

Compiled by

Supervised by

Approved by

Shenzhen Most Technology Service Co., Ltd.

East A, 1 floor of New Aolin Factory building, Langshan Erlu, North District, Hi-tech Industry Park, Nanshan, Shenzhen, Guangdong, China

RF Exposure Evaluation Report Report Reference No.....: MTEB24080002-H FCC ID.....:: 2A6G9-ACEVC48DG Alisa Luo Sunny Deng Yutter (position+printed name+signature)..: File administrators Alisa Luo (position+printed name+signature)..: **Test Engineer** Sunny Deng (position+printed name+signature)..: Manager Yvette Zhou Date of issue....: Aug. 01,2024 Shenzhen Most Technology Service Co., Ltd.

Representative Laboratory Name.:

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Address....:

Nanshan, Shenzhen, Guangdong, China.

Applicant's name..... powerflex systems inc

Address....: 392 1st street los altos, CA 94022 United States

Test specification/ Standard.....: 47 CFR Part 1.1307;47 CFR Part 1.1310

KDB447498D01 General RF Exposure Guidance v06

TRF Originator...... Shenzhen Most Technology Service Co., Ltd.

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description....: Electric Vehicle AC Charger

Trade Mark....: Powerflex System Inc

Model/Type reference....: PF-96D-LTE

Listed Models: N/A

Modulation Type.....: ASK

Operation Frequency.....: 13.56MHz

Hardware Version......V1.0

Software Version...... V00.01.01

Rating..... AC 240V/60Hz

Result..... PASS

Report No.: MTEB24080002-H Page 2 of 7

TEST REPORT

Equipment under Test : Electric Vehicle AC Charger

Model /Type : PF-96D-LTE

Listed Models N/A

Remark N/A

Applicant : powerflex systems inc

Address : 392 1st street los altos, CA 94022 United States

Manufacturer : Xiamen Joint Tech. Co., Ltd

Address : Building #1,No.268 HouXiang Rd,Xinyang,Industrial Park,Haicang

District, XIAMEN, Fujian, China.

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: MTEB24080002-H Page 3 of 7

1. Revision History

Revision	Issue Date	Revisions	Revised By
00	2024.08.01	Initial Issue	Alisa Luo

Report No.: MTEB24080002-H Page 4 of 7

2. SAR Evaluation

2.1 RF Exposure Compliance Requirement

2.1.1 Standard Requirement

According to KDB447498D01 General RF Exposure Guidance v06

4.3.1. Standalone SAR test exclusion considerations

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

2.1.2 Limits

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposur	es	
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f2)	6
30–300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000		***************************************	5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	osure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4* Pi * R 2) Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Report No.: MTEB24080002-H Page 5 of 7

2.1.3 EUT RF Exposure

For 13.56MHz wireless: Field strength=79.0dBuV/m EIRP =79.0dBuV/m-95.2+6= -10.2dBm

Channel	EIRP	Tune up tolerance (dBm)	Maximum tune-up Power (dBm)	Maximum tune-up Power (MW)	Power Density at R = 20 cm (mW/cm2)	Limit	Result
13.56 MHz	-10.2dBm	±1	-9.2	0.12	0.00002	0.9789	Pass

Note: 1) Refer to report MTEB24080002-R for EUT test Max Conducted average Output Power value.

Note: 2) Pd = $(EIRP)/(4*Pi*R^2)=(0.12)/(4*3.1416*20^2)=0.00002$

Report No.: MTEB24080002-H Page 6 of 7

Contains FCCID: XMR202203FC80A

5.3 RF Exposure Evaluation Result

Evolution mode	Maximum Conducted power (dBm)	Antenna Gain (typical) (dBi):	Total Power (mw)	Distance (cm)	Power Density (mW/cm²)	Limit of Power Density (mW/cm²)	Power Density / Limit	Verdict
Bluetooth	8.00	1.00	7.943	20	1.00	0.002	0.002	Pass
2.4G WIFI	19.00	1.00	100.000	20	1.00	0.020	0.020	Pass
5.2G WIFI	16.00	1.00	50.119	20	1.00	0.010	0.010	Pass
5.3G WIFI	16.00	1.00	50.119	20	1.00	0.010	0.010	Pass
5.6G WIFI	16.00	1.00	50.119	20	1.00	0.010	0.010	Pass
5.8G WIFI	16.00	1.00	50.119	20	1.00	0.010	0.010	Pass

5.4 Collocated Power Density Calculation

Evolution mode	Frequency(MHz)	Power Density/Limit	Σ(Power Density / Limit) of Bluetooth + 2.4G WIFI + 5G WIFI	Verdict
Bluetooth	2400 MHz ~ 2483.5 MHz	0.002	5	
2.4G WIFI	2400 MHz ~ 2483.5 MHz	0.020	0.032	Pass
5.8G WIFI	5725 MHz ~ 5850 MHz	0.010	111111111111111111111111111111111111111	

Note:

- Σ(Power Density / Limit): This is a summation of [(power density for each transmitter/ antenna included in the simultaneous transmission)/ (corresponding MPE limit)], for WLAN + Bluetooth.
- 2. The worst-case situation is 0.032, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.
- The DUT work frequency range used is 2400 MHz ~ 2483.5 MHz and 5725 MHz ~ 5850 MHz the
 result close to the limit by the above formula, so we select worst case power to calculate the
 exclusion power threshold.
- 4. More power list please refer to RF test report.

Simultaneous TX (NFC+2.4G+BT+5G)

	Power Den	Conclusion	
Mode	Reaults	Limit	Conclusion
Simultaneous TX	0.0322	1.0	PASS

$$\sum_{l=1}^{a} \frac{P_{l}}{P_{\text{th},l}} + \sum_{j=1}^{b} \frac{ERP_{j}}{ERP_{\text{th},j}} + \sum_{k=1}^{c} \frac{Evaluated_{k}}{Exposure\ Limit_{k}} \leq 1$$

Reaults (NFC+2.4G+BT+5G) =0.0005568/3+0.002/1+0.020/1+0.010/1=0.0322

Report No.: MTEB24080002-H Page 7 of 7

Contains FCCID: XMR202008EC25AFXD:

Band	Maximum Conducted			PG		Limit	
	Output Power (dBm)	gain (dBi)	(dBm)	(mW)	Result (mW/cm ²)	Value (mW/cm ²)	Conclusion
WCDMA II	25.00	8.000	33.000	1995.262	0.397	1.000	Pass
WCDMA IV	25.00	5.000	30.000	1000.000	0.199	1.000	Pass
WCDMA V	25.00	9.416	34.416	2764.394	0.550	0.550	Pass
LTE Band 2	25.00	8.000	33.000	1995.262	0.397	1.000	Pass
LTE Band 4	25.00	5.000	30.000	1000.000	0.199	1.000	Pass
LTE Band 5	25.00	9.416	34.416	2764.394	0.550	0.550	Pass
LTE Band 12	25.00	8.734	33.734	2362.653	0.470	0.470	Pass
LTE Band 13	25.00	9.173	34.173	2613.966	0.520	0.520	Pass
LTE Band 14	25.00	9.255	34.255	2663.790	0.530	0.530	Pass
LTE Band 66	25.00	5.000	30.000	1000.000	0.199	1.000	Pass
LTE Band 71	25.00	8.545	33.545	2262.039	0.450	0.450	Pass

IMPORTANT NOTE: To comply with the FCC RF exposure compliance requirements, the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. No change to the antenna or the device is permitted. Any change to the antenna or the device could result in the device exceeding the RF exposure requirements and void user's authority to operate the device.

THE	END O	F REPORT	Г
I III		F NEFUN	