

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

TEST REPORT

Report No.:	CQASZ20241002116E-02 Hesung Innovation Limited
Applicant:	
Address of Applicant:	Room 803, Chevalier House, 45-51 Chatham Road South, Tsim Sha Tsui, Kowloon, HongKong
Equipment Under Test	(EUT):
Product:	Smart Ceiling Fan
Model No.:	DR-HCF001S, WDR-CF01S, DTCF01S, DBCF01S, DOCF01S, DWCF01S, DR-HCF003S, DWCF03S
Test Model No.:	DR-HCF001S
Brand Name:	DREO, DREO HOME
FCC ID:	2A3SYCF001
Standards:	47 CFR Part 15, Subpart C
	KDB558074 D01 15.247 Meas Guidance v05r02
	ANSI C63.10:2013
Date of Receipt:	2024-10-09
Date of Test:	2024-10-09 to 2024-10-16
Date of Issue:	2024-11-15
Test Result :	PASS*
*In the configuration tes	sted, the EUT complied with the standards specified above

Tested By:	lewis zhou	
· _	(Lewis Zhou)	TESTING TEST
Reviewed By:	Timo Lej'	
	(Timo Lei)	
Approved By:	Alex	APPROVED *
	(Alex Wang)	

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Revision History Of Report

Report No.	Version	Description	Issue Date	
CQASZ20241002116E-02	Rev.01	Initial report	2024-11-15	

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15.203	N/A	PASS
AC Power Line Conducted Emission	47 CFR Part 15.207	ANSI C63.10-2013	PASS
Conducted Peak & Average Output Power	47 CFR Part 15.247	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency47 CFR Part 15.205/15.209(Radiated Emission)		ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application

3 Contents

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF EUT	
4.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
4.4 TEST ENVIRONMENT AND MODE	7
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 TEST LOCATION	-
4.7 TEST FACILITY	
4.8 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.9 DEVIATION FROM STANDARDS	
4.10 ABNORMALITIES FROM STANDARD CONDITIONS	
4.11 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.12 EQUIPMENT LIST	. 10
5 TEST RESULTS AND MEASUREMENT DATA	.11
5.1 ANTENNA REQUIREMENT	11
5.2 CONDUCTED EMISSIONS	
5.2 CONDUCTED PEAK & AVERAGE OUTPUT POWER	
Test Result	
Note:	
When Duty cycle >98%, D.C.F is not required.	
Test Graphs	
5.4 6DB OCCUPIED BANDWIDTH	
Test Result	
Test Graphs	
5.5 Power Spectral Density	
Test Result	
Test Graphs	. 30
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	.34
Test Result	.35
5.6.1 Test Graphs	
5.7 RF CONDUCTED SPURIOUS EMISSIONS	. 39
Test Result	.40
Test Graphs	
5.8 RADIATED SPURIOUS EMISSIONS	
5.8.1 Radiated emission below 1GHz	
5.8.2 Transmitter emission above 1GHz	
5.9 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	.63
6 PHOTOGRAPHS - EUT TEST SETUP	.68
6.1 RADIATED SPURIOUS EMISSION	.68
6.2 CONDUCTED EMISSIONS TEST SETUP	.69
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	.70

4 General Information

4.1 Client Information

Applicant:	Hesung Innovation Limited
Address of Applicant:Room 803, Chevalier House, 45-51 Chatham Road South, Tsim Sha T Kowloon, HongKong	
Manufacturer: Shenzhen Hesung Innovation Technology Co., LTD	
Address of Manufacturer:	26th Floor, Building A7, Chuangzhiyuncheng, Liuxian Avenue, NanshanDistrict,Shenzhen
Factory:	Shenzhen Hesung Innovation Technology Co., LTD
Address of Factory:	26th Floor, Building A7, Chuangzhiyuncheng, Liuxian Avenue, NanshanDistrict,Shenzhen

4.2 General Description of EUT

Product Name:	Smart Ceiling Fan
Model No.:	DR-HCF001S, WDR-CF01S, DTCF01S, DBCF01S, DOCF01S, DWCF01S, DR-HCF003S, DWCF03S
Test Model No.:	DR-HCF001S
Trade Mark:	DREO, DREO HOME
Software Version:	V1.0
Hardware Version:	IMB-4N01 V1.0
Power Supply:	Power supply AC120V
EUT Supports Radios application:	BLE: 2402-2480MHz 2.4GHz: Wi-Fi: 802.11b/g/n(HT20): 2412MHz~2462MHz;
Simultaneous Transmission	 Simultaneous TX is supported and evaluated in this report. Simultaneous TX is not supported.

4.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)
	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK, BPSK)
Transfer Rate:	IEEE for 802.11b:
	1Mbps/2Mbps/5.5Mbps/11Mbps
	IEEE for 802.11g :
	6Mbps/9Mbps/12Mbps/18Mbps/24Mbps/36Mbps/48Mbps/54Mbps
	IEEE for 802.11n(HT20) :
	6.5Mbps/13Mbps/19.5Mbps/26Mbps/39Mbps/52Mbps/58.5Mbps/65Mbps
Product Type:	⊠ Mobile □ Portable
Test Software of EUT:	Beken WIFI Test Tool V1.7.2
Antenna Type:	FPC antenna
Antenna Gain:	5.12dBi

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

Note:

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

4.4 Test Environment and Mode

Operating Environment:	
Radiated Emissions:	
Temperature:	25.3 °C
Humidity:	55 % RH
Atmospheric Pressure:	1009 mbar
Conducted Emissions:	
Temperature:	25.6 °C
Humidity:	60 % RH
Atmospheric Pressure:	1009 mbar
Radio conducted item tes	st (RF Conducted test room):
Temperature:	25.5 °C
Humidity:	52 % RH
Atmospheric Pressure:	1009 mbar
Test mode:	
Transmitting mode:	EUT is set in RF test mode in all supported modulation types, bandwidtl and data rate, etc.
Wiff - Tx Mode Start Stop RX Packet Counter View Window Test Mode Continuous Interval 2 Single Reset V Hex (Print cali values) 01 e0 fc 01 de	DM_54M TXPwr Auto Auto Auto (11n) Val C Auto BLE RX Packet Save Xtal C in Flash PER
□ Hex Send □ Hex Send Send	Clear display
	Cical display

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
1	/	/	/	/

2) Cable

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
1	/	1	/	/

4.6 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

4.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.8 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	5.12dB	(1)
2	Radiated Emission (Above 1GHz)	4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8°C	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	Frequency Error	5.5 Hz	(1)

Hereafter the best measurement capability for CQA laboratory is reported:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.9 Deviation from Standards

None.

4.10 Abnormalities from Standard Conditions

None.

4.11 Other Information Requested by the Customer

None.

4.12 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU26	CQA-038	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU40	CQA-075	2024/9/2	2025/9/1
	100	AFS4-00010300-18-		202 11012	2020/0/1
Preamplifier	MITEQ	10P-4	CQA-035	2024/9/2	2025/9/1
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2024/9/2	2025/9/1
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2023/9/7	2026/9/6
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2024/9/2	2025/9/1
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2024/9/2	2025/9/1
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2024/9/2	2025/9/1
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2024/9/2	2025/9/1

Test software:

	Manufacturer	Software brand
Radiated Emissions test software	Tonscend	JS1120-3
Conducted Emissions test software	Audix	e3
RF Conducted test software	Audix	e3

5 Test results and Measurement Data

5.1 Antenna Requirement

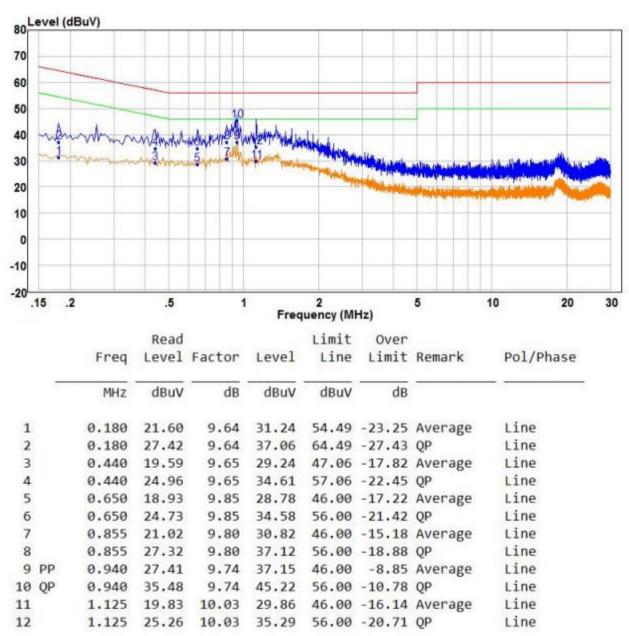
Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)		
15.203 requirement:	15.203 requirement:		
An intentional radiator shall	be designed to ensure that no antenna other than that furnished by the		
responsible party shall be us	sed with the device. The use of a permanently attached antenna or of an		
antenna that uses a unique	coupling to the intentional radiator, the manufacturer may design the unit		
so that a broken antenna ca	n be replaced by the user, but the use of a standard antenna jack or		
electrical connector is prohit	pited.		
15.247(b) (4) requirement:			
The conducted output powe	r limit specified in paragraph (b) of this section is based on the use of		
antennas with directional ga	ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this		
-	nas of directional gain greater than 6 dBi are used, the conducted output		
-	adiator shall be reduced below the stated values in paragraphs (b)(1),		
	ion, as appropriate, by the amount in dB that the directional gain of the		
antenna exceeds 6 dBi.			
EUT Antenna:			
	STX-DR-HCF001S 2C-WIFL-V1		

The antenna is FPC antenna.

The connection/connection type between the antenna to the EUT's antenna port is: unique coupling. This is either permanently attachment or a unique coupling that satisfies the requirement.

5.2 Conducted Emissions

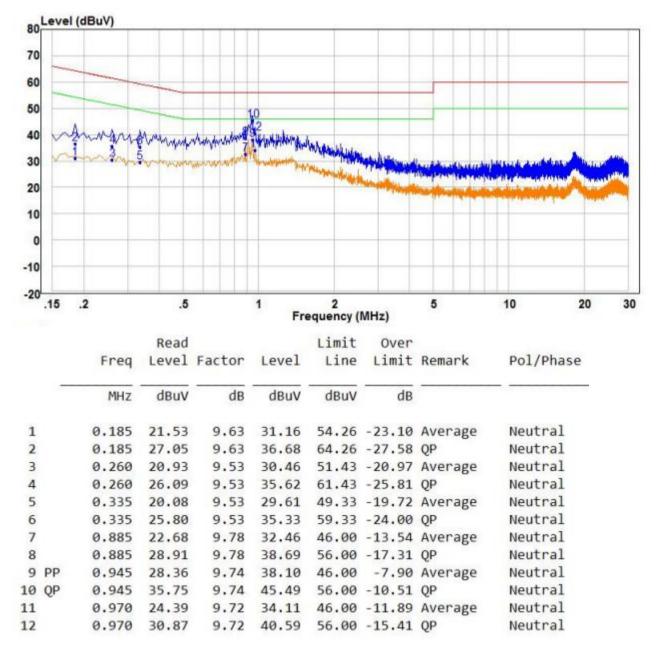
47 CFR Part 15C Section 15.207			
ANSI C63.10: 2013			
150kHz to 30MHz			
	Limit (dBuV)		
Frequency range (MHZ)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithn	n of the frequency.		
 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a room. 2) The EUT was connected to AC power source through a LISN 1 (Impedance Stabilization Network) which provides a 50Ω/50µH + impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the reference plane in the same way as the LISN 1 for the unit being measured multiple socket outlet strip was used to connect multiple power a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m ab ground reference plane. And for floor-standing arrangement, the placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The floor standing arrangement, the placed on the horizontal ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundar unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN is placed 0.8 m from the boundar unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN is placed 0.8 m from the LISN mounted on top of the ground reference plane. This distance was between the closest points of th		bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω line f the EUT were bonded to the grou being measured. A multiple power cables not exceeded. c table 0.8m above the rangement, the EUT v erence plane. The read d reference plane the LISN 2 we positions of	ear und s to e was ar e ue
Shielding Room	AE E S Ground Reference Plane	Test Receiver	
	ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm 1) The mains terminal disturb room. 2) The EUT was connected to Impedance Stabilization N impedance. The power call connected to a second reference plane in the same way as to multiple socket outlet strip a single LISN provided the ra 3) The tabletop EUT was placed ground reference plane. An placed on the horizontal gr 4) The test was performed wi of the EUT shall be 0.4 m vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated eact 5) In order to find the maximume equipment and all of the in ANSI C63.10: 2013 on cor	ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was room. 2) The EUT was connected to AC power source thro Impedance Stabilization Network) which provides impedance. The power cables of all other units of connected to a second LISN 2, which was reference plane in the same way as the LISN 1 for the unit multiple socket outlet strip was used to connect a single LISN provided the rating of the LISN was r for the tabletop EUT was placed upon a non-metalli ground reference plane. And for floor-standing ar placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground ref of the EUT shall be 0.4 m from the vertical ground vertical ground reference plane was bonded to the reference plane. The LISN 1 was placed 0.8 m fruinit under test and bonded to a ground reference mounted on top of the ground reference plane. The between the closest points of the LISN 1 and the the EUT and associated equipment was at least (5) In order to find the maximum emission, the relative equipment and all of the interface cables must be ANSI C63.10: 2013 on conducted measurement. Shielding Room	ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shiele room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 500/50µH + 5Ω lin impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the grour reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above th ground reference plane. And for floor-standing arrangement, the EUT valaced on the horizontal ground reference plane. The vertical ground reference plane. The UISN smounted on the of the flox was blaced 0.8 m from the boundary of th unit under test and bonded to a ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units ot the EUT and associated equipment was at least 0.8 m from the LISN 2 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be chan



Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate of 802.11b at middle channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC120V/60Hz
Test Results:	Pass

Measurement Data

Live Line:



Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral Line:

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

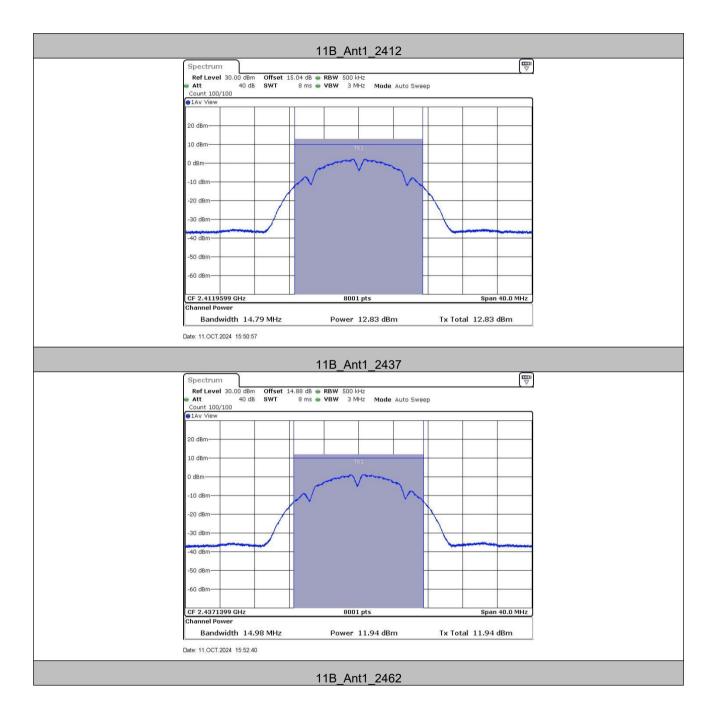
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

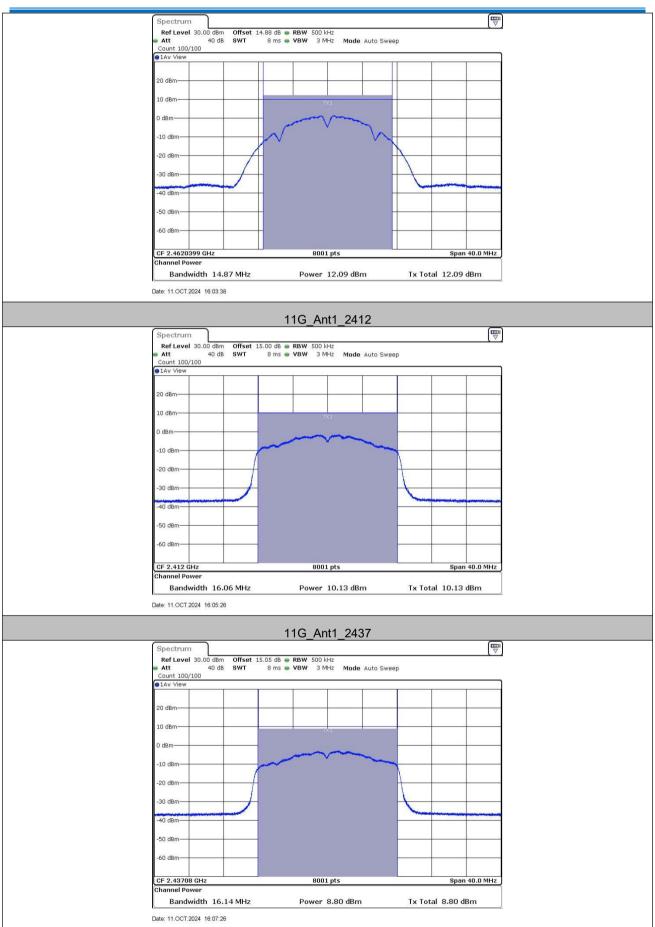
5.3 Conducted Peak & Average Output Power

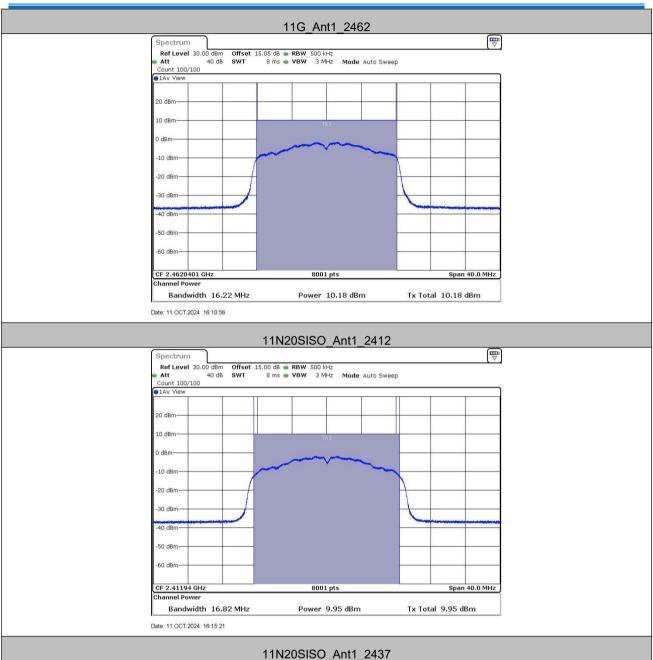
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10: 2013
Test Setup:	Setup for Power meter measurement method EUT Power Meter Setup for Spectrum analyser measurement method Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Only the worst case is recorded in the report.
Limit:	30dBm
Test Results:	Pass

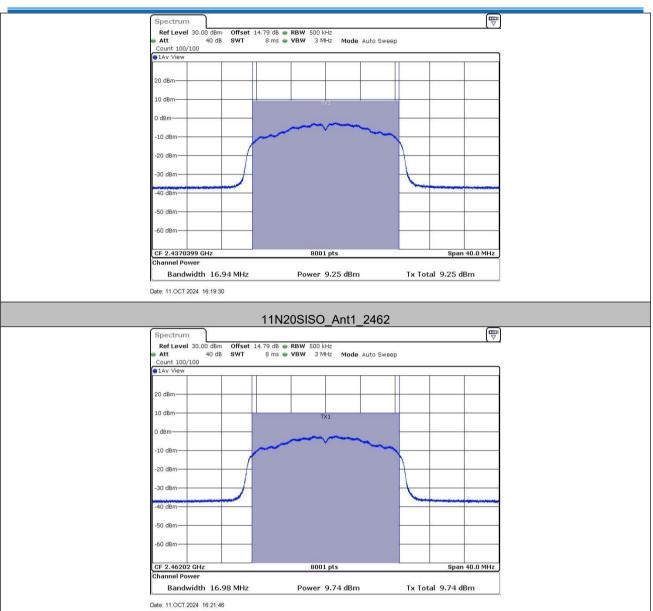
Test Result


Test Mode	Frequency[MHz]	Result [dBm]	Limit [dBm]	Verdict
	2412	12.83	≤30.00	PASS
11B	2437	11.94	≤30.00	PASS
	2462	12.09	≤30.00	PASS
	2412	10.13	≤30.00	PASS
11G	2437	8.80	≤30.00	PASS
	2462	10.18	≤30.00	PASS
	2412	9.95	≤30.00	PASS
11N20SISO	2437	9.25	≤30.00	PASS
	2462	9.74	≤30.00	PASS

Note:

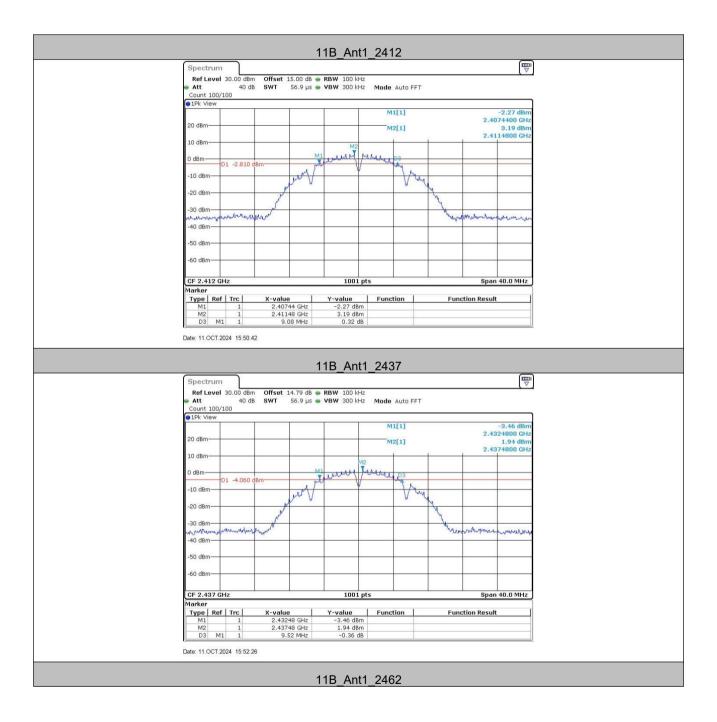

When Duty cycle >98%, D.C.F is not required.


Test Graphs

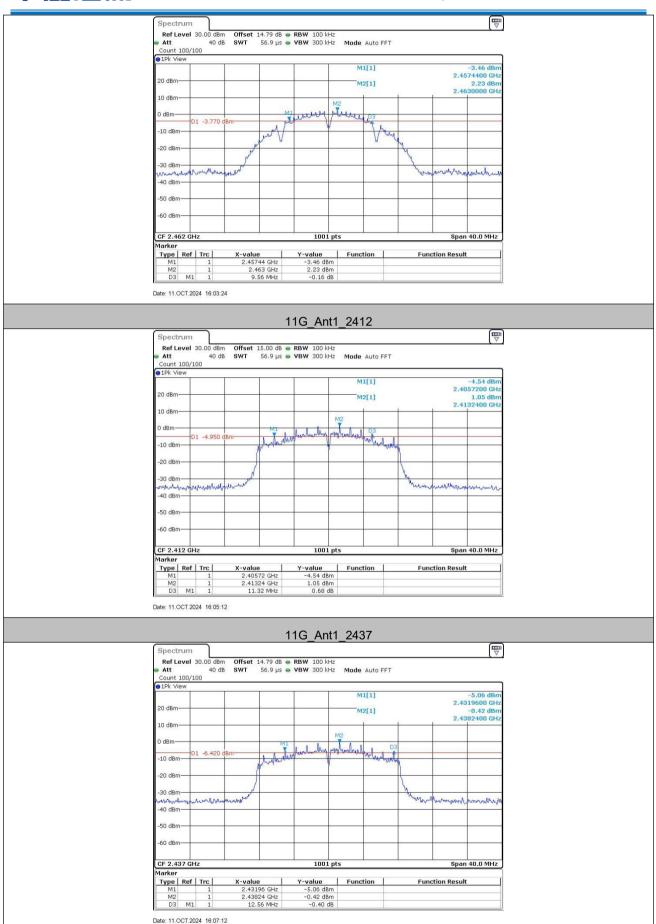


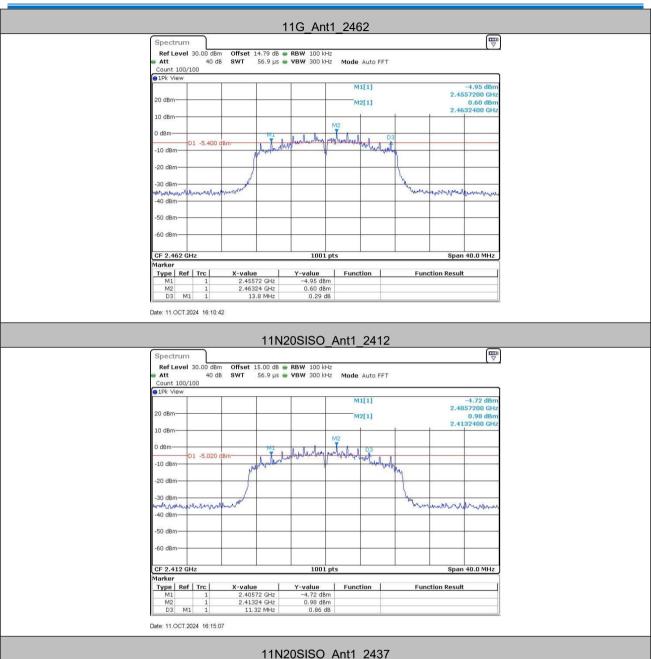
5.4 6dB Occupied Bandwidth

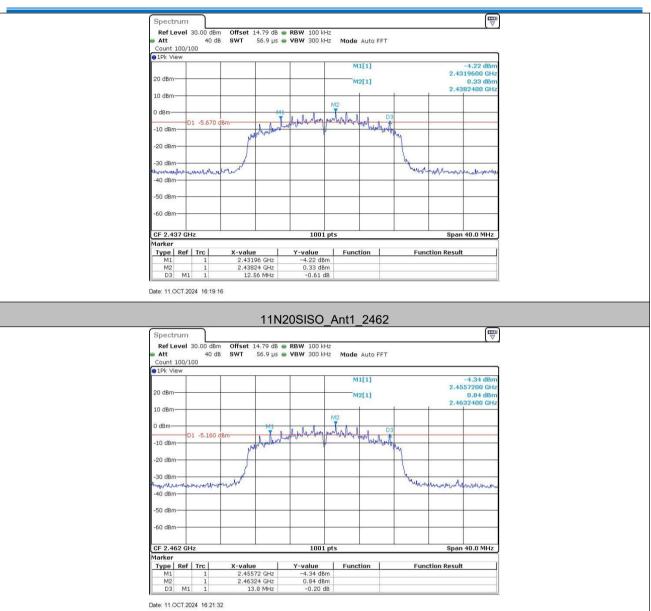
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10: 2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Offset=cable loss+ attenuation factor
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Only the worst case is recorded in the report.
Limit:	≥ 500 kHz
Test Results:	Pass



Test Result


TestMode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2412	9.08	0.5	PASS
11B	Ant1	2437	9.52	0.5	PASS
		2462	9.56	0.5	PASS
		2412	11.32	0.5	PASS
11G	Ant1	2437	12.56	0.5	PASS
		2462	13.80	0.5	PASS
		2412	11.32	0.5	PASS
11N20SISO	Ant1	2437	12.56	0.5	PASS
		2462	13.80	0.5	PASS

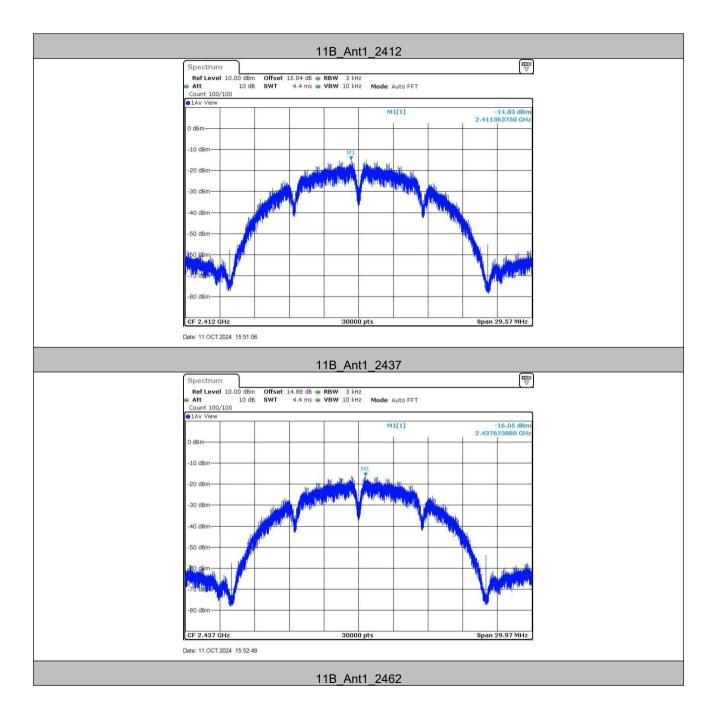

Test Graphs



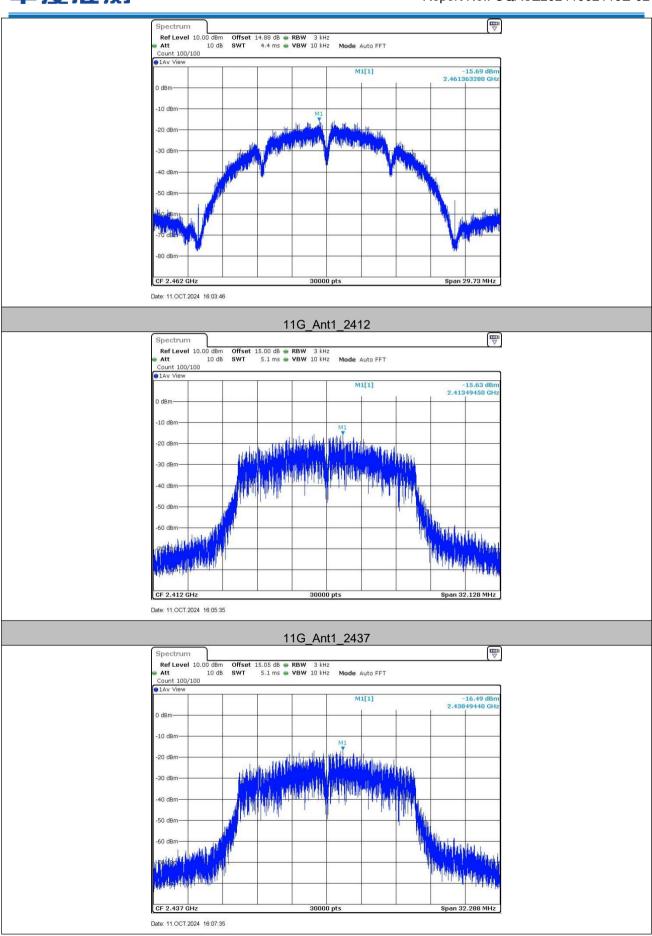
5.5 Power Spectral Density

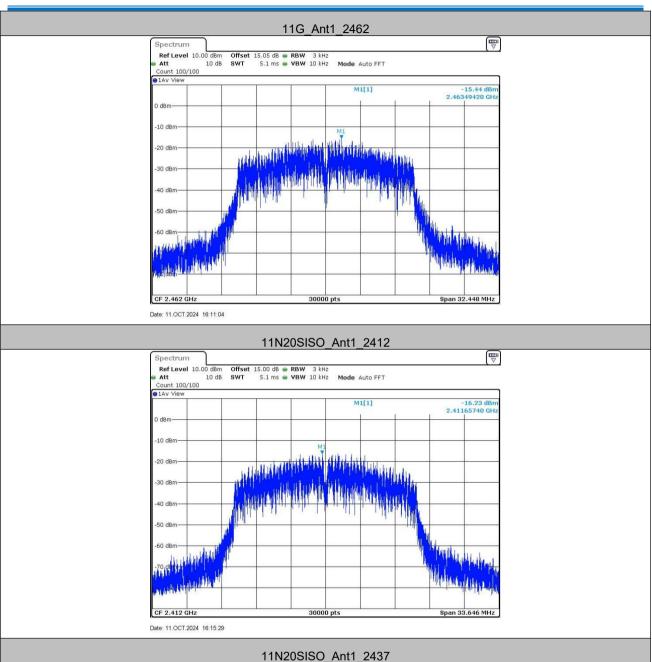
Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10: 2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
	Offset=cable loss+ attenuation factor
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Only the worst case is recorded in the report.
Limit:	≤8.00dBm/3kHz
Test Results:	Pass

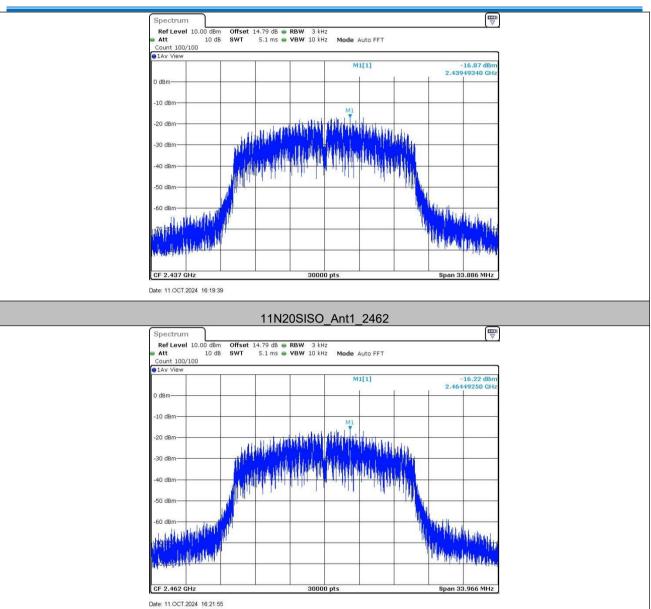
Test Result


TestMode	Frequency[MHz]	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
	2412	-14.83	≤8.00	PASS
11B	2437	-16.05	≤8.00	PASS
	2462	-15.69	≤8.00	PASS
11G	2412	-15.63	≤8.00	PASS
	2437	-16.49	≤8.00	PASS
	2462	-15.44	≤8.00	PASS
11N20SISO	2412	-16.23	≤8.00	PASS
	2437	-16.87	≤8.00	PASS
	2462	-16.22	≤8.00	PASS

Note:

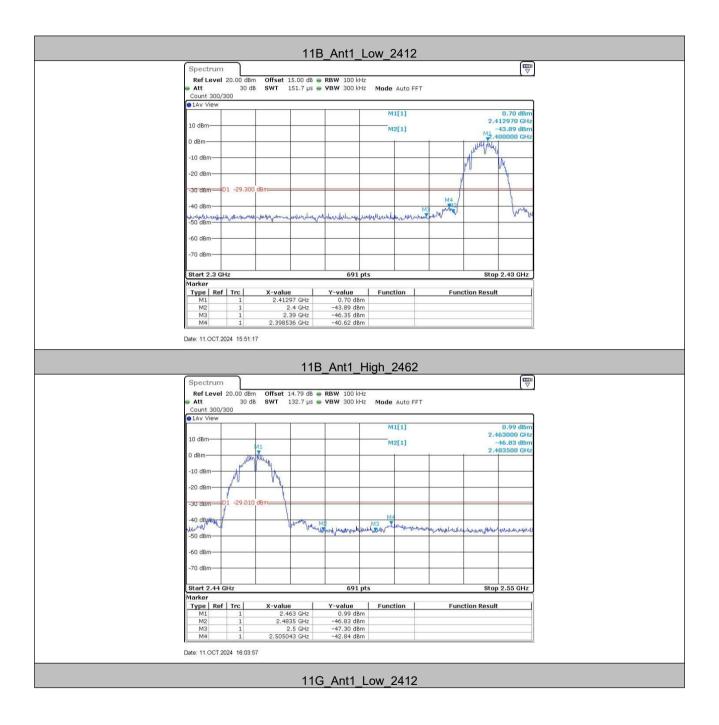

When Duty cycle >98%, D.C.F is not required.


Test Graphs

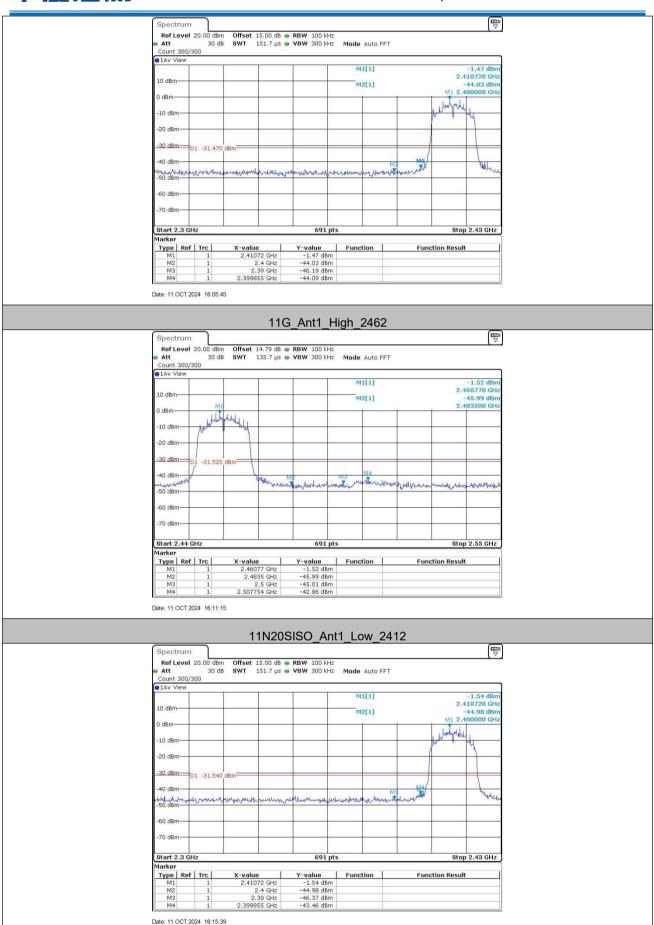


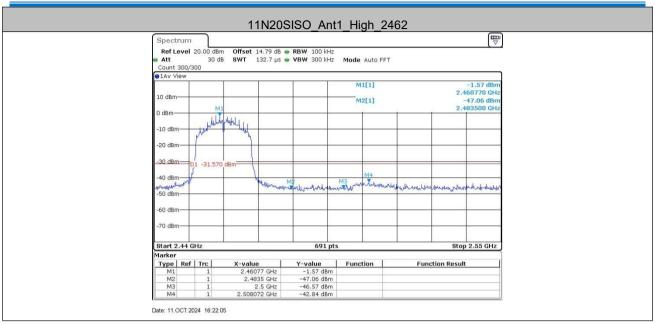
5.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10: 2013				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Offset=cable loss+ attenuation factor				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates				
. Final Test Mode:	Only the worst case is recorded in the report.				
Limit:	Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test Results:	Pass				



Test Result

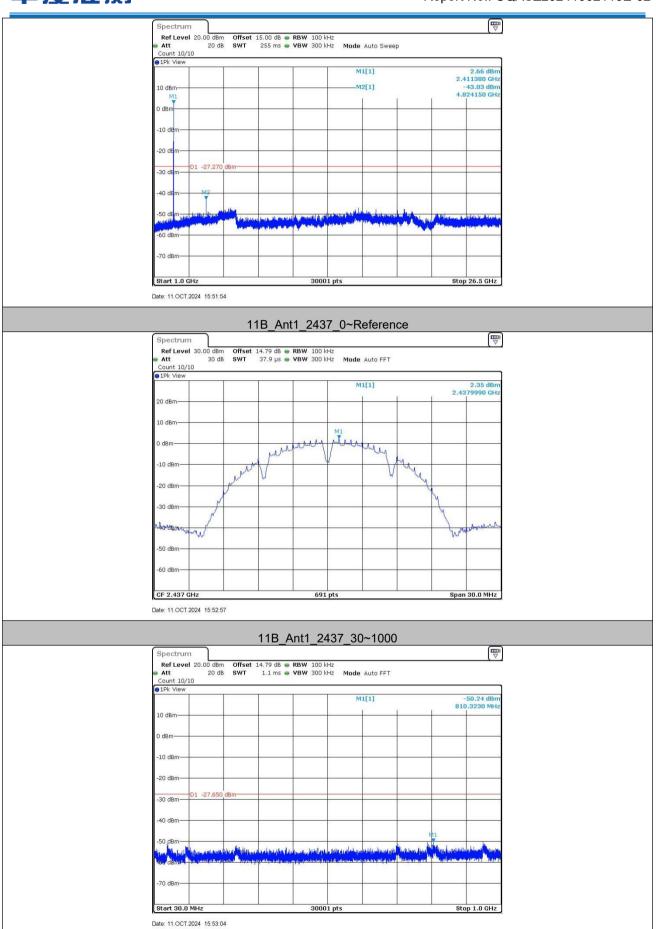

TestMode	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	Low	2412	0.70	-40.62	≤-29.3	PASS
	High	2462	0.99	-42.84	≤-29.01	PASS
11G	Low	2412	-1.47	-44.09	≤-31.47	PASS
	High	2462	-1.52	-42.86	≤-31.52	PASS
11N20SISO	Low	2412	-1.54	-43.46	≤-31.54	PASS
	High	2462	-1.57	-42.84	≤-31.57	PASS

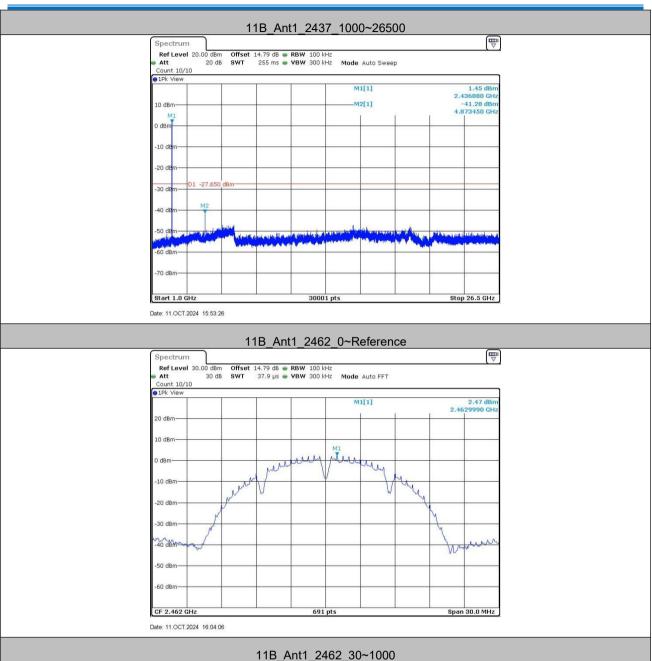

5.6.1 Test Graphs

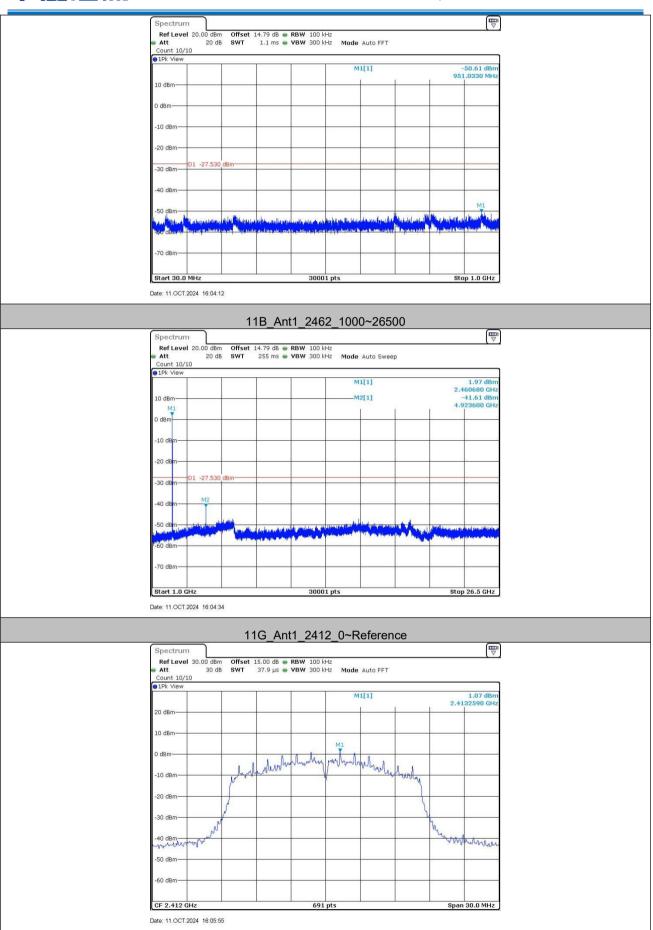
5.7 RF Conducted Spurious Emissions

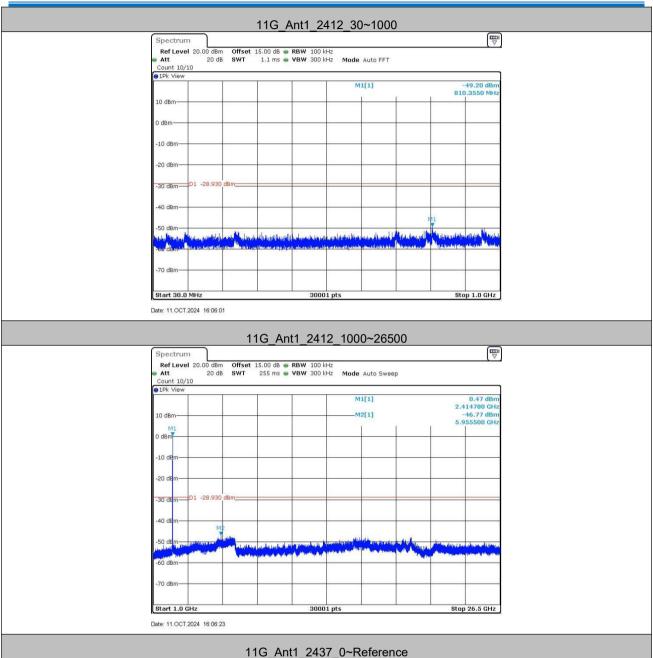
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Offset=cable loss+ attenuation factor
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Only the worst case is recorded in the report.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

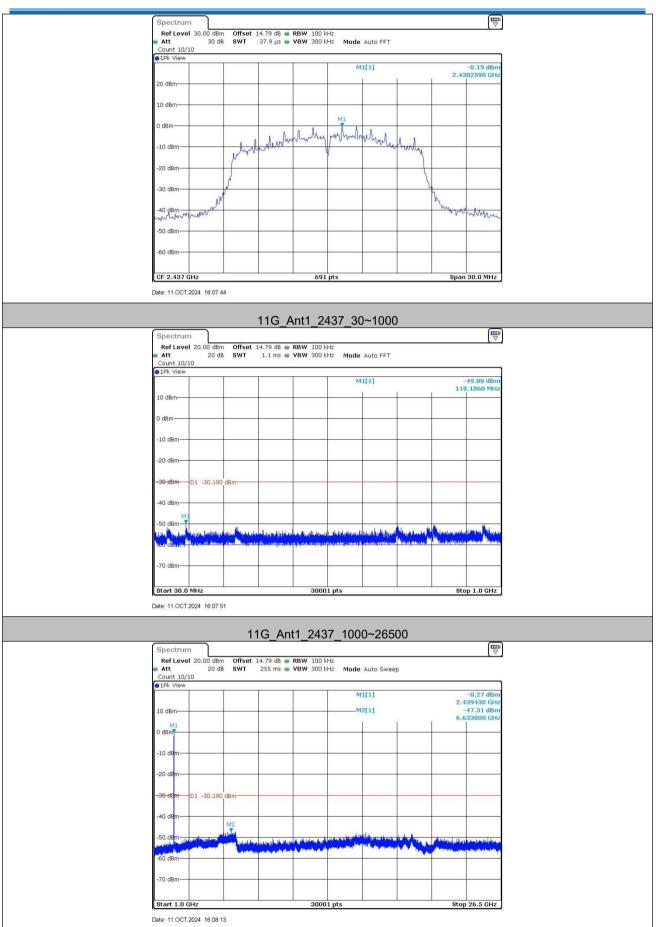
Test Result

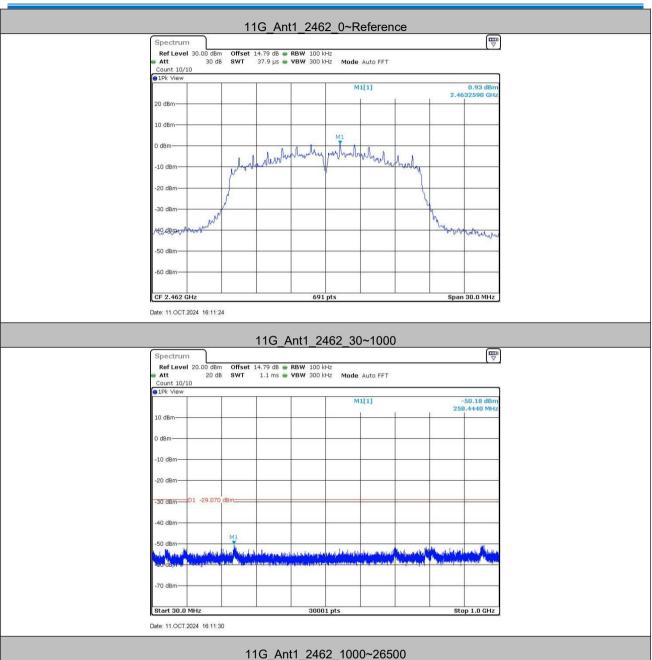

TestMode	Frequency[MHz]	FreqRange	RefLevel	Result	Limit	Verdict
Testimode	i requency[iii i2]	[Mhz]	[dBm]	[dBm]	[dBm]	Verdiet
		Reference	2.73	2.73		PASS
	2412	30~1000	2.73	-51.01	≤-27.27	PASS
		1000~26500	2.73	-43.03	≤-27.27	PASS
		Reference	2.35	2.35		PASS
11B	2437	30~1000	2.35	-50.24	≤-27.65	PASS
		1000~26500	2.35	-41.28	≤-27.65	PASS
		Reference	2.47	2.47		PASS
	2462	30~1000	2.47	-50.61	≤-27.53	PASS
		1000~26500	2.47	-41.61	≤-27.53	PASS
		Reference	1.07	1.07		PASS
	2412	30~1000	1.07	-49.2	≤-28.93	PASS
		1000~26500	1.07	-46.77	≤-28.93	PASS
		Reference	-0.19	-0.19		PASS
11G	2437	30~1000	-0.19	-49.88	≤-30.19	PASS
		1000~26500	-0.19	-47.31	≤-30.19	PASS
		Reference	0.93	0.93		PASS
	2462	30~1000	0.93	-50.18	≤-29.07	PASS
		1000~26500	0.93	-47.45	≤-29.07	PASS
		Reference	1.09	1.09		PASS
	2412	30~1000	1.09	-49.75	≤-28.91	PASS
		1000~26500	1.09	-47.16	≤-28.91	PASS
		Reference	0.56	0.56		PASS
11N20SISO	2437	30~1000	0.56	-50.71	≤-29.44	PASS
		1000~26500	0.56	-47.18	≤-29.44	PASS
		Reference	0.90	0.90		PASS
	2462	30~1000	0.90	-50.22	≤-29.1	PASS
		1000~26500	0.90	-47.31	≤-29.1	PASS

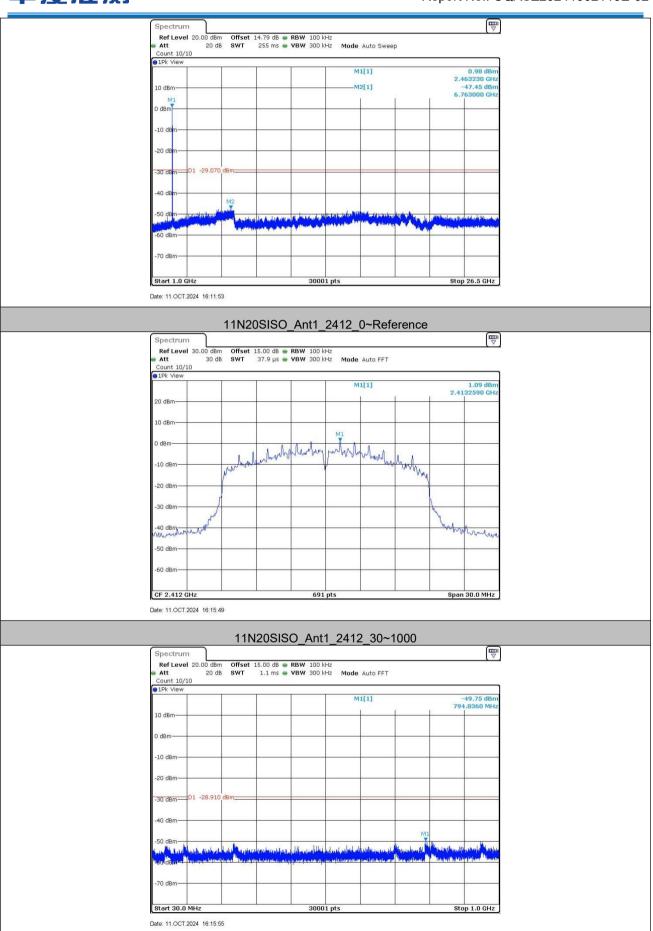

Test Graphs

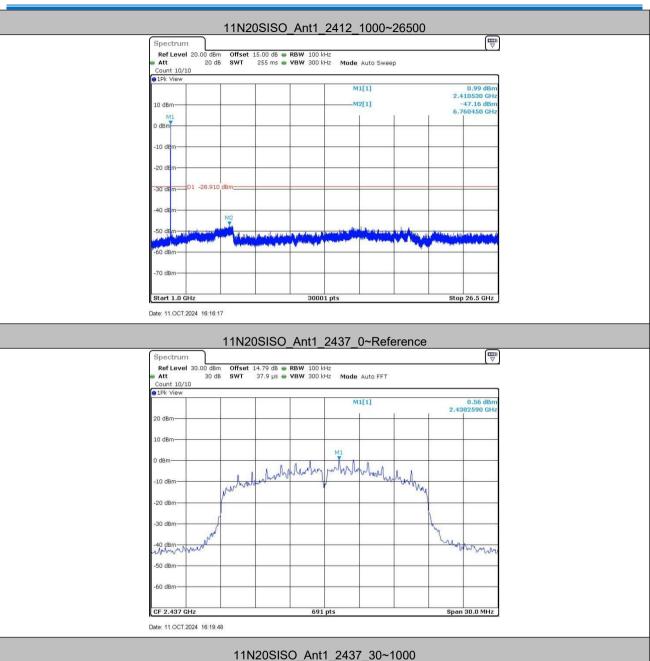


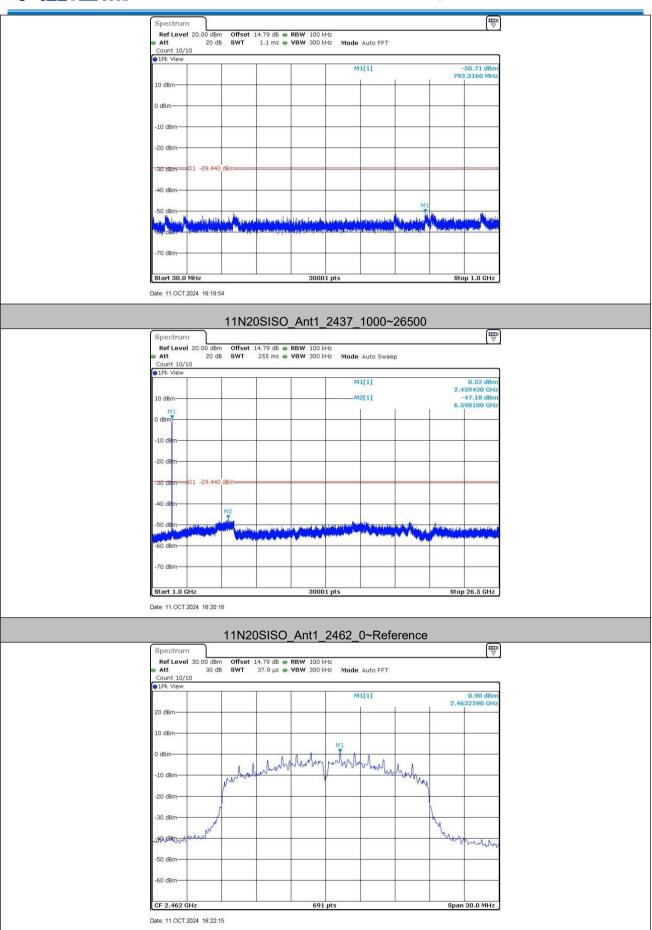


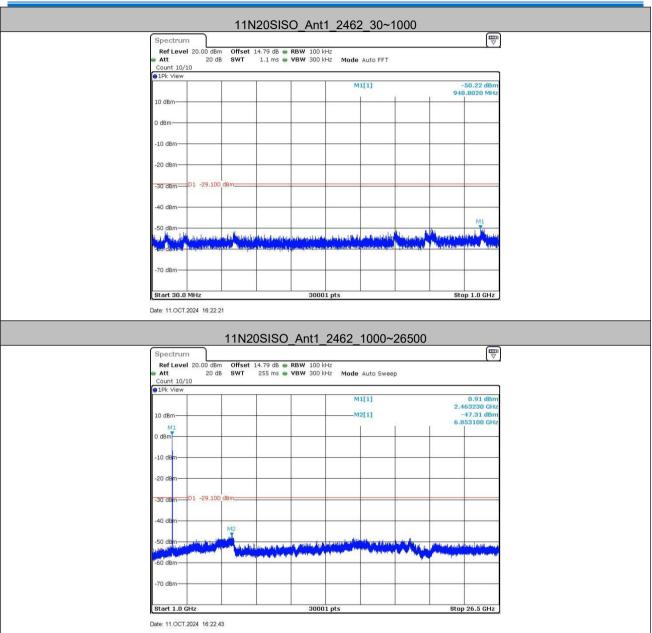






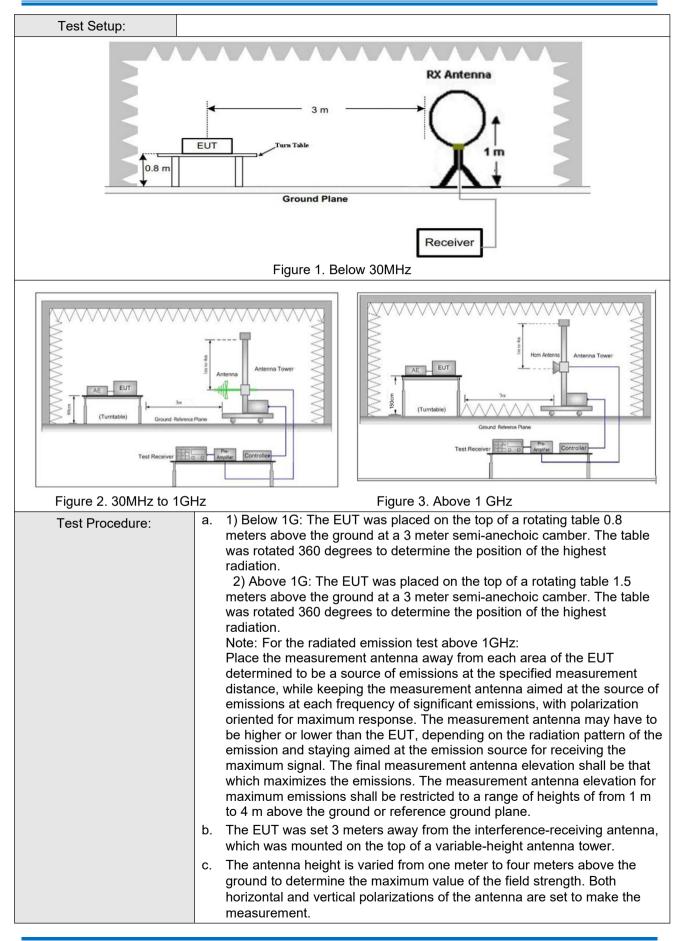






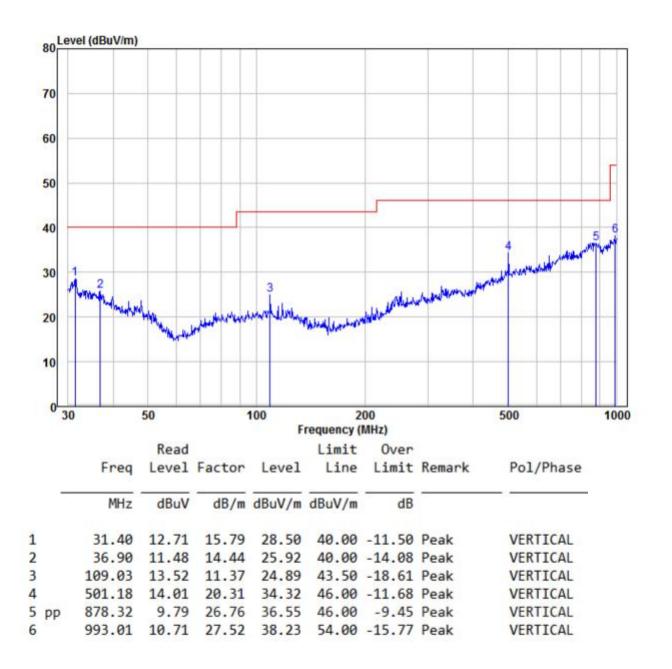
Report No.: CQASZ20241002116E-02

Remark:


Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

5.8 Radiated Spurious Emissions

-										
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark					
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak					
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average					
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak					
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average					
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak					
		Peak	1MHz	3MHz	Peak					
	Above 1GHz	Peak	1MHz	10Hz	Average					
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)					
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300					
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30					
	1.705MHz-30MHz	30	-	-	30					
	30MHz-88MHz	100	40.0	Quasi-peak	3					
	88MHz-216MHz	150	43.5	Quasi-peak	3					
	216MHz-960MHz	200	46.0	Quasi-peak	3					
	960MHz-1GHz	500	54.0	Quasi-peak	3					
	Above 1GHz	Average	3							
	Above 1GHz 500 54.0 Average 3 Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total pemission level radiated by the device.									



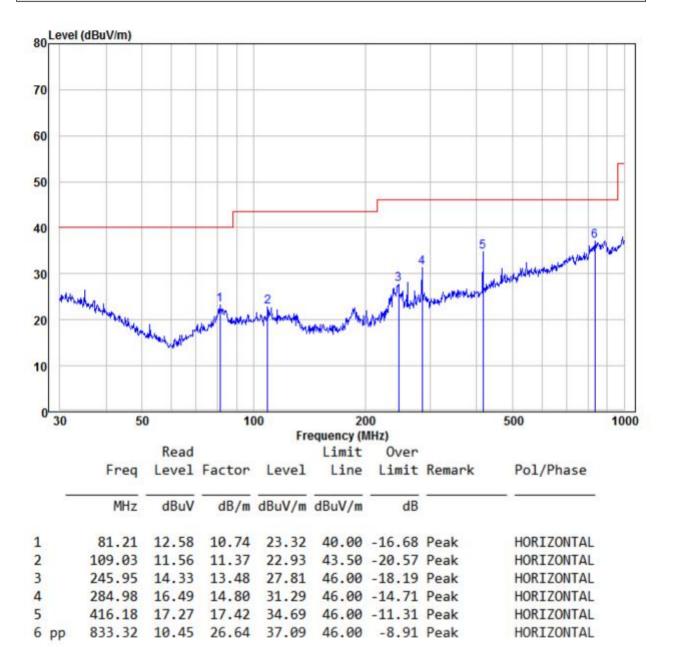
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case .
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

5.8.1 Radiated emission below 1GHz

30MHz~1GHz	
Vertical	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Horizontal

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Test mode:		802.11b(11	Mbps)	Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4824.000	53.38	-4.26	49.12	74	-24.88	peak	н
4824.000	36.39	-4.26	32.13	54	-21.87	AVG	н
7236.000	50.75	1.18	51.93	74	-22.07	peak	н
7236.000	37.28	1.18	38.46	54	-15.54	AVG	н
4824.000	56.04	-4.26	51.78	74	-22.22	peak	V
4824.000	39.81	-4.26	35.55	54	-18.45	AVG	V
7236.000	51.24	1.18	52.42	74	-21.58	peak	V
7236.000	36.27	1.18	37.45	54	-16.55	AVG	V

5.8.2 Transmitter emission above 1GHz

Test mode:		802.11b(1	Mbps)	Test chann	el:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	H/V
4874.000	52.18	-4.12	48.06	74	-25.94	peak	н
4874.000	37.89	-4.12	33.77	54	-20.23	AVG	н
7311.000	48.87	1.46	50.33	74	-23.67	peak	н
7311.000	35.26	1.46	36.72	54	-17.28	AVG	н
4874.000	53.76	-4.12	49.64	74	-24.36	peak	V
4874.000	36.25	-4.12	32.13	54	-21.87	AVG	V
7311.000	48.64	1.46	50.10	74	-23.90	peak	V
7311.000	35.76	1.46	37.22	54	-16.78	AVG	V

Test mode:	Test mode:		802.11b(1Mbps)		Test channel:		-
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4924.000	53.22	-4.03	49.19	74	-24.81	peak	Н
4924.000	37.50	-4.03	33.47	54	-20.53	AVG	Н
7386.000	50.17	1.66	51.83	74	-22.17	peak	Н
7386.000	36.16	1.66	37.82	54	-16.18	AVG	н
4924.000	54.45	-4.03	50.42	74	-23.58	peak	V
4924.000	38.29	-4.03	34.26	54	-19.74	AVG	V
7386.000	50.89	1.66	52.55	74	-21.45	peak	V
7386.000	37.27	1.66	38.93	54	-15.07	AVG	V

Remark:

- 1) The 1Mbps of rate of 802.11b is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Test mode:		802.11g(6	Mbps)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4824.000	52.76	-4.26	48.50	74	-25.50	peak	Н
4824.000	36.39	-4.26	32.13	54	-21.87	AVG	н
7236.000	51.58	1.18	52.76	74	-21.24	peak	Н
7236.000	37.99	1.18	39.17	54	-14.83	AVG	н
4824.000	54.80	-4.26	50.54	74	-23.46	peak	V
4824.000	39.01	-4.26	34.75	54	-19.25	AVG	V
7236.000	52.21	1.18	53.39	74	-20.61	peak	V
7236.000	35.56	1.18	36.74	54	-17.26	AVG	V

Test mode:		802.11g(6	Mbps)	Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4874.000	52.48	-4.12	48.36	74	-25.64	peak	н
4874.000	36.70	-4.12	32.58	54	-21.42	AVG	н
7311.000	48.28	1.46	49.74	74	-24.26	peak	н
7311.000	36.92	1.46	38.38	54	-15.62	AVG	н
4874.000	52.45	-4.12	48.33	74	-25.67	peak	V
4874.000	36.91	-4.12	32.79	54	-21.21	AVG	V
7311.000	49.42	1.46	50.88	74	-23.12	peak	V
7311.000	36.73	1.46	38.19	54	-15.81	AVG	V

Test mode:	Test mode:		Mbps)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4924.000	52.09	-4.03	48.06	74	-25.94	peak	Н
4924.000	37.01	-4.03	32.98	54	-21.02	AVG	Н
7386.000	50.04	1.66	51.70	74	-22.30	peak	Н
7386.000	36.95	1.66	38.61	54	-15.39	AVG	н
4924.000	54.34	-4.03	50.31	74	-23.69	peak	V
4924.000	37.93	-4.03	33.90	54	-20.10	AVG	V
7386.000	50.89	1.66	52.55	74	-21.45	peak	V
7386.000	36.70	1.66	38.36	54	-15.64	AVG	V

Remark:

- 1) The 6Mbps of rate of 802.11g is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Test mode:	Test mode:		(mcs0)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4824.000	54.02	-4.26	49.76	74	-24.24	peak	Н
4824.000	36.04	-4.26	31.78	54	-22.22	AVG	н
7236.000	51.46	1.18	52.64	74	-21.36	peak	Н
7236.000	38.85	1.18	40.03	54	-13.97	AVG	Н
4824.000	56.00	-4.26	51.74	74	-22.26	peak	V
4824.000	38.63	-4.26	34.37	54	-19.63	AVG	V
7236.000	51.05	1.18	52.23	74	-21.77	peak	V
7236.000	36.04	1.18	37.22	54	-16.78	AVG	V

Test mode:		802.11n20(mcs0)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4874.000	51.43	-4.12	47.31	74	-26.69	peak	н
4874.000	37.80	-4.12	33.68	54	-20.32	AVG	н
7311.000	49.80	1.46	51.26	74	-22.74	peak	н
7311.000	36.18	1.46	37.64	54	-16.36	AVG	н
4874.000	53.07	-4.12	48.95	74	-25.05	peak	V
4874.000	36.07	-4.12	31.95	54	-22.05	AVG	V
7311.000	48.63	1.46	50.09	74	-23.91	peak	V
7311.000	35.53	1.46	36.99	54	-17.01	AVG	V

Test mode:		802.11n20(mcs0)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4924.000	51.79	-4.03	47.76	74	-26.24	peak	Н
4924.000	38.12	-4.03	34.09	54	-19.91	AVG	н
7386.000	49.94	1.66	51.60	74	-22.40	peak	Н
7386.000	37.46	1.66	39.12	54	-14.88	AVG	н
4924.000	54.26	-4.03	50.23	74	-23.77	peak	V
4924.000	38.13	-4.03	34.10	54	-19.90	AVG	V
7386.000	51.17	1.66	52.83	74	-21.17	peak	V
7386.000	36.22	1.66	37.88	54	-16.12	AVG	V

Remark:

- 1) The MCS0 of rate of 802.11n20 is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

5.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15	• •						
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chamber	-)					
Limit:	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
		54.0	Average Value					
	Above 1GHz	74.0	Peak Value					
Test Setup:								
Test Receiver	Image: state of the state							
	 maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the 							

	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
	 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case.
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).
	Only the worst case is recorded in the report.
Test Results:	Pass

Test data:

Worse case mode:		802.11b(1Mbps)		Test channel:		Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	58.59	-9.2	49.39	74	-24.61	peak	н
2390.000	44.17	-9.2	34.97	54	-19.03	AVG	н
2400.000	59.77	-9.39	50.38	74	-23.62	peak	н
2400.000	46.95	-9.39	37.56	54	-16.44	AVG	н
2390.000	59.07	-9.2	49.87	74	-24.13	peak	V
2390.000	44.29	-9.2	35.09	54	-18.91	AVG	V
2400.000	59.63	-9.39	50.24	74	-23.76	peak	V
2400.000	46.88	-9.39	37.49	54	-16.51	AVG	V

Worse case mode:		802.11b(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.500	58.30	-9.29	49.01	74	-24.99	peak	Н
2483.500	43.54	-9.29	34.25	54	-19.75	AVG	Н
2483.500	58.18	-9.29	48.89	74	-25.11	peak	V
2483.500	46.26	-9.29	36.97	54	-17.03	AVG	V

Worse case mode:		802.11g(6Mbps)		Test channel:		Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	59.19	-9.2	49.99	74	-24.01	peak	Н
2390.000	44.11	-9.2	34.91	54	-19.09	AVG	Н
2400.000	59.99	-9.39	50.60	74	-23.40	peak	н
2400.000	46.10	-9.39	36.71	54	-17.29	AVG	н
2390.000	58.67	-9.2	49.47	74	-24.53	peak	V
2390.000	44.88	-9.2	35.68	54	-18.32	AVG	V
2400.000	59.52	-9.39	50.13	74	-23.87	peak	V
2400.000	46.56	-9.39	37.17	54	-16.83	AVG	V

Worse case mode:		802.11g(6Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.500	58.39	-9.29	49.10	74	-24.90	peak	н
2483.500	43.78	-9.29	34.49	54	-19.51	AVG	н
2483.500	57.63	-9.29	48.34	74	-25.66	peak	V
2483.500	45.72	-9.29	36.43	54	-17.57	AVG	V

Worse case mode:		802.11n(HT20)(6.5Mbps)		Test channel:		Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	58.88	-9.2	49.68	74	-24.32	peak	Н
2390.000	44.92	-9.2	35.72	54	-18.28	AVG	Н
2400.000	59.48	-9.39	50.09	74	-23.91	peak	н
2400.000	46.74	-9.39	37.35	54	-16.65	AVG	н
2390.000	59.03	-9.2	49.83	74	-24.17	peak	V
2390.000	44.27	-9.2	35.07	54	-18.93	AVG	V
2400.000	59.24	-9.39	49.85	74	-24.15	peak	V
2400.000	46.22	-9.39	36.83	54	-17.17	AVG	V

Worse case	Worse case mode:		802.11n(HT20)(6.5Mbps)		Test channel:		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.500	58.03	-9.29	48.74	74	-25.26	peak	н
2483.500	44.05	-9.29	34.76	54	-19.24	AVG	н
2483.500	57.71	-9.29	48.42	74	-25.58	peak	V
2483.500	45.80	-9.29	36.51	54	-17.49	AVG	V

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

30MHz~1GHz:

6.2 Conducted Emissions Test Setup

7 Photographs - EUT Constructional Details

Refer to PHOTOGRAPHS OF EUT for CQASZ20241002116E-01.

*** END OF REPORT ***