6 | | | | | | 0.0 | | 0.3 | 20.0 | | | | | | | 37.8 | | 46.1 | | -8.3 | | | ORTHWES | | | CO | N | טנ | JC | T | Εſ |) E | MI | SS | 101 | 15 | S D | Α | TΑ | Sł | 1EE | ΞT | | | | 005.6.24
005.5.05 | |----------|---------|----------------|----------------|--------------|----------|--|-------|---------|------|------------------|----------------|-------|--|---------|--------------|----------|---------------|----------|-------------|-------------------------|------|--------------|---|---------------------------| | | | EUT: | 6820 I | Printer | | | | | | | | | | | | | | | W | ork Order: | _ | | | | | S | erial N | umber: | | | | | | | | | | | | | | | | | | Date: | 06/2 | 24/05 | | | | | | tomer: | | nec Tec | chnolo | ogies | s Co | rpora | tior | 1 | | | | | | | | | Те | mperature: | | | | | | | | ndees: | None | | | | | | | | | | | | | | | | | Humidity: | | | | | | | ust. Re | ted by: | Hally | \chka | nnaih | ad | | | | | | | Powe | r. 13 | 20VA0 | - 601 | -
- | В | arometri | c Pressure
Job Site: | _ | | | | | TEST S | | FICATION. | | ASIIKa | mejna | au | | | | | | | Fowe | 1. 12 | ZUVAC | J, 601 | 12 | | | JOD Site. | EV | U I | | | | | | | | 5.207 | AC Po | werl | ine | Cond | ucte | ed Emis | ssions: | 2005- | -04 | | Meth | od: A | NSI C | 3.4:20 | 03 | SAMPL | | | | | Manaum | مالم | ual i | Antone | о Го | otos i Co | ble Feeter | | olifier Gain | . Die | tones A | معدد الم | ant Fast | a Fut | arnol Atton | ation | | | | | | | | | | - | | | | | | | | | on Factor | | | - | | OI + EXI | ernai Aller | luation | | | | | | COMM | | ilioolorio. | rajaoto | 3 E0 (0) | Wodou | 100 20 | 7011 | riano | auco | T dotor T | ouble 7 to | onaci | on r dotor | LA | orrical 7 to | toridat | <u> </u> | | | | | | | | | New AC | Adapto | r: MN: 85 | 1-064-0 | 001. SN: | 000041 | 3. | EUT O | DEVIA | | FROM | TEST | STAN | DARD |) | No devia | | | | | | | | | | | | | | | | | | Lin | • | | Rui | . # | | | | Pass | .10 | | | | | | | | | | | | | | | | | LIN | e
L' | 1 | Kul | 11# | 5 | Other | | | | | | | | | | | | | | | | 4 | 400 | 5/ | | W. | 7 | | _ | | | | 80 г | | | | | | | | | | | | | | | | | | Teste | d By: | | | | _ | 70 | 60 | | | | \ | _ | 50 | | | <u> </u> | _ | dBuV | 40 | | | MM | . / | ΙM | ۱M | .A | | M. A. M | h.a | | | | | | | | | | | | | | | | 30 | | 'Wyw | | / | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1 | | Y | וישרע | <i>ሌላ</i> ነላ/ር | MAN | (1111 /4 / 1/1/1/1 | | | | ne lu (| u.lladdo | 111 | dadt | | | | | | | 20 | | _ | | איין | l | - | ויין ון | 1 | | | | | | | Marill b | · Inter- | | | | | | | | | | 10 | 0 | | | | | | | | | | | | | | | | 40 | | | | | | | ⊣ | | | 0.1 | | | | | | | | | 1 | | | MHz | | | | 10 | | | | | | | 100 | | | Freq | | Amplit
(dBu | | | | | | Tra | insducer
(dB) | Cabl
(dB) | | External
Attenuatio
(dB) | n | | (t | Detecto | | | Adjusted
dBuV | | ec. Limit | 5 | pared to
Spec.
(dB) | | | (MHz) | | | | | | | | | | | | | \perp | | | [PK] from sca | n) | | | | | | | | | _ | 0.456 | | 22.8 | _ | _ | - | _ | _ | 0.0 | | 0.2 | 20 | | | _ | _ | _ | _ | 43.0 | | 46.8 | | -3.7 | | | | 0.468 | | 22.0 | | | | | | 0.0 | | 0.2 | 20 | | | | | | | 42.2 | | 46.6 | | -4.3 | | | | 0.450 | | 22.2 | | | | | | 0.0 | | 0.2 | 20 | | | | | | | 42.4 | | 46.9 | | -4.4
5.2 | | | | 0.440
0.395 | | 21.6
22.0 | | | | | | 0.0 | | 0.2 | 20
20 | | | | | | | 41.8
42.2 | | 47.1
48.0 | | -5.2
-5.7 | | | | 0.395 | | 22.0
21.2 | | | | | | 0.0 | | 0.2 | 20 | | | | | | | 42.2
41.4 | | 48.0
47.3 | | -5. <i>1</i>
-5.8 | | | | 0.429 | | 19.3 | | | | | | 0.0 | | 0.2 | 20 | | | | | | | 39.6 | | 46.0 | | -5.o
-6.4 | | | | 0.542 | | 19.3 | | | | | | 0.0 | | 0.3 | 20 | | | | | | | 39.6 | | 46.0 | | -6.4 | | | | 0.488 | | 19.1 | | | | | | 0.0 | | 0.2 | 20 | | | | | | | 39.3 | | 46.2 | | -6.8 | | | | 0.497 | | 18.6 | | | | | | 0.0 | | 0.2 | 20 | | | | | | | 38.8 | | 46.0 | | -7.2 | | | | 1.415 | | 18.3 | | | | | | 0.0 | | 0.3 | 20 | | | | | | | 38.6 | | 46.0 | | -7.4 | | | | 0.956 | | 17.8 | | | | | | 0.0 | | 0.3 | 20 | | | | | | | 38.1 | | 46.0 | | -7.9 | | | | 0.926 | | 17.8 | | | | | | 0.0 | | 0.3 | 20 | | | | | | | 38.1 | | 46.0 | | -7.9 | | | | 0.266 | | 23.1 | | | | | | 0.0 | | 0.2 | 20 | | | | | | | 43.3 | | 51.2 | | -7.9 | | | | 1.175 | | 17.6 | | | | | | 0.0 | | 0.3 | 20 | | | | | | | 37.9 | | 46.0 | | -8.1 | | | | 1.095
1.035 | | 17.5
17.4 | | | | | | 0.0 | | 0.3 | 20
20 | | | | | | | 37.8
37.7 | | 46.0
46.0 | | -8.2
-8.3 | | | | 1.035 | | 17.4
17.2 | | | | | | 0.0 | | 0.3 | 20 | | | | | | | 37.7
37.6 | | 46.0
46.0 | | -8.3
-8.4 | | | | 0.150 | | 27.3 | | | | | | 0.0 | | 0.4 | 20 | | | | | | | 47.5 | | 56.0 | | -8.5 | | | NORTHWEST | | (| CO | NE | U | C | TE | ΞD | E | MIS | S | ON | S | D/ | 47 | ГА | SHE | ΕT | | | .CQ 2005.6.24
EMI 2005.5.05 | |----------|---------------|---
--|--|--------|---------|--------|-------|--------|---|-----------------------|--|--|--------|---------|--------|---------------------------------|--------------------------|--|---|--|--| | | | | 6820 Pr | inter | | | | | | | | | | | | | | | Work Ord | er: l | TRM0084 | | | ÿ | Serial Nu | | | | | | | | | | | | | | | | | | | _ | 6/24/05 | | | | | omer: | Interme | c Tecl | nnolo | gies | Corp | orat | ion | | | | | | | | | Т | emperatu
Humidi | | | | | | Cust. Ref | | None | | | | | | | | | | | | | | | Baromet | ric Pressu | | | | | | Teste | ed by: | Holly A | shkan | nejha | d | | | | | | | Power: | 120V | AC, | 60H | z | | Job Si | | | | | TEST | SPECIF | | | 207.4 | C Dei | | | l· | | l Cusia | aiama.0 | 00E 0 | 4 | Ma | thod | | 101 000 | 4-2002 | | | | | | | Specific | ation: | FCC 15 | .207 A | C PO | weriir | ne C | onat | icted | ı Emis | sions:20 | JU5-U | 4 | IVIE | tnoa | - Ar | ISI C63. | 4:2003 | | | | | | SAME | PLE CAL | CULA | TIONS | External Atte | enuation | | | | | | ducted Emis | ssions: | Adjusted I | Level = N | Measur | ed Lev | el + T | ransd | ucer F | actor + | Cable Atte | nuation | Factor + E | xterna | l Atten | uator | r | | | | | | | | C Adaptor: | MN: 85 | 1-064-00 | 1. SN: 00 | 000413 | FUT (| DPERAT | ING M | ODES | nitting Blue | | | nnel | ATIONS | FROM | TEST S | STAND | DARD | | | | | | | | | | | | | | | | | | | No dev | | | | | | | | | | | | | | | | | | Line | | | Run # | | | Pass | 213 | | | | | | | | | | | | | | | | | | N | ľ | | 6 | Other | , | | | | | | | | | | | | | | | | | | | 0 | 1 | 10. | Al | my/m | 9 | + | tons | 190 | 1 | ed By: | | | - | 80.0 | | | | | | | | \Box | 70.0 | 00.0 | 60.0 | 50.0 | | + | + | | | | | - | | | | | | | | | | <u> </u> | 40.0 | | • \ | / | 1 | ia ilik | | | | | | | | | | | | | | | | | | dBuV | 40.0 | | | L.M\\\ | \ | MIN | Λ | M. | la di | MMr | Mina . | | | | | | | | | | | | | | | | | M Y | LAI | ' | / // | 11 | w | | " ነ ሣየ₩ | MAKLA | Nat. | | . | | يران الطبا | ura di | . | | | | | | 30.0 | | -∀- | 4 | 111 | | -" | W | | | | 1 134 | Myaphuph | | | dar. | د پرستاند
سازمه خالفان انه | and the same of the same | lan) | | | | | | | | ' | | 1 | | | ۱ 🏋 | ין זי | 1 | | | ' ' | | חקייו | ין יין | | | | | | | | | 20.0 | 10.0 | 10.0 | 0.0 | 0.1 | 00 | | | | | | | 1.00 | 00 | | | | | | 10 | .000 | | | | 1 | 100.000 | | | | | | | | | | | | | | M | lHz | 1 | External | | | T | | | | | | Compared to | | | Freq | | Amplitud | | | | | | | sducer | Cable | At | tenuation | | | (bloc | Detector | | Adjuste | d | Spec. Limit
dBuV | Spec. | | | (MHz) | | (dBuV |) | | | | | (0 | dB) | (dB) | | (dB) | | | (Pi | nk equal peaks
K] from scan) | | dBuV | | aBuv | (dB) | | <u> </u> | (| 0.153 | 2 | 3.0 | | | | 1 | | 0.0 | C | .0 | 20.0 | | | 1 | AV | I | 43 | 3.0 | 55.8 | -12.8 | | | (| 0.153 | 29 | 9.8 | | | | | | 0.0 | C | 0.0 | 20.0 | | | | QP | | 49 | 9.8 | 65.8 | -16.0 | | | | 0.152
0.476 | | 3.0
2.2 | | | | | | 0.0 | |).2
).2 | 20.0
20.0 | | | | | | | 3.2
2.4 | 55.9
46.4 | | | | , | 0.476 | | 2.2
2.3 | | | | | | 0.0 | | 1.2 | 20.0 | | | | | | | 2.4
2.5 | 46.4 | | | | (| | | 1.8 | | | | | | 0.0 | | .2 | 20.0 | | | | | | | 2.0 | 46.9 | | | | | 0.446 | 2 | | | | | | | 0.0 | | .2 | 20.0 | | | | | | 41 | 1.1 | 46.3 | -5.2 | | | (| 0.446
0.482 | 20 | 0.9 | | | | | | \cap | r | .2 | 20.0 | | | | | | | | | | | | (| 0.446
0.482
0.487 | 20
20 | 0.5 | | | | | | 0.0 | | | 20.0 | | | | | | |).7 | 46.2 | -5.5 | | | (| 0.446
0.482 | 20
20
19 | 0.5
9.9 | | | | | | 0.0 | C | .3 | 20.0 | | | | | | 40 |).7
).2
).1 | 46.2
46.0 | -5.5
-5.8 | | | (| 0.446
0.482
0.487
0.714
0.553
0.408 | 20
20
19
19
20 | 0.5
9.9
9.8
1.4 | | | | | | 0.0
0.0
0.0 | C
C
C | .3
.3
.2 | 20.0
20.0
20.0 | | | | | | 40
40
41 |).2
).1
1.6 | 46.2
46.0
46.0
47.7 | -5.5
-5.8
-5.9
-6.0 | | | | 0.446
0.482
0.487
0.714
0.553
0.408
0.496 | 20
20
19
19
20
19 | 0.5
9.9
9.8
1.4
9.7 | | | | | | 0.0
0.0
0.0
0.0 | 0
0
0 | 1.3
1.3
1.2
1.2 | 20.0
20.0
20.0
20.0 | | | | | | 40
40
41
39 | 0.2
0.1
1.6
9.9 | 46.2
46.0
46.0
47.7
46.1 | -5.5
-5.8
-5.9
-6.0
-6.1 | | | | 0.446
0.482
0.487
0.714
0.553
0.408
0.496
0.723 | 20
20
19
19
20
19 | 0.5
9.9
9.8
1.4
9.7
9.6 | | | | | | 0.0
0.0
0.0
0.0
0.0 | 0
0
0
0 |).3
).2
).2
).3 | 20.0
20.0
20.0
20.0
20.0 | | | | | | 40
40
41
39
39 | 0.2
0.1
1.6
9.9 | 46.2
46.0
46.0
47.7
46.1
46.0 | -5.5
-5.8
-5.9
-6.0
-6.1
-6.1 | | | | 0.446
0.482
0.487
0.714
0.553
0.408
0.496 | 20
20
19
19
20
19
19 | 0.5
9.9
9.8
1.4
9.7 | | | | | | 0.0
0.0
0.0
0.0 | 0
0
0
0
0 | 1.3
1.3
1.2
1.2 | 20.0
20.0
20.0
20.0 | | | | | | 40
40
41
39
39 | 0.2
0.1
1.6
9.9 | 46.2
46.0
46.0
47.7
46.1 | -5.5
-5.8
-5.9
-6.0
-6.1
-6.1 | | | | 0.446
0.482
0.487
0.714
0.553
0.408
0.496
0.723
0.570
0.387
0.376 | 20
19
19
20
19
19
19
20
20 | 0.5
9.9
9.8
1.4
9.7
9.6
9.5
1.6 | | | | | | 0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0
0
0
0
0 | 1.3
1.2
1.2
1.3
1.3
1.2 | 20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | | | | | | 40
40
41
39
39
39
41
42 | 0.2
0.1
1.6
9.9
9.9
9.8
1.8 | 46.2
46.0
46.0
47.7
46.1
46.0
46.0
48.1 | -5.5
-5.8
-5.9
-6.0
-6.1
-6.1
-6.2
-6.3 | | | | 0.446
0.482
0.487
0.714
0.553
0.408
0.496
0.723
0.570
0.387 | 20
20
19
19
22
19
19
22
2 | 0.5
9.9
9.8
1.4
9.7
9.6
9.5 | | | | | | 0.0
0.0
0.0
0.0
0.0
0.0 | | 0.3
0.2
0.2
0.3
0.3 | 20.0
20.0
20.0
20.0
20.0
20.0
20.0 | | | | | | 40
40
41
39
39
39
41
42
39 | 0.2
0.1
1.6
9.9
9.9
9.8
1.8 | 46.2
46.0
46.0
47.7
46.1
46.0
46.0
48.1 | -5.5
-5.8
-5.9
-6.0
-6.1
-6.1
-6.2
-6.3
-7.0 |