

Certificate Number 5768.01

Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2AXYP-OEB-311 **Product: Neckband Wireless Earphone** Model No.: OEB-311 Trade Mark: oraimo Report No.: WSCT-A2LA-R&E240100003A-LE Issued Date: 22 January 2024

Issued for:

ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

Page 1 of 46

WSE1

on Certification & Tostor

dawization Cenner

ation & Test

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wscl-cerl.com Http://www.wscl-cerl.com 世标检测认证股份 oup (Shenzhen) Co., Ltd.

WEST

Sentification & Test

W5E7

DUOM * PIT

dizatio

Croup (Shenzy

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE

TABLE OF CONTENTS

				14/10	AMALI
1.	Test Certification	<u>,</u>			3
2.	Test Result Summary	<u></u>		<u>, </u>	4
3.	EUT Description		AWSET	AVISET	
4.	Genera Information	<u> </u>		(6
	4.1. TEST ENVIRONMENT AND MODE				6
-/	4.2. DESCRIPTION OF SUPPORT UNITS	AWSET			6
5.	Facilities and Accreditations	<u>(</u>	<u>X</u>	X	7
7	5.1. FACILITIES	No. of Concession, Name of			7
	5.2. ACCREDITATIONS				7
	5.3. MEASUREMENT UNCERTAINTY				8
	5.4. MEASUREMENT INSTRUMENTS			<u></u>	9
6.	Test Results and Measureme	ent Data	ATT -		.10
/	6.1. ANTENNA REQUIREMENT				10
1	6.2. CONDUCTED OUTPUT POWER	<u></u>			11
ET	6.3. EMISSION BANDWIDTH	67	WISICT	AVISION	17
	6.4. Power Spectral Density		<u> </u>		23
	6.5. CONDUCTED BAND EDGE AND SPURIOU	S EMISSION MEAS	UREMENT	<u> </u>	29
	6.6. CONDUCTED EMISSION				40
/	6.7. RADIATED SPURIOUS EMISSION MEASUR	REMENT			43

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) (a. III) TEL:86/755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com WSET

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE

1. Test Certification

Product:	Neckband Wireless Earphone
Model No.:	OEB-311
Trade Mark:	oraimo
Applicant:	ORAIMO TECHNOLOGY LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	ORAIMO TECHNOLOGY LIMITED W527
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Date of Test:	29 December 2023 to 21 January 2024 5 67
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 KDB 558074 D01 DTS Meas Guidance v04

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Alf Xiavy Wang Xiang)	Checked By:	Mo Peryun (Mo Peiyun)	WSET
Approved By:	Liu Fuxin)	Date:	Janvory 202	Pilom up 195
WSIT WSIT	WISTER	WISIT		
Control Stantian Spliton Certification & Testing Graph Control Stantian Spliton Certification & Going Group (Shenzhen) Co., Lt	WISTER	WSET	WISET	T
/orld Stanta Statuto Certification で Form Group (Shenzhen) Co., Lt	ADD:Building A-B Baoshi Science TEL:86-755-26996192 26992306 F. Page 3 of	AX:86-755-86376605 E-mail: Feng	ibing.Wang@wsct-cert.com Http	Suangdong, China :www.wsct-cert.com iber of the WSCT INC,

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE

2. Test Result Summary

	AULTRA AULT	The second second	ATTACK /	WISTER \
7	Requirement	CFR 47 Section	Result	
	Antenna requirement	§15.203/§15.247 (c)	PASS	
	Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS	\checkmark
7	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS	WETT
	Power Spectral Density	§15.247 (e)	PASS	
	Band Edge	1§5.247(d) §2.1051, §2.1057	PASS	\checkmark
7	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	WEITER
	AC Power Line Conducted Emission	§15.207	PASS	

Note:

ation & Tes

W5E

DUOM * PT

youp (Shenz)

60

Certific

dizatio

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Contration & Test

W5E1

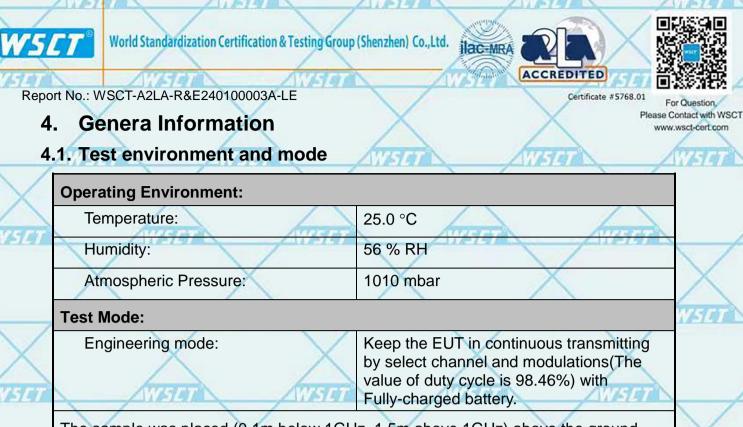
SPINOM * PIT

60

dizatio

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE


3. EUT Description

Product:	Neckband Wireless Earphone	7-147
Model No.:	OEB-311	
Trade Mark:	oraimo	
Operation Frequency:	2402MHz~2480MHz	
Channel Separation:	2MHz	\times
Number of Channel:	40	1515
Modulation Technology:	GFSK	
Antenna Type:	Ceramic antenna	1
Antenna Gain:	2.58 dBi	
Rechargeable Li-Polymer Battery:	Li-ion Battery : 551141 Rated Voltage: 3.7V Rated Capacity: 37220mAh 0.814Wh	FIE
Remark:	N/A.	

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
August	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	\sim				\sim		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Remark: Channel 0, 19 & 39 have been tested.						

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

0	Equipment	Model No.	Serial No.	FCC ID	Trade Name
			1	1	

Note:

MOM * P

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

use.

S

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China JShenzhen Co. La

ilac-MRA

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE

5. Facilities and Accreditations

5.1.Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

on & Tes

MOM * P

S

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE

5.3.Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

7	No.	Item	MU	
91	1	Conducted Emission Test	±3.2dB	
	2	RF power, conducted	±0.16dB	X
	3W5C	Spurious emissions, conducted	±0.21dB	WISTET
/	4	All emissions, radiated(<1GHz)	±4.7dB	
7	5	All emissions, radiated(>1GHz)	±4.7dB	
CT.	6	Temperature	±0.5°C	
	7	Humidity	±2.0%	X
	-			

ANTIN M

mon & Tes

W5E

S DUOM * PT

oup (Shen

Certifit

dizatio

世际检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Cot

W5E

S DUOM * PT

Zatio

YOUP (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC.

5.4.MEASUREMENT INSTRUMENTS

Report No.: WSCT-A2LA-R&E240100003A-LE

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
Test software		EZ-EMC	CON-03A	- A	THE	
Test software		MTS8310	<u> </u>	$\mathbf{\nabla}$	-	V
EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	\sim
LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	50
LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	X
GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	\sim
Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	51
Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	
Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2023	11/04/2024	
9*6*6 Anechoic	X	- X		11/05/2023	11/04/2024	X
Horn Antenna	COMPLIANCE ENGINEERING	CE18000	-	11/05/2023	11/04/2024	27
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	
System-Controller	CCS	VSE N/A	N/A	N.C.R	N.C.R	
Turn Table	CCS	N/A	N/A	N.C.R	N.C.R	
Antenna Tower	CCS	N/A	N/A	N.C.R	N.C.R	\times
RF cable	Murata	MXHQ87WA300 0		11/05/2023	11/04/2024	51
Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
Power sensor	Anritsu	MX248XD	<u> </u>	11/05/2023	11/04/2024	X
Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	1.4

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

For Question, Please Contact with WSCT

www.wsct-cert.com

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240100003A-LE

6. Test Results and Measurement Data

6.1. Antenna requirement

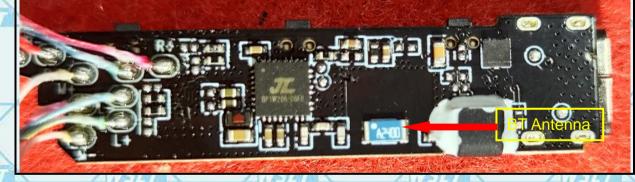
Standard requirement: FCC Part15 C Se

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:


(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

S

OM * P

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 2.58dBi.

611

Contration & Test

W5E

BB BLOM * PT

dizatio

YOUP (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

ilac MRA

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE

6.2. Conducted Output Power

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	KDB558074	/
Limit:	30dBm	-
Zest Setup:		À
	Spectrum Analyzer EUT	
Test Mode:	Refer to item 4.1	1
Test Procedure:	 1. The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. 2. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 × RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Test Result:	PASS	

Please Contact with WSCT

www.wsct-cert.com

150

Report No.: WSCT-A2LA-R&E240100003A-LE

6.2.2. Test Data

BLE 1M							
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result				
Lowest	-2.24	30.00	PASS				
Middle	-3.22	30.00	PASS				
Highest	-4.83	30.00	PASS				

BLE 2M					
Test channelMaximum Conducted Output Power (dBm)Limit (dBm)Result					
Lowest	-2.16	30.00	PASS		
Middle	-3.21	30.00	PASS		
Highest	-4.84	30.00	PASS		

Test plots as follows:

110

Sentication & Test

W5E7

SPINOM * PIT

dizatio

Group (Shenzy

60

1514

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m(Shenzhen) Co. Lts TEL:86-755-28998192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

10

Page 13 of 49

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [o. III] TEL:86-755-28998192 26992306 FAX 86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com/

Page 15 of 49

BB BLOM * PT

.60

Contration & Test

W5E

BUOM * PT

dizatio

YOUP (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

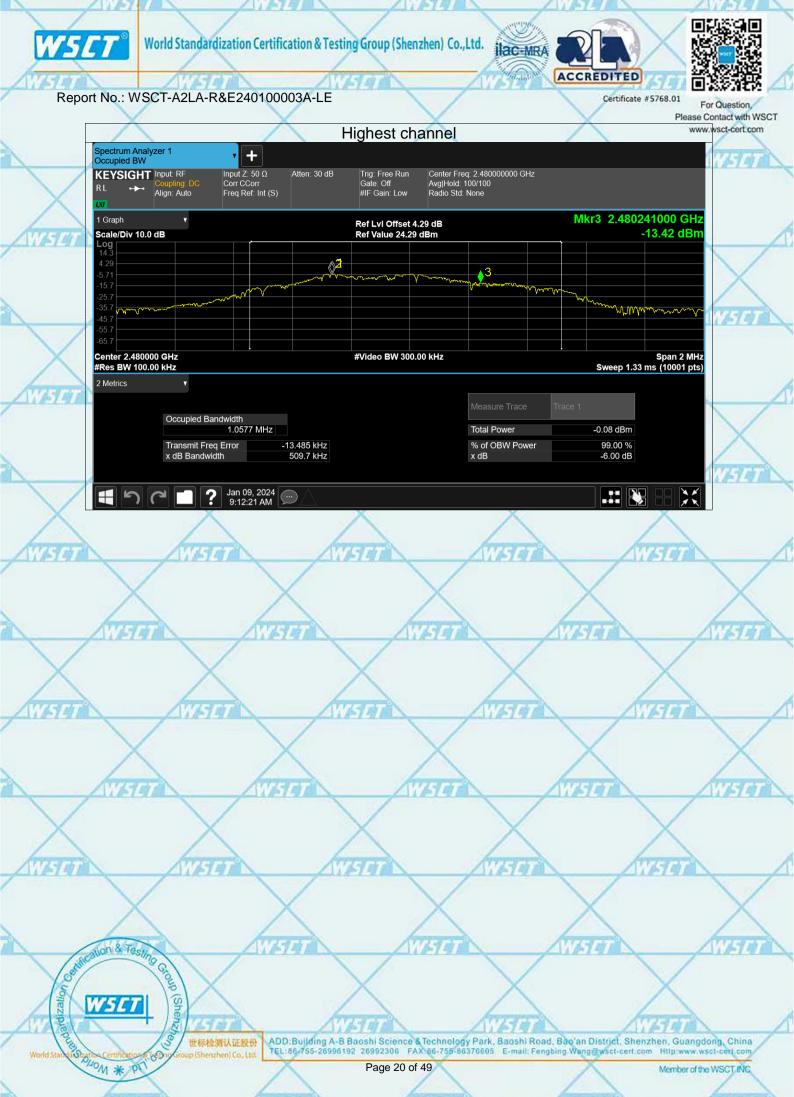
Report No.: WSCT-A2LA-R&E240100003A-LE

6.3. Emission Bandwidth

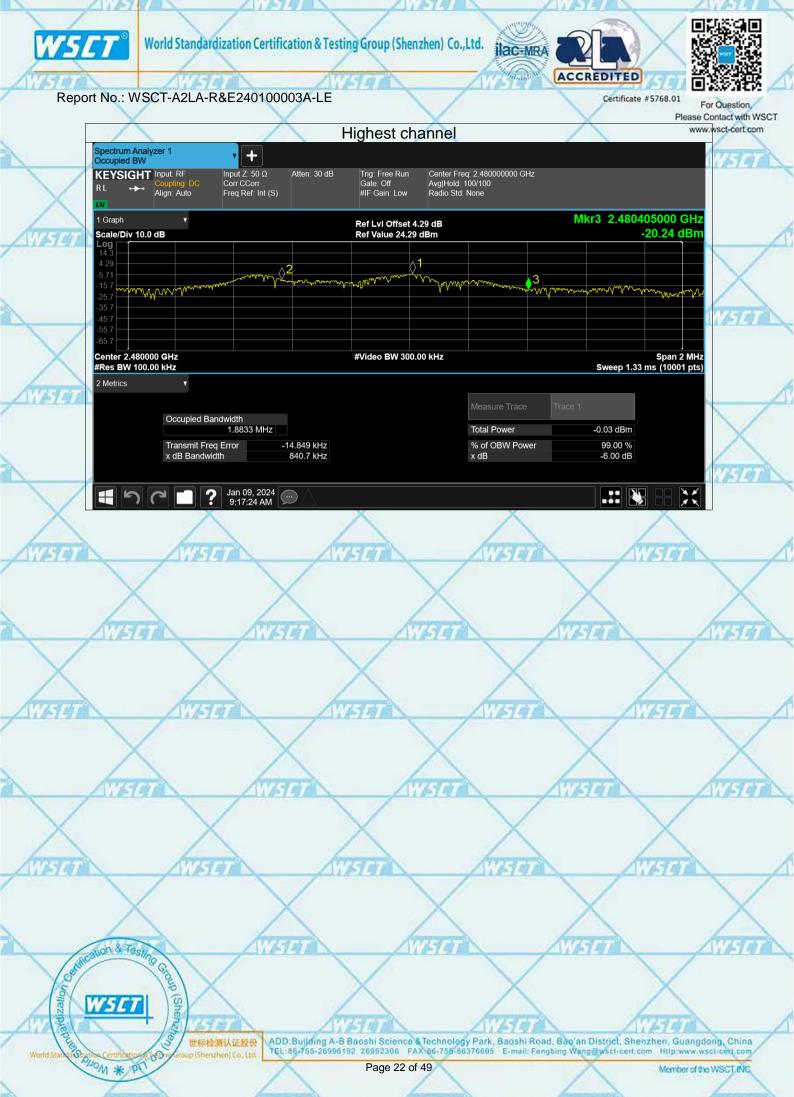
For Question, Please Contact with WSCT www.wsct-cert.com

6.3.1. Test Specification

/			
	Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
	Test Method:	KDB558074	
	Limit:	≥500kHz	/
~	Test Setup:	Spectrum Analyzer EUT	-
	Test Mode:	Refer to item 4.1	
	Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 	
	Test Result:	PASS	1
7		AWISET AWISET AWISE	
1	\wedge	\wedge \wedge \wedge	


For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE


6.3.2. Test data

BL	E 1M	1.57.6	11230	AUG	The second	TETA
$\overline{}$				Bandwidth (kHz)		
X	Test channel	BT L	.E mode	Limit	Result	
WSET	Lowest	WC C	0.509	≥500k	WISHT	/
	Middle		0.5	≥500k	PASS	
	Highest	Ň	0.51	≥500k		\mathbf{X}
В	E 2M	WATER A	AVISTAN	AVE		WSET
\checkmark	Test channel		6dB Emission I	Bandwidth (kHz)		
\wedge	rest charmer	BTL	.E mode	Limit	Result	
WSET	Lowest	WC	0.802	≥500k	WISET	
	Middle		0.846	≥500k	PASS	\sim
	Highest).841	≥500k		\wedge
-	Test plots as follows:	WSDT	AVISION	ATA		WSET
$\mathbf{\nabla}$				$\mathbf{\nabla}$	\sim	
$ \land $				Δ		
WSCT	ATTEN A	AW		WSG	AVISION	$ \rightarrow $
	\mathbf{X}	\mathbf{X}	\sim			\sim
	Δ	\bigtriangleup	\square	_	\geq	\bigtriangleup
-		WSET	AVISIET	AVIS		WSET
\times	\times		X	\times	\times	
	\square			$ \rightarrow $		
WSET	WISIOT		14	WEIGH	AWATATA	\leftarrow
	X	X	\times	\rightarrow		X
	THE	TATA	AVE A		\rightarrow	WESTER
				- ALLER		11-14/1S
X	X		X	X	X	
WEITER	THEFT	kon	747	WATER	NY STAT	
				Incident	Pierras	\checkmark
	X	X	X	>		X
/	and the	WEET	ATTATAT	AV5		WISTON
Contines	Non & Testing Giou	1	1			A.A.A.A.A.
Se I			X	X	X	
Idiza	175CT (Se の の の の 一 世 続 後 新人証数的	AT A	14	WEITER	ATT THE	1
World Stan US	Certification (Span sroup (Shenchen) Co. Ltd	ADD:Building A-B Ba	aoshi Science & Technology P 26992306 FAX 66-755-86376			ong, China ct-cort.com
Phi	OM * PT	\wedge	Page 18 of 49	/	Member of the	WSCTING

For Question Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE

6.4. Power Spectral Density

6.4.1. Test Specification

est Requirement:	FCC Part15 C Section 15.247 (e)
Fest Method:	KDB558074
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
	PASS

RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Nov. 04, 2024
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Nov. 04, 2024
Antenna Connector	тст	RFC-01	N/A	Nov. 04, 2024

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to

international system unit (SI). W5[

PHOM * PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Hitp:www.wsci-cert.com 世标检测认证股份

Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240100003A-LE

6.4.3. Test data

0.4	t.J. Test uala	\wedge	\wedge	/	w	ww.wsct-cert.com
	Test channel	Po	wer Spectral	Density (dBm/3kl	Hz)	WEIAR
1	lest channel	BLE	1M	Limit	Result	
	Lowest	-21.	83	8 dBm/3kHz	\wedge	
2	Middle	-22.	79	8 dBm/3kHz	PASS	
	Highest	-24.	09	8 dBm/3kHz		\bigvee

1	Test shapped	Power Spectral Density (dBm/3kHz)					
	Test channel	BLE 2M	Limit	Result			
	Lowest	-22.75	8 dBm/3kHz	\wedge			
	Middle	-23.92	8 dBm/3kHz	PASS			
	Highest	-25.57	8 dBm/3kHz	/			

5.5

Test plots as follows:

1510

X

Group (Shenzy

60

1.11

Sentication & Test

W5E7

BB BLOM * PT

rdizatio

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. tts

110

151

֮

Report No.: WSCT-A2LA-R&E240100003A-LE

(Shenz)

.60


Zat

BB BLOM * PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

Page 25 of 49

зÐ

Report No.: WSCT-A2LA-R&E240100003A-LE

(Shenz)

.60

Zat

BB BLOM * PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

Page 27 of 49

Page 28 of 49

Cer

W5L

PHOM * PT

Zatio

up (Shen

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240100003A-LE

ment For Question, Please Contact with WSCT www.wsct-cert.com

6.5. Conducted Band Edge and Spurious Emission Measurement

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
Test Mode:	Spectrum Analyzer EUT Refer to item 4.1
	1. The RF output of EUT was connected to the spectrum
Test Procedure:	 analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report.
Test Result:	 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. PASS

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bae an District, Shenzhen, Guangdong, China n(Shenzhen Co. III) TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com/

BB BLOM * PT

.60

Settication & Testi

BB BLOM * PT

Group

.60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240100003A-LE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240100003A-LE

Settication & Testi

BB BLOM * PT

Group

60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240100003A-LE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Sentication & Testi

BB BLOM * PT

Group

.60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240100003A-LE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-28998192 26992308 FAX 86-755-88376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

(Shenz)

.60

BB BLOM * PT

Page 37 of 49

Sellication & Test

BB BLOM * PT

Group

.60

(Shenz)

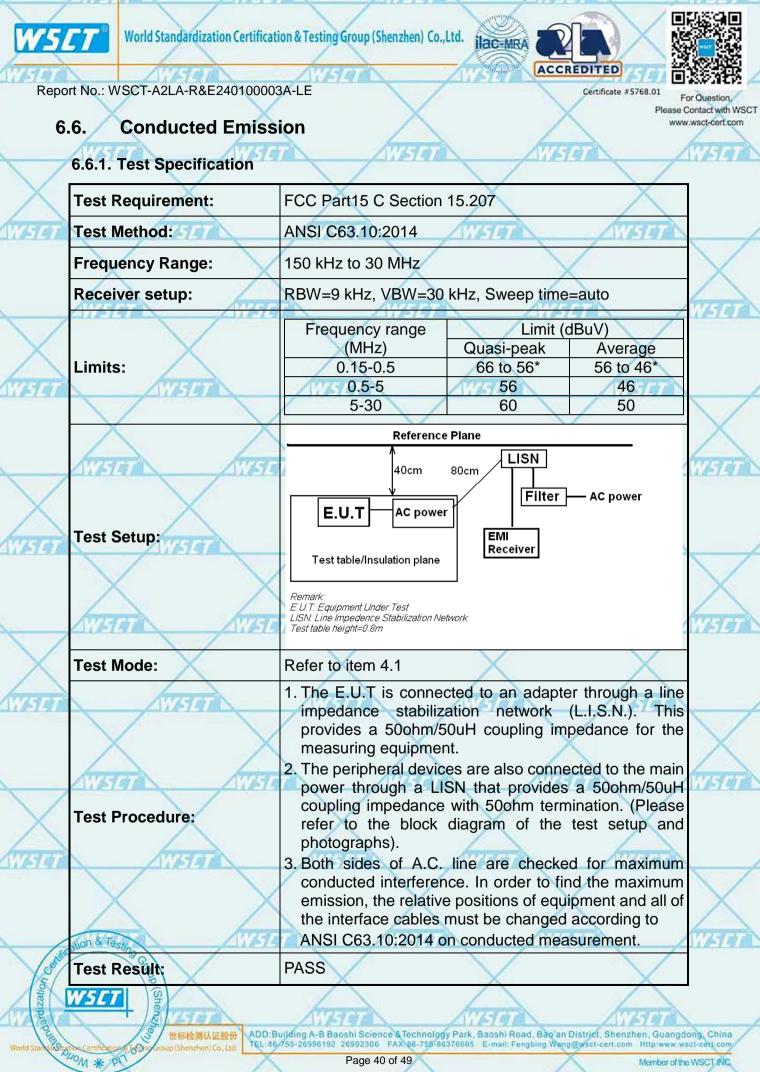
World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

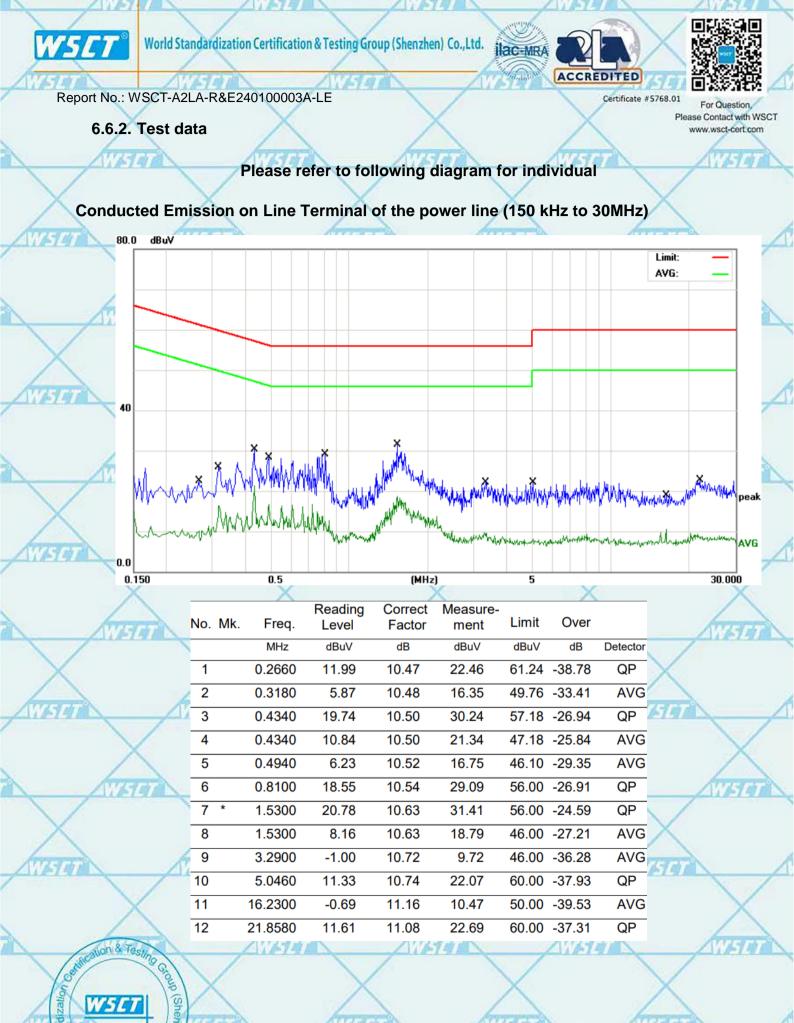
Report No.: WSCT-A2LA-R&E240100003A-LE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

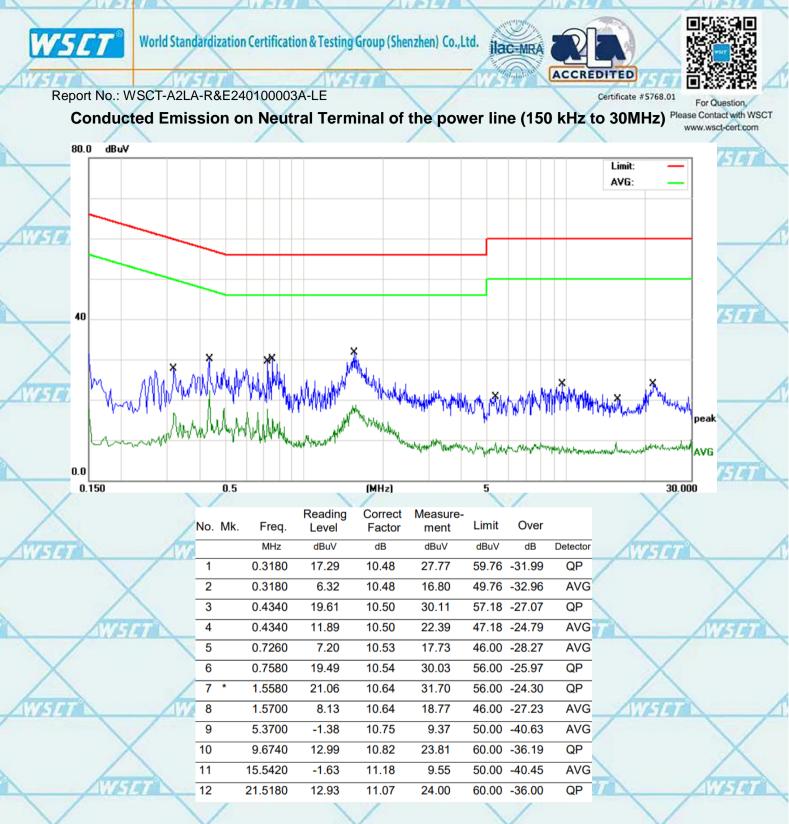

Page 39 of 49

Group


.60

BB BLOM * PT

(Shenz)


Page 40 of 49

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Member of the WSCT INC

PHOM * PT

Note:

PHOM * P

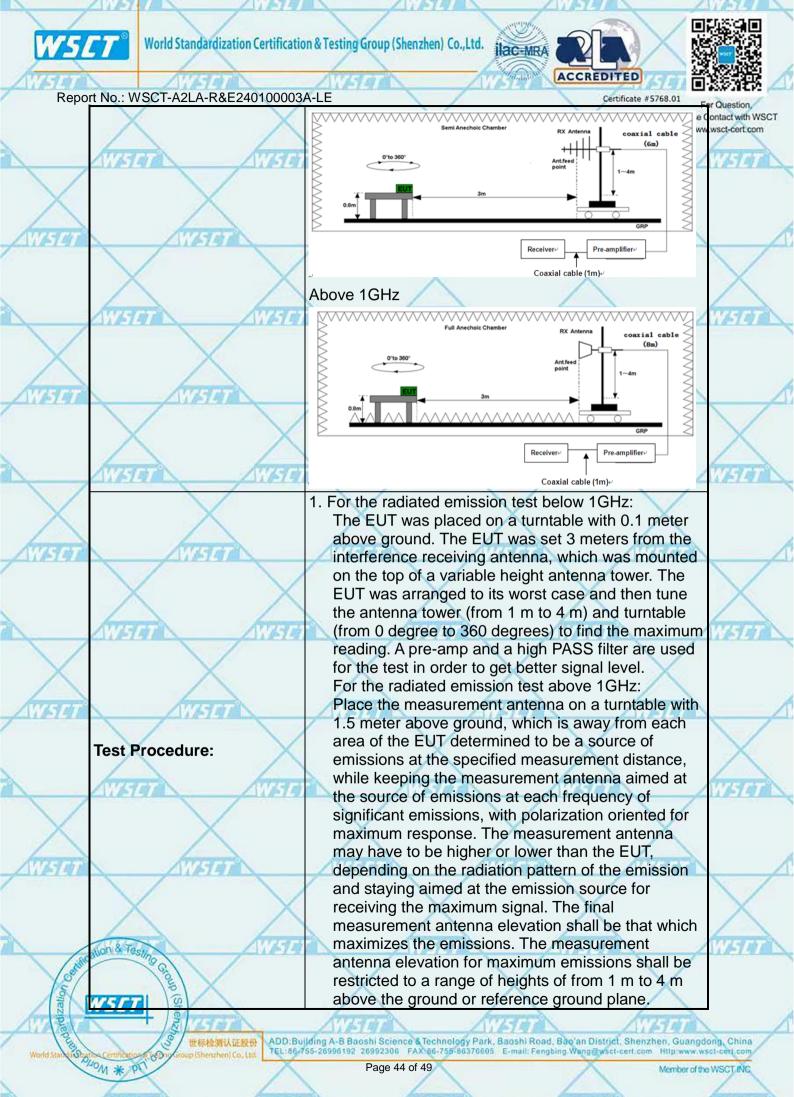
Cor

Freq. = Emission frequency in MHz

- Reading level (dBµV) = Receiver reading
- Corr. Factor (dB) = Antenna factor + Cable loss
- Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)
- Limit $(dB\mu V) = Limit$ stated in standard
- Margin (dB) = Measurement (dB μ V) Limits (dB μ V)
- Q.P. =Quasi-Peak AVG =average
- * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Int

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ILAC MRA



Report No.: WSCT-A2LA-R&E240100003A-LE

6.7. Radiated Spurious Emission Measurement

For Question, Please Contact with WSCT www.wsct-cert.com

E	7.1. Test Specification		WSET	1	AVISI		ATEA
\sim		\sim		\sim	1		
\wedge	Test Requirement:	FCC Part15	C Sectior	n 15.209		$ \land$	
AWSET	Test Method:	ANSI C63.10):2014	AVISION		11/5/41	
	Frequency Range:	9 kHz to 25 (GHz		1	/	
	Measurement Distance:	3 m	\wedge				\wedge
	Antenna Polarization:	Horizontal &	Vertical	1	AVISI	77	/WATE
\bigvee	Operation mode:	Refer to item	4.1	\sim		\sim	
\wedge	\wedge	Frequency	Detector		VBW	Remark	
WSET	WISET	9kHz- 150kHz 150kHz-	Quasi-pea		1kHz 30kHz	Quasi-peak Val Quasi-peak Val	
	Receiver Setup:	30MHz	Quasi-pea	к экни	30KHZ	Quasi-peak vai	ue
		30MHz-1GHz	Quasi-pea		300KHz	Quasi-peak Val	ue
	Anaza Anaz	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value	-
			Геак		Contra Mandaria		-
\sim	\times	Frequen	су	Field Stre (microvolts/	-	Measurement Distance (meter	
$ \land $		0.009-0.4	190	2400/F(h		300	<u>s)</u>
WSET	WISTER	0.490-1.7		24000/F(KHz)	30	
		<u> </u>		<u>30</u> 100		<u>30</u> 3	-
		88-216	~	150	X	3	
	Limit:	216-96	A	200	1000	3	10233
	CITE IN CITE IN	Above 9	60	500	LIEU	3	1 1819
X	\times	\sim	Fie		Measurer	ment	
		Frequency		ld Strength ovolts/meter)	Distan	1000	r
AWSET	AVISIT	ATHI		500	(meter 3	S) Average	
	\vee \vee	Above 1GHz		5000	3	Peak	
	\triangle	For radiated	emission	s below 30	MHz		
	AVE AVE A	Di	stance = 3m				A11-14
\sim	\times	ł		\frown		Computer	
			۱(´) _	Pre -	Amplifier	
AWSET	Test setup: //5//7	EUT	````				
			⊐ Turn table				
	XX				_ L	Receiver	X
	Non & Terr		Grou	nd Plane	L		112.4.4
World Star May	allan & Tesling Ga	30MHz to 10	Hz				FUELA
5		X		X		X	
dizat	WSCT	-		harmon	2	6	A
and the	S 世标检测认证股份 ADD:Bu	Iding A-B Baoshi Scie	nce & Technolog	gy Park, Baoshi Ro	ad, Bao'an D	istrict, Shenzhen, Gu	angdong, China
World Star ta Og	Cernicationer, BOno Group (Shenzhen) Co. Ltd. TEL: 86-7	55-26996192 26992300 Page 4	FAX 86-755-8	6376605 E-mail: Fe	angbing.Wange	Ewscl-cert.com Http://	ww.wscl-cort.com
		i ugo i				methoe	I GIOR VISCING

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Report No:: WSCT-A2LA-R&E240100003A-LE 2: Corrected Reading: Antenna Factor + Cable Loss How overcontrol Read Level - Preamp Factor = Level 3: For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be reported. Otherwise, the emission measurement will be reported. Otherwise, the emission measurement will be reported. 4: Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement. <						6.66263365
 2. Corrected Reading: Antenna Factor + Cable Loss™ee Context wit West Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission neasurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW ≥ 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: 	WSLIN		AVISIA	A Manager Contraction	ACCREDITED	0.3578 🖊
Read Level - Preamp Factor = Level www.weccdetcom 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f (3) Set RBW = 1 MHz, VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details	Report No.: W	SCT-A2LA-R&E24010000		1		Fer Question,
 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement. For average measurement. For average measurement. For average measurement. VBW = 10 Hz, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: 	X	X				
of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement. <						
Image: Image	ATT A	TA AVIST				and the second sec
Image: Image						
 measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement. For average measurement. For average measurement. For average measurement. When duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: 	V					
detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement. For one control level for the tested mode of operation. Refer to section 4.1 for	\wedge	\wedge				
 4. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. 	111-1-2	ATTACA		TTTTTTTTTTT	ising the quasi-pea	ak
 (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details 		/ I PIST			(IIIII)	
 emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: 						\sim
 (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details 					lly capture the	\wedge
Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode:	have		emission b	eing measured;		
max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details	A114	AVAIL	(2) Set RBW=	100 kHz for f < 1 G	GHz; VBW ≥RBW	ATHINA .
max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details	\sim		Sweep = a	uto: Detector funct	tion = peak: Trace	=
(3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details	X	X		X		
For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details			(3) Set RBW =	= 1 MHz, VBW= 3N	MHz for f 1 GHz	2
duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details	WALAN					
when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details			For average n	neasurement: VBV	V = 10 Hz, when	
when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details	X	X	dutv cvcle is r	o less than 98 per	rcent, VBW ≥ 1/T.	X
the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details	_					
transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details	AVAL				A Date of the local date of th	
power control level for the tested mode of operation. Test mode: Refer to section 4.1 for details						
Test mode: Refer to section 4.1 for details	X	X			-	
	Test					
Test results: PASS	WSCT Test m	iode:	Refer to section 2	+. I for details	AWSIC	
	Test re	esults:	PASS	/		
				X	X	$ \times$

Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Level $(dB\mu V)$ – Limits $(dB\mu V)$

1.10

Ostification & Test

W5E

Bunna Comparent 60

rdizatio

Group (Shenzy

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen Lo. Int) TEL:86-755-28998192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Member of the WSCT INC.

Ĺ

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992306 FAX-86-755-86376605 E-mail: Fengbing,Wang@wsci-cert.com Http://www.wsci-cert.com

mon & Tes

PHOM * PT

oup (Shen

Certific

					· /.		
No.	Mk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	T
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	* 40.5591	32.91	-2.06	30.85	40.00	-9.15	QP
2	56.1974	31.39	-3.12	28.27	40.00	-11.73	QP
3	158.6677	24.56	-2.00	22.56	43.50	-20.94	QP
4	276.1235	30.61	-3.40	27.21	46.00	-18.79	QP
5	539.4775	28.59	2.09	30.68	46.00	-15.32	QP
6	906.4824	28.67	7.03	35.70	46.00	-10.30	QP

Note1:

sion & Tee

PHOM * PT

up (Sher

Cor

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

> 世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-28998192 26992308 FAX-86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE

			Above 10	Hz			www.		
Frag		Low channel: 2402MHz							
Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
	H/V	PK	AV	PK	AV	PK	AV		
4804	V	60.41	40.92	74	54	-13.59	-13.08		
7206	V	58.13	40.98	74	54	-15.87	-13.02		
4804	1 PH	59.00	39.23	74	54	-15.00	-14.77		
7206	Н	58.57	39.57	74	54	-15.43	-14.43		
				N N					

Freq. (MHz)	Middle channel: 2440MHz							
	Ant.Pol	Emission Level(dBuV) Limit 3m(dBuV/m)			Over(dB)			
	H/V	PK	AV	PK	AV	PK	AV	
4880	V	58.46	41.88	74	54	-15.54	-12.12	
7320	V	58.39	39.34	74	54	-15.61	-14.66	
4880	W5H7	58.72	40.85	74	5 54	-15.28	-13.15	
7320	Н	59.04	40.04	74	54	-14.96	-13.96	

Freq. (MHz)	High channel: 2480 MHz							
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4960	V	58.50	39.52	74	54	-15.50	-14.48	
7440	V	58.10	39.43	74	54	-15.90	-14.57	
4960	H	58.12	40.68	74 📈	54	-15.88	-13.32	
7440		59.89	40.89	74	54	-14.11	-13.11	

Note:

ation & Tes

W5L

PHOM * PT

oup (Shen

Cer

Zatio

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

2. Emission Level= Reading Level+ Probe Factor +Cable Loss.

3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

110

Contration & Test

W5E7

BB BLOM * PT

dizatio

Croup (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

#5768.01 For Question,

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240100003A-LE

Restricted Bands Requirements

Test result	for GFSK M	ode (the	worst case) Augen	1	AUTO	
Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
λ	AVIST	× · · · ·	Low Cha	nnel	AURT	A .	1015
2390	66.78	-8.73	58.05	74	-15.95	H	PK
2390	51.48	-8.73	42.75	54	-11.25	н 🗡	AV
2390	65.33	-8.73	56.60	74	-17.40	V	PK
2390	47.05	-8.73	38.32	54	-15.68	V	AV
			High Cha	nnel			1
2483.5	69.87	-8.17	61.70	74	-12.30	н	PK
2483.5	46.35	-8.17	38.18	54	-15.82	Н	AV
2483.5	68.60	-8.17	60.43	74	-13.57	V	PK
2483.5	47.64	-8.17	39.47	54	-14.53	vX	AV
					No.		

*****END OF REPORT*****

75

15

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China niShenther fo. Min TEL:86-755-26996192 26992306 FAX 66-755-86376605. E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com