

Page 1 of55

TEST REPORT

Product Name	:	Wireless Mouse
Brand Mark	:	TeckNet or TECKNET
Model No.	:	EWM01004
FCC ID	:	2AK8Q-EWM01004
Report Number	:	BLA-EMC-202202-A2102
Date of Sample Receipt	:	2022/2/22
Date of Test	:	2022/2/23 to 2022/3/8
Date of Issue	:	2022/3/8
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Shenzhen Unichain Technology Co., Ltd 201, 2nd Floor, Building C, Shanhai Commercial Plaza, Huangjunshan District, Bantian Street, Longgang District, Shenzhen, China Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

needs Compiled by: Review by: 2022/3/8 Approved by:

REPORT REVISE RECORD

Version No.	Date	Description	
00	2022/3/8	Original	

TABLE OF CONTENTS

1	ΤE	ST SUMMARY	5
2	GE	ENERAL INFORMATION	6
3	GE	ENERAL DESCRIPTION OF E.U.T	6
4	TE	ST ENVIRONMENT	7
5	TE	ST MODE	7
6		EASUREMENT UNCERTAINTY	
_		ESCRIPTION OF SUPPORT UNIT	
7 8		BORATORY LOCATION	
9	ΤE	EST INSTRUMENTS LIST	9
10	СС	ONDUCTED BAND EDGES MEASUREMENT	
1	.0.1	LIMITS	12
1	.0.2	BLOCK DIAGRAM OF TEST SETUP	
1	.0.3	TEST DATA	13
11	СС	ONDUCTED SPURIOUS EMISSIONS	14
1	.1.1	LIMITS	14
1	.1.2	BLOCK DIAGRAM OF TEST SETUP	14
1	.1.3	TEST DATA	15
12	PC	OWER SPECTRUM DENSITY	16
1	.2.1	LIMITS	16
1	.2.2	BLOCK DIAGRAM OF TEST SETUP	16
1	.2.3	ТЕЅТ DATA	16
13	СС	ONDUCTED PEAK OUTPUT POWER	17
1	.3.1	LIMITS	17
1	.3.2	BLOCK DIAGRAM OF TEST SETUP	17
1	.3.3	TEST DATA	18
14	MI	NIMUM 6DB BANDWIDTH	19
1	.4.1	LIMITS	19
1	.4.2	BLOCK DIAGRAM OF TEST SETUP	19
1	.4.3	TEST DATA	19

15	ANT		20
1	5.1	CONCLUSION	20
16	RAD	DIATED SPURIOUS EMISSIONS	21
1	6.1	LIMITS	21
1	6.2	BLOCK DIAGRAM OF TEST SETUP	22
1	6.3	PROCEDURE	22
1	6.4	TEST DATA	24
17	RAD	DIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	32
1	7.1	LIMITS	
1	7.2	BLOCK DIAGRAM OF TEST SETUP	
1	7.3	PROCEDURE	
1	7.4	TEST DATA	35
18	APF	ENDIX	39
		Maximum Conducted Output Power	
_	8.1	-6DB BANDWIDTH	
_	8.2	-6DB BANDWIDTH	
_	8.3	Occupied Channel Bandwidth	
_	8.4	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
_	8.5	Conducted RF Spurious Emission.	
1	8.6	CONDUCTED RF SPURIOUS EMISSION	50
APF	PEND	IX A: PHOTOGRAPHS OF TEST SETUP	54
APF	PEND	X B: PHOTOGRAPHS OF EUT	55

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	N/A	
Conducted Band Edges Measurement	Conducted Band 47 CFR Part 15,		47 CFR Part 15, Subpart C 15.247(d)	Pass	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass	
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass	
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass	
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass	

2 GENERAL INFORMATION

Applicant	Shenzhen Unichain Technology Co., Ltd		
Address	201, 2nd Floor, Building C, Shanhai Commercial Plaza, Huangjunshan District, Bantian Street, Longgang District, Shenzhen, China		
Manufacturer	Shenzhen Unichain Technology Co., Ltd		
Address	201, 2nd Floor, Building C, Shanhai Commercial Plaza, Huangjunshan District, Bantian Street, Longgang District, Shenzhen, China		
Factory	Dongguan Newmen Electronics Technology Co.,Ltd.		
Address No.5, Xifa Road, Lin Village, Tangxia Town, Dongguan City, Guang Province, China			
Product Name	Wireless Mouse		
Test Model No.	EWM01004		

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	N/A
Software Version	N/A
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	Chip Antenna
Antenna Gain:	2.08dBi (Provided by the applicant)

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	+25°C	3.3Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION	
ТХ	Keep the EUT in transmitting mode	
Dama and a Oralis of the	a data of the women mode would be recorded in this you at	

Remark: Only the data of the worst mode would be recorded in this report.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission(9kHz-30MHz)	±4.34dB	
Radiated Emission(30Mz-1000MHz)	±4.24dB	
Radiated Emission(1GHz-18GHz)	±4.68dB	
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB	

Parameter	Expanded Uncertainty (Confidence of 95%)		
Occupied Channel Bandwidth	±5 %		
RF output power, conducted	±1.5 dB		
Power Spectral Density, conducted	±3.0 dB		
Unwanted Emissions, conducted	±3.0 dB		
Temperature	±3 °C		
Supply voltages	±3 %		
Time	±5 %		
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB		
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB		

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Band Edges Measurement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of	Power Spectrum	Density			
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Peak Output Power				
Equipment Manufacturer Model S/N Cal.Date Cal.Due				

Report No.: BLA-EMC-202202-A2102 Page 10 of55

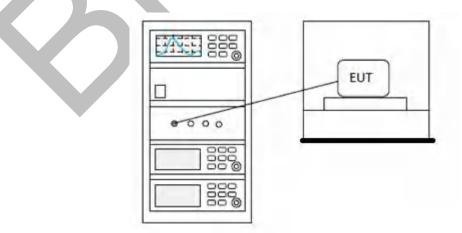
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022
		1			

Test Equipment Of Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022
					1

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Radiated Emissions which fall in the restricted bands

rest Equipment of Rudiated Emissions which fail in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022


10 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2			
Test Mode (Pre-Scan)	ТХ			
Test Mode (Final Test)	ТХ			
Tester	York			
Temperature	25°C			
Humidity	52%			

10.1 LIMITS

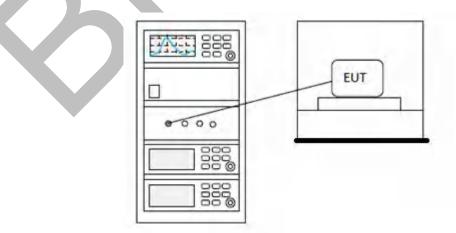
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

10.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202202-A2102 Page 13 of55

10.3 TEST DATA

Pass: Please Refer To Appendix: For Details


11 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11			
Test Mode (Pre-Scan)	ТХ			
Test Mode (Final Test)	ТХ			
Tester	York			
Temperature	25°C			
Humidity	52%			

11.1 LIMITS

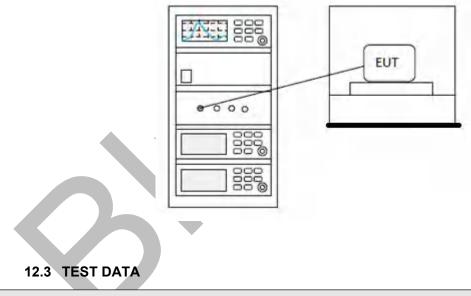
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202202-A2102 Page 15 of55

11.3 TEST DATA

Pass: Please Refer To Appendix: For Details


12 POWER SPECTRUM DENSITY

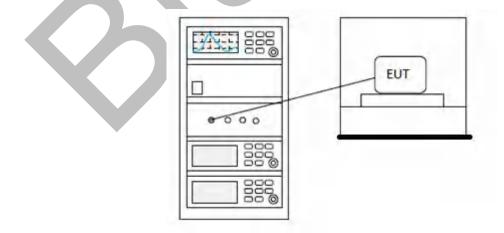
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	York
Temperature	25°C
Humidity	52%

12.1 LIMITS

Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

12.2 BLOCK DIAGRAM OF TEST SETUP

Pass: Please Refer To Appendix: For Details


13 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	York
Temperature	25°C
Humidity	52%

13.1 LIMITS

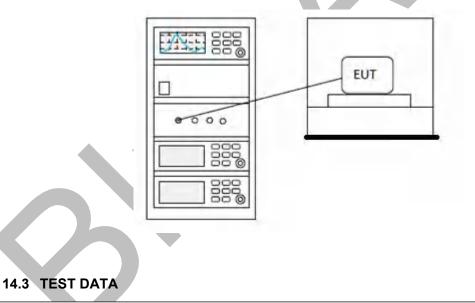
Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for \geq 50 hopping channels				
902-928	0.25 for $25 \le$ hopping channels $<$ 50				
	1 for digital modulation				
	1 for \geq 75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5725 5050	1 for frequency hopping systems and digital				
5725-5850	modulation				

13.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202202-A2102 Page 18 of55

13.3 TEST DATA

Pass: Please Refer To Appendix: For Details


14 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	York
Temperature	25°C
Humidity	52%

14.1 LIMITS

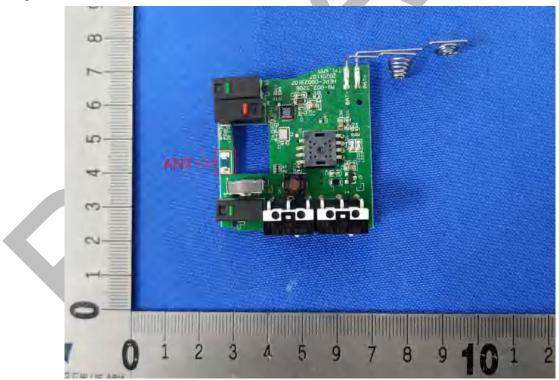
Limit: $\geq 500 \text{ kHz}$

14.2 BLOCK DIAGRAM OF TEST SETUP

Pass: Please Refer To Appendix: For Details

15 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


15.1 CONCLUSION

Standard Requirement:

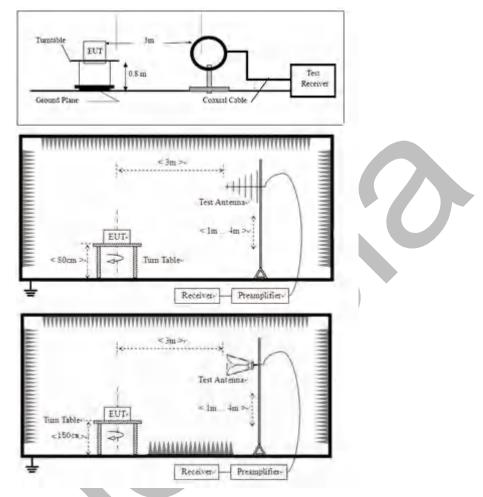
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.08 dBi.

16 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX Low channel;TX middle channel;TX high channel
Test Mode (Final Test)	TX Low channel;TX middle channel;TX high channel
Tester	York
Temperature	25°C
Humidity	52%


16.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

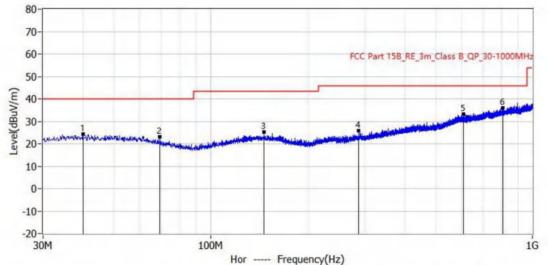
1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

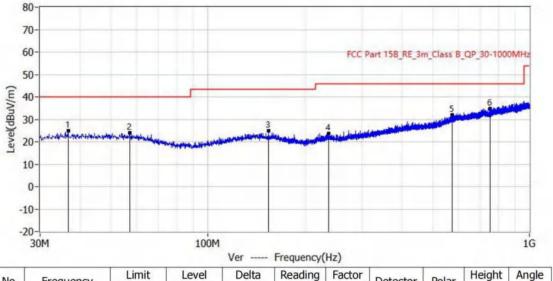
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



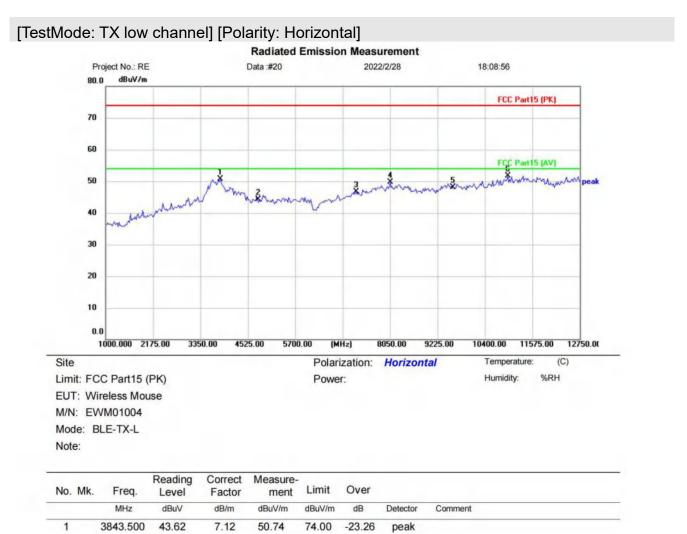
16.4 TEST DATA

[TestMode: TX] [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202202-A21	
EUT: Wireless Mouse	Test Engineer: York	
M/N: EWM01004	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2022-03-02 17:37:09	



No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	39.943MHz	40.0	24.3	-15.7	0.2	24.1	QP	Hor	100.0	35.0
2*	69.285MHz	40.0	23.0	-17.0	1.4	21.6	QP	Hor	100.0	0.0
3*	146.036MHz	43.5	25.1	-18.4	1.5	23.6	QP	Hor	100.0	6.0
4*	288.020MHz	46.0	26.0	-20.0	2.2	23.8	QP	Hor	100.0	0.0
5*	610.181MHz	46.0	33.2	-12.8	1.9	31.3	QP	Hor	100.0	285.0
6*	810.365MHz	46.0	36.1	-9.9	1.8	34.3	QP	Hor	100.0	240.0


[TestMode: TX] [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202202-A21	
EUT: Wireless Mouse	Test Engineer: York	
M/N: EWM01004	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2022-03-02 17:40:00	

No.	Frequency	Limit	Level	Della	Reading	Factor	Detector	Polar	Height	Angle
		dBuV/m	dBuV/m	dB	dBuV	dB/m			cm	deg
1*	36.669MHz	40.0	24.8	-15.2	1.0	23.8	QP	Ver	100.0	34.0
2*	57.039MHz	40.0	24.0	-16.0	0.4	23.6	QP	Ver	100.0	46.0
3*	154.281MHz	43.5	24.9	-18.6	1.5	23.4	QP	Ver	100.0	134.0
4*	236.974MHz	46.0	23.6	-22.4	1.0	22.6	QP	Ver	100.0	200.0
5*	575.989MHz	46.0	32.1	-13.9	1.5	30.6	QP	Ver	100.0	337.0
6*	755.318MHz	46.0	34.8	-11.2	1.6	33.2	QP	Ver	100.0	211.0

(Reference Only

Test Result: Pass

2

3

4

5

6 *

4804.000

7206.000

8050.000

9608.000

10964.000

40.55

40.70

41.65

38.91

39.75

3.71

5.96

8.01

9.29

11.94

44.26

46.66

49.66

48.20

51.69

74.00

74.00

74.00

74.00

74.00

-29.74

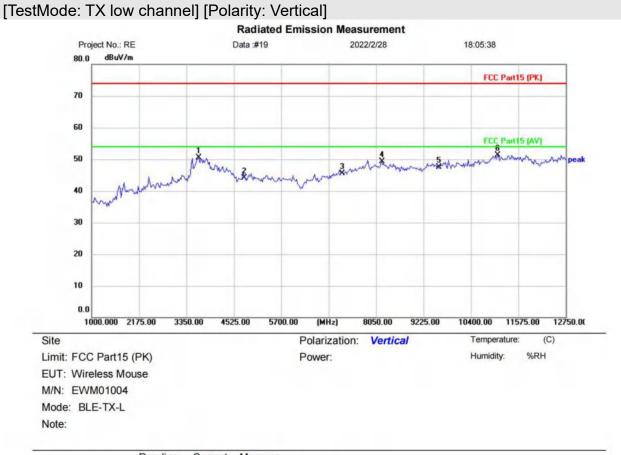
-27.34

-24.34

-25.80

-22.31

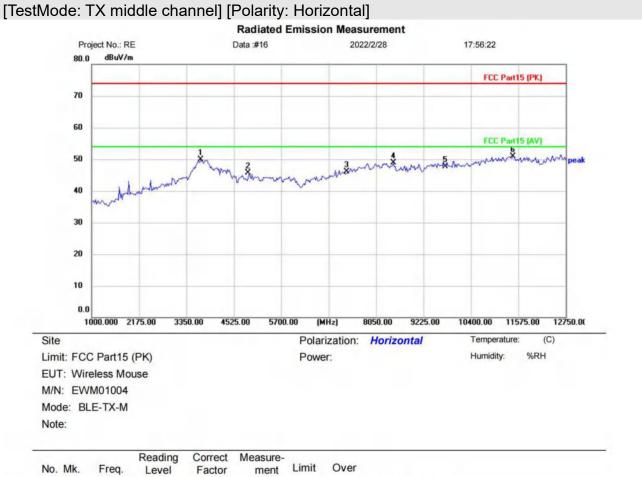
peak


peak

peak

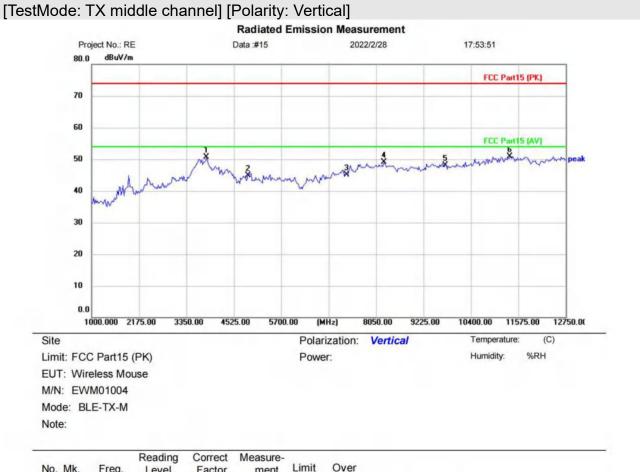
peak

peak



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3655.500	42.68	7.76	50.44	74.00	-23.56	peak		
2		4804.000	40.41	3.71	44.12	74.00	-29.88	peak		
3		7206.000	39.63	5.96	45.59	74.00	-28.41	peak		
4		8191.000	41.16	8.20	49.36	74.00	-24.64	peak		
5		9608.000	38.27	9.29	47.56	74.00	-26.44	peak		
6	*	11058.000	39.38	12.00	51.38	74.00	-22.62	peak		

(Reference Only



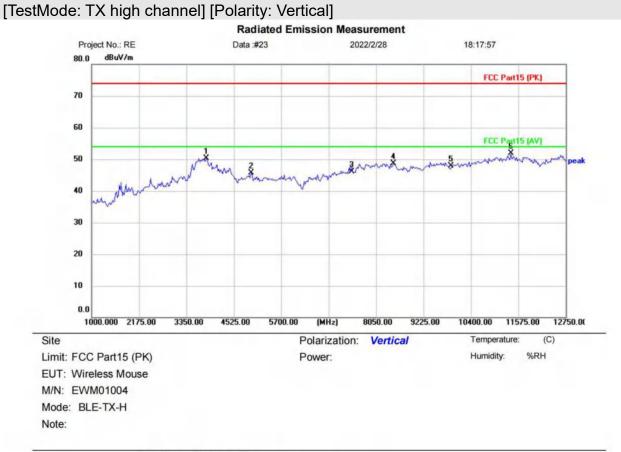
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3702.500	42.13	7.72	49.85	74.00	-24.15	peak		
2		4884.000	42.46	3.34	45.80	74.00	-28.20	peak		
3		7326.000	39.68	6.44	46.12	74.00	-27.88	peak		
4		8473.000	40.67	8.17	48.84	74.00	-25.16	peak		
5		9768.000	38.05	9.63	47.68	74.00	-26.32	peak		
6	*	11434.000	39.19	11.81	51.00	74.00	-23.00	peak		

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3843.500	43.60	7.12	50.72	74.00	-23.28	peak		
2		4884.000	41.63	3.34	44.97	74.00	-29.03	peak		
3		7326.000	38.63	6.44	45.07	74.00	-28.93	peak		
4		8238.000	40.88	8.22	49.10	74.00	-24.90	peak		
5		9768.000	38.48	9.63	48.11	74.00	-25.89	peak		
6	*	11363.500	39.12	11.81	50.93	74.00	-23.07	peak		
	_									

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3867.000	44.16	6.82	50.98	74.00	-23.02	peak		
2		4960.000	41.73	3.75	45.48	74.00	-28.52	peak		
3		7440.000	39.65	6.86	46.51	74.00	-27.49	peak		
4		8261.500	41.08	8.23	49.31	74.00	-24.69	peak		
5		9920.000	37.19	10.16	47.35	74.00	-26.65	peak		
6	*	11410.500	39.78	11.78	51.56	74.00	-22.44	peak		

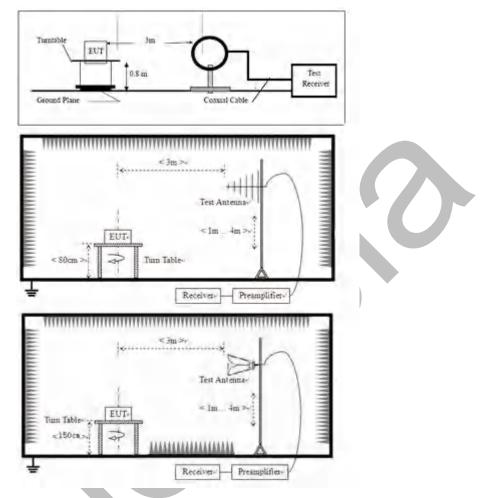
(Reference Only

No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	3843.500	43.20	7.12	50.32	74.00	-23.68	peak		
2	4960.000	42.02	3.75	45.77	74.00	-28.23	peak		
3	7440.000	39.21	6.86	46.07	74.00	-27.93	peak		
4	8473.000	40.46	8.17	48.63	74.00	-25.37	peak		
5	9920.000	37.82	10.16	47.98	74.00	-26.02	peak		
6 *	11387.000	40.11	11.78	51.89	74.00	-22.11	peak		

(Reference Only

17 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 6.10.5						
Test Mode (Pre-Scan)	TX Low channel;TX high channel						
Test Mode (Final Test)	TX Low channel;TX high channel						
Tester	York						
Temperature	25 ℃						
Humidity	52%						


17.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

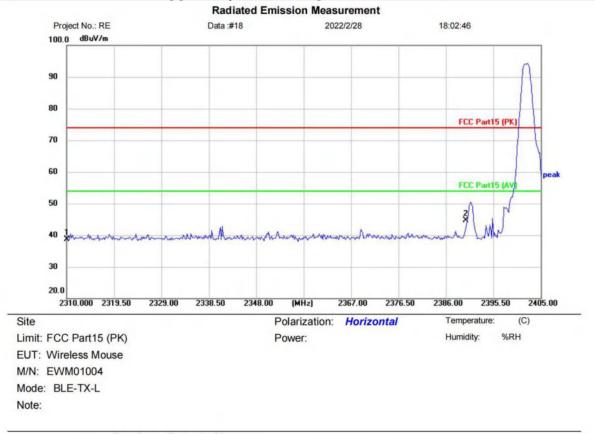
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

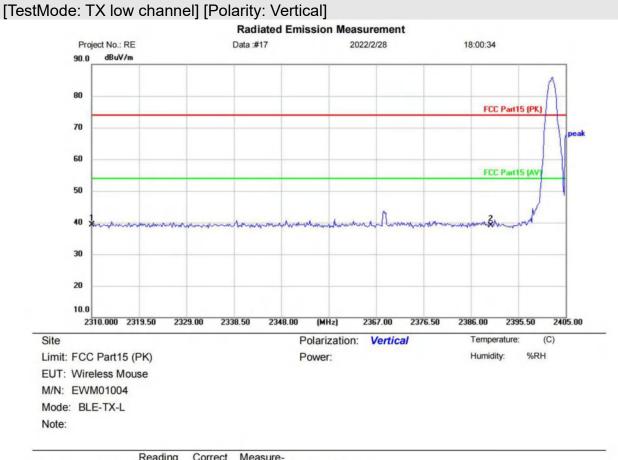
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

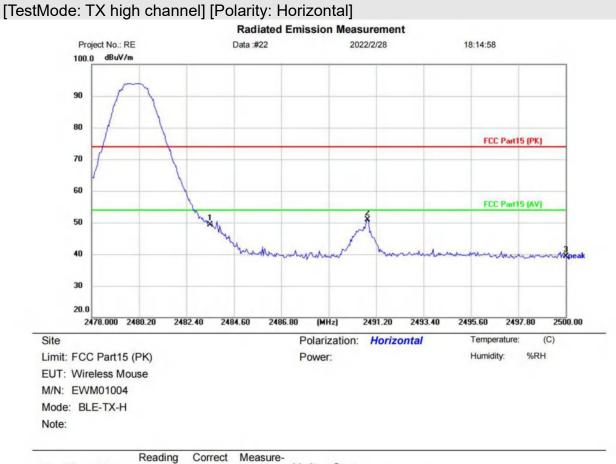
17.4 TEST DATA


[TestMode: TX low channel] [Polarity: Horizontal]

No. N	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment dBuV/m	Limit dBuV/m		Detector	Comment	
		MHz	dBuV	dB/m						
1		2310.000	42.71	-3.93	38.78	74.00	-35.22	peak		
2	*	2390.000	48.35	-3.58	44.77	74.00	-29.23	peak		

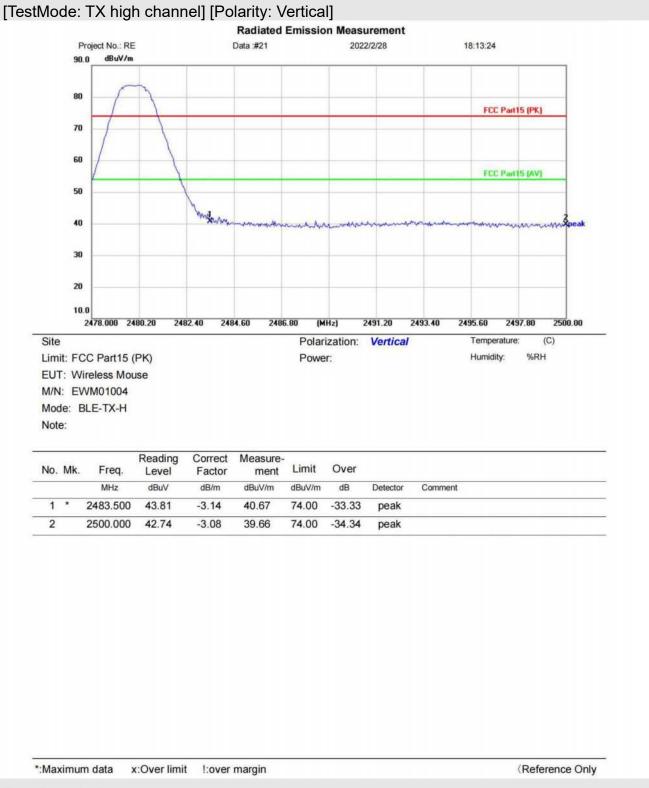
*:Maximum data x:Over limit !:over margin

(Reference Only



No. N	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2310.000	43.17	-3.93	39.24	74.00	-34.76	peak		
2		2390.000	42.74	-3.58	39.16	74.00	-34.84	peak		

(Reference Only


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2483.500	52.41	-3.14	49.27	74.00	-24.73	peak		
2	*	2490.804	54.00	-3.11	50.89	74.00	-23.11	peak		
3		2500.000	42.29	-3.08	39.21	74.00	-34.79	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only

Test Result: Pass

18 APPENDIX

18.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE	2402	Ant1	-4.507	30	Pass
	1M					
NVNT	BLE	2442	Ant1	-5.965	30	Pass
	1M					
NVNT	BLE	2480	Ant1	-5.284	30	Pass
	1M					

Power NVNT BLE 1M 2402MHz Ant1

Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

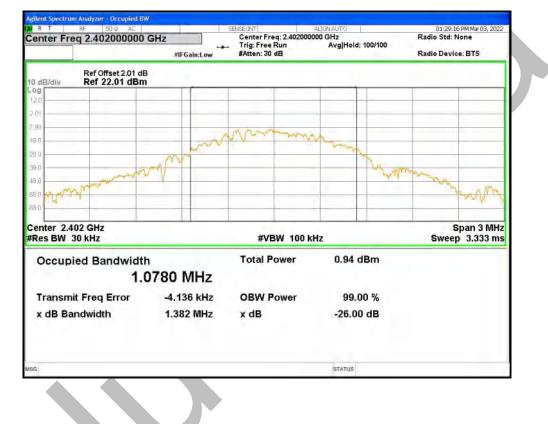
18.2 -6DB BANDWIDTH

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	BLE	2402	Ant1	0.699	0.5	Pass
	1M					
NVNT	BLE	2442	Ant1	0.692	0.5	Pass
	1M					
NVNT	BLE	2480	Ant1	0.683	0.5	Pass
	1M					

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

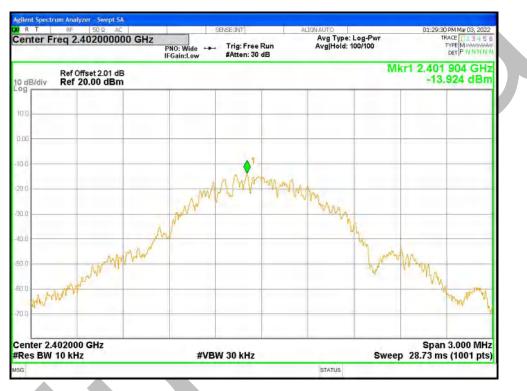


18.3 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.07797669
NVNT	BLE 1M	2442	Ant1	1.069625584
NVNT	BLE 1M	2480	Ant1	1.066328814

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1



OBW NVNT BLE 1M 2480MHz Ant1

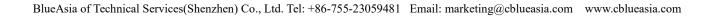
18.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-13.924	8	Pass
NVNT	BLE 1M	2442	Ant1	-15.457	8	Pass
NVNT	BLE 1M	2480	Ant1	-14.665	8	Pass

PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1

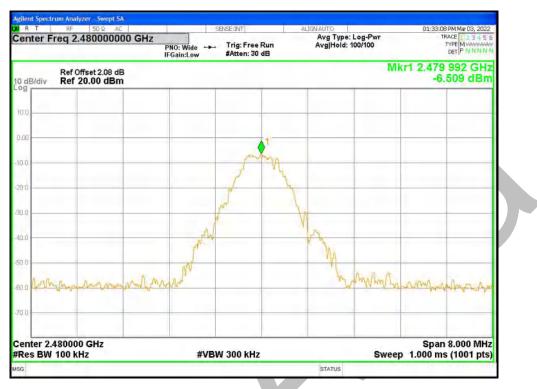
PSD NVNT BLE 1M 2480MHz Ant1



18.5 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-49.49	-30	Pass
NVNT	BLE 1M	2480	Ant1	-49.05	-30	Pass

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref



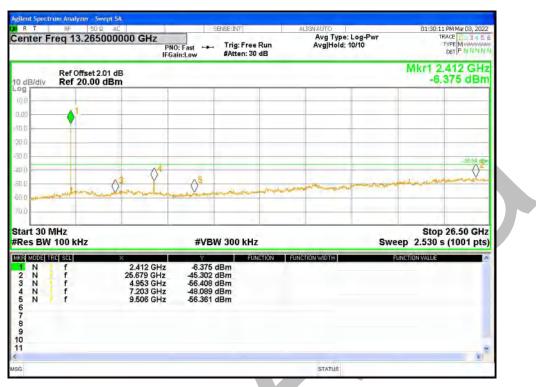
RT RF 5	0 2 AC	SENSE	INT	ALIGN AUTO		01:29:3	7 PM Mar 03, 2022
Center Freq 2.356			ig: Free Run tten: 30 dB	Avg Type: Avg Hold:			TYPE MINING
Ref Offse 10 dB/dlv Ref 20.0							01 8 GHz 520 dBm
10.0							
0.00							A1
10.0							K
20.0					1		1
30.0	_				_		-355 der
-40 0							-0.5 000
50 C	04					A3	(²)
60.0 marte barreland	manufactures	Anderge on Alberton	1 ministration	and the second second	-	- Dercie	and he
70.0							
Start 2.30600 GHz Res BW 100 kHz		#VBW 30	10 kHz		Swee		.40600 GHz s (1001 pts)
MKR MODE TRC SCL	×	Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 N f 2 N f 3 N f 4 N f	2.401 8 GHz 2.400 0 GHz 2.390 0 GHz 2.329 1 GHz	-54.536 dBm -59.948 dBm					
4 N f 5 6 7 8 9 10							
10							
11 <							12
SG				STATUS			

S

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission


18.6 CONDUCTED RF SPURIOUS EMISSION

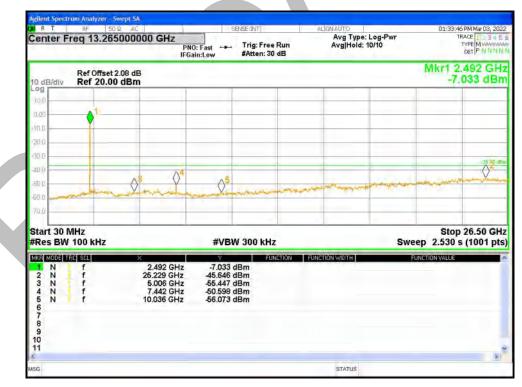
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-39.46	-30	Pass
NVNT	BLE 1M	2442	Ant1	-38.31	-30	Pass
NVNT	BLE 1M	2480	Ant1	-38.89	-30	Pass

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

RT RF 500 AC	SE	NSEINT	ALIGN AUTO		01:32:18 P	M Mar 03, 2022
enter Freq 13.265000000 (PNO: Fast	Trig: Free Run #Atten: 30 dB	Avg Type: L Avg Hold: 10		TRA TV E	
Ref Offset 2.03 dB					Mkr1 2.4 -7.8	139 GHz 80 dBm
00						
100						
0.0						
00						
0.0						_
00	14					-X2 ***
00 03	V 15				marrow	- You
0.0 march march march and	maker and and	- the and the second			100	
00						
				1 T 1		
tart 30 MHz Res BW 100 kHz	#VBW	300 kHz		Sweep	Stop 2 2.530 s	6.50 GHz (1001 pts)
KR MODE TRC SCL ×	39 GHz -7.880 d		FUNCTION WIDTH	FUNC	TION VALUE	
	03 GHz -45.738 d 48 GHz -56.614 d					
4 N f 7.3 5 N f 9.6	36 GHz -47.925 d 39 GHz -57.008 d	Bm				
4 N I F 7,3 5 N F 9,6 6 7 8 9 0	39 GHZ -57.008 u	ып				
7						
9						
1						~
G			STATUS			181
			31/102			

0


Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

APPENDIX B: PHOTOGRAPHS OF EUT

(Reference to the test report No. BLA-EMC-202202-A2101)

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.