

FCC RF Test Report

APPLICANT	: PAX TECHNOLOGY LIMITED
EQUIPMENT	: POS Terminal
BRAND NAME	: PAX
MODEL NAME	: IM20
FCC ID	: V5PIM20BW
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter

The product was received on Aug. 31, 2020 and testing was completed on Sep. 27, 2020. We, Sporton International (ShenZhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (ShenZhen) Inc., the test report shall not be reproduced except in full.

Dogue Cher

Reviewed by: Derreck Chen / Supervisor

File Shih

Approved by: Eric Shih / Manager

Sporton International (ShenZhen) Inc. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	-
SU	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	7
	1.7	Test Software	8
	1.8	Applicable Standards	8
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	9
	2.1	Carrier Frequency Channel	9
	2.2	Test Mode	10
	2.3	Connection Diagram of Test System	11
	2.4	Support Unit used in test configuration and system	12
	2.5	EUT Operation Test Setup	12
	2.6	Measurement Results Explanation Example	12
3	TEST	RESULT	13
	3.1	Number of Channel Measurement	13
	3.2	Hopping Channel Separation Measurement	15
	3.3	Dwell Time Measurement	21
	3.4	20dB and 99% Bandwidth Measurement	23
	3.5	Output Power Measurement	34
	3.6	Conducted Band Edges Measurement	35
	3.7	Conducted Spurious Emission Measurement	42
	3.8	Radiated Band Edges and Spurious Emission Measurement	52
	3.9	AC Conducted Emission Measurement	56
	3.10	Antenna Requirements	58
4	LIST	OF MEASURING EQUIPMENT	59
5	UNCE	ERTAINTY OF EVALUATION	60
AP	PENDI	X A. CONDUCTED TEST RESULTS	
AP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PENDI	X C. RADIATED SPURIOUS EMISSION	
AP	PENDI	X D. DUTY CYCLE PLOTS	
AP	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR083107A	Rev. 01	Initial issue of report	Nov. 20, 2020

SUMMARY OF	TEST RESULT
------------	-------------

3.1 3.2	15.247(a)(1) 15.247(a)(1)	Number of Channels Hopping Channel	≥ 15Chs	Pass	
3.2	15.247(a)(1)	Hopping Channel			-
		Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.4	-	99% Bandwidth	-	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 10.99 dB at 78.50 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 15.71 dB at 0.700 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement s after assessing, test	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International (Shenzhen) Inc. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: V5PIM20BW

1 General Description

1.1 Applicant

PAX TECHNOLOGY LIMITED

Room 2416, 24/F, Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong

1.2 Manufacturer

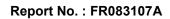
PAX Computer Technology (Shenzhen) Co., Ltd.

4/F, No.3 Building, Software Park, Second Central Science-Tech Road, High-Tech industrial Park, Shenzhen, Guangdong, P.R.C.

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment POS Terminal			
Brand Name	PAX		
Model Name	IM20		
FCC ID V5PIM20BW			
	WLAN 2.4GHz 802.11b/g/n HT20		
EUT supports Radios application	Bluetooth BR/EDR/LE		
	NFC		
HW Version	IM20-XXX-XXX-XXXX		
SW Version V0.0.0.1			
EUT Stage Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.



1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range2402 MHz ~ 2480 MHz			
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 9.12 dBm (0.0082 W) Bluetooth EDR (2Mbps) : 4.72 dBm (0.0030 W) Bluetooth EDR (3Mbps) : 4.73 dBm (0.0030 W)		
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.946MHz Bluetooth EDR (2Mbps) : 1.192MHz Bluetooth EDR (3Mbps) : 1.178MHz		
Antenna Type / Gain	Internal ceramic Antenna type with gain 0.50 dBi		
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International (Shenzhen) Inc.					
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
Test Site No.	te No. FCC Designation No. FCC Test Firm Registration No.					
	CO01-SZ TH01-SZ	CN1256 421272				
Test Firm	Sporton International (Shenzhen) Inc.					
Test Site Location	No. 3 Bldg the third floor of south, Shahe River west, Fengzeyuan Warehouse, Nanshan Shenzhen, 518055 People's Republic of China TEL: +86-755-33202398					
	Sporton Site No.	FCC Designation No.	FCC Test Firm			
Test Site No.	Sporton Site No.	r co besignation no.	Registration No.			
	03CH02-SZ	CN1256	421272			

1.7 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH02-SZ	AUDIX	E3	6.2009-8-24a
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

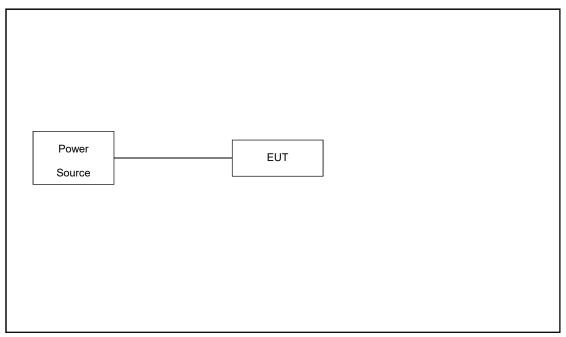
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

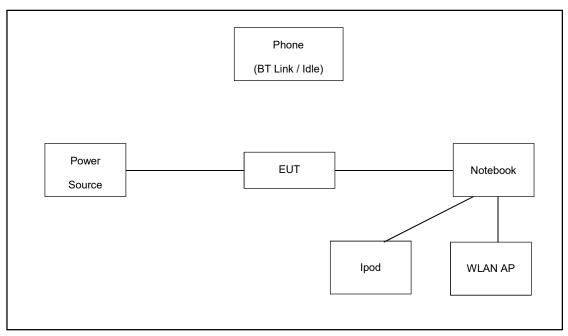
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


Summary table of Test Cases							
	Data Rate / Modulation						
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps				
	GFSK	π/4-DQPSK	8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
1631 04363	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
		Bluetooth BR 1Mbps GFSK					
Radiated	Radiated Mode 1: CH00_2402 MHz						
Test Cases		Mode 2: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz						
	Mode 1 : Bluetooth Link + 2	.4G Wifi Idle + USB load with I	Notebook + RS-232 load with				
AC	Notebook + Powered By Adapter						
Conducted	Mode 2 : Bluetooth Idle + 2.4G Wifi Link + USB load with Notebook + RS-232 load with						
Emission							
Remark:							
1. For radiate	1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate						
has the hig	hest RF output power at prelir	ninary tests, and no other sign	ificantly frequencies found in				
conducted	spurious emission.						
2. For AC Co	2. For AC Conducted Emission, the worst case is mode 1, only this mode is reported.						

The following summary table is showing all test modes to demonstrate in compliance with the standard.



2.3 Connection Diagram of Test System

For Radiated Emission:

For Conducted Emission:

2.4	Support Unit	used in test	configuration	and system
-----	--------------	--------------	---------------	------------

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	phone	N/A	N/A	N/A		N/A
2.	Notebook	Lenovo	E540	Fcc DoC	N/A	shielded cable DC O/P 1.8m Unshielded AC I/P cable 1.8m
3.	WLAN AP	ASUSTek	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,2.7m with Core
4.	IPod	Apple	MC525ZP/A	Fcc DoC	Shielded, 1.0m	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 10.0 dB and attenuator factor5.0 dB.

Offset(dB) = RF cable loss(dB) + attenuator factor (dB).

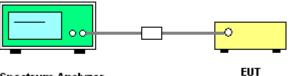
= 5.0 (dB) + 10.0 (dB) =15.0 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

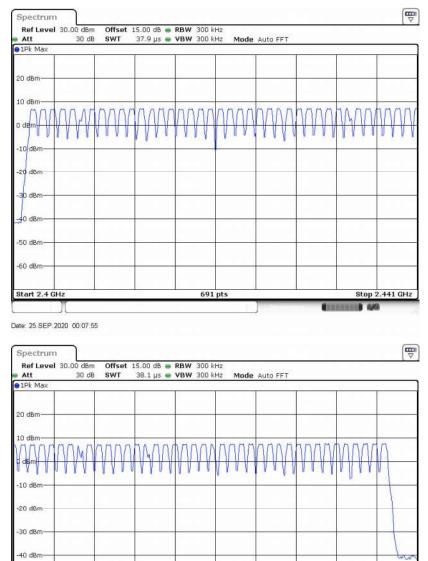

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

691 pts

Number of Hopping Channel Plot on Channel 00 - 78

Date: 25.SEP.2020 00:10:04

Start 2.441 GHz

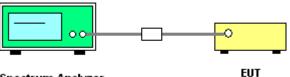
-50 dBm

Stop 2.4835 GHz

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

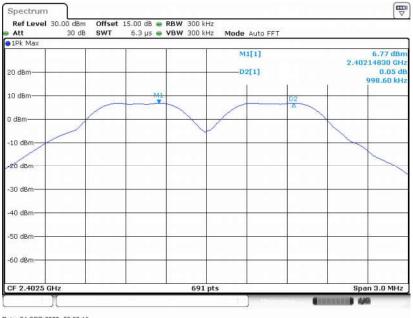
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

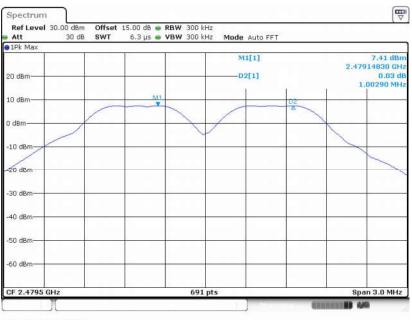
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

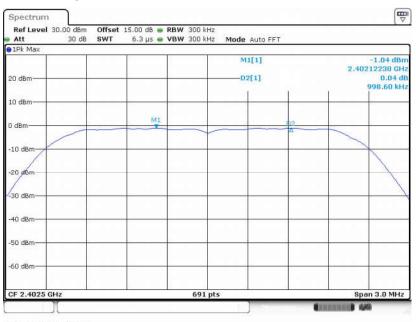
<1Mbps>

Channel Separation Plot on Channel 00 - 01



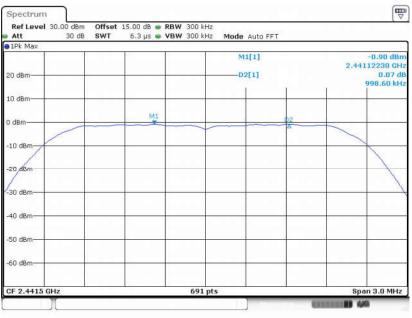
Date: 24.SEP.2020 22:32:18

Channel Separation Plot on Channel 39 - 40



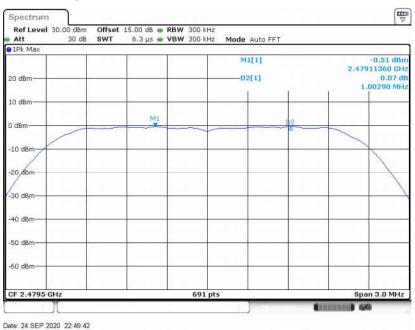
Channel Separation Plot on Channel 77 - 78

Date: 24.SEP 2020 22:44:19


<2Mbps>

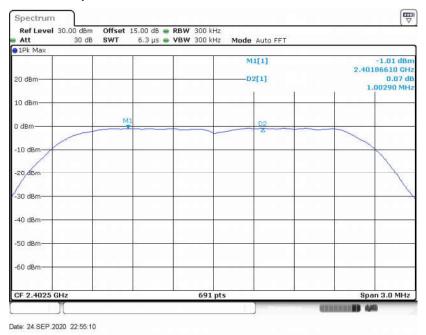
Channel Separation Plot on Channel 00 - 01

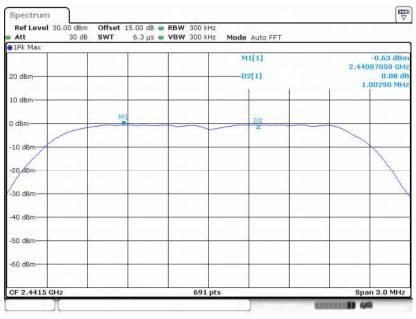
Date: 24.SEP 2020 22:45:56



Channel Separation Plot on Channel 39 - 40

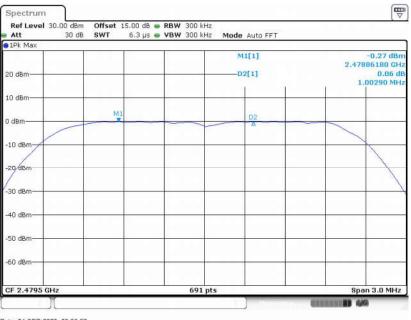
Date: 24.SEP 2020 22:47:58


Channel Separation Plot on Channel 77 - 78



<3Mbps>

Channel Separation Plot on Channel 00 - 01



Channel Separation Plot on Channel 39 - 40

Date: 24.SEP 2020 23:05:51

Channel Separation Plot on Channel 77 - 78

Date: 24.SEP 2020 23:06:57

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

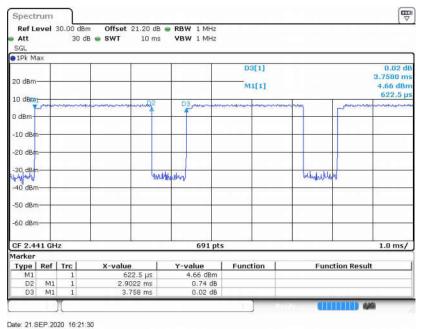
3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

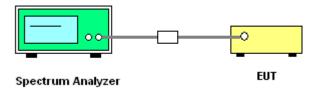
With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

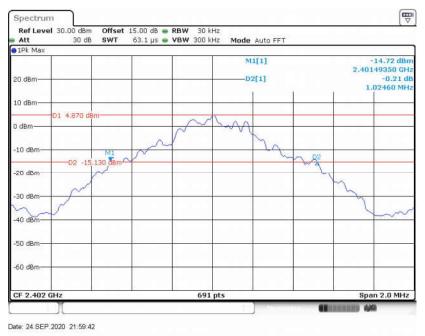

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

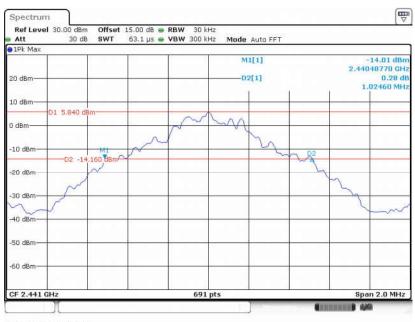
3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 99% bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

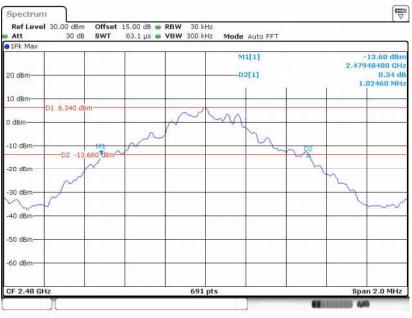

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.



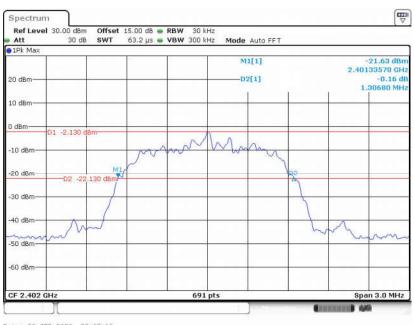
<1Mbps>

20 dB Bandwidth Plot on Channel 00



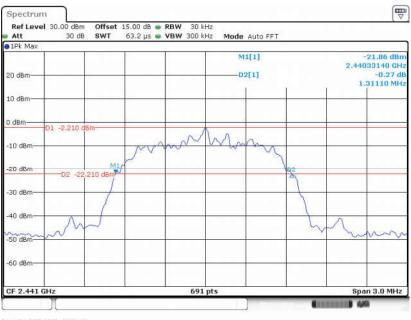
20 dB Bandwidth Plot on Channel 39

Date: 24.SEP 2020 22:09:21



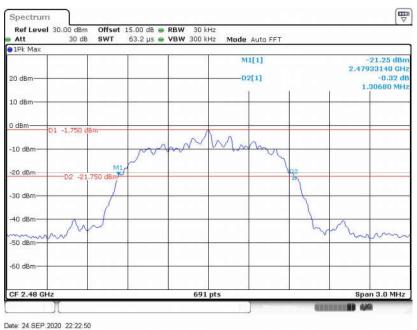
20 dB Bandwidth Plot on Channel 78

Date: 24.SEP.2020 22:17:27


<2Mbps>

20 dB Bandwidth Plot on Channel 00

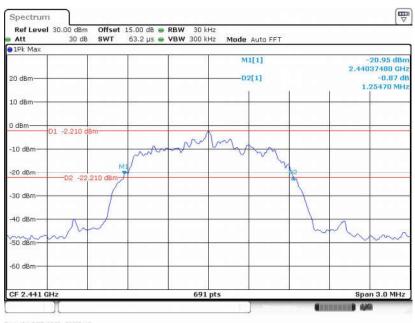
Date: 26.SEP.2020 22:07:13



20 dB Bandwidth Plot on Channel 39

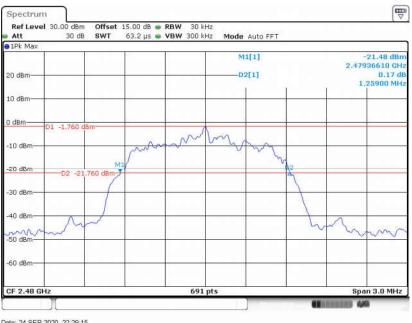
Date: 24.SEP 2020 22:21:01


20 dB Bandwidth Plot on Channel 78



<3Mbps>

20 dB Bandwidth Plot on Channel 00

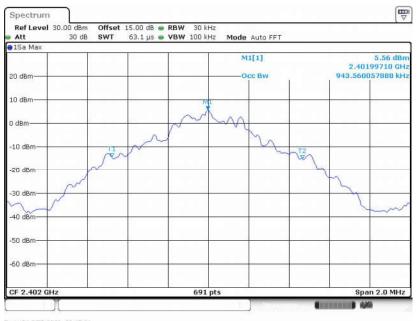


20 dB Bandwidth Plot on Channel 39

Date: 24.SEP.2020 22.27:46

20 dB Bandwidth Plot on Channel 78

Date: 24.SEP 2020 22:29:15



3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

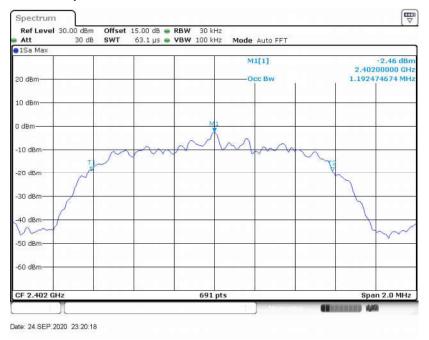
<1Mbps>

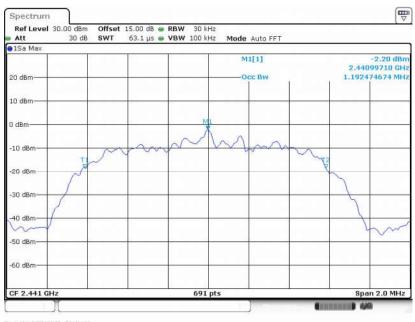
99% Occupied Bandwidth Plot on Channel 00

Date: 24.SEP 2020 23:17:21

99% Occupied Bandwidth Plot on Channel 39

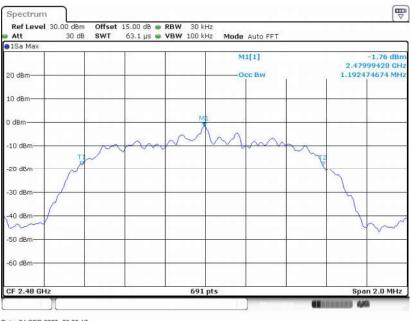
Date: 24.SEP.2020 23:18:23





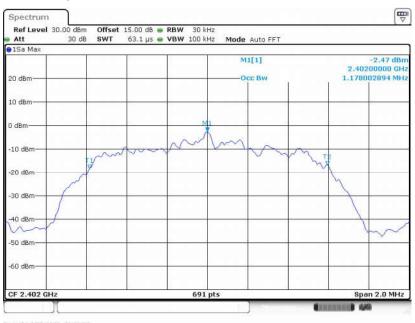
<2Mbps>

99% Occupied Bandwidth Plot on Channel 00



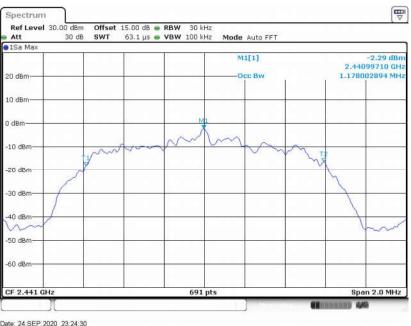
99% Occupied Bandwidth Plot on Channel 39

Date: 24.SEP 2020 23:21:09



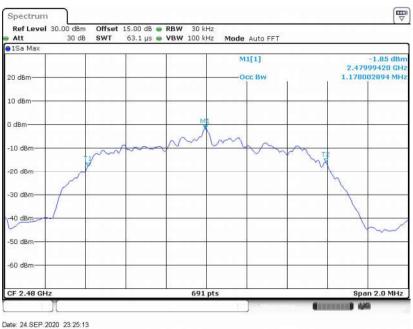
99% Occupied Bandwidth Plot on Channel 78

Date: 24.SEP.2020 23:22:17


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 24.SEP.2020 23:23:26



99% Occupied Bandwidth Plot on Channel 39

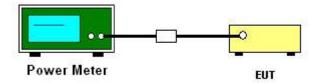
Date: 24.SEP.2020 23:24:30

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

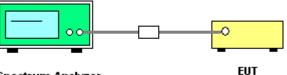
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

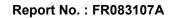
3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

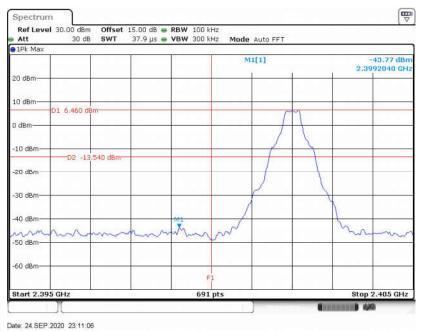
The measuring equipment is listed in the section 4 of this test report.

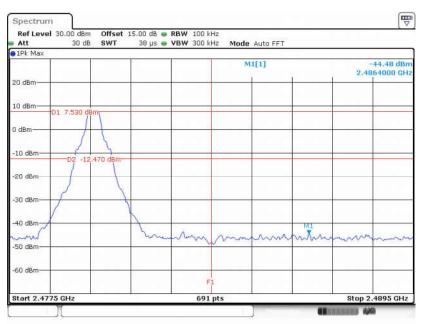

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

Spectrum Analyzer

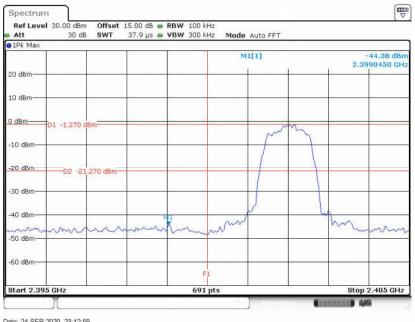



3.6.5 Test Result of Conducted Band Edges

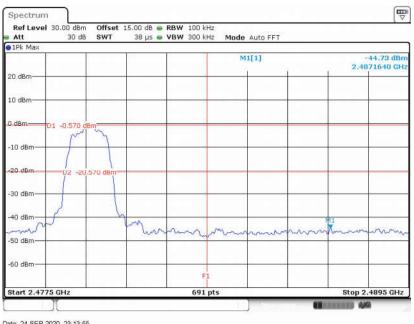
<1Mbps>

Low Band Edge Plot on Channel 00

High Band Edge Plot on Channel 78



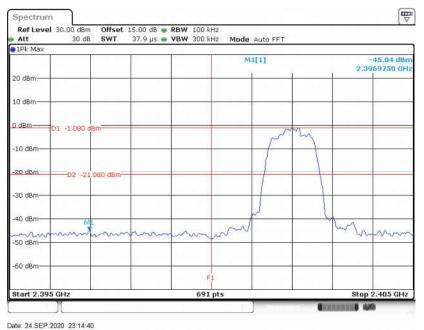
Date: 24.SEP 2020 23:12:15


<2Mbps>

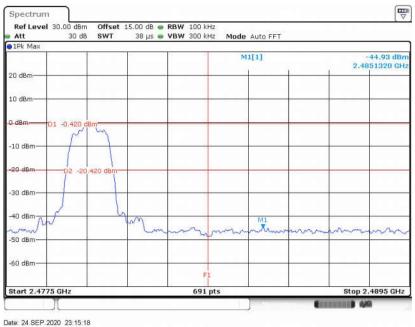
Low Band Edge Plot on Channel 00

Date: 24.SEP.2020 23:12:59

High Band Edge Plot on Channel 78



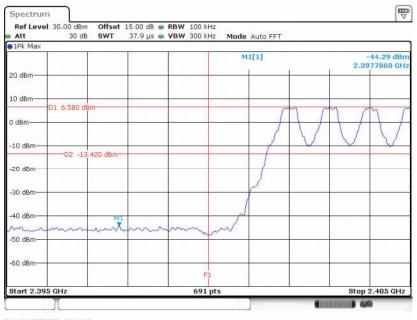
Date: 24.SEP.2020 23:13:55



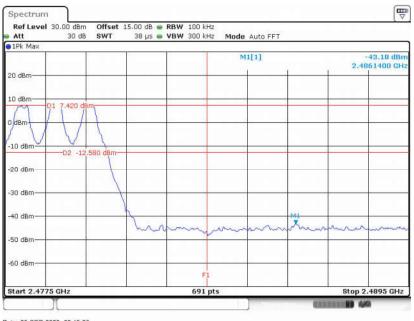
<3Mbps>

Low Band Edge Plot on Channel 00

High Band Edge Plot on Channel 78



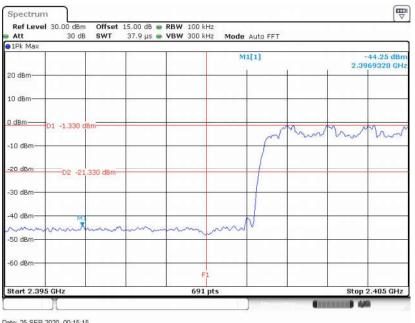
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

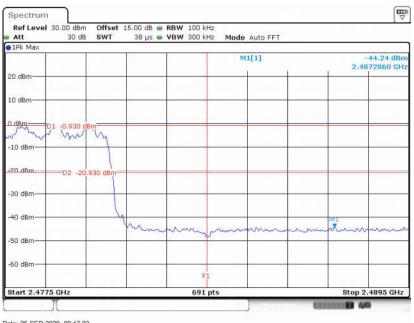
Hopping Mode Low Band Edge Plot

Date: 25.SEP.2020 00.11:25

Hopping Mode High Band Edge Plot



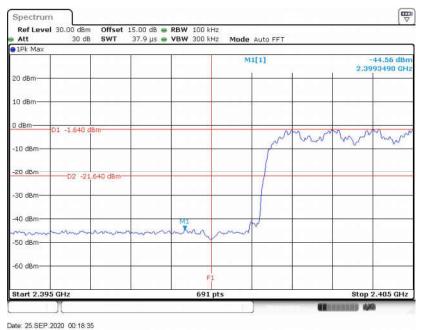
Date: 25.SEP.2020 00:13:26


<2Mbps>

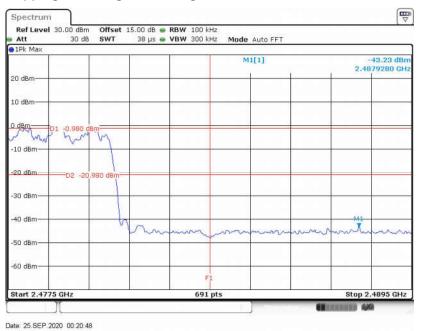
Hopping Mode Low Band Edge Plot

Date: 25.SEP.2020 00:15:15

Hopping Mode High Band Edge Plot



Date: 25.SEP.2020 00:17:02



<3Mbps>

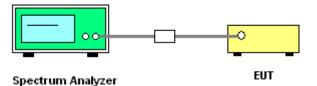
Hopping Mode Low Band Edge Plot

Hopping Mode High Band Edge Plot

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

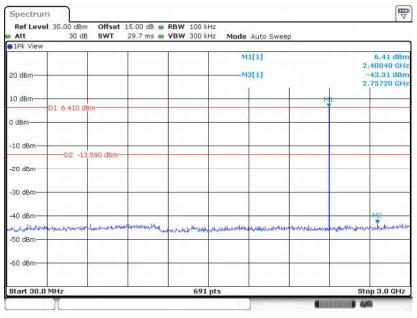

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

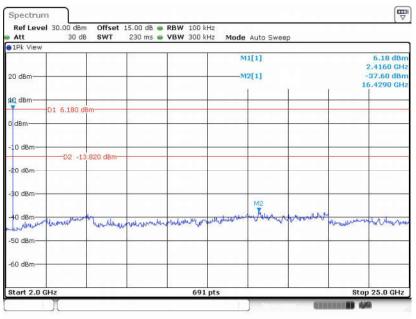
3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup



3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 24.SEP.2020 23:26:50

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 24.SEP.2020 23:27:20

Ref Level 30 Att	30 dBm Offse 30 dB SWT	et 15.00 dB 👄 1 29.7 ms 👄 1	VBW 300 kHz	Mode Auto Sweep		
1Pk View					-	
20 dBm				M1[1] M2[1]		6.35 dBn 2.43910 GH -43.01 dBn 2.67550 GH
10 dBm-01	6.350 dBm				M1	
0 dBm	0.000 0011	21 17				
-10 dBm	-D2 -13.650 dBr	0				
-20 dBm	10.000 001					
-30 dBm						
-40 dBm		and the state of the				MG
50 dBm	water	in the second		uterroleuropen	standynerochiladele	referthlematication
-60 dBm						
Start 30.0 MH	_	6	691 pts			Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 24.SEP.2020 23:32:05

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Leve Att	30.00 dBn 30 dB		15.00 dB 🖷 230 ms 🖷	RBW 100 ki VBW 300 ki		Auto Swee	p		
1Pk View							r		
20 dBm		E.				11[1]		1	5.93 dBn 2.4490 GH -38.01 dBn 6.3290 GH
10 dBm-						-			
T	D1 5.930 d	Bm							
0 dBm	5	2	<i>1</i> 7	6 <u>.</u> 32		-			
-10 dBm									
-10 ubin		4.070 dBm-							
-20 dBm									
-30 dBm									
						M2			
-0 dBm	night	Trinend	renteredate	naturn	managene	for the hard hard hard hard	and the second	muchanta	Huberton
-50 dBm				o o					
60 d0m									
-60 dBm			1×						
Start 2.0 G	Hz		2	691	pts			Stop	25.0 GHz
	Y							annaith 44	6

Date: 24.SEP.2020 23.32.35

Ref Leve	al 30.00 dBn 30 di			RBW 100 k		Auto Sweep			
1Pk View						Trace a map			
20 dBm			12 17			1[1] 2[1]			6.94 dBn 2.48210 GH -43.04 dBn 2.86890 GH
10 dBm								MI	
	D1 6.940 d	IBm		-				1	
0 dBm			87	<u>e</u> 13		9			
-10 dBm									
-20 dBm	-D2 -1	3.060 dBm-							
20 0011									
-30 dBm			ľ.						
-40 dBm			nine erer						M2
رمینیس/مینی 50 dBm	Walioshalasia	Honorshiend	warming w	- way where the	underinstants	been an able to	in other angle in the	Marriela	ale-don-solitones
-60 dBm									
Start 30.0	MH2		42	691	nte			61	op 3.0 GHz

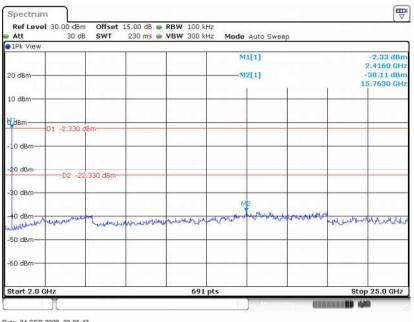
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 24.SEP.2020 23:33:29

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Ref Level Att	30.00 dBn 30 dB		15.00 dB 🖷 230 ms 🖷	RBW 100 ki VBW 300 ki		Auto Swee	p		
1Pk View							r		
20 dBm			12			1[1] 2[1]		1	6.15 dBr 2.4830 GH -37.93 dBr 7.1280 GH
10 dBm			2						
T	D1 6.150 d	Bm							
0 dBm		(p	17	5 - 13	ĩ				-
-10 dBm									
-10 abm-		3.850 d8m-							
-20 dBm									
-30 dBm						M2			
-40 dBm		44		10		V	bourse		
wounder	war war	kowa	working	hundration	herbana	4V.		wwww	month
-50 dBm		<u>.</u>				-		-	
-60 dBm									
Start 2.0 G	Hz		15	691	pts			Stor	25.0 GHz
	Y			0.000			EAM		6

Date: 24.SEP.2020 23:33:59


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

	the second se		
	M1[1] ———M2[1]		-1.90 dBn 2.40040 GH -42.55 dBn 848.80 MH
10 - 17			-
		MI	
		1	
and an under day	union the descended ward	unanewwww.	www.uhuhumunda
	pts		Stop 3.0 GHz

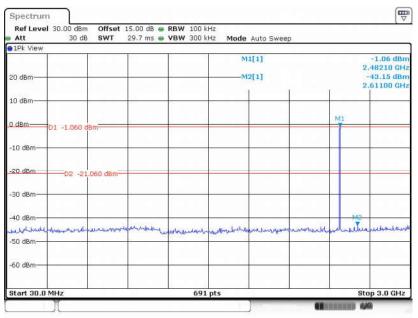
Date: 24.SEP.2020 23:35:14

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 24.SEP.2020 23:35:47

Ref Level	30.00 dBm 30 dB		15.00 dB =	VBW 300 ki		Auto Sweep			
1Pk View									
20 dBm						1[1] 2[1]			-1.70 dBn .43910 GH -42.51 dBn .15400 GH
10 dBm									-
0 dBm-D	1 -1.700 0	18m	17 72	ss				M1	
-10 dBm								-	
-20 dBm		.700 dBm							
-30 dBm									
-40 dBm-	harmana	مر میں	how we	Linnaraa	a . A should have	ennentennen	white and the second	Juhan MON	unantur
-50 dBm			Love 1						
-60 dBm								_	
Start 30.0 M	L17		12	691	nte		1	21	op 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz


Date: 24.SEP 2020 23:36:55

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

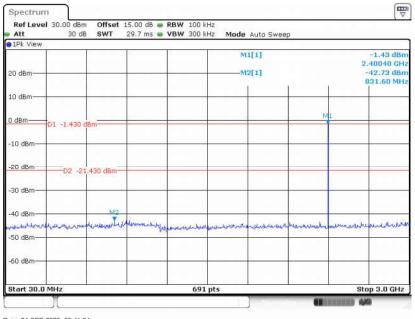
Att 30	dB SWT		RBW 100 kH VBW 300 kH		Auto Swee	5		
1Pk View								
20 dBm					1[1] 2[1]		6	-1.61 dBr 2.4490 GH -37.91 dBr 0.1570 GH
.0 dBm		2						
D1 -1.610) dBm							
10 dBm								
20 dBmD2 -	21.610 dBm	6						
30 dBm						M2		
40 dBm	the warmander	walkhnight	manytak	where the second	www.		hompolerre	howshire
50 dBm	-		2 0					-
60 dBm								
Start 2.0 GHz		8	691	ots			Stop	25.0 GHz

Date: 24.SEP.2020 23:37:25

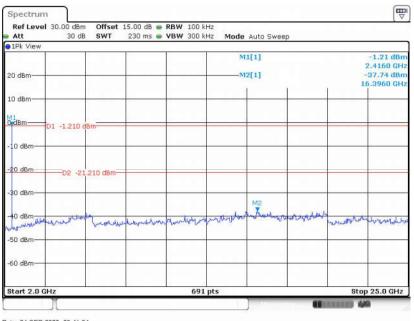
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 24.SEP.2020 23:38:17

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


				Auto Swee	N 1		
	2	5A A.F					
				1[1] 2[1]		1	-1.43 dBr 2.4830 GH -37.27 dBr 6.3960 GH
m							
30 dBm							
				M2			
Laboran	y how when	nununharia	way worked	Whendarto	who and	whender	unand
		9 <u>9</u> 9					-
		691	pts			Stop	25.0 GHz
	m	130 dBm	130 dBm		130 dBm	130 dBm- 130 dB	130 dBm

Date: 24.SEP.2020 23.38:46


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

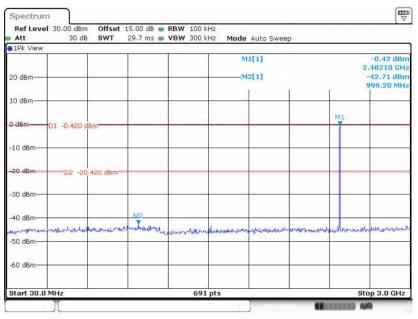
Date: 24.SEP.2020 23.41:04

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 24.SEP.2020 23:41:34

Att	30.00 dBm 30 dB		15.00 dB 👄 29.7 ms 👄	VBW 300 kH		Auto Sweep			
1Pk View									
20 dBm						1[1] 2[1]			-0.83 dBr 2.43910 GH -42.31 dBr 2.85170 GH
10 dBm									
1 dBm —			W					M1	
111000-	D1 -0.830 c	Bm	25	8 8					
10 dBm-		-		-					
20. dBm	D2 -20	.830 dBm	-						
-30 dBm									
40 dBm		2	1						M2
50 dBm	monormant	mound	ere work with the	manderstand	nantralisati	Jurmania	hannen	thowen	linoralia
60 dBm									
Start 30.0	мна		40.	691	nts			9	top 3.0 GHz
	Y							and the second s	

CSE Plot on Ch 39 between 30MHz ~ 3 GHz


Date: 25.SEP.2020 00:03:15

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level 30.00 dB		00 dB 👄 RBW 10 ms 👄 VBW		lode Auto Swee	ep	
1Pk View						
20 dBm				M1[1] —M2[1]		-1.31 dBr 2.4490 GH -37.70 dBr 19.5580 GH
10 dBm					-	
D dBm D1 -1.310	dBm					
-10 dBm						
-20 dBm	21.310 dBm					
-30 dBm					M2	
-0 dBm	a Humanauma	romania	matricenter	warrant ward		monthlender
-50 dBm						
-60 dBm						
Start 2.0 GHz	-		691 pts		() ()	Stop 25.0 GHz

Date: 25.SEP.2020 00:03:44

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 25.SEP.2020 00:04:31

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Ref Level Att	30.00 dBm 30 dB	Offset SWT		RBW 100 kH VBW 300 kH		Auto Swee	p		
1Pk View		 							
20 dBm						1[1] 2[1]		1	-1.11 dBr 2.4830 GH -37.17 dBr 6.3960 GH
10 dBm			2				-		
M1 DydBm	1 -1.110 d	8m	9						
	1 1.110 0	Sill							
-10 dBm									
-20 dBm	-D2 -21	.110 dBm							
-30 dBm									
						M2			
-40 dBm	whitewa	Thornwood	rational	mannen	winder	Mund	and when a when	Bullimours	hypothete
-50 dBm		-		0 0					
-60 dBm									
Start 2.0 GH	2		1	691	nte			Stor	25.0 GHz
atart 2.0 Gr	Y			091	ns -				3 23.0 GH2

Date: 25.SEP.2020 00:05:02

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

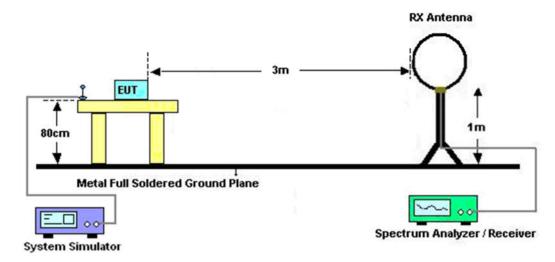
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

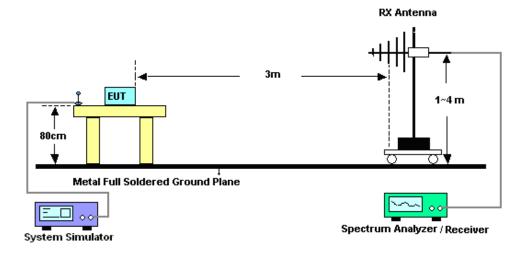
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

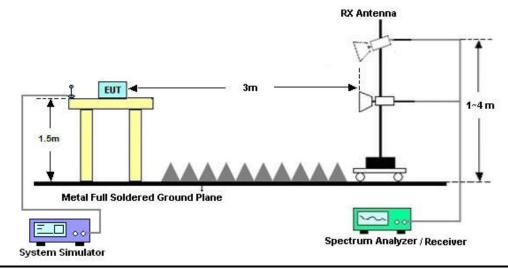
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Shenzhen) Inc. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID: V5PIM20BW Page Number: 54 of 60Report Issued Date: Nov. 20, 2020Report Version: Rev. 01Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

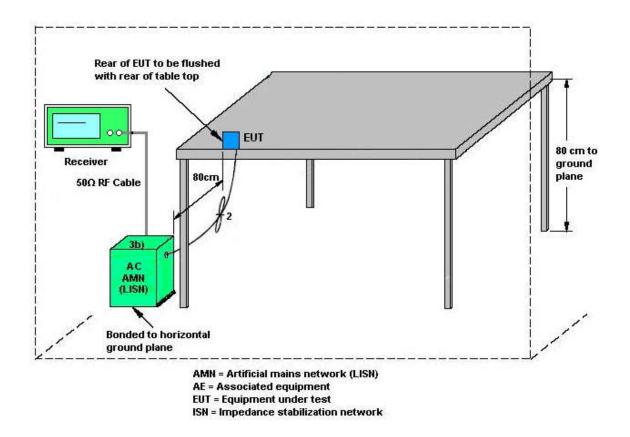
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 17, 2020	Sep. 21, 2020~ Sep. 25, 2020	Apr. 16, 2021	Conducted (TH01-SZ)
Spectrum Analyzer	R&S	FSP30	101400	9KHz~30GHz	Dec. 27, 2019	Sep. 21, 2020~ Sep. 25, 2020	Dec. 26, 2020	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Dec. 26, 2019	Sep. 21, 2020~ Sep. 25, 2020	Dec. 25, 2020	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Dec. 26, 2019	Sep. 21, 2020~ Sep. 25, 2020	Dec. 25, 2020	Conducted (TH01-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 21, 2020	Sep. 27, 2020	Jul. 20, 2021	Radiation (03CH02-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 22, 2020	Sep. 27, 2020	Jun. 21,, 2022	Radiation (03CH02-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Jul. 15, 2020	Sep. 27, 2020	Jul. 14, 2021	Radiation (03CH02-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Jul. 25, 2020	Sep. 27, 2020	Jul. 24, 2021	Radiation (03CH02-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 23, 2020	Sep. 27, 2020	Apr. 22, 2021	Radiation (03CH02-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 21. 2020	Sep. 27, 2020	Jul. 20. 2021	Radiation (03CH02-SZ)
LF Amplifier	Burgeon	BPA-530	102211	0.01~3000Mhz	Oct. 17,2019	Sep. 27, 2020	Oct. 16,2020	Radiation (03CH02-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 17,2019	Sep. 27, 2020	Oct. 16,2020	Radiation (03CH02-SZ)
HF Amplifier	KEYSIGHT	83017A	MY532701 05	0.5GHz~26.5Gh z	Oct. 17,2019	Sep. 27, 2020	Oct. 16,2020	Radiation (03CH02-SZ)
AC Power Source	Chroma	61601	616010002 470	N/A	NCR	Sep. 27, 2020	NCR	Radiation (03CH02-SZ)
Turn Table	Chaintek	T-200	N/A	0~360 degree	NCR	Sep. 27, 2020	NCR	Radiation (03CH02-SZ)
Antenna Mast	Chaintek	MBS-400	N/A	1 m~4 m	NCR	Sep. 27, 2020	NCR	Radiation (03CH02-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Dec. 27, 2019	Sep. 24, 2020	Dec. 26, 2021	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Dec. 27, 2019	Sep. 24, 2020	Dec. 26, 2020	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 17, 2019	Sep. 24, 2020	Oct. 16, 2020	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 21, 2020	Sep. 24, 2020	Jul. 20, 2021	Conduction (CO01-SZ)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.7dB
of 95% (U = 2Uc(y))	2.708

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VUB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.VUD

Appendix A. Conducted Test Results

Report Number : FR083107A

Appendix A. Test Result of Conducted Test Items

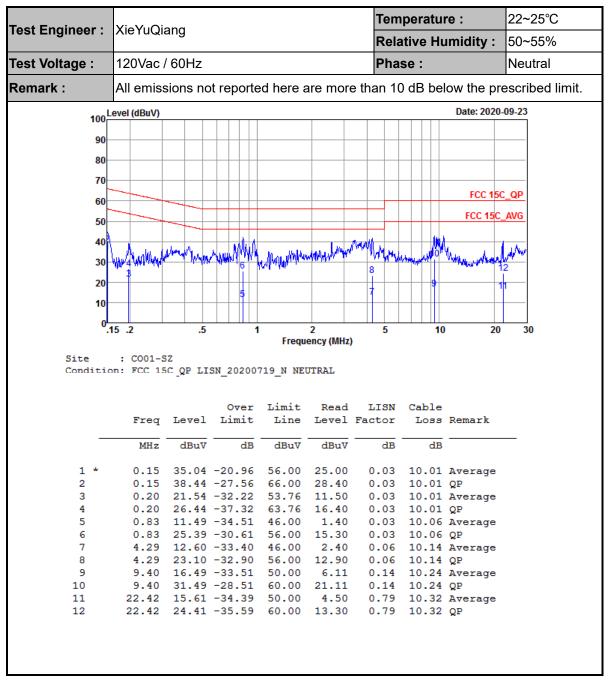
Test Engineer:	Chen hong	Temperature:	21~25	°C
Test Date:	2020/9/21~2020/9/25	Relative Humidity:	51~54	%

			20d	B and	99% Occu		ULTS DATA th and Hopping (Channel Separati	ion
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	1.025	0.944	0.999	0.6831	Pass
DH	1Mbps	1	39	2441	1.025	0.946	0.999	0.6831	Pass
DH	1Mbps	1	78	2480	1.025	0.944	1.003	0.6831	Pass
2DH	2Mbps	1	0	2402	1.307	1.192	0.999	0.8712	Pass
2DH	2Mbps	1	39	2441	1.311	1.192	0.999	0.8741	Pass
2DH	2Mbps	1	78	2480	1.307	1.192	1.003	0.8712	Pass
3DH	3Mbps	1	0	2402	1.263	1.178	1.003	0.8423	Pass
3DH	3Mbps	1	39	2441	1.255	1.178	1.003	0.8365	Pass
3DH	3Mbps	1	78	2480	1.259	1.178	1.003	0.8393	Pass

			<u>TES</u>	ST RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

					<u>ST RESUL</u> Peak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	8.56	20.97	Pass
DH1	39	1	8.81	20.97	Pass
	78	1	9.12	20.97	Pass
	0	1	4.35	20.97	Pass
2DH1	39	1	4.49	20.97	Pass
í ľ	78	1	4.72	20.97	Pass
	0	1	4.54	20.97	Pass
3DH1	39	1	4.62	20.97	Pass
	78	1	4.73	20.97	Pass

				Av	<u>ST RESULTS DATA</u> rerage Power Table (Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	6.80	5.13	
DH1	39	1	7.10	5.13	
	78	1	7.40	5.13	
	0	1	-0.50	5.05	
2DH1	39	1	-0.30	5.05	
	78	1	0.10	5.05	
	0	1	-0.50	5.09	
3DH1	39	1	-0.30	5.09	1
	78	1	0.10	5.09	


		<u>TEST RE</u> Number of Ho	SULTS DA opping Free
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

Appendix B. AC Conducted Emission Test Results

Test Voltage : 1 Remark : A	(ieYuQiar 20Vac / (All emissio evel (dBuV)	60Hz	reported	here ar	e more 1	Phase		w the pre	50~55% Line escribed limit.
Remark : A	All emissio		reported	here ar	e more f				
100		ons not	reported	here ar	e more i	than 10 o	dB belo		scribed limit.
90 - 80 - 70 - 60 - 50 -	evel (dBuV)								
90 - 80 - 70 - 60 - 50 -								Date: 2020)-09-23
70 60 50									
70 60 50									
60 50									
50								FCC 15	C_QP
4								FCC 15C	
40							Ma	100100	
	"manifer they do	When with a strip	Man harring	Malanda	WHAT A BURNEY	<u></u>]₩₩₩4		May .	t it i
30		4		a subs				"White way the party	12
20		3					<mark>9</mark>		11
10									<u> </u>
0									
.1	5.2	.5	1		2 ency (MHz)	5	10	20	0 30
Site Conditio	: CO01-S m: FCC 15		5N_202007	719_L LIN	NE				
			Over	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark	
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.15	35.94	-19.97	55.91	25.90	0.03	10.01	Average	
2	0.15		-26.37		29.50		10.01		
3	0.34		-30.57		8.70			Average	
4 5 *	0.34		-30.67 -15.71		18.60 20.20		10.01	QP Average	
6	0.70			56.00			10.07		
7			-25.18		10.50			Average	
8	4.20			56.00			10.14	-	
9	9.40	18.58	-31.42	50.00	8.00			Average	
10	9.40	32.78	-27.22	60.00	22.20	0.34	10.24	QP	
	22.30	14.15	-35.85	50.00	2.49	1.34	10.32	Average	
11	22 30	24.95	25 25	CO O C					

Note:

1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)

2. Over Limit(dB) = Level(dBµV) – Limit Line(dBµV)

Appendix C. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2375.21	44.85	-30.15	74	43.47	27.77	5.53	31.92	252	288	Р	Н
		2375.21	20.06	-33.94	54	-	-	-	-	252	288	Α	Н
DT	*	2402	96.14	-	-	94.79	27.7	5.55	31.9	252	288	Р	Н
ВТ СН00	*	2402	71.35	-	-	-	-	-	-	252	288	А	Н
2402MHz		2374.89	44.26	-29.74	74	42.89	27.77	5.53	31.93	236	207	Р	V
240210112		2374.89	19.47	-34.53	54	-	-	-	-	236	207	А	V
	*	2402	96.93	-	-	95.58	27.7	5.55	31.9	236	207	Р	V
	*	2402	72.14	-	-	-	-	-	-	236	207	А	V
		2375.24	42.36	-31.64	74	40.98	27.77	5.53	31.92	266	290	Р	Н
		2375.24	17.57	-36.43	54	-	-	-	-	266	290	А	Н
	*	2441	96.33	-	-	94.98	27.6	5.61	31.86	266	290	Р	н
	*	2441	71.54	-	-	-	-	-	-	266	290	А	Н
		2491.25	42.09	-31.91	74	40.82	27.4	5.68	31.81	266	290	Р	Н
BT		2491.25	17.3	-36.7	54	-	-	-	-	266	290	А	Н
CH 39 2441MHz		2383.36	42.17	-31.83	74	40.79	27.77	5.53	31.92	236	216	Р	V
2441101712		2383.36	17.38	-36.62	54	-	-	-	-	236	216	А	V
	*	2441	96.71	-	-	95.36	27.6	5.61	31.86	236	216	Р	V
	*	2441	71.92	-	-	-	-	-	-	236	216	А	V
		2495.17	42.54	-31.46	74	41.26	27.4	5.68	31.8	236	216	Р	V
		2495.17	17.75	-36.25	54	-	-	-	-	236	216	А	V

BT (Band Edge @ 3m)

		2480	95.56	-	-	94.25	27.47	5.66	31.82	302	288	Р	Н
		2480	70.77	-	-	-	-	-	-	302	288	А	Н
	*	2483.84	44.79	-29.21	74	43.48	27.47	5.66	31.82	302	288	Ρ	Н
BT	*	2483.84	20	-34	54	-	-	-	-	302	288	А	Н
CH 78 2480MHz		2480	97.95	-	-	96.64	27.47	5.66	31.82	159	170	Ρ	V
240010172		2480	73.16	-	-	-	-	-	-	159	170	А	V
	*	2484.04	44.41	-29.59	74	43.1	27.47	5.66	31.82	159	170	Ρ	V
	*	2484.04	19.62	-34.38	54	-	-	-	-	159	170	А	V
Remark		o other spurio I results are P		st Peak	and Avera	ge limit lin	e.						

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
	Image: Constraint of the constrated of the constraint of the constraint of the constraint of the	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	1					
		4804					31.1	8.68	54.38	160	360	P	Н
BT		4804	14.93	-39.07	54					160	360	А	Н
		4804	40.64	-33.36	74	55.24	31.1	8.68	54.38	160	360	Р	V
2402101712		4804	15.85	-38.15	54					160	360	А	V
		4882	39.86	-34.14	74	54.29	31.13	8.79	54.35	150	258	Р	Н
		4882	15.07	-38.93	54					150	258	А	Н
		7323	48.04	-25.96	Line (dBµV/m) Level (dBµV) Factor (dB/m) Loss (dB) Factor (dB) Pos (dB) Avg. (deg) H 74 54.32 31.1 8.68 54.38 160 360 P H 54 74 55.24 31.1 8.68 54.38 160 360 P V 54 74 55.24 31.1 8.68 54.38 160 360 P V 54 74 54.29 31.13 8.79 54.35 150 258 P H 54 74 54.29 31.13 8.79 54.53 150 258 A H 74 55.08 36.4 11.09 54.53 150 258 P V 54 7 64.92 31.13 8.79 54.35 150 258 P V 54 7 54.92 31.13 8.79 54.53 150 258 A V 7								
		Limit Line Level Factor Loss Factor Pos Pos Pvs	Н										
		4882	40.49	-33.51	74	54.92	31.13	8.79	54.35	150	258	Р	V
244 111172		4882	15.7	-38.3	54					150	258	А	V
		(MHz) (dBµV/m) (dB) (dBµV/m) (dBµV/m) (dBµV) (daµV) (dBµV) (daµ	36.4	11.09	54.53	152	309	Ρ	V				
		7323	21.62	-32.38	54					152	309	А	V
		4960	41.65	-32.35	74	54.66	31.37	9.93	54.31	163	120	Р	Н
	CH 00 4804 14.93 -39.07 54 64 64 160 1 02MHz 4804 40.64 -33.36 74 55.24 31.1 8.68 54.38 160 1 4804 15.85 -38.15 54 160 1 4882 39.86 -34.14 74 54.29 31.13 8.79 54.35 150 1 7323 48.04 -25.96 74 55.08 36.4 11.09 54.53 152 1 7323 23.25 -30.75 54 152 1 152 1 152 1 152 1 1 152 1 150 1	120	А	Н									
DT		7440	Limit Line Level Factor Loss Factor Pos Pos Avg. 39.72 -34.28 74 54.32 31.1 8.68 54.38 160 360 P H 40.64 -33.36 74 55.24 31.1 8.68 54.38 160 360 A H 40.64 -33.36 74 55.24 31.1 8.68 54.38 160 360 A V 15.85 -38.15 54 - - - 160 360 A V 39.86 -34.14 74 54.29 31.13 8.79 54.35 150 258 P H 15.07 -38.93 54 - - 152 309 P H 23.25 -30.75 54 - - 152 309 A V 15.7 -38.3 54 - - 152 309 A										
		7440	22.81	-31.19	54					185	160 360 P H 160 360 A H 160 360 P V 160 360 A V 160 360 A V 160 360 A V 160 360 A V 150 258 P H 152 309 P H 150 258 A V 152 309 A H 150 258 A V 151 258 A V 152 309 A V 152 309 P V 152 309 A V 152 309 A V 153 120 P H 163 120 A H 185 205 A H 163 120 A V 163 120 A V 163		
2480MHz		4960	82 39.86 -34.14 74 54.29 31.13 8.79 54.35 150 258 P 82 15.07 -38.93 54 - - - 150 258 A 23 48.04 -25.96 74 55.08 36.4 11.09 54.53 152 309 P 23 23.25 -30.75 54 - - 150 258 P 82 40.49 -33.51 74 54.92 31.13 8.79 54.35 150 258 P 82 40.49 -33.51 74 54.92 31.13 8.79 54.35 150 258 P 82 15.7 -38.3 54 - - 150 258 A 23 21.62 -32.38 54 - - 152 309 P 23 21.62 -32.35 74 54.66 31.37 9.93 54.31 163 120 P 60 16.86 -37.14 54	V									
240011112		4960	17.09	-36.91	54					163	120	А	V
		7440	47.49	-26.51	74	53.61	36.5	12.03	54.65	185	205	Р	V
		7440	22.7	-31.3	54					185	205	А	V
Remark		•		st Peak	and Averag	7454.8931.379.9354.31163120PV54163120AV7453.6136.512.0354.65185205PV54185205AV							

Emission below 1GHz

2.4GHz BT (LF)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		78.5	29.01	-10.99	40	46.98	12.62	1.01	31.6	100	143	Р	Н
		158.04	30.63	-12.87	43.5	44.47	16.13	1.41	31.38	-	-	Р	Н
		284.14	32.33	-13.67	46	42.97	18.96	1.89	31.49	-	-	Р	Н
		353.01	32.52	-13.48	46	41.2	20.53	2.1	31.31	-	-	Р	Н
0.4011-		422.85	34.56	-11.44	46	41.57	22.12	2.31	31.44	-	-	Ρ	Н
2.4GHz BT		897.18	32.85	-13.15	46	34.29	26.69	3.36	31.49	-	-	Ρ	Н
LF		80.44	27.92	-12.08	40	45.89	12.6	1.03	31.6	100	185	Ρ	V
-		167.74	29.02	-14.48	43.5	43.23	15.7	1.45	31.36	-	-	Ρ	V
		221.09	30.12	-15.88	46	44.5	15.41	1.67	31.46	-	-	Р	V
		290.93	28.28	-17.72	46	38.75	19.07	1.91	31.45	-	-	Р	V
		418.97	28.6	-17.4	46	35.69	22.05	2.3	31.44	-	-	Р	V
		664.38	32.02	-13.98	46	35.67	24.96	2.88	31.49	-	-	Ρ	V
Remark		o other spurio I results are F		st limit li	ne								
	<u>2</u> . AI		AGO ayana	51 111111	no.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

```
= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)
```

```
= 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) - 35.86 (dB)
```

- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".



Appendix D. Duty Cycle Plots

LEYS L J	HGH1	Couplin Align (RE NG DC DN	Cor	ut Z: 50 Ω rections Off q Ret Int (S)	#Atten:	10 dB	PNO Fast Gale Off IF Gain Low Sig Track O	Ing. Free H	W tr	3456 ₩₩₩₩ ₽₽₽₽		
	rum Div 10 i	dB	•					Ref Level 10	6.99 dBµV				4 560.0 2.35 dB
70 70 70 70 70 70		4			ti uti davayin yina ti	4	1Δ2	<u>∂3∆4</u>				* ******	
	Astro						warunhit	ukun			Britagermyffell		
	2.4410 N 1.0 N	00000 (Hz	GHz					#Video BW	1.0 MHz			Sweep 10.0	Span 0 ms (1001)
Mark	er Table		•										
	Mode	Trace	Scale		x			Y	Function	Function	Width	Function	Value
1 2	Δ2 N			(Δ)		2.880 m 560.0 µ		2.065 82.35 dB					
3	Δ4	1	t	(Δ)		3.750 m	s (Δ)	0.02131	dB				
4 5 6	N	1	t			560.0 µ	\$	82.35 dB	μV				

3DH5 on time (One Pulse) Plot on Channel 39

3DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.