

FCC PART 15 SUBPART C TEST REPORT					
FCC PART 15.247					
Report Reference No	GTS20211218008-1-15 2AYD5-I22M01				
Compiled by (position+printed name+signature) .:	File administrators Peter Xiao				
Supervised by (position+printed name+signature) .:	Test Engineer Jenny Zeng				
Approved by (position+printed name+signature) .:	Manager Simon Hu				
Date of issue:	Aug.08, 2022				
Representative Laboratory Name .:	Shenzhen Global Test Service Co.,Ltd				
Address:	No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong,China				
Applicant's name	Imin Technology Pte Ltd				
Address:	11 Bishan Street 21, #03-05 Bosch Building,Singapore 573943				
Test specification:					
Standard	FCC Part 15.247				
TRF Originator					
Master TRF:					
Global Test Service Co.,Ltd. is acknow Global Test Service Co.,Ltd. takes no r	td. All rights reserved. whole or in part for non-commercial purposes as long as the Shenzhen vledged as copyright owner and source of the material. Shenzhen responsibility for and will not assume liability for damages resulting from duced material due to its placement and context.				
Test item description:	POS Device				
Trade Mark	imin				
Manufacturer:	Imin Technology Pte Ltd				
Model/Type reference	I22M01				
Listed Models	N/A				
Modulation Type	GFSK				
Operation Frequency	From 2402MHz to 2480MHz				
Hardware Version	N/A				
Software Version:	N/A				
Rating:	DC 7.6V by Battery Recharged by DC 5.0V/2.0A				
Result:	PASS				

Test Report No. :	GTS20211218008-1-15		Aug.08, 2022 Date of issue		
Equipment under Test	:	POS Device			
Model /Type	:	I22M01			
Listed model	:	N/A			
Applicant	:	Imin Technology Pte Ltd			
Address	:	11 Bishan Street 21, #03-05 B	osch Building,Singapore 573943		
Manufacturer	:	Imin Technology Pte Ltd			
Address	:	11 Bishan Street 21, #03-05 B	osch Building,Singapore 573943		

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	7
2.4. Short description of the Equipment under Test (EUT)	7
2.5. EUT operation mode	7
2.6. Block Diagram of Test Setup	8
2.7. EUT Exercise Software	8
2.8. Special Accessories	8
2.9. External I/O Cable	
2.10. Related Submittal(s) / Grant (s)	8
2.11. Modifications	8
3. TEST ENVIRONMENT	9
3.1. Address of the test laboratory	9
3.2. Test Facility	9
3.3. Environmental conditions	9
3.4. Statement of the measurement uncertainty	9
3.5. Test Description	10
3.6. Equipments Used during the Test	11
4. TEST CONDITIONS AND RESULTS	12
4.1. AC Power Conducted Emission	12
4.2. Radiated Emission	15
4.3. Maximum Peak Output Power	21
4.4. Power Spectral Density	22
4.5. 99% and 6dB Bandwidth	23
4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission	24
4.7. Antenna Requirement	26
5. TEST SETUP PHOTOS OF THE EUT	27
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	27

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB 558074 D01 DTS Meas Guidance v05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Jun. 20, 2022
Testing commenced on	•••	Jun. 20, 2022
Testing concluded on	:	Aug. 06, 2022

2.2. Product Description

Product Name	POS Device
Trade Mark	imin
Model/Type reference	I22M01
List Models	N/A
Model Declaration	N/A
Power supply:	DC 7.6V by Battery Recharged by DC 5.0V/2.0A
Sample ID	GTS20211218008-1-S0001-1# & GTS20211218008-1-S0001-2#
Bluetooth	
Operation frequency	2402-2480MHz
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)
WIFI(2.4G Band)	
Frequency Range	2412MHz ~ 2462MHz
Channel Spacing	5MHz
Channel Number	11 Channel for 20MHz bandwidth(2412~2462MHz) 7 Channel for 40MHz bandwidth(2422~2452MHz)
Modulation Type	802.11b: DSSS; 802.11g/n: OFDM
WIFI(5.2G/5.3G/5.7G Band	()
Frequency Range	5180MHz ~ 5240MHz, 5260MHz ~ 5320MHz, 5500MHz ~ 5700MHz
Channel Number	 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5260-5320MHz) 11 Channels for 20MHz bandwidth(5500-5700MHz) 2 channels for 40MHz bandwidth(5190~5230MHz) 2 channels for 40MHz bandwidth(5270~5310MHz) 5 Channels for 40MHz bandwidth(5510-5670MHz) 1 channels for 80MHz bandwidth(5210MHz) 1 channels for 80MHz bandwidth(5290MHz) 2 Channels for 80MHz bandwidth(5530-5610MHz)
Modulation Type	802.11a/n/ac: OFDM
WIFI (5.8G Band)	
Frequency Range	5745MHz ~ 5825MHz
Channel Number	5 channels for 20MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5755~5795MHz) 1 channels for 80MHz bandwidth(5775MHz)
Modulation Type	802.11a/n/ac: OFDM
Antenna Description 2G	FPC Antenna, 1.82dBi(Max.) for 2.4G Band and 2.16dBi(Max.) for 5G Band
Support Band	GSM850/GSM1900/GPRS850/GPRS1900/EDGE850/EDGE1900
Release Version	R99
Release version	667

GPRS Class	Class 12
EGPRS Class	Class 12
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/ PCS1900:Power Class 1
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12
Type Of Modulation	GMSK for GSM/GPRS; GMSK/8PSK for EGPRS
Antenna Description	FPC Antenna; -0.60dBi (max.) For GSM 850 0.50dBi (max.) For DCS 1900
3G	
UMTS Operation Frequency Band	UMTS FDD Band 2(1850 MHz -1910MHz) UMTS FDD Band 5(824 MHz -849MHz)
WCDMA Release Version	R8
HSDPA Release Version	Release 8
HSUPA Release Version	Release 8
Modulation Type	QPSK/16QAM
Antenna Description	FPC Antenna; 0.50dBi (max.) For Band 2 -0.60dBi (max.) For Band 5
LTE	
LTE Operation Frequency Band	E-UTRA Band 2(1850 MHz -1910MHz) E-UTRA Band 4(1710 MHz -1755MHz) E-UTRA Band 7(2500 MHz -2570MHz) E-UTRA Band 17(704 MHz -716MHz) E-UTRA Band 41(2555 MHz -2655MHz)
LTE Release Version	R10
Type Of Modulation	QPSK/16QAM/64QAM
Antenna Description	FPC Antenna; 0.50dBi (max.) For LTE Band 2; 0.80dBi (max.) For LTE Band 4; 0.20dBi (max.) For LTE Band 7; -0.70dBi (max.) For LTE Band 17; -0.20dBi (max.) For LTE Band 41;
RFID(13.56MHz) (Optional)	
Frequency Range	13.56MHz
Channel Number	1
Modulation Type	ASK
Antenna Description	Internal Antenna, 0dBi (Max.)
GPS(RX)	Support
Remark:The I22M01 model ha Version A: Large scan head; Version B: Small scan head;	as 2 versions, Only the scan header is different;

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
			Other (specified in blank below)		

DC 7.6V

2.4. Short description of the Equipment under Test (EUT)

This is a POS Device

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT. Channel 00/19/39 was selected to test.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)			
	2402	1			
(BLE)	2440	1			
	2480	1			
	For Conducted Emission				
Test Mode		TX Mode			
For Radiated Emission					
Test Mode		TX Mode			

Channel	Frequency(MHz)	Channel	Frequency(MHz)	
0	2402	20	2442	
1	2404	21	2444	
2	2406	22	2446	
18	2438	38	2478	
19	2440	39 2480		

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/60Hz modes, recorded worst case.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, which was determined to be BT LE mode (MCH).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be BT LE mode(MCH).

2.6. Block Diagram of Test Setup

2.7. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (MTK model) provided by application.

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN TIANYIN	Adaptar			8000
ELECTRONICS CO.,LTD.	Adapter	TPA-46050200UU		SDOC

2.9. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Port	1	1.2M, Unscreened Cable

2.10. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AYD5-I22M01 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.11. Modifications

No modifications were implemented to meet testing criteria.

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Test Description

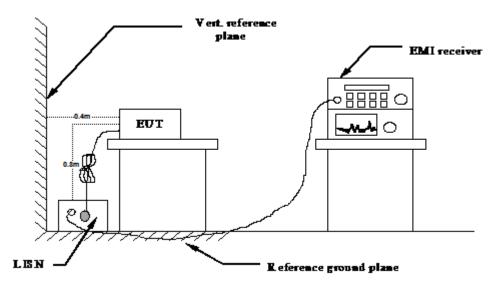
	Applied Standa	rd: FCC Part 15 Subpart C	;	
FCC Rules	Description of Test	Test Sample	Result	Remark
/	On Time and Duty Cycle	GTS20211218008-1- S0001-1#	/	/
§15.247(b)	Maximum Conducted Output Power	GTS20211218008-1- S0001-1#	Compliant	Appendix B
§15.247(e)	Power Spectral Density	GTS20211218008-1- S0001-1#	Compliant	Appendix B
§15.247(a)(2)	6dB Bandwidth	GTS20211218008-1- S0001-1#	Compliant	Appendix B
§2.1047	99% Occupied Bandwidth	GTS20211218008-1- S0001-1#	Compliant	Appendix B
§15.209, §15.247(d)	Conducted Spurious Emissions and Band Edges Test	GTS20211218008-1- S0001-1#	Compliant	Appendix B
§15.209, §15.247(d)	Radiated Spurious Emissions	GTS20211218008-1- S0001-1# GTS20211218008-1- S0001-2#	Compliant	Note 1
§15.205	Emissions at Restricted Band	GTS20211218008-1- S0001-1#	Compliant	Note 1
§15.207(a)	AC Conducted Emissions	GTS20211218008-1- S0001-2#	Compliant	Note 1
§15.203 §15.247(c)	Antenna Requirements	GTS20211218008-1- S0001-1#	Compliant	Note 1
§15.247(i)§2.1 091	RF Exposure	/	Compliant	Note 2

Remark:

The measurement uncertainty is not included in the test result. NA = Not Applicable; NP = Not Performed 1.

- 2.
- Note 1 Test results inside test report; 3.
- Note 2 Test results in other test report (MPE Report). 4.
- We tested all test mode and recorded worst case in report 5.

3.6. Equipments Used during the Test


Calibration Date	Calibration Due Date
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2021/09/19	2022/09/18
2021/09/19	2022/09/18
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2021/09/19	2022/09/18
2021/09/19	2022/09/18
N/A	N/A
2021/11/07	2022/11/06
2021/10/10	2022/11/09
2022/07/13	2023/07/12
2021/11/07	2022/11/06
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
2022/07/13	2023/07/12
/	/
/	/
/	/
/	/
}	2022/07/13 3 / / /

Note: 1. The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 5.0V power, the adapter received AC120V/60Hz or AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (dBuV)
r requency range (mriz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ncy.	

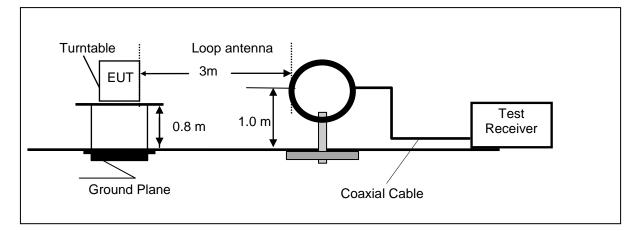
TEST RESULTS

Remark: We measured Conducted Emission at GFSK mode from 150 KHz to 30MHz in AC120V and the worst case was recorded.

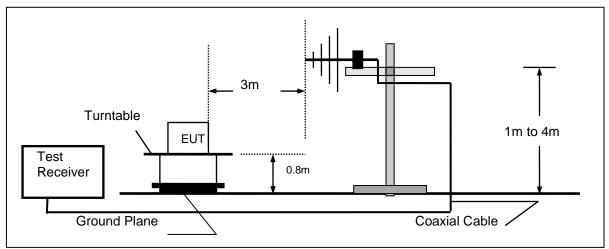
Temperature	25 ℃	Humidity	60%
Test Engineer	Jenny Zeng	Configurations	BT

Version A:

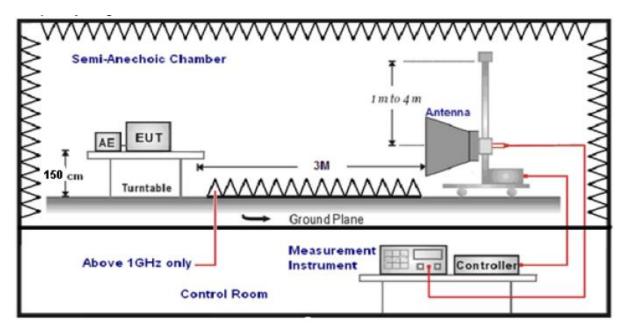
Power	supply:	A	AC 120V/60Hz				Polari	zation				L	
	Test Graph	iraph											
		80											
		70											
	Σ	60											
	Level[dBµV]									ut titik an	the second		
	Le	30 × AAAAAAAA		My Privily	ppthayauppen				HARAHAT		F A		
		20 20 20 20 20 20 20 20 20 20 20 20 20 2	ter-withintheru	menthentanteen	Whiteholdery	an a			(Incompany)				
		10											
		150k	0011-1	- AV Limit	1M	Frequency[Hz]			10M		30M		
		PK Limit QP Detector	 QP Limit AV Detect 		PK								
	Final Data	a List											
	NO. Freque	ncy QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark	
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin			
		_								-			
	1 0.162 2 0.317		17.87 15.14	9.60 9.42	42.55 35.29	27.47 24.56	65.31 59.77	<u>55.31</u> 49.77	22.76 24.48	27.84 25.21	L1 L1	PASS PASS	
	3 0.509	5 28.46	13.67	9.43	37.89	23.10	56.00	46.00	18.11	22.90	L1	PASS	
	4 1.722		10.21	9.37	31.10	19.58	56.00	46.00	24.90	26.42	L1	PASS	
	5 <u>15.89</u> 6 19.42		20.42	9.18 9.20	42.19 39.24	29.60 30.67	60.00 60.00	50.00 50.00	17.81 20.76	20.40 19.33	L1 L1	PASS PASS	
	Note: 1. Result) + Facto	or (dB).								
	2. Factor	(dB) = Cable I	oss (dB) +	LISN Fac	ctor (dB).								
Dowor	supply:	Δ <u>Λ</u>	120\//	60H-			Dolari	zation				N	
	supply:	A	C 120V/	60Hz			Polari	zation				Ν	
	SUPPly: Test Graph	A	C 120V/	60Hz			Polari	zation				Ν	
		90	C 120V/	60Hz			Polari	zation				N	
		80	C 120V/	60Hz			Polari	zation				N	
		90 80 70	C 120V/	60Hz			Polari	zation				N	
	Test Graph	80	C 120V/	60Hz			Polari	zation				N	
		90 60 60 50					Polari	zation				N	
	Test Graph					Maline Marine	Polari	zation				Ν	
	Test Graph	90 80 70 60 50 40				Nyta Mapira	Polari	zation				N	
	Test Graph	90 60 70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40		Î î î î î î î î î î î î î î î î î î î î		Angla kalan saran sa	Polari				30M	N	
	Test Graph	90 60 70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40	Uy// www.WA	in the second se	- Andrew MA	Harta Mariana Maria Mariana Frequency/Hz)	Polari	zation	1 CM		Зом	N	
	Test Graph	90 60 70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40	Wy Award Mark	in the second se	шиј "Шијији 1М	hing market and	Polari	zation			Зом	N	
	Test Graph	90 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40	Uy// www.WA	in the second se	шиј "Шијији 1М	hing market and	Polari	zation	10M		30M	Ν	
	Final Data	90 60 70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40	- OP Limit • AV Detect	2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	и риний 1М РК	Frequency[Hz]							
	Test Graph	90 60 70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40	Uy// www.WA	in the second se	шиј "Шијији 1М	here and the second		AVG.	10M	AVG.	30M	N	
	Final Data	90 60 70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40	- OP Limit • AV Detect	2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	и риний 1М РК	Frequency[Hz]				AVG. Margin			
	Final Data	90 60 50 40 40 40 40 40 40 40 40 40 4	AVG. Reading	- AV Link	IM 	Frequency(Hz)	QP	AVG. Limit	QP Margin	Margin	Line	Remark	
	Final Data	90 60 70 60 50 40 40 40 40 40 40 40 40 40 4	OP Limit • AV Detect	2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	и рк 1М РК	Frequency[Hz]	QP	AVG.	QP				
	Final Data NO. Frequent 1 0.167 2 0.556 3 1.790	90 60 70 60 50 40 40 40 40 40 40 40 40 40 4	AVG. Reading 16.58 18.92 9.14		CP CP Result 39.42 38.32 24.85	Frequency(Hz) AVG. Result 26.17 28.32 18.49	QP Limit 65.07 56.00 56.00	AVG. Limit 55.07 46.00	QP Margin 25.65 17.68 31.15	Margin 28.90 17.68 27.51	Line N N N	Remark PASS PASS	
	Final Data NO. Frequent 1 0.167 2 0.556 3 1.790 4 9.376	90 60 70 60 50 40 40 40 40 40 40 40 40 40 4	AVG. Reading 16.58 18.92 9.14 12.70		CQP Result 39.42 38.32 24.85 33.86	Frequency(Hz)	QP Umit 65.07 56.00 60.00	AV/G. Limit 55.07 46.00 50.00	QP Margin 25.65 17.68 31.15 26.14	Margin 28.90 17.68 27.51 28.00	Line N N N N	PASS PASS PASS PASS	
	Final Data NO. Frequent 1 0.167 2 0.556 3 1.790	90 60 70 60 50 40 40 40 40 40 40 40 40 40 4	AVG. Reading 16.58 18.92 9.14		CP CP Result 39.42 38.32 24.85	Frequency(Hz) AVG. Result 26.17 28.32 18.49	QP Limit 65.07 56.00 56.00	AVG. Limit 55.07 46.00	QP Margin 25.65 17.68 31.15	Margin 28.90 17.68 27.51	Line N N N	Remark PASS PASS	
	Final Data NO. Freques 1 0.167 2 0.556 3 1.790 4 9.376 5 14.992	90 60 70 60 50 40 40 40 40 40 40 40 40 40 4	AVG. Reading 16.58 18.92 9.14 12.70 11.10 6.96	AV Limit 9.59 9.40 9.30 9.17 9.26	CP Result 39.42 38.32 24.85 33.86 34.00 29.71	Frequency(Hz) Frequency(Hz) AVG. Result 26.17 28.32 18.49 22.00 20.27	QP Limit 65.07 56.00 60.00 60.00	AV/G. Limit 55.07 46.00 50.00	QP Margin 25.65 17.68 31.15 26.14 26.00	Margin 28.90 17.68 27.51 28.00 29.73	Line N N N N	PASS PASS PASS PASS PASS	
	Final Data NO. Freques 1 0.167 2 0.556 3 1.790 4 9.376 5 14.992 6 26.304 Note: 1. Result	90 60 70 60 50 40 40 40 40 40 40 40 40 40 4	AVG. Reading 16.58 18.92 9.14 12.70 11.10 6.96 ding (dBµV)		CP CP Result 39,42 38,32 24,85 33,86 34,00 29,71 or (dB).	Frequency(Hz) Frequency(Hz) AVG. Result 26.17 28.32 18.49 22.00 20.27	QP Limit 65.07 56.00 60.00 60.00	AV/G. Limit 55.07 46.00 50.00	QP Margin 25.65 17.68 31.15 26.14 26.00	Margin 28.90 17.68 27.51 28.00 29.73	Line N N N N	PASS PASS PASS PASS PASS	


Version B:

er supply: AC 120V/60Hz					Polarization					L		
Test Gr	raph											
	90											
	80											
	60											
	Under 20	MARAMAN	Stanly and	i Mille hukt a	4				الماندارين المزيرين	nd ^{ill} i Militi		
	30	VVVVV	ALMAN. ALM	it as a life an	44TX44 4 444	PHYME		Alle Barrell Barriston	l and a call of the			
	20 4	1 . 199 . 0 . 11 . 11		etti in setti a suto a de	en an	indian-philippe		and the second	- Markadalan			
	10											
	150k			1	м	Frequency(Hz)			10M		30M	
	-	PK Limit QP Detector	QP Limit AV Detector	AV Limit	— РК	Frequency[Hz] — AV						
Fina	l Data L											
NO.	Frequency	QP	AVG.	Factor	QP	AVG.	QP	AVG.	QP	AVG.	Line	Remark
		Reading	Reading		Result	Result	Limit	Limit	Margin	Margin		
									_	-		
1	0.1596	34.73	19.36	9.60	44.33	28.96	65.48	55.48 53.50	21.15	26.52	L1	PASS
2	0.2260 0.5718	28.42 29.30	15.60 14.54	9.52 9.62	37.94 38.92	25.12 24.16	62.59 56.00	52.59 46.00	24.65 17.08	27.47 21.84	L1 L1	PASS PASS
4	1.0900	24.96	14.36	9.39	34.35	23.75	56.00	46.00	21.65	22.25	L1	PASS
5	16.0283	29.84	16.99	9.16	39.00	26.15	60.00	50.00	21.00	23.85	L1	PASS
6	20.7810	25.79	15.04	9.23	35.02	24.27	60.00	50.00	24.98	25.73	L1	PASS
Note 1	Result (dB	uV) = Read	ing (dBµV)	+ Facto	r (dB).							
NOLC. 1.	ricouit (ub											
	. Factor (dB			_ISN Fac	tor (dB).							
2.	. Factor (dB) = Cable Ic	iss (dB) + I		tor (dB).		Deleri					
2. er suppl	. Factor (dB y:) = Cable Ic			tor (dB).		Polaria	zation				N
2.	. Factor (dB y:) = Cable Ic	iss (dB) + I		tor (dB).		Polari	zation				N
2. er suppl	. Factor (dB y: raph) = Cable Ic	iss (dB) + I		tor (dB).		Polari	zation				N
2. er suppl	Factor (dB y: raph) = Cable Ic	iss (dB) + I		tor (dB).		Polari	zation				N
2. er suppl	. Factor (dB y: raph) = Cable Ic	iss (dB) + I		tor (dB).		Polari	zation				N
2. er suppl	Factor (dB y: raph) = Cable Ic	iss (dB) + I		tor (dB).		Polari	zation				N
2. er suppl	Factor (dB y: raph) = Cable Ic	uss (dB) + I				Polari	zation				N
2. er suppl	Factor (dB y: raph) = Cable Ic	uss (dB) + I		tor (dB).		Polariz					N
2. er suppl	Factor (dB y: raph) = Cable Ic AC	uss (dB) + I					zation				N
2. er suppl	Factor (dB y: raph) = Cable Ic AC	uss (dB) + I 2 120V/6				Polari					N
2. er suppl	Factor (dB y: raph		uss (dB) + I 2 120V/6	60Hz								N
2. er suppl	Factor (dB y: raph		2 120V/6								Зом	N
2. er suppl	Factor (dB y: raph		uss (dB) + I 2 120V/6			Frequency[Hz]		zation			SOM	N
2. er suppl	Factor (dB y: raph) = Cable Ic AC	USS (dB) + 1 C 120V/6					zation			Зом	N
2. Test G	Factor (dB y: raph) = Cable Ic AC	USS (dB) + 1 C 120V/6								Зом	Ν
2. Test G	raph) = Cable Ic AC	- OP Limit • AV Detect	50Hz	1M PK	Frequency[Hz]						
2. Test G	Factor (dB y: raph) = Cable Ic AC	USS (dB) + 1 C 120V/6					Zation	10M	AVG.	30M	N
2. Test G	raph) = Cable Ic AC	- OP Limit • AV Detect	50Hz	1M PK	Frequency[Hz]						
Test Gr	Factor (dB y: raph) = Cable Ic AC	AVG. Reading	DOHZ	1M QP Result	Frequency[Hz]	QP Limit	AVG. Limit	QP Margin	Margin	Line	Remark
Test Gr	Factor (dB y: raph) = Cable Ic AC	AVG. Reading 20.21	AV Limit Factor 9.61	1M PK QP Result 45.79	Frequency[Hz]	QP Limit 65.94	AVG. Limit 55.94	QP Margin 20.15	Margin	Line	Remark
Fina NO.	Factor (dB y: raph) = Cable Ic AC	AVG. Reading 20.21 19.35	Factor	1M PK QP Result 45.79 44.63	Frequency[Hz]	QP Limit 65.94 65.07	AVG. Limit 55.94	QP Margin 20.15 20.44	Margin 26.12 26.13	Line	Remark PASS PASS
Fina NO.	Factor (dB y: raph aph aph aph aph aph aph aph) = Cable Ic AC	AVG. Reading 20.21 19.35 19.16	Factor 9.61 9.40	1M PK QP Result 45.79 44.63 38.15	Frequency[Hz] AVG. Result 29.82 28.94 28.56	QP Limit 65.94 56.00	AVG. Limit 55.94 55.07 46.00	QP Margin 20.15 20.44 17.85	Margin 26.12 26.13 17.44	Line N N	Remark PASS PASS PASS
Fina NO.	Factor (dB y: raph aph b b b c c c c c c c c c c c c c c c c) = Cable Ic AC	AVG. Reading 20.21 19.35 19.16 18.28	Factor 9.61 9.36	1M 	Frequency[Hz] AVG. Result 29.82 28.94 28.56 27.64	QP Limit 65.94 56.00 56.00	AVG. Limit 55.94 55.94 46.00	QP Margin 20.15 20.44 17.85 15.03	Margin 26.12 26.13 17.44 18.36	Line	Remark PASS PASS PASS PASS
2. Fina NO. 1 2 3 4	Factor (dB y: raph aph aph aph aph aph aph aph) = Cable Ic AC	AVG. Reading 20.21 19.35 19.16	Factor 9.61 9.40	1M PK QP Result 45.79 44.63 38.15	Frequency[Hz] AVG. Result 29.82 28.94 28.56	QP Limit 65.94 56.00	AVG. Limit 55.94 55.07 46.00	QP Margin 20.15 20.44 17.85	Margin 26.12 26.13 17.44	Line N N N N	Remark PASS PASS PASS
2. Fina NO. 1 2 3 4 5 6	Factor (dB y: raph aph aph aph aph aph aph aph) = Cable Ic AC	AVG. Reading 20.21 19.35 19.16 18.28 10.27 4.34	Factor 9.61 9.59 9.40 9.36 9.18 9.26	COP Result 45.79 44.63 38.15 40.97 30.72 27.87	Frequency[Hz] AVG. Result 29.82 28.94 28.56 27.64 19.45	QP Limit 65.94 65.07 56.00 56.00 60.00	AVG. Limit 55.94 55.07 46.00 50.00	QP Margin 20.15 20.44 17.85 15.03 29.28	Margin 26.12 26.13 17.44 18.36 30.55	Line N N N N N	Remark PASS PASS PASS PASS PASS


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 30MHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

 9			
Test	Frequency	Test Receiver/Spectrum Setting	Detector
range			
9KHz-18	50KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz	-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-	1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
		Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-4		Sweep time=Auto	Peak
1012-4	UGHZ	Average Value: RBW=1MHz/VBW=10Hz,	FEAN
		Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

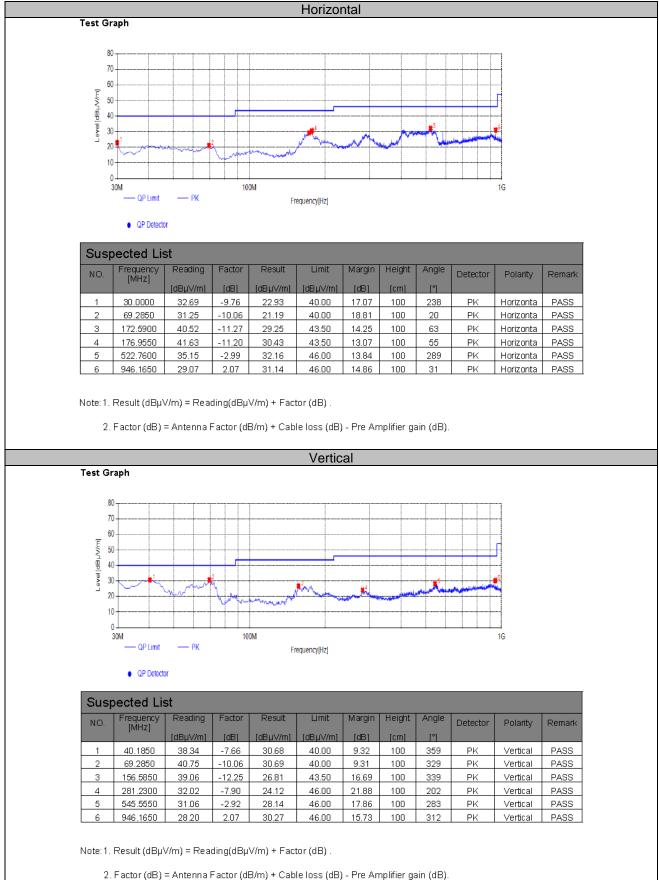
TEST RESULTS

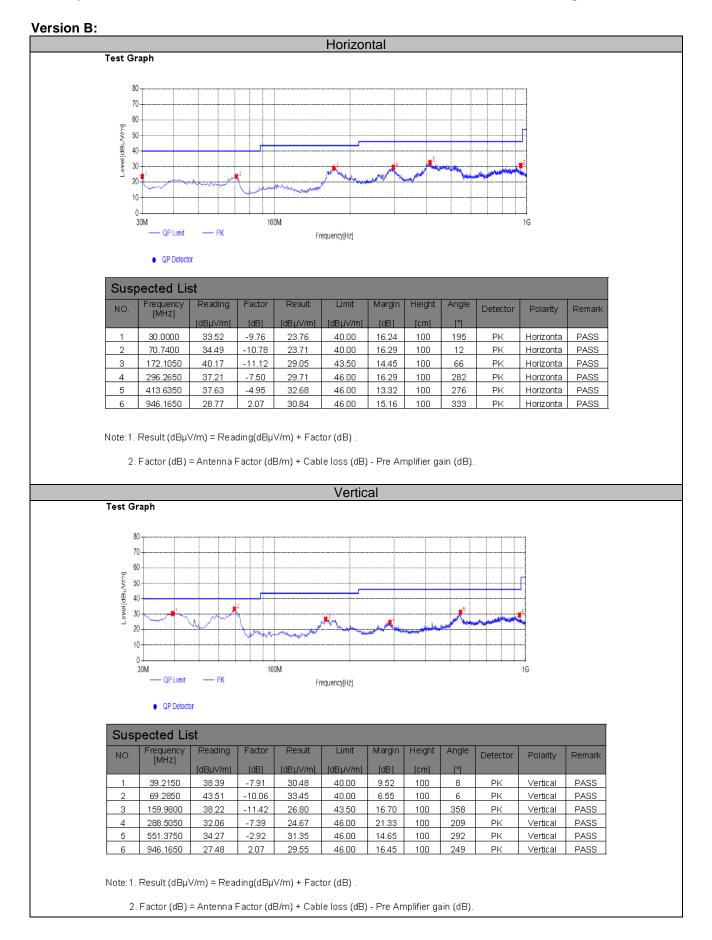
Remark: We measured Radiated Emission at GFSK mode from 30 MHz to 25GHz in AC120V and the worst case was recorded.

Temperature	25 ℃	Humidity	60%	
Test Engineer	Jenny Zeng	Configurations	BT	

For 9 KHz~30MHz

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note


Note:


The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

For 30MHz to 1000MHz Version A:

For 1GHz to 25GHz

BT LE

Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured Limit Mague Mag		Margin dB	Remark	Pol.
4804.00	51.10	32.44	30.25	7.95	61.24	74.00	-12.76	Peak	Horizontal
4804.00	35.84	32.44	30.25	7.95	45.98	54.00	-8.02	Average	Horizontal
4804.00	53.46	32.44	30.25	7.95	63.60	74.00	-10.40	Peak	Vertical
4804.00	36.19	32.44	30.25	7.95	46.33	54.00	-7.67	Average	Vertical

Channel 19 / 2440 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Remark		Pol.
4880.00	50.40	32.52	30.31	8.12	60.73	74.00	-13.27	Peak	Horizontal
4880.00	36.53	32.52	30.31	8.12	46.86	54.00	-7.14	Average	Horizontal
4880.00	52.57	32.52	30.31	8.12	62.90	74.00	-11.10	Peak	Vertical
4880.00	36.00	32.52	30.31	8.12	46.33	54.00	-7.67	Average	Vertical

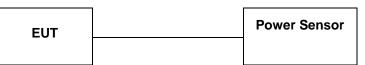
Channel 39 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB Remark		Pol.
4960.00	50.79	32.68	30.27	7.88	61.08	74.00	-12.92	Peak	Horizontal
4960.00	35.82	32.68	30.27	7.88	46.11	54.00	-7.89	Average	Horizontal
4960.00	49.02	32.68	30.27	7.88	7.88 59.31 74.00 -14.69 Peak		Vertical		
4960.00	32.21	32.68	30.27	7.88	42.50	54.00	-11.50	Average	Vertical

Notes:

1). Measuring frequencies from 9 KHz~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.

2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.


3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

4). Measured= Reading- Pre. Fac.+ Ant. Fac.+ Cab. Loss

5). Margin = Measured- Limit

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 15.247 Measurement Guidance v05r02 Section 8.3.1 Maximum peak conducted output power, 8.3.1.3 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix B.3.

4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

1.Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

2.Set the RBW =3 kHz.

3.Set the VBW =10 KHz.

4.Set the span to 1.5 times the DTS channel bandwidth.

5.Detector = peak.

6.Sweep time = auto couple.

7.Trace mode = max hold.

8. Allow trace to fully stabilize.

9.Use the peak marker function to determine the maximum power level.

10.If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

11. The resulting peak PSD level must be 8 dBm.

<u>LIMIT</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix B.4.

4.5. 99% and 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB 558074 D01 DTS Meas Guidance v05r02 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

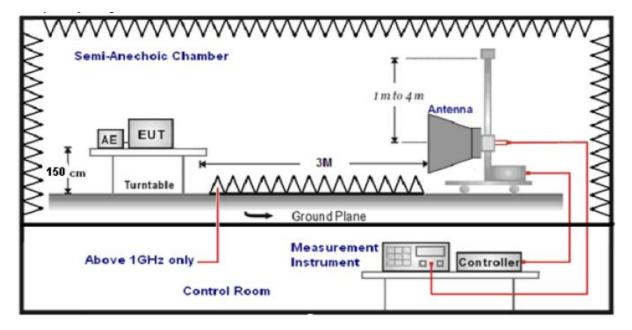
<u>LIMIT</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

For reporting purpose only.

Please refer to Appendix B.1.


Please refer to Appendix B.2.

4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was placed on a turn table which is 1.5m above ground plane.

- 2.Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3.And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The distance between test antenna and EUT was 3 meter:
- 6.Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

<u>LIMIT</u>

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

4.6.1 For Radiated Bandedge Measurement

Temperature	23.8 ℃	Humidity	53.7%		
Test Engineer	Jenny Zeng	Configurations	BT		

Frequency(MHz):			2402			Polarity:		H	IORIZC	NTAL	
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	46.01	PK	74.00	-27.99	1	65	51.32	27.49	3.32	36.12	-5.31
2390.00	35.28	AV	54.00	-18.72	1	65	40.59	27.49	3.32	36.12	-5.31
Frequency	y(MHz):			2402			Polarity:			VERTI	CAL
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2390.00	49.13	PK	74.00	-24.87	1	270	54.44	27.49	3.32	36.12	-5.31
2390.00	30.86	AV	54.00	-23.14	1	270	36.17	27.49	3.32	36.12	-5.31
Frequency	y(MHz):		2480			Polarity:			HORIZONTAL		
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	46.17	PK	74.00	-27.83	1	203	51.89	27.45	3.38	36.55	-5.72
2483.50	33.67	AV	54.00	-20.33	1	203	39.39	27.45	3.38	36.55	-5.72
Frequency	y(MHz):			2480			Polarity: VERTIC			CAL	
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
2483.50	50.20	ΡK	74.00	-23.80	1	128	55.92	27.45	3.38	36.55	-5.72
2483.50	29.72	AV	54.00	-24.28	1	128	35.44	27.45	3.38	36.55	-5.72

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3. Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

4.6.2 For Conducted Bandedge Measurement

For reporting purpose only.

Please refer to Appendix B.5.

4.6.3 For Conducted Spurious Emissions Measurement

For reporting purpose only.

Please refer to Appendix B.6.

4.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna used for this product is FPC Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 1.82dBi.

Reference to the Test Report: GTS20211218008-1-14.

5. TEST SETUP PHOTOS OF THE EUT

Reference to the Test Report: GTS20211218008-1-14.

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the Test Report: GTS20211218008-1-14.

.....End of Report.....