FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

IoT Gateway

Model: XI*(*=0~9, A~Z or Blank), Cube

Trade Name: N/A

Issued to

Quanta Computer Inc. No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C.)

Issued by

Compliance Certification Services Inc. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: January 14, 2016

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	January 14, 2016	Initial Issue	ALL	Becca Chen
01	January 20, 2016	 Added model no.: Cube Modify radiated emission setting states test. 	P1, P4~P6, P11	Becca Chen
02	January 26, 2016	1. Modify Dwell Time data	P41	Becca Chen
03	January 27, 2016	 Modify Average Power: Test Procedure. Modify Frequency Separation: Test Results. Modify Number of Hopping Frequency: Test Results. Modify Dwell Time data Modify Radiated Emissions: Test Procedure. Modify Radiated Emissions Above 1GHz data. 	P20, P33, P38, P41, P45, P50, P53, P56, P59, P62, P65	Becca Chen
04	January 28, 2016	 Modify Dwell Time Limit. Delete Radiation Emissions Duty Cycle. 	P41, P45, P50, P53, P56, P59, P62, P65	Becca Chen

Revision History

TABLE OF CONTENTS

1.	TE	ST RESULT CERTIFICATION	4
2.	ΕU	JT DESCRIPTION	5
3.	TE	ST METHODOLOGY	6
3	.1	EUT CONFIGURATION	3
3	.2	EUT EXERCISE	3
3	.3	GENERAL TEST PROCEDURES	3
3	.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
3	.5	DESCRIPTION OF TEST MODES	3
4.	IN	STRUMENT CALIBRATION	9
4	.1	MEASURING INSTRUMENT CALIBRATION	9
4	.2	MEASUREMENT EQUIPMENT USED	9
4	.3	MEASUREMENT UNCERTAINTY 10)
5.	FA	CILITIES AND ACCREDITATIONS1	1
5	.1	FACILITIES	1
5	.2	EQUIPMENT1	1
5	.3	TABLE OF ACCREDITATIONS AND LISTINGS 12	2
6.	SE	TUP OF EQUIPMENT UNDER TEST 13	3
6	.1	SETUP CONFIGURATION OF EUT 13	3
6	.2	SUPPORT EQUIPMENT	3
7.	FC	C PART 15.247 REQUIREMENTS 14	4
7	.1	20 DB BANDWIDTH 14	4
7	.2	PEAK POWER 19	9
•		AVERAGE POWER	
7	.4	BAND EDGES MEASUREMENT	1
7	.5	FREQUENCY SEPARATION	3
7	.6	NUMBER OF HOPPING FREQUENCY	3
7	.7	TIME OF OCCUPANCY (DWELL TIME) 40)
7	.8	RADIATED EMISSIONS 42	2
7	.9	POWERLINE CONDUCTED EMISSIONS	3
AP	PEI	NDIX I PHOTOGRAPHS OF TEST SETUP69	9
AP	PE	NDIX 1 - PHOTOGRAPHS OF EUT	

1. TEST RESULT CERTIFICATION

Applicant:	Quanta Computer Inc. No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C.)			
Equipment Under Test:	IoT Gateway			
Trade Name:	N/A			
Model:	XI*(*=0~9, A~Z or Blank), Cube			
Date of Test:	January 7 ~ 14, 2016			
APPLICABLE STANDARDS				

APPLICABLE STANDARDS		
STANDARD	TEST RESULT	
FCC 47 CFR Part 15 Subpart C	No non-compliance noted	

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements set forth in the above standards. The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Reviewed by:

Villa Lee

Miller Lee Manager Compliance Certification Services Inc.

Angel Chenf

Angel Cheng Section Manager Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	IoT Gateway
Trade Name	N/A
Model Number	XI*(*=0~9, A~Z or Blank), Cube
Model Discrepancy	All the above models are identical except for the designation of model numbers. The suffix of (*=0~9, A~Z or Blank) on model number is just for marketing purpose only.
Received Date	December 28, 2015
EUT Power Rating	Powered from host device: I/P: 100-240Vac, 0.2A, 50/60Hz O/P: 5Vdc, 0.5A
Frequency Range	2402 ~ 2480 MHz
Transmit Power	10.13 dBm
Modulation Technique	GFSK for 1Mbps; π /4-DQPSK for 2Mbps; 8DPSK for 3Mbps
Number of Channels	79 Channels
Antenna Specification Gain: 2.19 dBi	
Antenna Designation	Monople-coupled Antenna

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>HFSXI1</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2009 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209, 15.247 and DA00-705.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

According to the requirements in ANSI C63.10: 2009 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turntable, Above 1 GHz is 1.5m high and below 1 GHz is 0.8m high above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10: 2009.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: XI1) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

Channel Low (2402MHz), Mid (2441MHz) and High (2480MHz) with 1Mbps data rate was chosen for full testing.

During the preliminary test, GFSK, π /4-QPSK & 8DPSK with DH1 were pre-tested and found that 8DPSK emits the highest output power. Then the tests were carried on with DH1 compare to DH3 & DH5 and found that 8DPSK with DH5 emit the highest output power, and therefore had been tested under operating condition.

Following channels were selected for the radiated emission testing only as listed below:

Tested Channel	Modulation Type	Packet Type	Data Rate
----------------	-----------------	-------------	-----------

Low, Mid, High	GFSK	DH 5	1
Low, Mid, High	8DPSK	DH 5	3

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510252	12/07/2016	
Thermostatic/Humidity Chamber	TAICHY	MHG-150LF	930619	10/07/2016	
AC Power Source	EXTECH	6205	1140845	N.C.R	
DC Power Supply	ABM	8301HD	D011531	N.C.R	
Power Meter	Anritsu	ML2495A	1012009	07/07/2016	
Power Sensor	Anritsu	MA2411A	0917072	07/07/2016	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40	101073	07/19/2016	

Wugu 966 Chamber A					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510268	01/25/2016	
EMI Test Receiver	R&S	ESCI	100064	06/03/2016	
Bilog Antenna	Sunol Sciences	JB3	A030105	08/05/2016	
Horn Antenna	EMCO	3117	00055165	01/26/2016	
Horn Antenna	EMCO	3116	26370	12/24/2016	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	
Pre-Amplifier	MITEQ	1652-3000	1490939	08/09/2016	
Pre-Amplifier	EMC	EMC 012635	980151	06/04/2016	
Pre-Amplifier	MITEQ	AMF-6F-260400-40-8P	985646	12/24/2016	
Coaxial Cable	Huber+Suhner	102	29212/2	12/24/2016	
Coaxial Cable	Huber+Suhner	102	29406/2	12/24/2016	
Test S/W	EZ-EMC (CCS-3A1RE)				

	Conducted Emission room # B					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI	101073	09/08/2016		
LISN	R&S	ENV216	101054	06/06/2016		
LISN	SCHWARZBECK	NSLK 8127	8127-541	11/22/2016		
Capacitive Voltage Probe	FCC	F-CVP-1	100185	03/12/2016		
Test S/W	CCS-3A1-CE					

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R. = No Calibration Request.

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	+/- 1.2575
3M Semi Anechoic Chamber / <200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.139, Wugong Rd., Wugu Dist., New Taipei City 24886, Taiwan (R.O.C.)
 Tel: 886-2-2298-4086 / Fax: 886-2-2298-1470

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
 Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C.

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10: 2009 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1309) to perform FCC Part 15 measurements	FCC MRA: TW1309
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

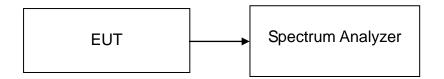
6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1	Notebook PC	TOSHIBA	Satellite M840	N/A	PPD-AR5B225	N/A	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core

Remark:


- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15.247 REQUIREMENTS7.1 20 DB BANDWIDTH

<u>LIMIT</u>

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=30 kHz, VBW = 100 kHz, Sweep = 3.2 ms.
- 4. Mark the peak frequency and 20dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

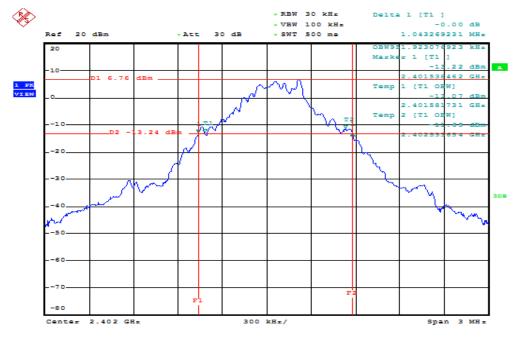
TEST RESULTS

No non-compliance noted.

Test Data

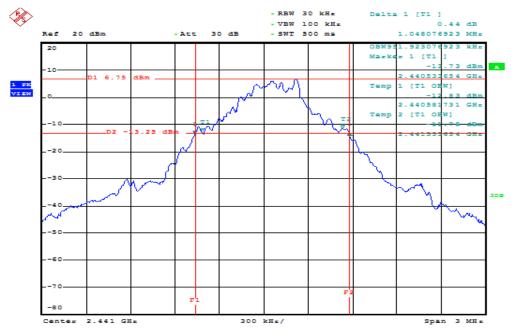
For GFSK / DH5

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2402	1.0432
Mid	2441	1.0480
High	2480	1.0384

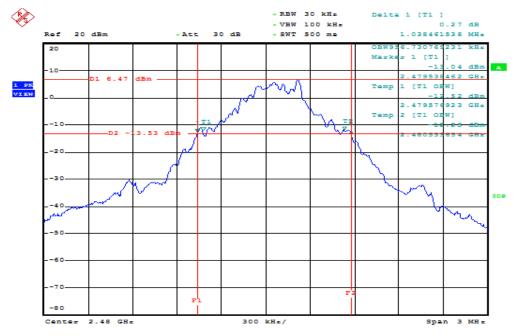

For 8DPSK / DH5

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2402	1.3269
Mid	2441	1.3269
High	2480	1.3221

Test Plot

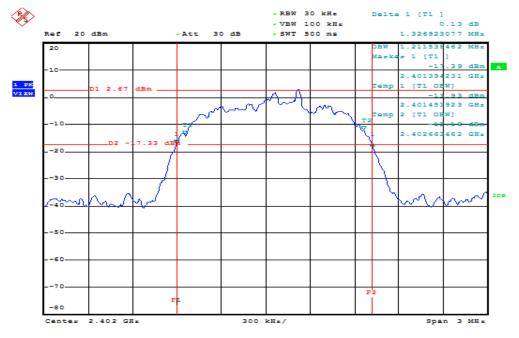


20dB Bandwidth (CH Low)

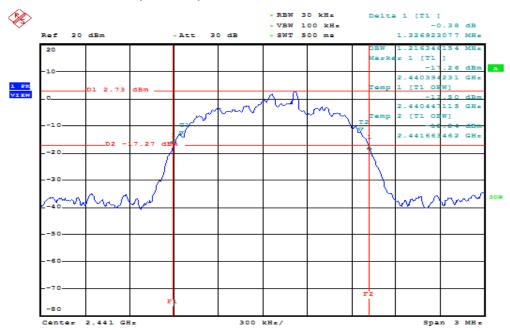

Date: 7.JAN.2016 21:30:14

20dB Bandwidth (CH Mid)

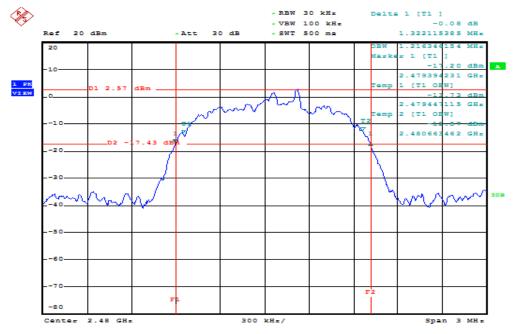
Date: 7.JAN.2016 21:34:24


20dB Bandwidth (CH High)

Date: 7.JAN.2016 21:39:28


For 8DPSK / DH5

20dB Bandwidth (CH Low)

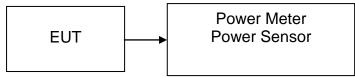

Date: 7.JAN.2016 21:48:27

20dB Bandwidth (CH Mid)

Date: 7.JAN.2016 21:53:17

20dB Bandwidth (CH High)

Date: 7.JAN.2016 21:56:48


7.2 PEAK POWER

<u>LIMIT</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

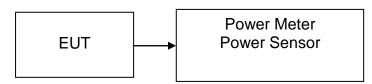
No non-compliance noted.

Test Data

For GFSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	9.92	0.0098		PASS
Mid	2441	*10.13	0.0103	0.125	PASS
High	2480	9.87	0.0097		PASS

For 8DPSK / DH5


Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	7.74	0.0059		PASS
Mid	2441	7.69	0.0059	0.125	PASS
High	2480	7.38	0.0055		PASS

7.3 AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the average power detection. The power is the same as 1x/EDR mode when operating in AFH mode.

TEST RESULTS

No non-compliance noted.

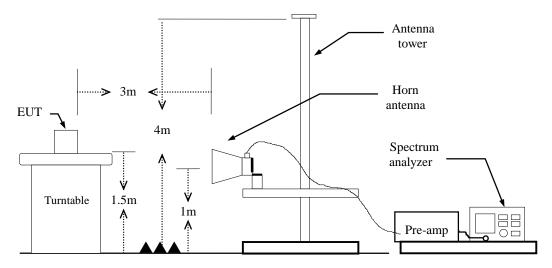
Test Data

For GFSK / DH5

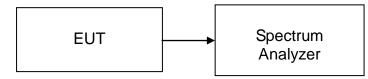
Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)
Low	2402	*9.14	0.0082
Mid	2441	9.11	0.0081
High	2480	8.81	0.0076

For 8DPSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)
Low	2402	5.19	0.0033
Mid	2441	5.28	0.0034
High	2480	5.14	0.0033


7.4 BAND EDGES MEASUREMENT

<u>LIMIT</u>


According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Configuration

For Radiated Emission above 1GHz

For Conducted

TEST PROCEDURE

For Radiated

- 1. The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz, if duty cycle≥98%, VBW=10Hz. if duty cycle<98% VBW=1/T.</p>

BT<79%, VBW= 360Hz

EDR<79%, VBW=360Hz

- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.
- 6. Result = Spectrum Reading + cable loss(spectrum to Amp) Amp Gain + Cable loss(Amp to receive Ant)+ Receive Ant

For Conducted

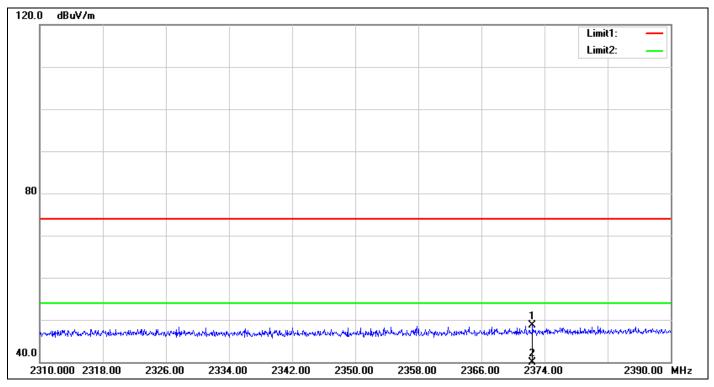
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

TEST RESULTS

Refer to attach spectrum analyzer data chart.

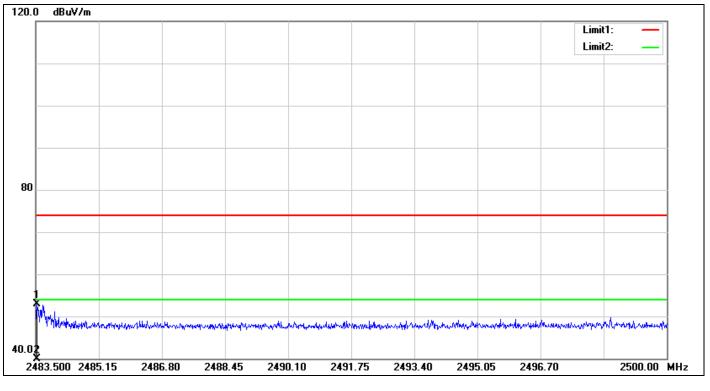
For GFSK / DH5


Band Edges (CH Low)

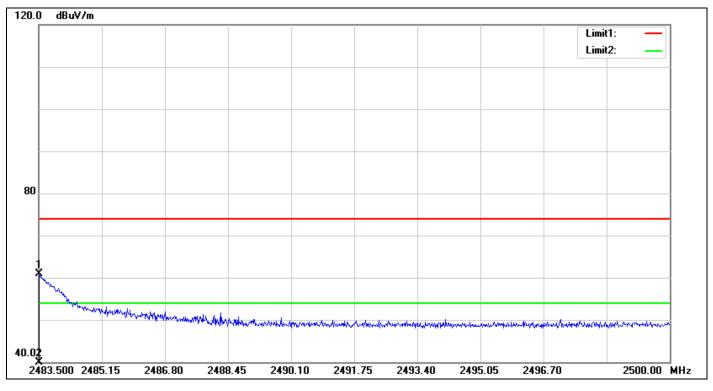
Polarity: Vertical

Г																Limit	1: —	
																Limit	2:	
																		1
-		_																-
-																		_
-																		1
																		1
F		_																+
L																		
_																1		
w	www.wather	my	www.	property and	while the set	to a second deal	and the state	hormony	Whethere .	-bullwayers	an hy horas	himanahahi	 housen	waldhanyin	mathhalm	white	unutin	M
																3		

No.	Frequency	Reading	Correct	orrect Result		Limit Margin		Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2381.120	51.37	-2.57	48.80	74.00	-25.20	150	58	peak
2	2381.120	37.19	-2.57	34.62	54.00	-19.38	150	58	AVG


Polarity: Horizontal

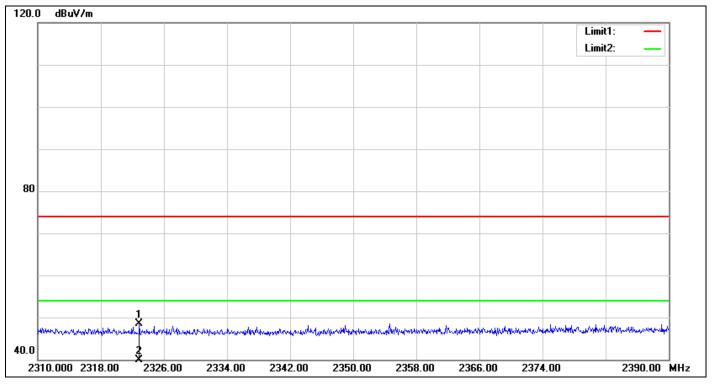
No.	Frequency	Reading	Correct	Correct Result		Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2372.480	51.25	-2.63	48.62	74.00	-25.38	150	324	peak
2	2372.480	37.27	-2.63	34.64	54.00	-19.36	150	324	AVG


Band Edges (CH High)

Polarity: Vertical

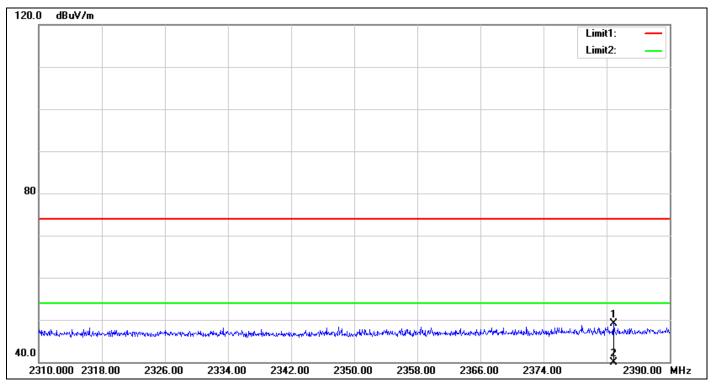
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.533	54.80	-1.99	52.81	74.00	-21.19	150	219	peak
2	2483.533	37.74	-1.99	35.75	54.00	-18.25	150	219	AVG

Polarity: Horizontal



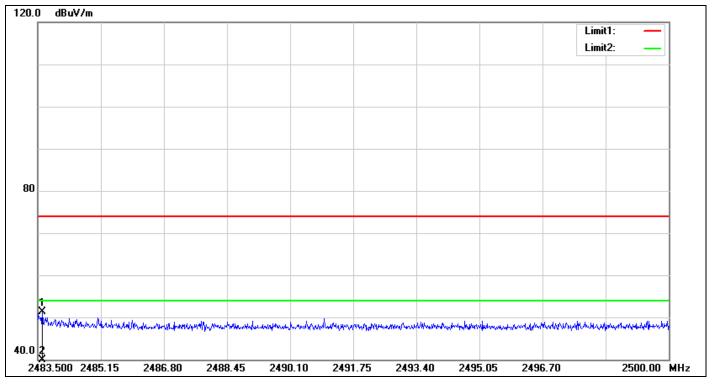
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.500	62.80	-1.99	60.81	74.00	-13.19	150	190	peak
2	2483.500	39.51	-1.99	37.52	54.00	-16.48	150	190	AVG

For 8DPSK / DH5

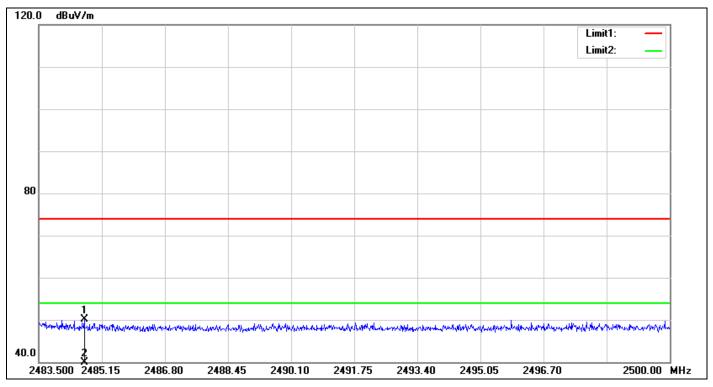

Band Edges (CH Low)

Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2322.880	51.40	-2.96	48.44	74.00	-25.56	150	57	peak
2	2322.880	37.71	-2.96	34.75	54.00	-19.25	150	57	AVG

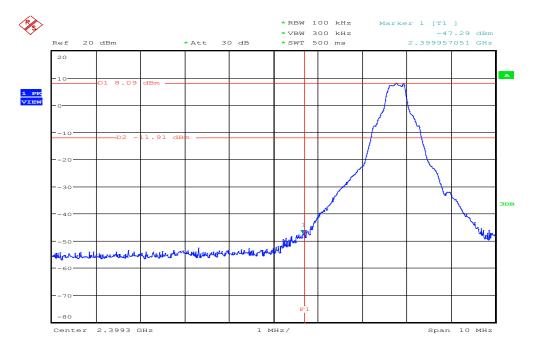

Polarity: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2382.880	51.62	-2.55	49.07	74.00	-24.93	150	212	peak
2	2382.880	37.55	-2.55	35.00	54.00	-19.00	150	212	AVG

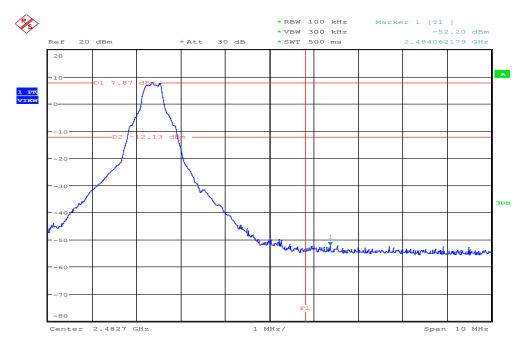

Band Edges (CH High)

Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.615	53.36	-1.99	51.37	74.00	-22.63	150	344	peak
2	2483.615	38.66	-1.99	36.67	54.00	-17.33	150	344	AVG

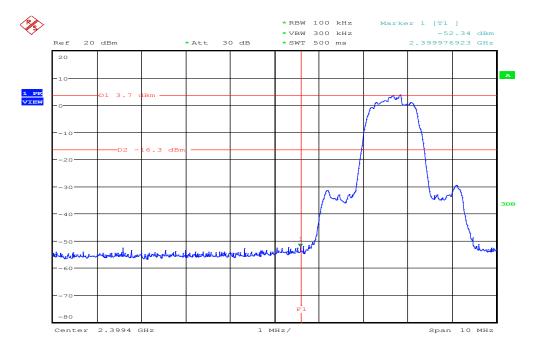

Polarity: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2484.688	52.13	-1.98	50.15	74.00	-23.85	150	8	peak
2	2484.688	38.36	-1.98	36.38	54.00	-17.62	150	8	AVG

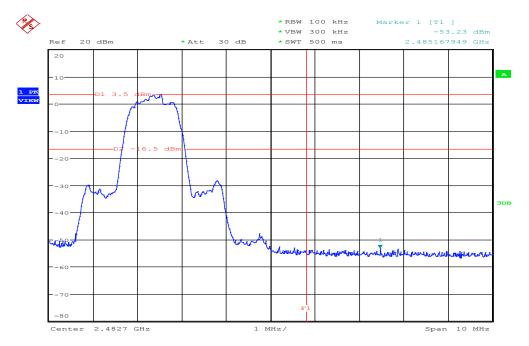

GFSK

Band Edges (CH Low)

Date: 14.JAN.2016 16:27:32


Band Edges (CH High)

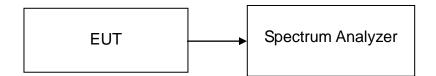
Date: 14.JAN.2016 16:30:59


8DPSK

Band Edges (CH Low)

Date: 14.JAN.2016 16:34:32

Band Edges (CH High)


Date: 14.JAN.2016 16:32:48

7.5 FREQUENCY SEPARATION

<u>LIMIT</u>

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Configuration

TEST PROCEDURE

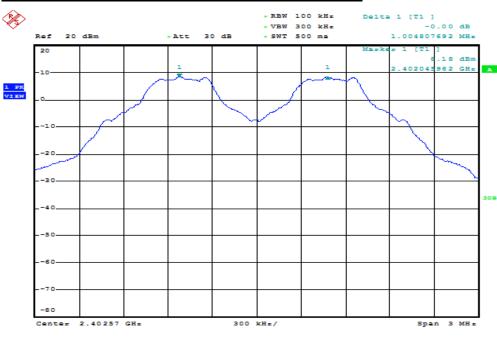
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Sweep = 3.2 ms.
- 5. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency.

TEST RESULTS

The EUT complies with the minimum channel separation requirement when it is operating in 1x/EDR mode using 79 channels and operating in AFH mode using 20 channels

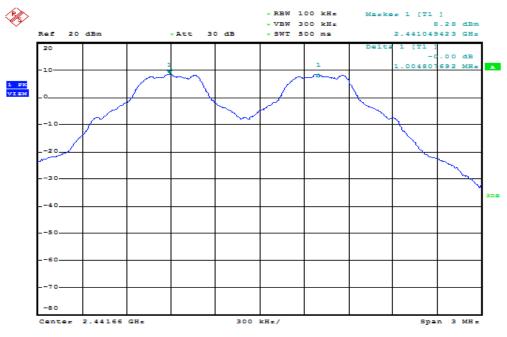
Test Data

For GFSK / DH5

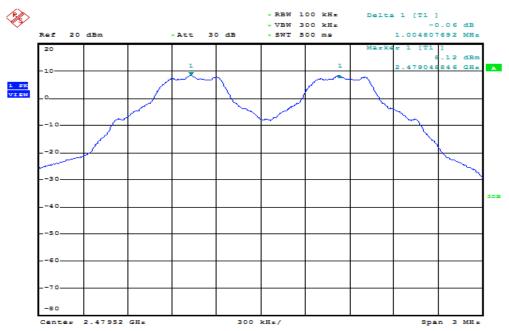

Channel Separation (MHz)	two-thirds of the 20 dB bandwidth	Channel Separation Limit	Result
1.004	0.6986	>two-thirds of the 20 dB bandwidth	Pass
1.004	0.6986	>two-thirds of the 20 dB bandwidth	Pass
1.004	0.6986	>two-thirds of the 20 dB bandwidth	Pass

For 8DPSK / DH5

Channel Separation (MHz)	two-thirds of the 20 dB bandwidth	Channel Separation Limit	Result
1.004	0.8846	>two-thirds of the 20 dB bandwidth	Pass
1.004	0.8846	>two-thirds of the 20 dB bandwidth	Pass
1.004	0.8846	>two-thirds of the 20 dB bandwidth	Pass

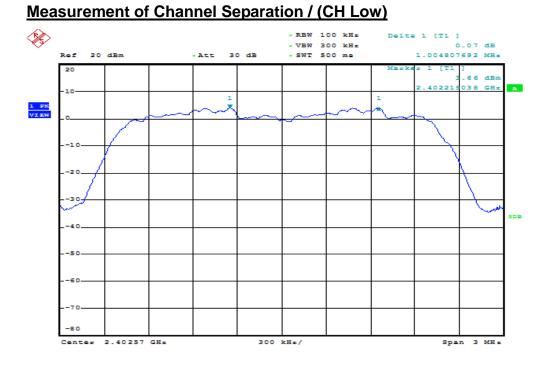

Test Plot

For GFSK / DH5


Measurement of Channel Separation / (CH Low)

Date: 7.JAN.2016 22:19:36

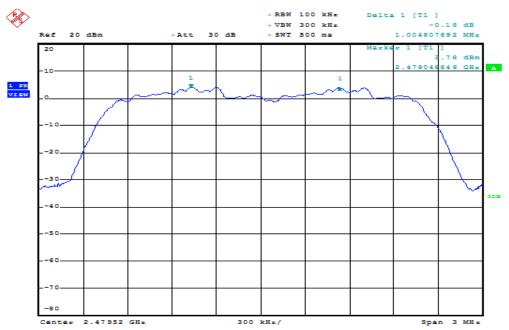
Measurement of Channel Separation / (CH Mid)


Date: 7.JAN.2016 22:26:06

Measurement of Channel Separation / (CH High)

Date: 7.JAN.2016 22:29:27

For 8DPSK / DH5

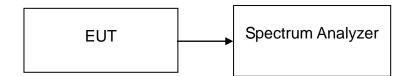


Date: 7.JAN.2016 22:23:31

Measurement of Channel Separation / (CH Mid)

Date: 7.JAN.2016 22:13:07

Measurement of Channel Separation / (CH High)


Date: 7.JAN.2016 22:07:26

7.6 NUMBER OF HOPPING FREQUENCY

<u>LIMIT</u>

According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 75 hopping frequencies. According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

Test Configuration

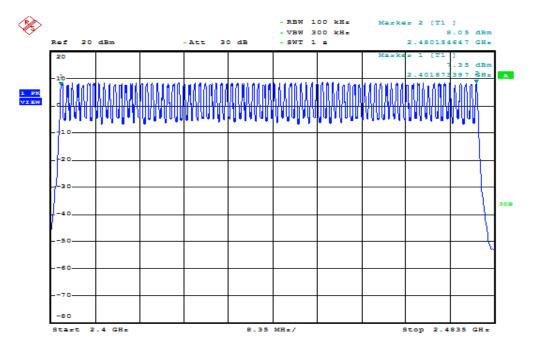
TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto
- 4. Set the spectrum analyzer as RBW: 100kHz / VBW: 300kHz.
- 5. Max hold, view and count how many channel in the band.

TEST RESULTS

No non-compliance noted

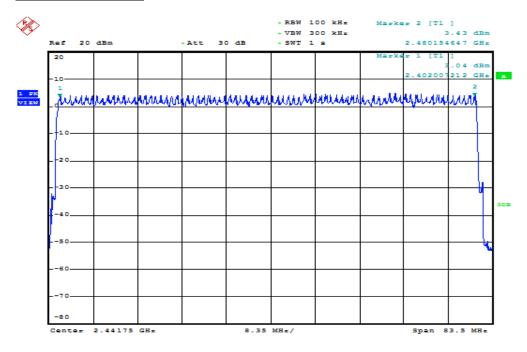
In AFH mode, this device operates using 20 channels so the requirement for minimum number of hopping channels is satisfied.


Test Data

Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS

Test Plot

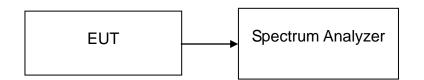
For **GFSK**


Channel Number

Date: 7.JAN.2016 21:06:36

For 8DPSK

Channel Number



7.7 TIME OF OCCUPANCY (DWELL TIME)

<u>LIMIT</u>

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms.
- 5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

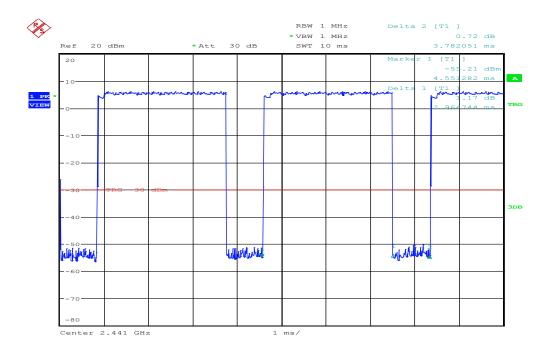
No non-compliance noted

Test Data

	Time of Occupancy (Dwell Time)							
Mode	Frequency (MHz)	Pulse Time Per Hopping (ms)	Minimum Number of Hopping	Number of pulse in	Dwell Time IN	Dwell Time Limits (s)	Result	
		(110)	Freq.	(0.4 * N sec)	(0.4 * N sec)	(0)		
BR-1Mbps	2402	2.96	79	106.67	0.3157	0.4		
BR-3Mbps	2402	2.96	79	106.67	0.3157	0.4	Pass	
AFH: DH5	2402	2.96	20	53.34	0.1579	0.4		
			4000/70/0	0.071				

Non-AFH: DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $3.37 \times 0.4 \times 79 = 106.6$

AFH: Bluetooth transmitter hops at a rate of 800/6=133.3 hops/ sec/ slot


- 400ms * 20 hopping channels = 8 sec (Time of Occupancy Limit)

- BT has 133.3 hops / sec/ slot (for AFH mode with DF5 operation)

- 133.3 hops/ sec/ 20 channels = 6.67 hops/ second

- 6.67 hops/ sec/ channel * 8 sec = 53.34 hops

- 53.34 hops * 2.96 ms/ channel = 157.88 ms (worst case dwell time for one channel in AFH mode)

Date: 7.JAN.2016 20:50:59

7.8 RADIATED EMISSIONS

<u>LIMIT</u>

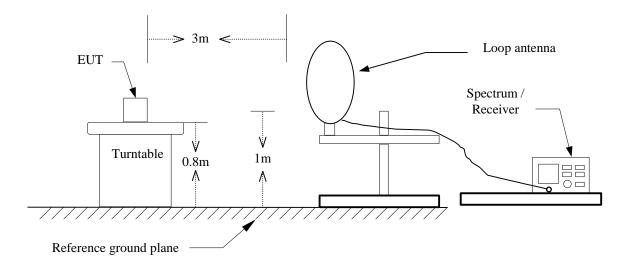
All spurious emissions shall comply with the limits of §15.209(a) and RSS-Gen Table 2 & Table 5.

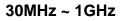
<u>RSS-Gen Table 2 & Table 5: General Field Strength Limits for Transmitters and</u> <u>Receivers at Frequencies Above 30 MHz</u> ^(Note)

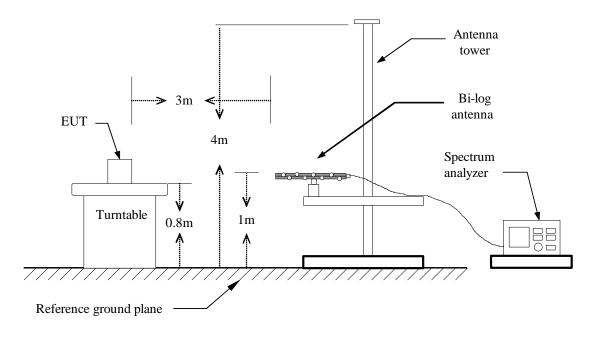
Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

Note: *Measurements for compliance with limits in the above table may be performed at distances other than 3 metres, in accordance with Section 7.2.7.

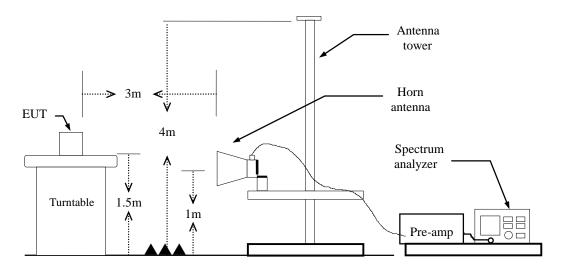
Transmitting devices are not permitted in Table 1 bands or, unless stated otherwise, in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-806 MHz).


RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)


Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in kHz)	3000
490-1,705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30


Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

Test Configuration


9kHz ~ 30MHz

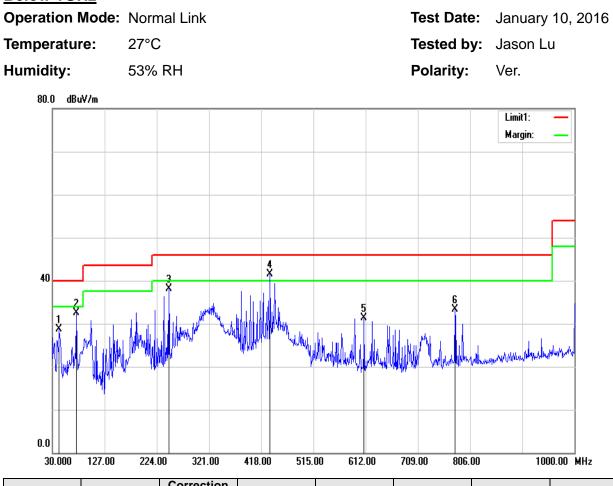
Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m high and below 1 GHz is 0.8m high above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

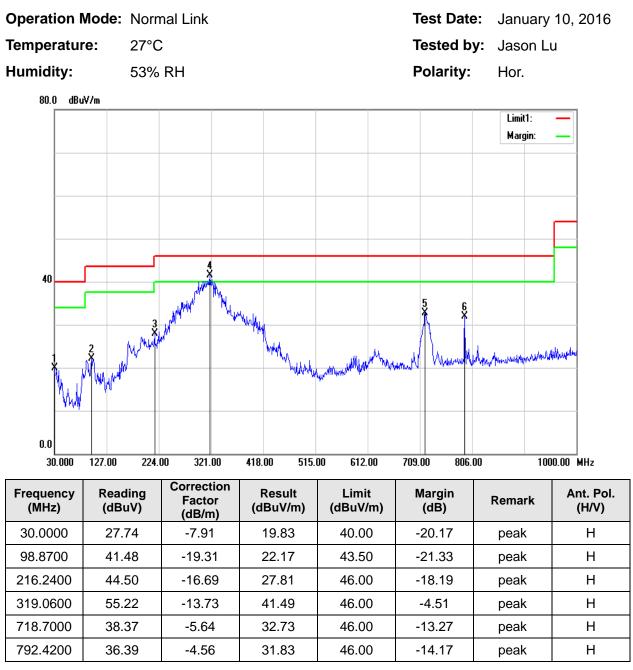
Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO


Above 1GHz:

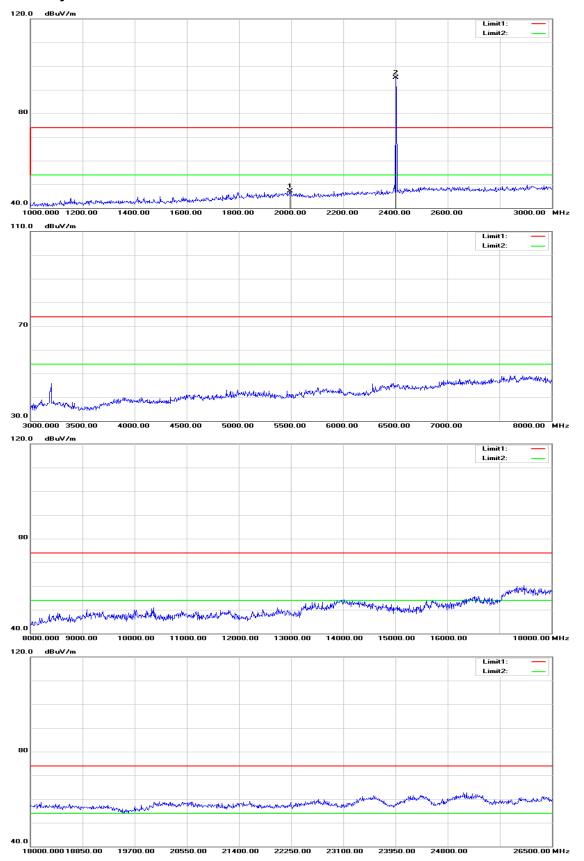
- (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
- AVERAGE: RBW=1MHz, if duty cycle ≥ 98%, VBW=10Hz. if duty cycle<98% VBW=1/T. BT<79%, VBW= 360Hz EDR<79%, VBW=360Hz
- 7. Repeat above procedures until the measurements for all frequencies are complete.
- 8. Result = Spectrum Reading + cable loss(spectrum to Amp) Amp Gain + Cable loss(Amp to receive Ant)+ Receive Ant

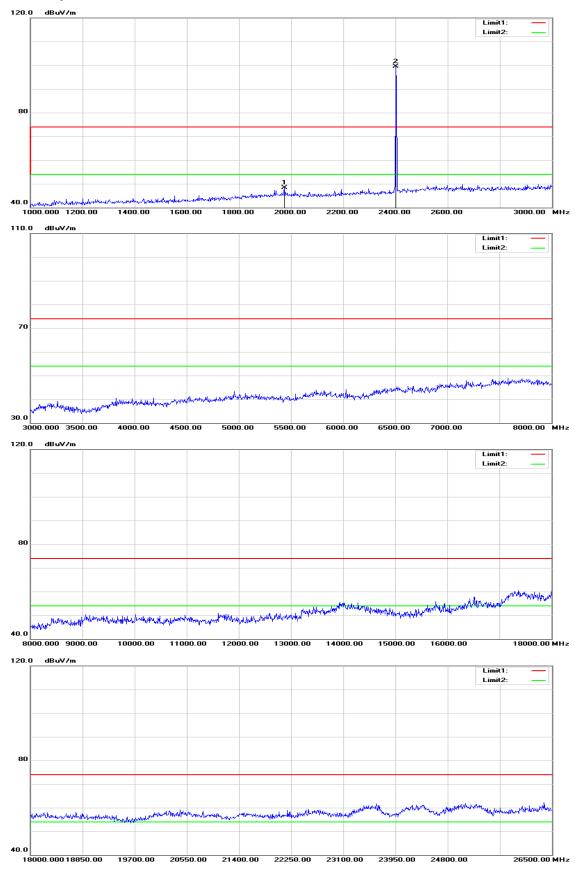
Note: We checked every harmonics frequencies from Fundamental frequencies with reduced VBW, and we mark a point to prove pass or not if we find any emission. For this case, there are no emissions hidden in the noise floor.


TEST RESULTS

Below 1GHz

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
42.6100	45.48	-16.84	28.64	40.00	-11.36	peak	V
74.6200	53.38	-20.96	32.42	40.00	-7.58	peak	V
246.3100	54.47	-16.36	38.11	46.00	-7.89	peak	V
434.4900	52.17	-10.66	41.51	46.00	-4.49	peak	V
609.0900	38.87	-7.54	31.33	46.00	-14.67	peak	V
777.8700	38.08	-4.69	33.39	46.00	-12.61	peak	V


- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).


- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).

Above 1 GHz TX / GFSK / DH5 / CH Low

Polarity: Vertical

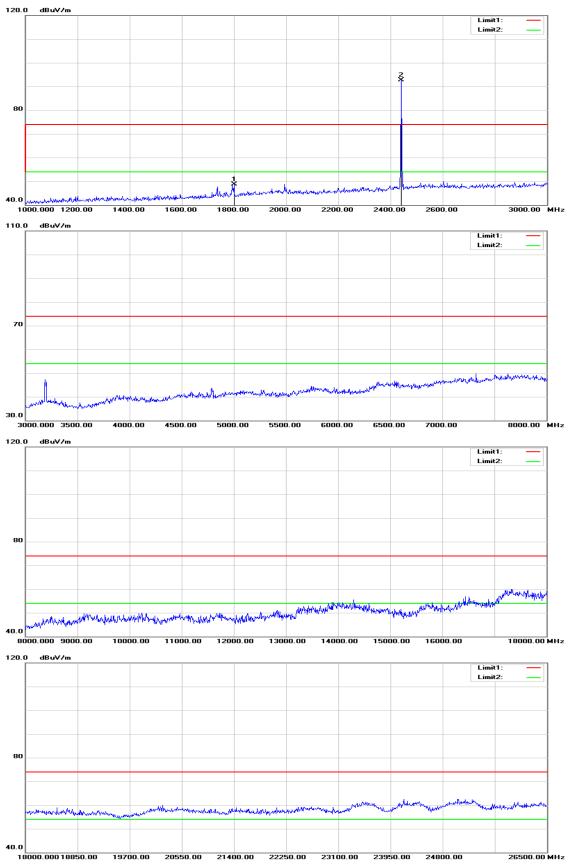
Polarity: Horizontal

Above 1 GHz

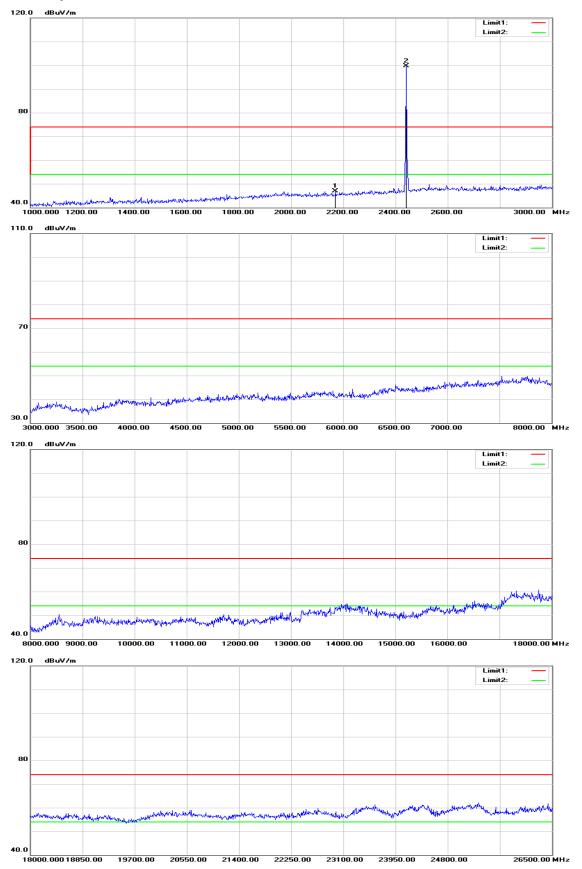
Operation Mode: TX / GFSK / DH5 / CH Low

Temperature:27°C

Humidity: 53 % RH


Test Date:January 8, 2016Tested by:Jason LuPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Duty cycle Correction (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1996.000	50.74	-3.62	0	47.12	74.00	-26.88	peak	V
N/A								
1974.000	52.00	-3.73	0	48.27	74.00	-25.73	peak	Н
N/A								


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

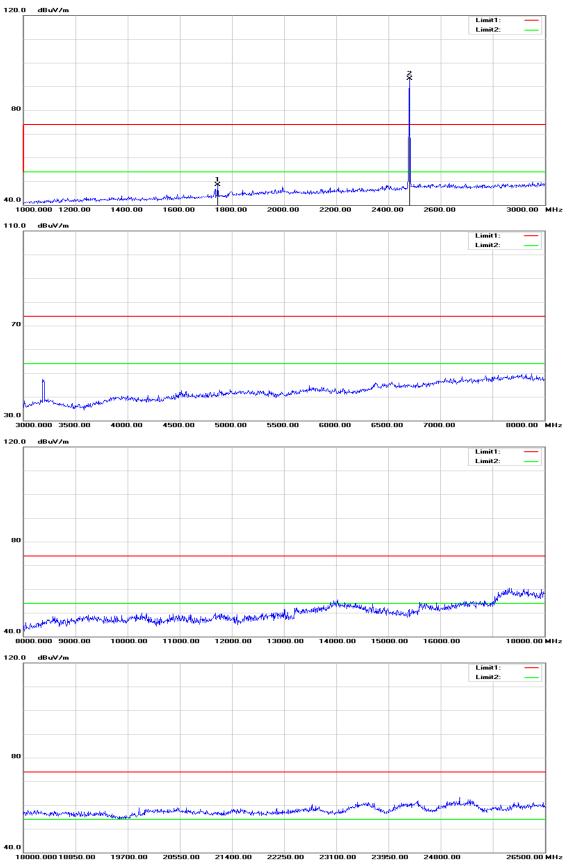
TX / GFSK / DH5 / CH Mid

Polarity: Horizontal

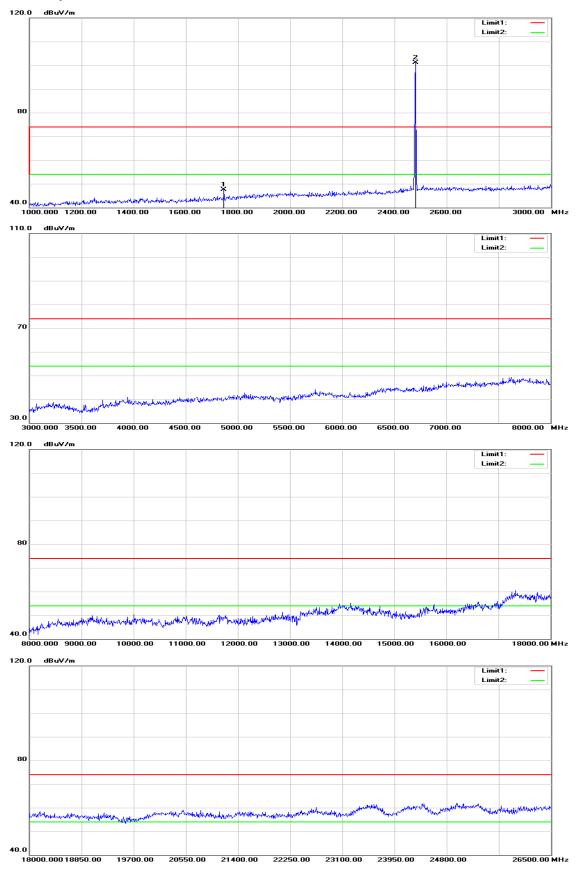
Operation Mode: TX / GFSK / DH5 / CH Mid

Temperature: 27°C

Humidity: 53 % RH


Test Date: January 8, 2016 Tested by: Jason Lu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Duty cycle Correction (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1800.000	53.26	-4.64	0	48.62	74.00	-25.38	peak	V
N/A								
2170.000	50.15	-3.31	0	46.84	74.00	-27.16	peak	н
N/A								


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

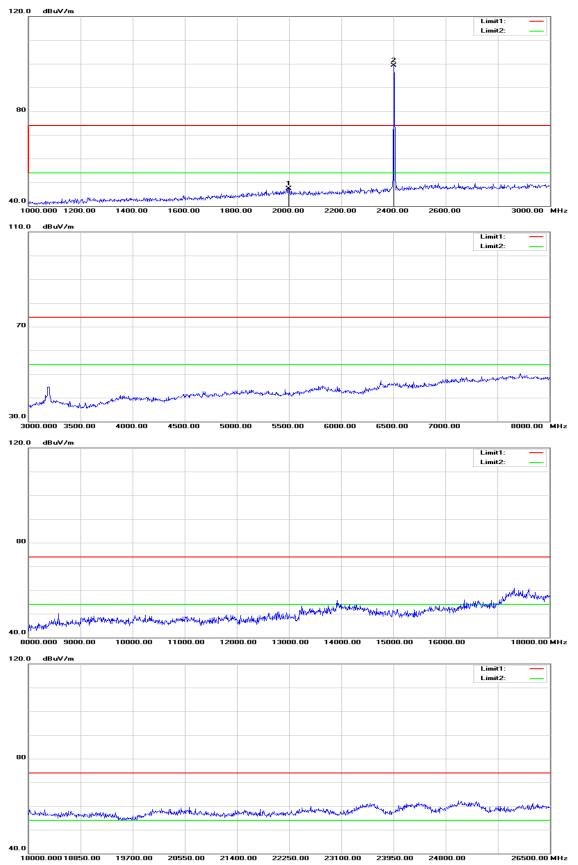
TX / GFSK / DH5 / CH High

Polarity: Horizontal

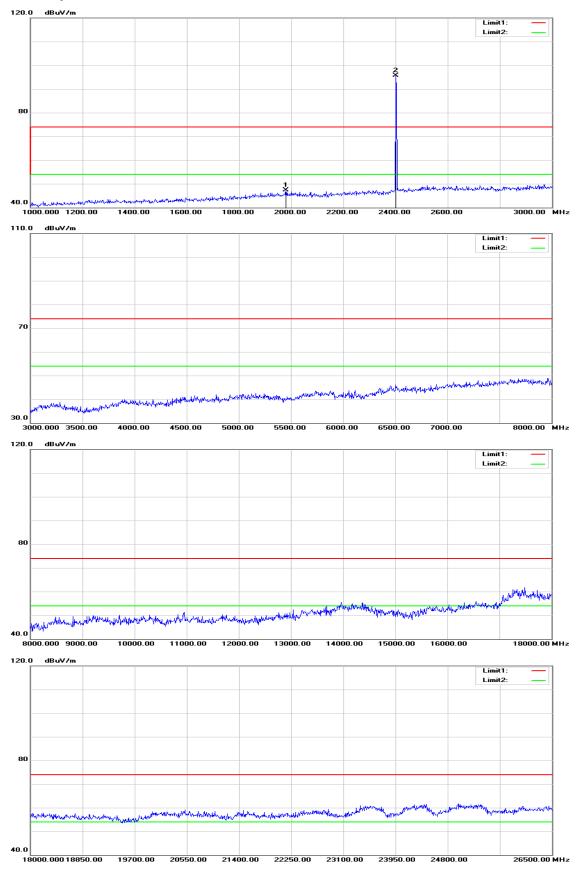
Operation Mode: TX / GFSK / DH5 / CH High

Temperature: 27°C

Humidity: 53 % RH


Test Date: January 8, 2016 Tested by: Jason Lu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Duty cycle Correction (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1746.000	53.44	-4.92	0	48.52	74.00	-25.48	peak	V
N/A								
1746.000	52.44	-4.92	0	47.52	74.00	-26.48	peak	н
N/A								

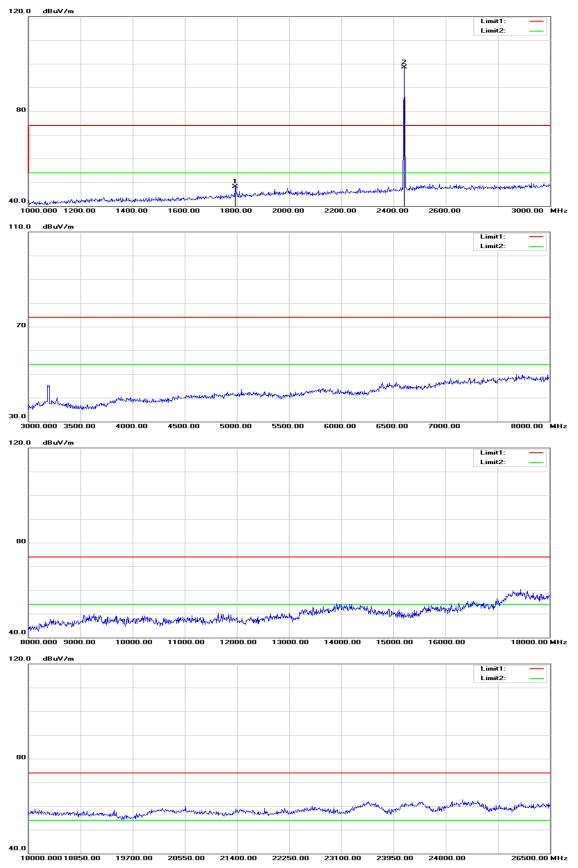

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

TX / 8DPSK / DH5 / CH Low

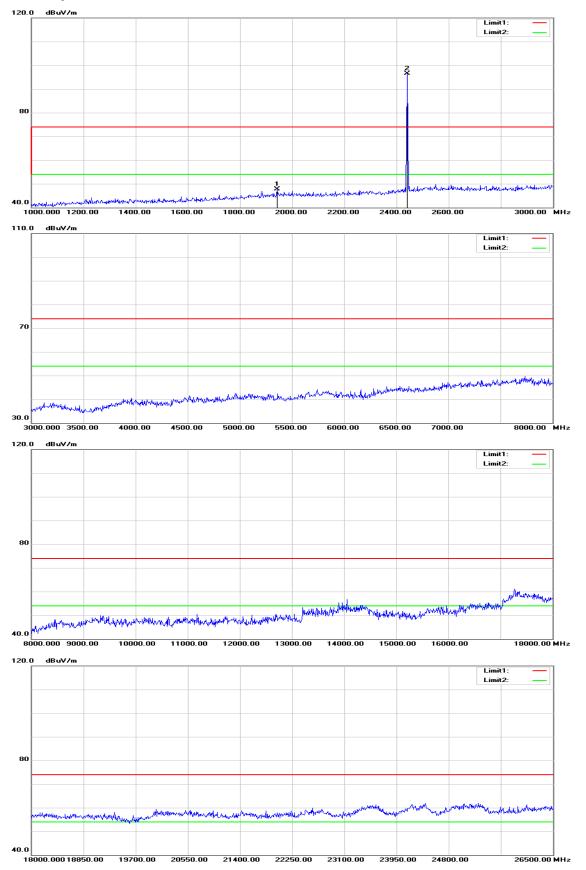
Polarity: Vertical

Polarity: Horizontal

Operation Mode:TX / 8DPSK / DH5 / CH LowTemperature:27°CHumidity:53 % RH


Test Date: January 8, 2016 Tested by: Jason Lu Polarity: Ver. / Hor.

Reading (dBuV)	Correction (dB/m)	Duty cycle Correction (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
50.91	-3.61	0	47.30	74.00	-26.70	peak	V
51.05	-3.70	0	47.35	74.00	-26.65	peak	Н
	(dBuV) 50.91	(dBuV) (dB/m) 50.91 -3.61	Keading (dBuV) Correction (dB/m) Correction (dB) 50.91 -3.61 0	Reading (dBuV) Correction (dB/m) Result (dBuV/m) 50.91 -3.61 0 47.30	Keading (dBuV) Correction (dB/m) Correction (dB) Kesult (dBuV/m) Limit (dBuV/m) 50.91 -3.61 0 47.30 74.00	Reading (dBuV) Correction (dB/m) Result (dBuV/m) Linit (dBuV/m) Margin (dB) 50.91 -3.61 0 47.30 74.00 -26.70 Image: Straight of the straight of	Reading (dBuV)Correction (dB)RemarkRemark50.91-3.61047.3074.00-26.70peak

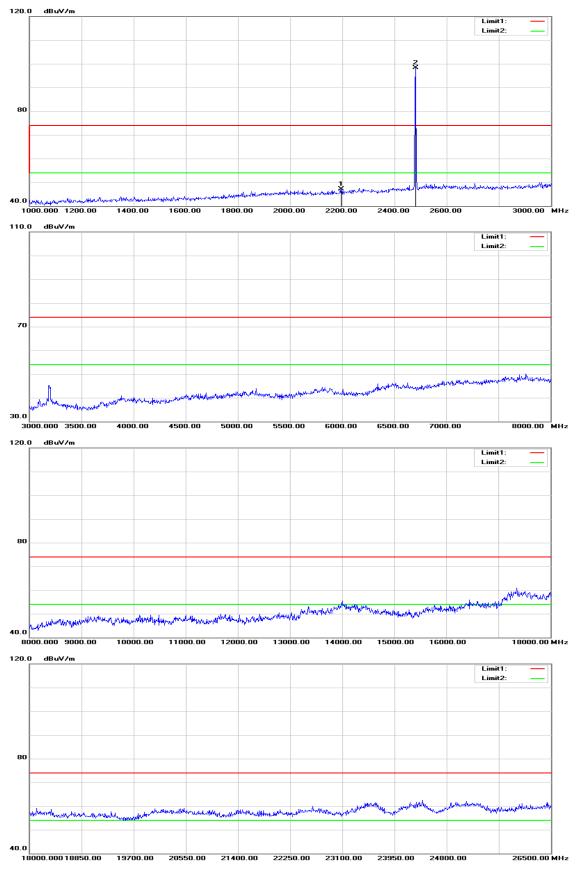

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

TX / 8DPSK / DH5 / CH Mid

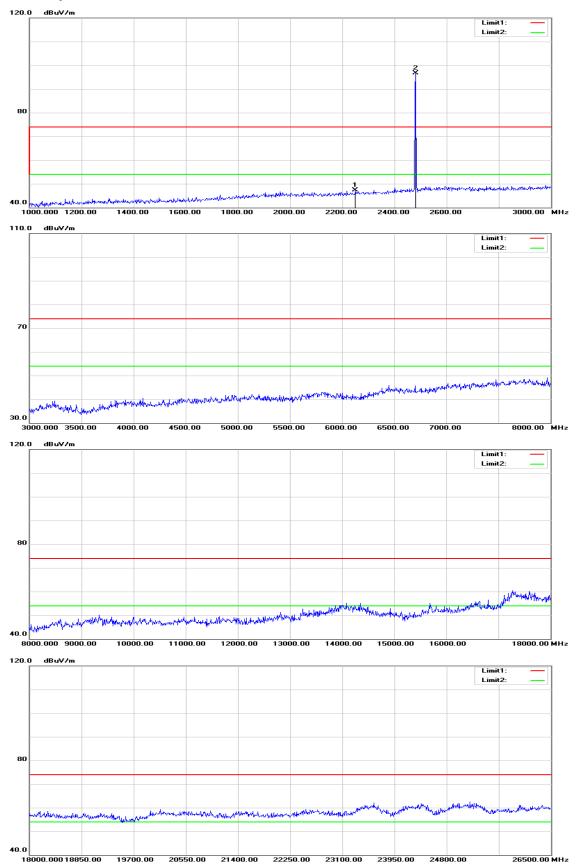
Polarity: Vertical

Polarity: Horizontal

Operation Mode:TX / 8DPSK / DH5 / CH MidTemperature:27°CHumidity:53 % RH


Test Date: January 8, 2016 Tested by: Jason Lu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Duty cycle Correction (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1794.000	52.72	-4.67	0	48.05	74.00	-25.95	peak	V
N/A								
1942.000	51.63	-3.90	0	47.73	74.00	-26.27	peak	Н
N/A								


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

TX / 8DPSK / DH5 / CH High

Polarity: Vertical

Polarity: Horizontal

Operation Mode:TX / 8DPSK / DH5 / CH HighTemperature:27°CHumidity:53 % RH

Test Date: January 8, 2016 Tested by: Jason Lu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Duty cycle Correction (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2196.000	50.20	-3.17	0	47.03	74.00	-26.97	peak	V
N/A								
2250.000	50.28	-3.08	0	47.20	74.00	-26.80	peak	Н
N/A								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

7.9 POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

According to §15.207(a) & RSS-Gen §7.2.4, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

* Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

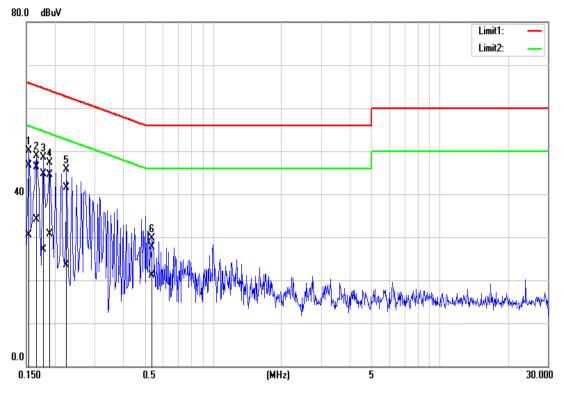
TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

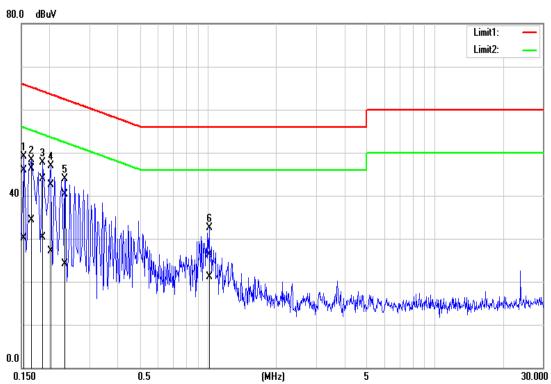
TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data


Operation Mode:	Normal Link	Test Date:	January 11, 2016		
Temperature:	24°C	Tested by:	Dennis Li		
Humidity:	50% RH				

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB/m)	QP Result (dBuV/m)	AV Result (dBuV/m)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.1539	37.06	20.82	9.69	46.75	30.51	65.78	55.79	-19.03	-25.28	L1
0.1660	36.55	24.48	9.69	46.24	34.17	65.15	55.16	-18.91	-20.99	L1
0.1780	34.97	17.41	9.68	44.65	27.09	64.57	54.58	-19.92	-27.49	L1
0.1900	34.82	20.97	9.68	44.50	30.65	64.03	54.04	-19.53	-23.39	L1
0.2260	31.85	13.81	9.68	41.53	23.49	62.59	52.60	-21.06	-29.11	L1
0.5380	17.87	11.20	9.88	27.75	21.08	56.00	46.00	-28.25	-24.92	L1
0.1539	36.23	20.54	9.64	45.87	30.18	65.78	55.79	-19.91	-25.61	L2
0.1660	36.63	24.57	9.64	46.27	34.21	65.15	55.16	-18.88	-20.95	L2
0.1860	34.25	20.59	9.64	43.89	30.23	64.21	54.21	-20.32	-23.98	L2
0.2020	32.96	17.55	9.64	42.60	27.19	63.52	53.53	-20.92	-26.34	L2
0.2340	30.74	14.43	9.64	40.38	24.07	62.30	52.31	-21.92	-28.24	L2
1.0140	15.81	10.70	10.47	26.28	21.17	56.00	46.00	-29.72	-24.83	L2


- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10 kHz; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9 kHz;
- 4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

