

Application For

Part 2, Subpart J, Paragraph 2.907 Equipment Authorization of Certification for an Intentional Radiator per Part 15, Subpart E, paragraphs 15.401, 15.403, 15.405 and 15.407

And

Innovation, Science, and Economic Development Canada Certification Per IC RSS-Gen General Requirements for Radio Apparatus And RSS-247Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and License-Exempt Local Area Network (LE-LAN) Devices

For the

Inventek Systems

Model: ISM4334X-M4G-L44

FCC ID: 07P-341 IC: 10147A-341

UST Project: 24-0073 Issue Date: July 18, 2024

Total Pages in This Report : 59

3505 Francis Circle Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.ustech-lab.com

Page 1 of 59

I certify that I am authorized to sign for the Test Agency and that the statements in this report and in the Exhibits attached hereto are true and correct to the best of my knowledge and belief:

US TECH (Agent Responsible for Test):

By: Alan Ghasiani

Name: Man Malian

Title: Compliance Engineer - President

Date July 18, 2024

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. Government.

> 3505 Francis Circle Alpharetta, GA 30004 PH : 770-740-0717 Fax : 770-740-1508 www.ustech-lab.com

> > Page 2 of 59

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

MEASUREMENT TECHNICAL REPORT

COMPANY NAME:	Inventek Systems
MODEL:	ISM4334X-M4G-L44
FCC ID:	O7P-341
IC:	10147A-341
DATE:	July 18, 2024

This report concerns (check one): Original grant Class II change X

Equipment type: UNII Device

Technical: IEEE Std. 802.11 a, n 5250 – 5350 MHz (Channels 52 - 64) 5470 – 5725 MHz (Channels 100 -140) Type of modulation: IEEE 802.11a (20 MHz), IEEE 802.11n (20MHz) Data/Bit Rate: 802.11a= 6 - 54 Mbps, 802.11n= 150 Mbps Antenna Gain: +2.3 (Chip Antenna) Maximum Output Power: +8.88 dBm (AVG) Software used to program EUT: eS-WiFi EUT firmware number: N/A Power setting: <u>Maximum level</u>

Report prepared by:

US Tech 3505 Francis Circle Alpharetta, GA 30004

Phone Number: (770) 740-0717 Fax Number: (770) 740-1508

Page 3 of 59

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

Table of Contents

Paragraph Title	<u>Page</u>
1 General Information	8
 1.1 Purpose of this Report 1.2 Characterization of Test Sample 1.3 Product Description 1.4 Configuration of Tested System	8 8 9 9
2 Tests and Measurements	11
 2.1 Test Equipment 2.2 Modifications to EUT Hardware 2.3 Number of Measurements for Intentional Radiators (15.31(m)) 2.4 Frequency Range of Radiated Measurements (Part 15.33) 2.4.1 Intentional Radiator 2.4.2 Unintentional Radiator 2.5 Measurement Detector Function and Bandwidth (CFR 15.35) 2.5.1 Detector Function and Associated Bandwidth 2.5.2 Corresponding Peak and Average Requirements 2.5.3 Pulsed Transmitter Averaging 2.6 EUT Antenna Requirements (CFR 15.203) 2.7 Restricted Bands of Operation (Part 15.205) 2.8 Transmitter Duty Cycle (CFR 35 (c)) 2.10 Intentional Radiator, Power Line Conducted Emissions (CFR 15.207) 2.10 Intentional Radiator, Radiated Emissions (CFR 15.209, 15.407(d)) (IC 6.2)	12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 14 14 14 15 17 RSS 247, 18
2.11 Band Edge Measurements – (CFR 15.407 (b)) 2.12 Unwanted Emissions in the Restricted Bands (CFR 15.407(b)(9,10) 1	23
 2.12 Offwahred Enholden in the Recencted Earled (of RT161101(6)(6,10) 1 15.209) 2.13 99% Occupied Bandwidth (15.407(a) (5), IC RSS 247, 6.4) 2.14 Maximum Conducted Output Power (CFR 15.407 (a) (2)) 2.15 Power Spectral Density (CFR 15.407(a) (2)) (IC RSS 247 6.2) 2.16 Frequency Stability (CFR 15.407 (g)) 2.17 Radiated Digital Emissions (15.407(b) (2,3,9,10), IC RSS 247 6.2) 2.18 Measurement Uncertainty 2.18.1 Conducted Emissions Measurement Uncertainty 2.18.2 Radiated Emissions Measurement Uncertainty 	29 34 41 49 50 55 59 59

Dago

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

List of Figures

Figures Title

<u>Page</u>

Figure 1. Block Diagram of Test Configuration10Figure 2. Duty Cycle 100ms Sweep15Figure 3. Transmitter Pulse Width16Figure 4.Transmitter Power Line Conducted Emissions Test Data, Part 15.20717Figure 5. 5.25 GHZ Band Edge Compliance, 802.11a24Figure 6. 5.25 GHZ Band Edge Compliance, 802.11n25
Figure 7. 5.35 GHZ Band Edge Compliance, 802.11a
Figure 8. 5.35 GHZ Band Edge Compliance, 802.11n
Figure 9. 5.47 GHZ Band Edge Compliance, 802.11a
Figure 10. 5.47 GHZ Band Edge Compliance, 802.11n
Figure 11. 5.725 GHZ Band Edge Compliance, 802.11a
Figure 12. 5.725 GHz Band Edge Compliance, 802.11n
Figure 13. Restricted Band 5.35 – 5.46 GHz operating on Channel 64, 802.11a – on
Chip Antenna
Figure 14. Restricted Band 5.35 – 5.46 GHz operating on Channel 64, 802.11n – on
Chip Antenna
Figure 15. Radiated Restricted Band 5.35 – 5.46 GHz, 802.11a – on Chip Antenna32
Figure 16. Restricted Band 5.35 – 5.46 GHz operating on Channel 36, 802.11a - Peak
on Chip Antenna
Figure 18. 26 dB BW and OBW -802.11a- Channel 52
Figure 19. 26 dB BW and OBW -802.11a- Channel 64
Figure 20. 26 dB BW and OBW -802.11n- Channel 165
Figure 21. 26 dB BW and OBW -802.11a- Channel 100
Figure 22. 26 dB BW and OBW -802.11n- Channel 100
Figure 23. 26 dB BW and OBW -802.11a- Channel 116
Figure 24. 26 dB BW and OBW -802.11n- Channel 116
Figure 25. 26 dB BW and OBW -802.11a- Channel 132
Figure 26. 26 dB BW and OBW -802.11n- Channel 132
Figure 27. 26 dB BW and OBW -802.11a- Channel 140
Figure 28. 26 dB BW and OBW -802.11n- Channel 100
Figure 29. Antenna Conducted Output Power, 802.11a Channel 52
Figure 30. Antenna Conducted Output Power, 802.11n Channel 52
Figure 31. Antenna Conducted Output Power, 802.11a Channel 64
Figure 32. Peak Antenna Conducted Output Power, 802.11n Channel 64
Figure 33. Peak Antenna Conducted Output Power, 802.11a Channel 100
Figure 34. Peak Antenna Conducted Output Power, 802.11n Channel 100
Figure 35. Peak Antenna Conducted Output Power, 802.11a Channel 116
Figure 36. Peak Antenna Conducted Output Power, 802.11n Channel 116
Figure 37. Peak Antenna <i>Conducted</i> Output Power, 802.11a Channel 132
Page 5 of 59

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	O7P-341
IC:	10147A-341
Test Report Number:	24-0073
Issue Date:	July 18, 2024
Customer:	Inventek Systems
Model:	ISM4334X-M4G-L44 Module

Figure 38. Peak Antenna Conducted Output Power, 802.11n Channel 132
Figure 39. Peak Antenna Conducted Output Power, 802.11a Channel 140
Figure 40. Peak Antenna Conducted Output Power, 802.11n Channel 140
Figure 41. Radiated Emissions, Horizontal 30 – 1000 MHz
Figure 42. Radiated Emissions, Vertical 30 – 1000 MHz57

Title

Table

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

List of Tables

Table 2. Test Instruments......11 Table 4. Allowed Antenna(s)14 Table 5. Peak Radiated Fundamental & Harmonic Emissions, 802.11a with Chip Table 6. Average Radiated Fundamental & Harmonic Emissions 802.11a with Chip Table 7. Peak Radiated Fundamental & Harmonic Emissions, 802.11n with Chip Table 8. Average Radiated Fundamental & Harmonic Emissions 802.11n with Chip Antenna......22 Table 10. Average Antenna Conducted Output Power per 15.407 (a) (2) for 802.11a..42 Table 13. Frequency Stability 50°C to -30°C for 802.11n Channel 52......51 Table 14. Frequency Stability 50°C to -30°C for 802.11a Channel64......51 Table 20. Spurious Radiated Emissions (30 MHz – 1 GHz)......56 Table 21. Spurious Radiated Emissions (1 GHz – 25 GHz)58

List of Attachments

Agency Agreement Application Forms Letter of Confidentiality Equipment Label(s) Block Diagram(s) Schematic(s) Test Configuration Photographs Internal Photographs External Photographs Antenna Photographs Theory of Operation RF Exposure User's Manual

<u>Page</u>

1 General Information

1.1 Purpose of this Report

This report is prepared to convey test results and information concerning the suitability of this exact product for Class II Permissive Change (C2PC) certification as an intentional transmitter device intended for public distribution according to the FCC Rules and Regulations Part 15, Section 407 and IC RSS 247 Issue 3.

The EUT is adding channels of operation using chip antenna:

- U-NII-2A
 - Channels 52-64 (5.26 5.32 GHz at 20 MHz bandwidth)
- U-NII-2C
 - Channels 100 116 (5.5 5.58 GHz at 20 MHz Bandwidth)
 - Channels 132 140 (5.66 5.7 GHz at 20 MHz Bandwidth)

No modification was made on the Wi-Fi module or adding channels with the use of the U. FL antenna.

1.2 Characterization of Test Sample

The sample used for testing was received by US Tech on April 10, 2024 in good operating condition.

1.3 Product Description

The Equipment under Test (EUT) is the Inventek Systems Model ISM4334X-M4G-L44 Module. The ISM4334X-M4G-L44 Module is an embedded wireless Internet connectivity module that operates in the 2.4 and 5.0 GHz spectrum. The Wi-Fi module's hardware consists of an ARM Cortex M4 host processor, Broadcom BCM43341/0 Dual-Band 802.11 g/n MAC/Baseband/Radio with integrated Bluetooth 4.0 and NFC support.

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

The Model Numbers to be included in the approval are:

ISM43340-M4G-L44-C ISM43340-M4G-L44-U ISM43341-M4G-L44-C ISM43341-M4G-L44-U ISM43340-M4G-L44-10CFH ISM43340-M4G-L44-10UFH ISM43341-M4G-L44-10CFH ISM43341-M4G-L44-10UFH ISM341-USB

The different model numbers for are marketing purposes: The ISM43340 does not support NFC, while the ISM43341 does support NFC. The C or U is for the antenna to be used, either the chip (C) or the external antenna path (U). The F is for an optional external flash memory, and the H is for Apple HomeKit. The final part number, ISM341-USB, is for a specific customer and includes the NFC filter circuit.

The EUT has two antenna options, a dual band chip antenna or a U. FL connector for use with an approved external antenna.

1.4 Configuration of Tested System

The Test Sample was tested per ANSI C63.10:2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices for the intentional radiator aspect of the device and ANSI C63.4:2014, Methods of Measurement of Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (2014) for the unintentional radiator aspect of the device as well as FCC subpart B and C of Part 15 and per FCC KDB Publication number 558074 v03r05 for Digital Transmission Systems Operating Under section 15.247.

A list of EUT and Peripherals is found in Table 1 below. A block diagram of the tested system is shown in Figure 1. Test configuration photographs are provided in separate Appendices.

1.5 Test Facility

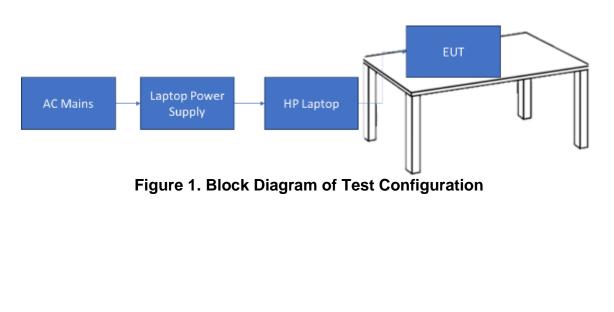
Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA 30004. This site has been fully described and registered with the FCC. Its designation number is US5301. Additionally, this site has also been fully described and submitted to Industry Canada (IC) and has been approved under file number 9900A-1.

1.6 Related Submittals

The EUT is subject to the following FCC authorizations:

a) Certification under section 15.407 as a transmitter.

Table 1. EUT and Peripherals


PERIPHERAL	MODEL	SERIAL	FCC ID:	CABLES
MANUFACTURER.	NUMBER	NUMBER		P/D
Inventek Systems	ISM4334X-M4G-	Engineering	O7P-341	PS/DS
(EUT)	L44 Module	Sample	10147A-341	
Laptop Hewlett Packard	14-DQ0052DX	5CD404BR68	Contains FCC ID: TX2-RTL882CE Contains IC: 6317A-RTL8822CE	PS/DS
Antenna See antenna details				

U= Unshielded

S= Shielded

P= Power D= Data

D= Dala

2 Tests and Measurements

2.1 Test Equipment

The table below lists test equipment used to evaluate this product. Model numbers, serial numbers and their calibration status are indicated.

	Table	2.	Test	Instruments
--	-------	----	------	-------------

TEST INSTRUMENT	Manufacturer	Model	SERIAL NUMBER	DATE OF LAST CALIBRATION
Spectrum Analyzer	Agilent	E4440A	MY45304803	2/22/2026 2 yr.
Spectrum Analyzer	Agilent	E4407B US41442935		9/21/2024 2 yr.
Spectrum Analyzer	Hewlett-Packard	8566B	2648A13875	5/07/2025
RF Preamp	Hewlett-Packard	8449B	3008A00914	3/4/2025
RF Preamp	Hewlett-Packard	8447D	1937A01611	6/17/2025
Mixer	Hewlett-Packard	11975A	2517A00647	4/09/2025
Biconical Antenna	EMCO	3110B	9307-1431	1/13/2025 2 yr.
Log Periodic Antenna	EMCO	3146	9305-3600	3/13/2026 2 yr.
Horn Antenna	EMCO	3115	9107-3723	3/13/2025 2 yr.
Environmental Chamber	Thermotron	SM16	17095	4/17/2025 2 yr.
LISN (x2)	Solar Electronics	8028-50-TS24- BNC	955824 & 955825	4/28/2025
Spectrum Analyzer	Rigol	DSA815	DSA8A180300138	2/22/2026 2 yr.

Note: The calibration interval of the above test instruments are 12 months unless stated otherwise and all calibrations are traceable to NIST/USA.

2.2 Modifications to EUT Hardware

No physical modifications were made by US Tech to bring the EUT into compliance with FCC Part 15, Subpart C Intentional Radiator Limits for the transmitter portion of the EUT or the Subpart B Unintentional Radiator Limits (Receiver and Digital Device) Requirements.

2.3 Number of Measurements for Intentional Radiators (15.31(m))

Measurements of intentional radiators or receivers shall be performed and reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in Table 3 below.

Frequency Range Over Which the Device Operates	Number of Frequencies	Location in the Range of Operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near the top 1 near the bottom
Greater than 10 MHz	3	1 near top 1 near middle 1 near bottom

Table 3. Number of Test Frequencies for Intentional Radiators

Because the EUT operates at 5.15 GHz to 5.85 MHz, at least 3 test frequencies were used.

2.4 Frequency Range of Radiated Measurements (Part 15.33)

2.4.1 Intentional Radiator

The spectrum shall be investigated for the intentional radiator from the lowest RF signal generated in the EUT without going below 9 kHz to the 10th harmonic of the highest fundamental frequency generated or 40 GHz (whichever is the lowest).

2.4.2 Unintentional Radiator

For the digital device, an unintentional radiator, the frequency range shall be 30 MHz to 1000 MHz or up to 5 times the highest internal clock frequency.

2.5 Measurement Detector Function and Bandwidth (CFR 15.35)

The radiated and conducted emissions limits shown herein are based on the following:

2.5.1 Detector Function and Associated Bandwidth

On frequencies below 1000 MHz, the limits herein are based upon measurement equipment employing a CISPR Quasi-peak detector function and related measurement bandwidths (i.e. 9 kHz from 150 kHz to 30 MHz and 120 kHz from 30 MHz to 1000 MHz). Alternatively, measurements may be made with equipment employing a peak detector function as long as the same bandwidths specified for the Quasi-peak device are used.

2.5.2 Corresponding Peak and Average Requirements

Above 1000 MHz, radiated limits are based on measuring instrumentation employing an average detector function. When average radiated emissions are specified, there is also a corresponding Peak requirement, as measured using a peak detector, of 20 dB greater than the average limit. For all measurements above 1000 MHz the Resolution Bandwidth is at least 1 MHz.

2.5.3 Pulsed Transmitter Averaging

When the radiated emissions limit is expressed as an average value and the transmitter is pulsed, the measured field strength is determined by applying a Duty Cycle Correction Factor based upon dividing the total ON time during the first 100 ms period by 100 ms (or by the period if less than 100 ms). The duty cycle may be expressed logarithmically in dB.

NOTE: If the transmitter was programmed to transmit at >98% duty cycle, then, wherever applicable (where the detection mode was AVG) the duty cycle factor calculated will be applied.

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	O7P-341
IC:	10147A-341
Test Report Number:	24-0073
Issue Date:	July 18, 2024
Customer:	Inventek Systems
Model:	ISM4334X-M4G-L44 Module

2.6 EUT Antenna Requirements (CFR 15.203)

An intentional radiator is designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator is considered sufficient to comply with the provisions of this section. Only the antenna(s) listed in Table 4 will be used with this module.

Table 4. Allowed Antenna(s)

REPORT REFERENCE	MANUFACTURER	TYPE OF ANTENNA	MODEL	GAIN dB _i	TYPE OF CONNECTOR
1	Unictron Technologies Corp.	Chip	AA077	2.3	Chip

2.7 Restricted Bands of Operation (Part 15.205)

Only spurious emissions can fall in the frequency bands of CFR 15.205. The field strength of these spurious emissions cannot exceed the limits of 15.209. Radiated harmonics and other spurious emissions are examined for this requirement.

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

2.8 Transmitter Duty Cycle (CFR 35 (c))

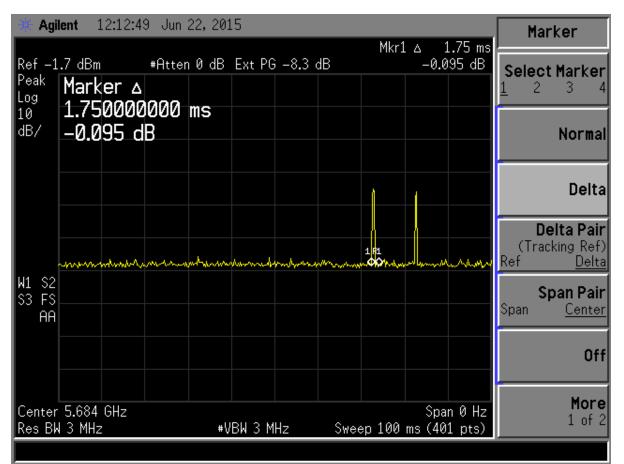


Figure 2. Duty Cycle 100ms Sweep

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

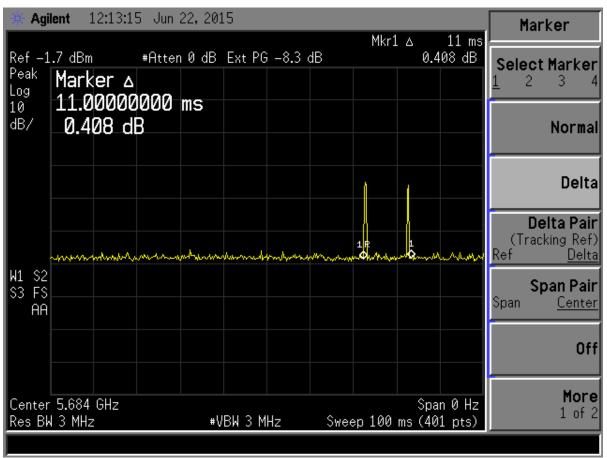


Figure 3. Transmitter Pulse Width

Total Time on from Figure 2 = 1.75 ms (Transmitter Pulse Width) Total Pulse Train from Figure 3 = 11.00 ms (Pulse Train)

(1.75 ms Total Time On)/ (11.00 ms Total Pulse Train) = 0.16 Numeric Duty Cycle Duty Cycle = 20 Log (0.16) = -15.97 dB

NOTE: The transmitter was programmed to transmit at >98% duty cycle, therefore wherever applicable (where the detection mode was AVG) the duty cycle factor calculated above will be applied.

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	O7P-341
IC:	10147A-341
Test Report Number:	24-0073
Issue Date:	July 18, 2024
Customer:	Inventek Systems
Model:	ISM4334X-M4G-L44 Module

2.9 Intentional Radiator, Power Line Conducted Emissions (CFR 15.207)

The EUT is powered by 3.3 VDC through a host device. The host was connected to the AC mains, and the power line conducted emissions testing was performed to ensure that the EUT in operation (exercising all transmitter functions) and the complete system continues to meet the applicable requirements for CFR 15.207. These measurements were completed and are displayed along with the 15.107 power line test data in the sections below.

Figure 4.Transmitter Power Line Conducted Emissions Test Data, Part 15.207

		150 kHz to 3	0 MHz with Cla	ass B Limits							
Frequency (MHz)	Test Data (dBuV)	LISN+CL-PA (dB)	Results (dBuV)	AVG Limits (dBuV)	Margin (dB)	Detector PK, QP, or AVG					
120 VAC, 60 Hz Phase											
0.3752	42.66	0.52	43.18	48.4	5.2	PK					
0.5058	36.37	0.38	36.75	46.0	9.2	PK					
3.2267	36.78	0.29	37.07	46.0	8.9	PK					
6.3250	40.06	0.39	40.45	50.0	9.6	PK					
16.0333	46.77	0.44	47.20	60.0*	12.8	PK					
16.0333	37.83	0.44	38.26	50.0	11.7	AVG					
21.2500	41.42	0.72	42.14	50.0	7.9	PK					
		120V	/AC, 60 Hz Νeι	ıtral							
0.1693	55.80	1.78	57.58	65.0*	7.4	PK					
0.1693	36.00	1.78	37.78	55.0	17.2	AVG					
0.7833	38.32	0.46	38.78	46.0	7.2	PK					
1.8133	38.42	0.44	38.86	46.0	7.1	PK					
6.6333	36.97	0.56	37.53	50.0	12.5	PK					
15.9333	47.72	0.43	48.15	60.0*	11.9	PK					
15.9333	36.28	0.43	36.71	50.0	13.3	AVG					
20.3833	42.92	0.43	43.35	50.0	6.6	PK					

Note: * denotes QP Limits

Sample Calculation at 0.3752 MHz:

Magnitude of Measured Frequency	42.66	dBuV
+ Cable Loss+ LISN Loss	0.52	dB
=Corrected Result	43.18	dBuV

Test Date: June 28, 2024 Tested by artes melle Signature:

2.10 Intentional Radiator, Radiated Emissions (CFR 15.209, 15.407(d)) (IC RSS 247, 6.2)

Regarding radiated spurious measurements, the EUT was placed into a continuous transmit mode of operation (>98% duty cycle) and tested per FCC KDB Publication 789033 D02 v02 and ANSI C63.10:2013. A preliminary scan was performed on the EUT to find signal frequencies caused by the transmitter part of the device. To obtain worst-case results, the EUT was tested in X, Y, and Z axes or in the orientation of normal operation if the device was designed to operate in a fixed position.

Radiated measurements were then conducted between the frequency range of 9KHz (or lowest frequency used/generated by the device) up to the tenth harmonic of the device (no greater than 40 GHz). In the band below 1 GHz, emissions were tested with a RBW of 120 kHz. Emissions above 1 GHz were tested with a RBW of 1 MHz. All video bandwidth settings were at least three times the RBW value.

The EUT was investigated to CFR 15.209 for below 1 GHz, General requirements for unwanted spurious emissions. Above 1 GHz, all unwanted spurious emissions were investigated to CFR 15.407.

The results are displayed in the plots below. Radiated emissions per CFR 15.209 were performed to address the concerns of unwanted emissions that may radiate from the EUT cabinet, control circuits, or power leads. The results for this test can be found in section 2.16 below.

Table 5. Peak Radiated Fundamental & Harmonic Emissions, 802.11a with Chip Antenna

Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector Mode	
				Channel	52				
5261.00	57.75		39.04	96.79		3.0m./VERT		PK	
				Channel	64				
5320.00	57.87		38.98	96.85		3.0m./VERT		РК	
				Channel	100				
5499.00	56.55		39.50	96.05		3.0m./VERT		РК	
				Channel	116				
5578.00	54.82		39.67	94.49		3.0m./VERT		РК	
				Channel	132				
5661.00	52.58		39.82	92.40		3.0m./VERT		PK	
Channel 140									
5701.00	51.53		39.78	91.31		3.0m./VERT		PK	

1. (*) Falls within the restricted bands of CFR 15.205. Limits based on CFR15.209 & 20 dB relaxation for peak measurements of CFR 15.35.

2. No other signals detected within 20 dB of specification limit. Harmonics investigated up to the 10th harmonic

3. The EUT was placed in three orthogonal positions and the transmitter was in constant broadcast mode, with a duty cycle of greater than 98%. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 5261.00 MHz:

Magnitude of Measured Frequency	57.75	dBuV
+Antenna Factor + Cable Loss+ Amplifier Gain	39.04	dB/m
Corrected Result	96.79	dBuV/m

Test Date: June 26, 2024 Tested by Signature:

Table 6. Average Radiated Fundamental & Harmonic Emissions 802.11a with Chip Antenna

Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector Mode
				Channel	52			
5261.00	57.75	-15.97	39.04	80.82		3.0m./VERT		PK
				Channel	64			
5320.00	57.87	-15.97	38.98	80.88		3.0m./VERT		РК
				Channel	100			
5499.00	56.55	-15.97	39.50	80.08		3.0m./VERT		PK
				Channel	116			
5578.00	54.82	-15.97	39.67	78.52		3.0m./VERT		PK
				Channel	132			
5661.00	52.58	-15.97	39.82	76.43		3.0m./VERT		PK
				Channel	140			
~5701.00	51.53	-15.97	39.78	75.34	-	3.0m./VERT		РК

1. (*) Falls within the restricted bands of CFR 15.205. Limits based on CFR15.209 & 20 dB relaxation for peak measurements of CFR 15.35.

2. No other signals detected within 20 dB of specification limit. Harmonics investigated up to the 10th harmonic

3. Duty cycle correction factor was used (-15.97 dB). See column 3 above.

4. The EUT was placed in three orthogonal positions and the transmitter was in constant broadcast mode, with a duty cycle of greater than 98%. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 5261.00 MHz:

Magnitude of Measured Frequency	57.75	dBuV
+Antenna Factor + Cable Loss+ Amplifier Gain	39.04	dB/m
-Duty Cycle	-15.97	dB
Corrected Result	39.04	dBuV/m

Test Date: June 26, 2024 Tested by Signature:

Table 7. Peak Radiated Fundamental & Harmonic Emissions, 802.11n with Chip Antenna

Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector Mode	
				Channel	52				
5259.00	57.11		39.04	96.15		3.0m./VERT		PK	
				Channel	64				
5321.00	57.58		38.98	96.56		3.0m./VERT		PK	
				Channel	100				
5497.00	56.62		39.50	96.12		3.0m./VERT		РК	
				Channel [•]	116				
5581.00	54.92		39.67	94.59		3.0m./VERT		PK	
				Channel	132				
5661.00	52.70		39.82	92.52		3.0m./VERT		PK	
Channel 140									
5698.00	51.01		39.82	90.83		3.0m./VERT		РК	

1. (*) Falls within the restricted bands of CFR 15.205. Limits based on CFR15.209 & 20 dB relaxation for peak measurements of CFR 15.35.

2. No other signals detected within 20 dB of specification limit. Harmonics investigated up to the 10th harmonic

3. The EUT was placed in three orthogonal positions and the transmitter was in constant broadcast mode, with a duty cycle of greater than 98%. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 5180 MHz:

Magnitude of Measured Frequency	66.83	dBuV
+Antenna Factor + Cable Loss+ Amplifier Gain	38.07	dB/m
Corrected Result	107.90	dBuV/m

Test Date: June 26, 2024 Tested by artes mell Signature:

Table 8. Average Radiated Fundamental & Harmonic Emissions 802.11n with Chip Antenna

Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector Mode
				Channel	52			
5259.00	57.11	-15.97	39.04	80.18		3.0m./VERT		PK
				Channel	64			
5321.00	57.58	-15.97	38.98	80.59		3.0m./VERT		PK
				Channel [•]	100			
5497.00	56.62	-15.97	39.50	80.15		3.0m./VERT		PK
				Channel	116			
5581.00	54.92	-15.97	39.67	78.62		3.0m./VERT		PK
				Channel	132			
5661.00	52.70	-15.97	39.82	76.55		3.0m./VERT		PK
		-		Channel	140			
5698.00	51.01	-15.97	39.82	74.86		3.0m./VERT		PK

1. (*) Falls within the restricted bands of CFR 15.205. Limits based on CFR15.209 & 20 dB relaxation for peak measurements of CFR 15.35.

2. No other signals detected within 20 dB of specification limit. Harmonics investigated up to the 10th harmonic

3. (~) Duty cycle correction factor was used (-15.97 dB).

4. The EUT was placed in three orthogonal positions and the transmitter was in constant broadcast mode, with a duty cycle of greater than 98%. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 5259.00 MHz:

Magnitude of Measured Frequency	57.11	dBuV
+Antenna Factor + Cable Loss+ Amplifier Gain	39.04	dB/m
-Duty Cycle	-15.97	dB
Corrected Result		dBuV/m

Test Date: June 26, 2024 Tested by Signature:

2.11 Band Edge Measurements – (CFR 15.407 (b))

Band Edge measurements are made following the guidelines in ANSI C63.10, Clause 12.7.4.4 and FCC KDB Publication No. 789033 D02 v02 with the EUT initially operating on the Lowest Channel and then operating on the Highest Channel within its band of operation for all modes of operation. Radiated measurements are performed to demonstrate compliance with the requirement of 15.407(b) that all emissions outside of the band edges do not exceed an E.I.R.P of -27 dBm/MHz.

The emission measurements are performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

To capture the band edge, the Spectrum Analyzer frequency span was set to 2.5 MHz to capture the peak level of the emission operating on the channel closest to the band edge as well as any modulation products falling outside of the authorized band of operation. Conducted measurements are performed with RBW = 100 kHz. In all cases, the VBW is set \geq 3*RBW. The integration function on the spectrum analyzer was used to calculate the Band edge measurement over 1 MHz. See figure and calculations below for more detail.

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

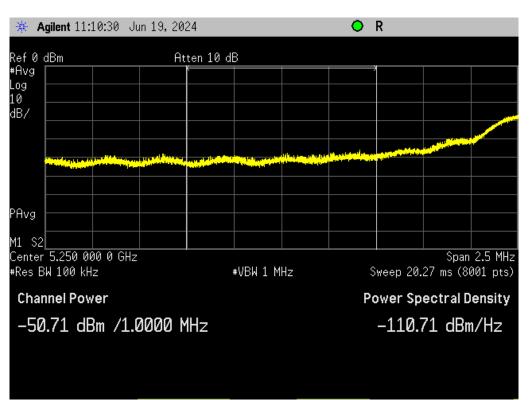
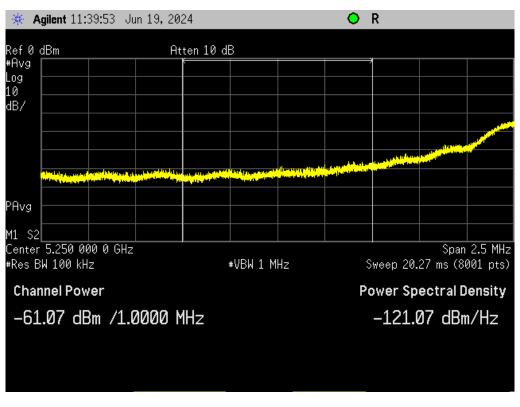



Figure 5. 5.25 GHZ Band Edge Compliance, 802.11a

Page 24 of 59

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

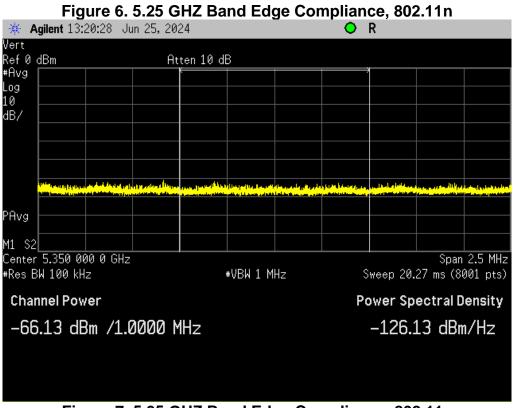
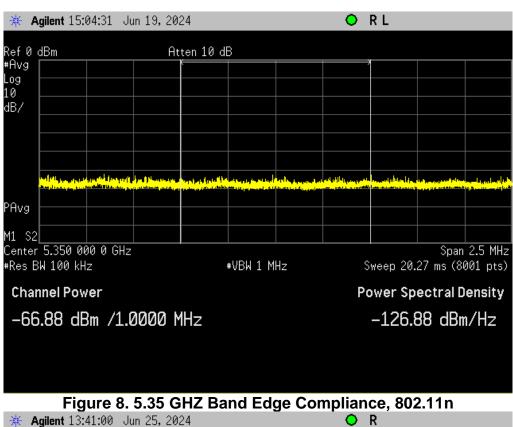
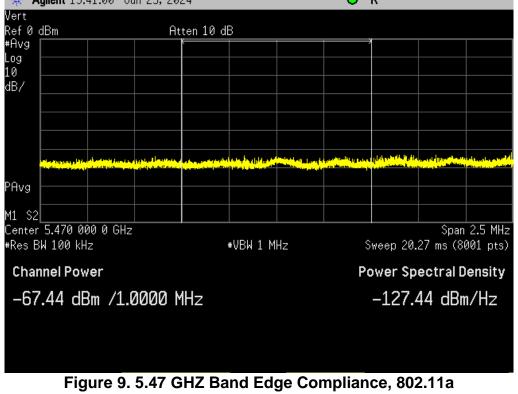
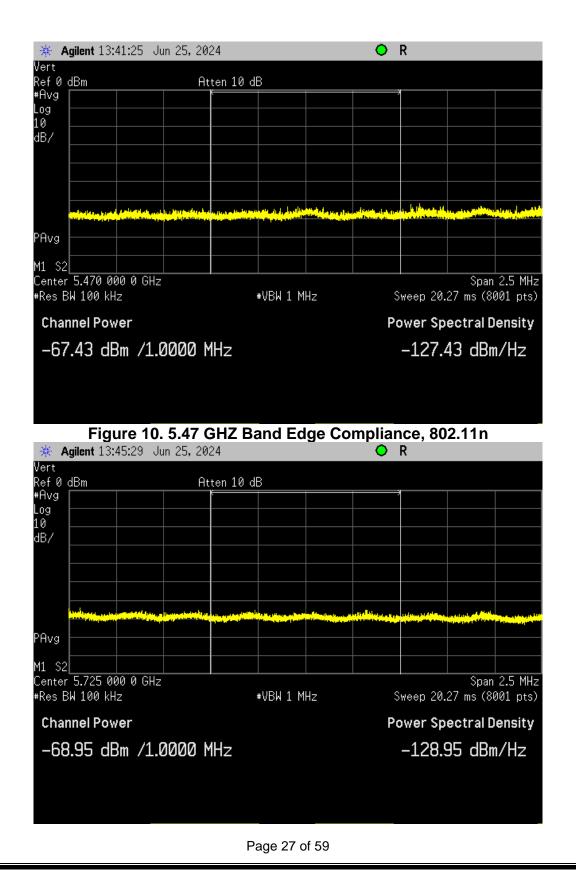
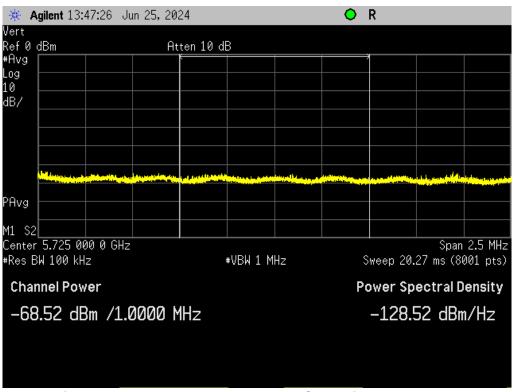




Figure 7. 5.35 GHZ Band Edge Compliance, 802.11a


FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

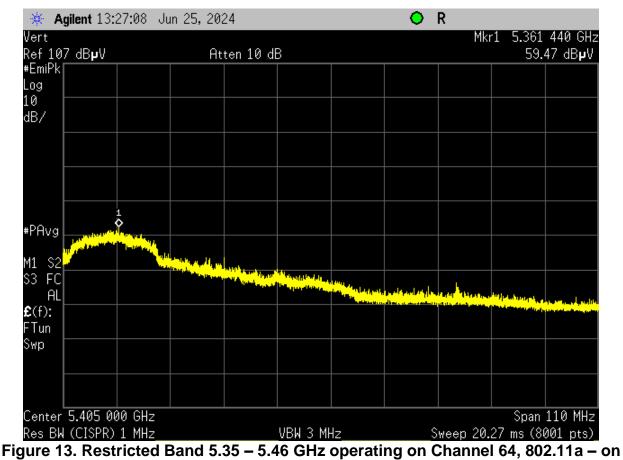


Page 26 of 59

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

Figure 11. 5.725 GHZ Band Edge Compliance, 802.11a


Figure 12. 5.725 GHz Band Edge Compliance, 802.11n

2.12 Unwanted Emissions in the Restricted Bands (CFR 15.407(b)(9,10) 15.205, 15.209)

Unwanted Emissions in the Restricted Bands were made following the guidelines in FCC KDB Publication No. 789033 D02 v02 with the EUT operating on the channels closest to the restricted bands of operation. These measurements were performed with the EUT transmitting at >98% duty Cycle.

To capture the unwanted emissions, the Spectrum Analyzer frequency span was set to cover the full restricted band. Radiated measurements are performed with RBW = 1 MHz. In all cases, the VBW is set \geq 3*RBW.

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

Chip Antenna

	5.35 – 5.46 GHz Restricted Band Peak Measurements										
Frequency (MHz)Test Data (dBuV)AF+CA-AMP (dB/m)Re (dB				Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector PK, or AVG				
5336.656	62.77	1.87	64.64	74.0	3.0m/Vert	9.4	PK				
5336.656	62.77	-14.10	48.67	54.0	3.0m/Vert	5.3	PK				

(*) Notes Duty cycle correction factor was used.

Sample calculation: at 5336.656 MHz, 62.77 dBuV + 1.87 (dB) = 64.64 dBuV/m

Test Date: June 25, 2024 Tested by artis melli Signature:

Name: <u>Gabriel Medina</u>

Page 30 of 59

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

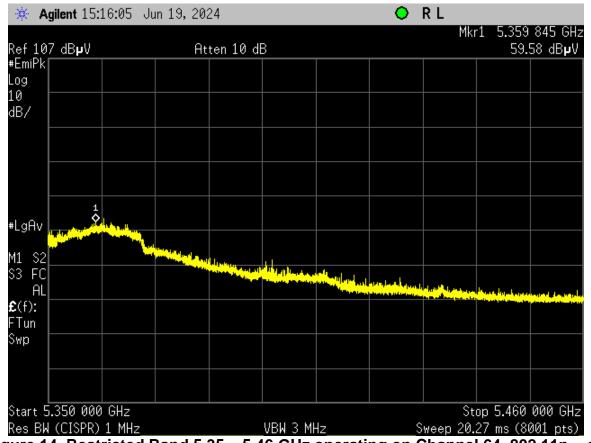


Figure 14. Restricted Band 5.35 – 5.46 GHz operating on Channel 64, 802.11n – on Chip Antenna

	5.35 – 5.46 GHz Restricted Band Peak Measurements										
Frequency (MHz)	Test Data (dBuV)	AF+CA-AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector PK, or AVG				
5359.845	59.47	2.40	61.87	54.0	3.0m./VERT	12.1	PK				
5359.845	59.47	-13.57	45.90	54.0	3.0m./VERT	8.1	PK				

(*) Notes Duty cycle correction factor was used.

Sample calculation: at 5359.845 MHz: 59.58 dBuV + 2.39 (dB) = 61.97 dBuV/m

Test Date: June 19, 2024 Tested by Tw mel Signature:

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

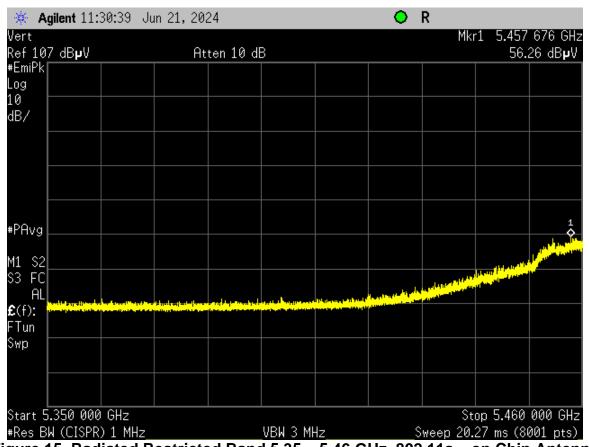


Figure 15. Radiated Restricted Band 5.35 – 5.46 GHz, 802.11a – on Chip Antenna

5.35 GHz to 5.46 GHz Restricted Band AVG Measurements								
Frequency (MHz)	Test Data (dBuV)	AF+CA-AMP (dB/m)	Results (dBuV/m)	AVG Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector PK, or AVG	
5457.676	56.26	2.38	58.64	74.0	3.0m./VERT	15.4	PK	
5457.676	56.26	-13.59	42.67	54.0	3.0m./VERT	11.3	PK	

(*) Notes Duty cycle correction factor was used.

Sample calculation: at 5457.676 MHz: 56.26 dBuV + 2.38 (dB) = 58.64 dBuV/m

Test Date: June 21, 2024 antes melle Tested by Signature:

Name: <u>Gabriel Medina</u>

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

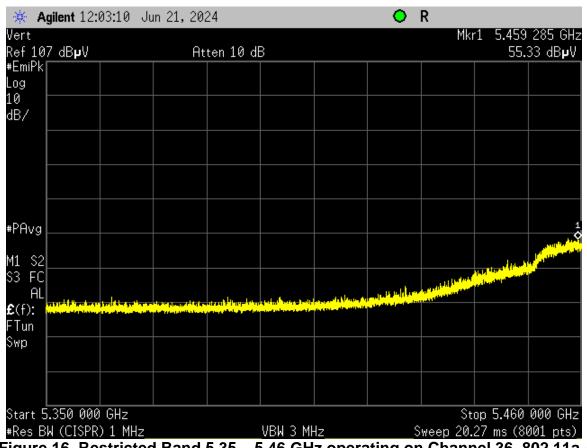


Figure 16. Restricted Band 5.35 – 5.46 GHz operating on Channel 36, 802.11a -Peak on Chip Antenna

4.5 GHz to 5.15 GHz Restricted Band Peak Measurements								
Frequency (MHz)	Test Data (dBuV)	AF+CA-AMP (dB/m)	Results (dBuV/m)	PK Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector PK, or AVG	
5459.285	55.33	2.38	57.71	74.0	3.0m./VERT	16.3	PK	
5459.285	55.33	-13.59	41.74	54.0	3.0m./VERT	12.3	PK	

(*) Notes Duty cycle correction factor was used.

Sample calculation: at 5459.285 MHz: 55.33 dBuV + 2.38 (dB) = 57.71 dBuV/m

Test Date: June 21, 2024 Tested by Tis mel Signature:

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	O7P-341
IC:	10147A-341
Test Report Number:	24-0073
Issue Date:	July 18, 2024
Customer:	Inventek Systems
Model:	ISM4334X-M4G-L44 Module

2.13 99% Occupied Bandwidth (15.407(a) (5), IC RSS 247, 6.4)

These measurements were performed while the EUT was in constant transmit mode. The spectrum analyzers bandwidth measurement was used to determine the 26 dB bandwidth and the 99% BW. The test procedures in the KDB document 789033 D02 v02 were followed. The RBW was set to approximately 1% to 5% times the OBW with the VBW \geq RBW, and the span 1.5 to 5.0 times the OBW. The results of this test are given in Table 10 and 11 and Figures 86-99.

Frequency (MHz)	26 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	802.11a	
5260	19.327	17.621
5320	19.335	17.625
5500	20.021	17.167
5580	20.024	17.686
5660	20.994	17.704
5700	21.822	17.728
	802.11n	
5260	19.341	17.631
5320	19.334	17.654
5500	20.097	17.690
5580	20.005	17.699
5660	21.345	17.690
5700	20.853	17.713

Table 9. 26 dB Bandwidth and 99% Occupied Bandwidth

Test Date: June 26, 2024 Tested by Signature:

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

🔆 Agilent 13:33:14	Jun 20, 2024			RL
5260 Ref 8 dBm	Otton 10) dB Ext PG	_9 dB	Mkr1 5.266643 GHz -5.269 dBm
#Peak			-3 GD	-3.203 dDiir
Log 10	****			
dB/	→			
Center 5.26 GHz #Res BW 300 kHz		#VBW 1 MF	lz	Span 44.01 MHz Sweep 40 ms (4001 pts)
Occupied Bandw	<i>i</i> idth			Occ BW % Pwr 99.00 %
	6218 MHz			x dB -26.00 dB
Transmit Freq Error				
x dB Bandwidth	19.327 MHz			
File Name Error	7 26 40 DW	l and OP	M 001	11a Channel 52
—	Jun 20, 2024		VV -0U4	2.11a- Channel 52 R L
5260	<u> </u>		~ ID	Mkr1 5.257624 GHz
5260 Ref 8 dBm #Peak	Atten 10	dB Ext PG	-9 dB	Mkr1 5.257624 GHz _3.316 dBm
Ref 8 dBm #Peak Log	Atten 10		-9 dB	
Ref 8 dBm #Peak Log 10 dB/			-9 dB	-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/	Atten 10		-9 dB	-3.316 dBm
Ref 8 dBm #Peak Log 10			-9 dB	-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/			-9 dB	-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/			-9 dB	-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/			-9 dB	-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/				-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.26 GHz #Res BW 300 kHz Cccupied Bandw	<i>i</i> dth			-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.26 GHz #Res BW 300 kHz Cccupied Bandw				-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.26 GHz #Res BW 300 kHz Cccupied Bandw	<i>i</i> dth			-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.26 GHz #Res BW 300 kHz Cccupied Bandw	<i>i</i> dth			-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.26 GHz #Res BW 300 kHz Occupied Bandw 17. Transmit Freq Error × dB Bandwidth File Name Error	idth 6318 MHz 37.730 kHz 19.341 MHz	1 	Ηz	-3.316 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.26 GHz #Res BW 300 kHz Occupied Bandw 17. Transmit Freq Error × dB Bandwidth File Name Error	idth 6318 MHz 37.730 kHz 19.341 MHz	1 	Ηz	-3.316 dBm

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

🔆 Agilent 13:54:15	Jun 20, 20)24				RL	
5320 Ref 8 dBm	Q++	an 10 dF	3 Ext PG	_9 dB		Mkr1	5.318779 GHz -1.583 dBm
#Peak					la la da		-1.303 dDm
Log 10			1				
dB/	→						
Center 5.32 GHz #Res BW 300 kHz		+	ŧVBW1M	Hz		Sweep 40	Span 44 MHz ms (4001 pts)
Occupied Bandw	idth				0c	:с В₩ % Ри	
17.	6251 M	Hz				хd	₿ –26.00 dB
Transmit Freq Error x dB Bandwidth	38.177 19.335						
File Name Error	10.000	rinz					
Figure 19	. 26 dB	BW a	nd OB	W -802	2.11a-	Channe	64
🔆 Agilent 13:45:21						RL	
5320 Ref 8 dBm	Att	en 10 dE	3 Ext PG	-9 dB		Mkr1	5.318361 GHz -2.07 dBm
Ref 8 dBm #Peak	Att	en 10 dE	B Ext PG	–9 dB		Mkr1	
Ref 8 dBm #Peak Log 10	Att	en 10 dE	B Ext PG	-9 dB		Mkr1	
Ref 8 dBm #Peak Log	Att	en 10 dE	B Ext PG	-9 dB		Mkr1	
Ref 8 dBm #Peak Log 10		en 10 dE	B Ext PG	-9 dB		Mkr1	
Ref 8 dBm #Peak Log 10		en 10 dE	3 Ext PG	-9 dB		Mkr1	
Ref 8 dBm #Peak Log 10		en 10 dE	3 Ext PG	-9 dB		Mkr1	
Ref 8 dBm #Peak Log 10 dB/		en 10 dE	B Ext PG	-9 dB		Mkr1	-2.07 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.32 GHz #Res BW 300 kHz			B Ext PG				
Ref 8 dBm #Peak Log 10 dB/ Center 5.32 GHz #Res BW 300 kHz Cccupied Bandw	idth				0c	Sweep 40	-2.07 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.32 GHz #Res BW 300 kHz Cccupied Bandw					0c	Sweep 40	-2.07 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.32 GHz #Res BW 300 kHz Occupied Bandw 17.0	idth 6544 M	Hz			0c	Sweep 40	-2.07 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.32 GHz #Res BW 300 kHz Cccupied Bandw	idth	Hz			0c	Sweep 40	-2.07 dBm
Ref 8 dBm *Peak Log 10 dB/ Center 5.32 GHz *Res BW 300 kHz Occupied Bandw 17.1 Transmit Freq Error × dB Bandwidth File Name Error	idth 6544 M 40.141 19.334	Hz HHz MHz	1 	Hz		Sweep 40 c BW % PP x d	-2.07 dBm
Ref 8 dBm #Peak Log 10 dB/ Center 5.32 GHz #Res BW 300 kHz Occupied Bandw 17.0 Transmit Freq Error × dB Bandwidth	idth 6544 M 40.141 19.334	Hz HHz MHz	1 	Hz		Sweep 40 c BW % PP x d	-2.07 dBm

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

🔆 Agilent 11:46:34	Jun 26, 2024		RL
5500 Ref 10 dBm	0		Mkr1 5.502137 GHz
#Peak		B Ext PG -9 dB	0.17 dBm
Log 10	7		
dB/	→		
Center 5.5 GHz #Res BW 300 kHz		₩VBW 1 MHz	Span 44.06 MHz Sweep 40 ms (4001 pts)
Occupied Bandw	idth		Occ BW % Pwr 99.00 %
	6768 MHz		× dB −26.00 dB
Transmit Freq Error	43.837 kHz		
x dB Bandwidth	20.021 MHz		
File Name Error			
	. 26 dB BW a Jun 26, 2024	nd OBW -802	2.11a- Channel 100 R L
5500	0000 200 202 1		
5500 Ref 11 dBm	·	B Ext PG –9 dB	Mkr1 5.497752 GHz -0.805 dBm
5500	·	B Ext PG -9 dB	Mkr1 5.497752 GHz
5500 Ref 11 dBm #Peak Log 10	·		Mkr1 5.497752 GHz
5500 Ref 11 dBm #Peak Log 10 dB/	·		Mkr1 5.497752 GHz
5500 Ref 11 dBm #Peak Log 10 dB/	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/ Center 5.5 GHz	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/ Center 5.5 GHz #Res BW 300 kHz	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/ Center 5.5 GHz #Res BW 300 kHz Occupied Bandw	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/ Center 5.5 GHz #Res BW 300 kHz Occupied Bandw	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/ Center 5.5 GHz #Res BW 300 kHz Occupied Bandw	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/ Center 5.5 GHz #Res BW 300 kHz Occupied Bandw	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm *Peak Log 10 dB/ Center 5.5 GHz *Res BW 300 kHz Occupied Bandw 17.1 Transmit Freq Error	Atten 15 c		Mkr1 5.497752 GHz -0.805 dBm
5500 Ref 11 dBm #Peak Log 10 dB/ Center 5.5 GHz #Res BW 300 kHz Occupied Bandw 17.1 Transmit Freq Error × dB Bandwidth File Name Error	Atten 15 c	#VBW 1 MHz	Mkr1 5.497752 GHz -0.805 dBm

Page 37 01 59

🔆 Agilent 14:39:13	Jun 20, 2024			RL
5580 Ref 15 dBm	O+top 1	20 dB Ext PG	_9 .4R	Mkr1 5.557966 GHz -34.78 dBm
#Peak			-3 ab	-34./0 dDm
Log 10			and the second	
dB/	├── /			
Center 5.58 GHz •Res BW 300 kHz		#VBW1M	Hz	Span 44.07 MHz Sweep 40 ms (4001 pts)
Occupied Bandwi	idth			Occ BW % Pwr 99.00 %
	5861 MHz			x dB –26.00 dB
Transmit Freq Error	34.243 kHz			
x dB Bandwidth	20.024 MHz			
File Name Error				
		V and OB	W -802	2.11a- Channel 116
	Jun 20, 2024			R L Mkr1 5.585453 GHz
Ref 9 dBm	Otton 1			
	Htten .	LØ dB Ext PG	5 – 9 dB	-1.134 dBm
Peak			-9 dB	-1.134 dBm
Peak .og .0			-9 dB	
Peak			-9 dB	
Peak og Ø			-9 dB	
Peak			-9 dB	
Peak			-9 dB	
Peak			-9 dB	
Peak			-9 dB	
#Peak		#VBW 1 M		
Peak Jog L0 JB/ Center 5.58 GHz +Res BW 300 kHz Occupied Bandwith	idth			1 Конструкций Кран 44.12 МНг Sweep 40 ms (4001 pts) Осс ВМ % Рмг 99.00 %
Peak og I0 IB/ Center 5.58 GHz PRes BW 300 kHz Occupied Bandwith				1
Peak .og .Ø .Ø .Ø .Ø .Ø .Ø .Ø .Ø .Ø .Ø	idth			1 Конструкций Кран 44.12 МНг Sweep 40 ms (4001 pts) Осс ВМ % Рмг 99.00 %
Peak og IB/ Enter 5.58 GHz Res BW 300 kHz Occupied Bandwi	idth	#VBW 1 M		1 Конструкций Кран 44.12 МНг Sweep 40 ms (4001 pts) Осс ВМ % Рмг 99.00 %
Peak .og .0 .B/ 	idth 5994 MHz 37.667 kHz	#VBW 1 M		1 Конструкций Кран 44.12 МНг Sweep 40 ms (4001 pts) Осс ВМ % Рмг 99.00 %
Peak og B/ Eenter 5.58 GHz Res BW 300 kHz Occupied Bandwi 17.6 Transmit Freq Error × dB Bandwidth File Name Error	idth 5994 MHz 37.667 kHz 20.005 MHz	#VBW 1 M	Hz	1 Конструкций Кран 44.12 МНг Sweep 40 ms (4001 pts) Осс ВМ % Рмг 99.00 %

5660 Mkr1 5.659110 GHz Ref 11 dBm Atten 15 dB Ext P6 -9 dB 1.144 dBm Peak 1 1 1 Log 1 1 1 1 10 1 1 1 1 dB/ 1 1 1 1 GB/ 1 1 1 1 1 GB/ 1 1 1 1 1 1 GB/ 1 1 1 1 1 1 1 GB/ 1 1 1 1 1 1 1 1 1 GB 1 <t< th=""></t<>
Peak 1
10 dB/ dB/ 10 dB/ dB/ 10 dB/ dB/ dB/ 10 dB/ dB/ dB/ dB/ dB/ dB/ dB/ dB/ dB/ dB/
dB/
Center 5.66 GHz Span 44.1 MHz *Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth Occ BH % Pwr 99.00 % 17.7045 MHz × dB -26.00 dB Transmit Freq Error 50.253 kHz × dB -26.00 dB File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132 * Aglient 15:27:13 Jun 20, 2024 R L S660 Mkr1 5.661135 GHz 0.735 dBm 97.35 dBm 97.35 dBm Peak 41 41 41 41 41
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7045 MHz Occ BW % Pwr 99.00 % × dB Transmit Freq Error × dB Bandwidth 50.253 kHz 20.994 MHz File Name Error 50.253 cHz 20.994 MHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132 * Agilent 15:27:13 Jun 20, 2024 R L 5660 Mkr1 5.661135 GHz Ref 10 dBm Atten 15 dB Ext PG -9 dB 0.735 dBm *Peak 1 1 Io 1 1
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7045 MHz Occ BW % Pwr 99.00 % × dB Transmit Freq Error × dB Bandwidth 50.253 kHz 20.994 MHz File Name Error 50.253 cHz 20.994 MHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132 * Agilent 15:27:13 Jun 20, 2024 R L 5660 Mkr1 5.661135 GHz Ref 10 dBm Atten 15 dB Ext PG -9 dB 0.735 dBm *Peak 1 1 Io 1 1
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7045 MHz Occ BW % Pwr 99.00 % × dB Transmit Freq Error × dB Bandwidth 50.253 kHz 20.994 MHz File Name Error 50.253 cHz 20.994 MHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132 * Agilent 15:27:13 Jun 20, 2024 R L 5660 Mkr1 5.661135 GHz Ref 10 dBm Atten 15 dB Ext PG -9 dB 0.735 dBm *Peak 1 1 Io 1 1
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7045 MHz Occ BW % Pwr 99.00 % × dB Transmit Freq Error × dB Bandwidth 50.253 kHz 20.994 MHz File Name Error 50.253 cHz 20.994 MHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132 * Agilent 15:27:13 Jun 20, 2024 R L 5660 Mkr1 5.661135 GHz Ref 10 dBm Atten 15 dB Ext PG -9 dB 0.735 dBm *Peak 1 1 Io 1 1
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7045 MHz Occ BW % Pwr 99.00 % × dB Transmit Freq Error × dB Bandwidth 50.253 kHz 20.994 MHz File Name Error 50.253 cHz 20.994 MHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132 * Agilent 15:27:13 Jun 20, 2024 R L 5660 Mkr1 5.661135 GHz Ref 10 dBm Atten 15 dB Ext PG -9 dB 0.735 dBm *Peak 1 1 Io 1 1
17.7045 MHz × dB -26.00 dB Transmit Freq Error x dB Bandwidth 20.994 MHz File Name Error 20.994 MHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132 ※ Agilent 15:27:13 Jun 20, 2024 Ref 10 dBm Atten 15 dB Ext PG -9 dB *Peak 0.735 dBm *Peak 1 10 0
17.7045 MHz × dB -26.00 dB Transmit Freq Error x dB Bandwidth 20.994 MHz File Name Error 50.253 kHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132 * Agilent 15:27:13 Jun 20, 2024 Ref 10 dBm Atten 15 dB Ext PG -9 dB * Peak 0.735 dBm * Peak 1 10 0
x dB Bandwidth 20.994 MHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132
x dB Bandwidth 20.994 MHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132
x dB Bandwidth 20.994 MHz File Name Error Figure 25. 26 dB BW and OBW -802.11a- Channel 132
Figure 25. 26 dB BW and OBW -802.11a- Channel 132 * Agilent 15:27:13 Jun 20, 2024 R L 5660 Mkr1 5.661135 GHz Ref 10 dBm Atten 15 dB Ext PG -9 dB 0.735 dBm *Peak 1 1 1 1 Log 1 1 1 1 10 dB/ 1 1 1
Agilent 15:27:13 Jun 20, 2024 R L 5660 Mkr1 5.661135 GHz Ref 10 dBm Atten 15 dB Ext PG -9 dB 0.735 dBm *Peak Log 1
5660 Mkr1 5.661135 GHz Ref 10 dBm Atten 15 dB Ext PG -9 dB 0.735 dBm #Peak 1 1 1 Log 1 1 1 10 4 4 4 4
Ref 10 dBm Atten 15 dB Ext PG -9 dB 0.735 dBm #Peak
Center 5.66 GHz Span 44.09 MHz
#Res BW 300 kHz #VBW 1 MHz Sweep 40 ms (4001 pts) O
Occupied Bandwidth Осс ВМ % Рыг 99.00 % 17.6900 MHz × dB -26.00 dB
Transmit Freq Error 58.902 kHz x dB Bandwidth 21.345 MHz
File Name Error
Figure 26. 26 dB BW and OBW -802.11n- Channel 132
Page 39 of 59

5700 Mkr1 5.698643 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB 2.395 dBm *Peak *Peak ************************************
Peak
Log 10 dB/ dB/ dB/ Center 5.7 GHz #Res BW 300 kHz transmit Freq Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 ★ Agitent 15:45:06 Jun 20, 2024 File Name Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 ★ Agitent 15:45:06 Jun 20, 2024 Ref 11 dBm Atten 15 dB Ext P6 -9 dB 0.103 dBm *Peak Log
dB/ dB/ dB/ dB/ dB/ dB/ dB/ dB/
Center 5.7 GHz Span 44.15 MHz *Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth Occ BW Z Pwr 99.00 % 17.7284 MHz × dB -26.00 dB Transmit Freq Error 64.377 kHz × dB Bandwidth 21.822 MHz File Name Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 * Agilent 15:45:06 Jun 20, 2024 R L 5700 Mkr1 5.702369 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm *Peak 0.103 dBm
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7284 MHz Occ BW % Pwr 99.00 % x dB Transmit Freq Error x dB Bandwidth 64.377 kHz 21.822 MHz File Name Error 21.822 MHz File Name Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 * Agilent 15:45:06 Jun 20, 2024 R L 5700 Mkr1 5.702369 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm *Peak 0.103 dBm
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7284 MHz Occ BW % Pwr 99.00 % x dB Transmit Freq Error x dB Bandwidth 64.377 kHz 21.822 MHz File Name Error 21.822 MHz File Name Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 * Agilent 15:45:06 Jun 20, 2024 R L 5700 Mkr1 5.702369 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm *Peak 0.103 dBm
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7284 MHz Occ BW % Pwr 99.00 % x dB Transmit Freq Error x dB Bandwidth 64.377 kHz 21.822 MHz File Name Error 51.822 MHz File Name Error K Figure 27. 26 dB BW and OBW -802.11a- Channel 140 * Agilent 15:45:06 Jun 20, 2024 R L 5700 Ref 11 dBm Atten 15 dB Ext PG -9 dB * Peak 0.103 dBm
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7284 MHz Occ BW % Pwr 99.00 % x dB Transmit Freq Error x dB Bandwidth 64.377 kHz 21.822 MHz File Name Error 51.822 MHz File Name Error K Figure 27. 26 dB BW and OBW -802.11a- Channel 140 * Agilent 15:45:06 Jun 20, 2024 R L 5700 Ref 11 dBm Atten 15 dB Ext PG -9 dB * Peak 0.103 dBm
*Res BW 300 kHz *VBW 1 MHz Sweep 40 ms (4001 pts) Occupied Bandwidth 17.7284 MHz Occ BW % Pwr 99.00 % x dB Transmit Freq Error x dB Bandwidth 64.377 kHz 21.822 MHz File Name Error 51.822 MHz File Name Error K Figure 27. 26 dB BW and OBW -802.11a- Channel 140 * Agilent 15:45:06 Jun 20, 2024 R L 5700 Ref 11 dBm Atten 15 dB Ext PG -9 dB * Peak 0.103 dBm
17.7284 MHz × dB -26.00 dB Transmit Freq Error 64.377 kHz × dB Bandwidth 21.822 MHz File Name Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 ※ Agilent 15:45:06 Jun 20, 2024 Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm *Peak Logg March 10
17.7284 MHz × dB -26.00 dB Transmit Freq Error 64.377 kHz × dB Bandwidth 21.822 MHz File Name Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 ※ Agilent 15:45:06 Jun 20, 2024 Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm *Peak
x dB Bandwidth 21.822 MHz File Name Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 ※ Agilent 15:45:06 Jun 20, 2024 R L 5700 Mkr1 5.702369 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm *Peak 0.103 dBm
x dB Bandwidth 21.822 MHz File Name Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 ※ Agilent 15:45:06 Jun 20, 2024 R L 5700 Mkr1 5.702369 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm *Peak 0.103 dBm
x dB Bandwidth 21.822 MHz File Name Error Figure 27. 26 dB BW and OBW -802.11a- Channel 140 ※ Agilent 15:45:06 Jun 20, 2024 R L 5700 Mkr1 5.702369 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm *Peak 0.103 dBm
Figure 27. 26 dB BW and OBW -802.11a- Channel 140 ¥ Agilent 15:45:06 Jun 20, 2024 R L 5700 Mkr1 5.702369 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB #Peak 0.103 dBm
Agilent 15:45:06 Jun 20, 2024 R L 5700 Mkr1 5.702369 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm *Peak
5700 Mkr1 5.702369 GHz Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm #Peak Log
Ref 11 dBm Atten 15 dB Ext PG -9 dB 0.103 dBm #Peak Log
Center 5.7 GHz Span 44.12 MHz #Res BW 300 kHz #VBW 1 MHz Sweep 40 ms (4001 pts)
Occupied Bandwidth Occ BW Z Pwr 99.00 Z
17.7134 MHz × dB -26.00 dB
Transmit Freq Error61.417 kHz× dB Bandwidth20.853 MHz
File Name Error
Figure 28. 26 dB BW and OBW -802.11n- Channel 100
Page 40 of 59

 US Tech Test Report:
 FCC Part 15 Certification/ RSS 247

 FCC ID:
 07P-341

 IC:
 10147A-341

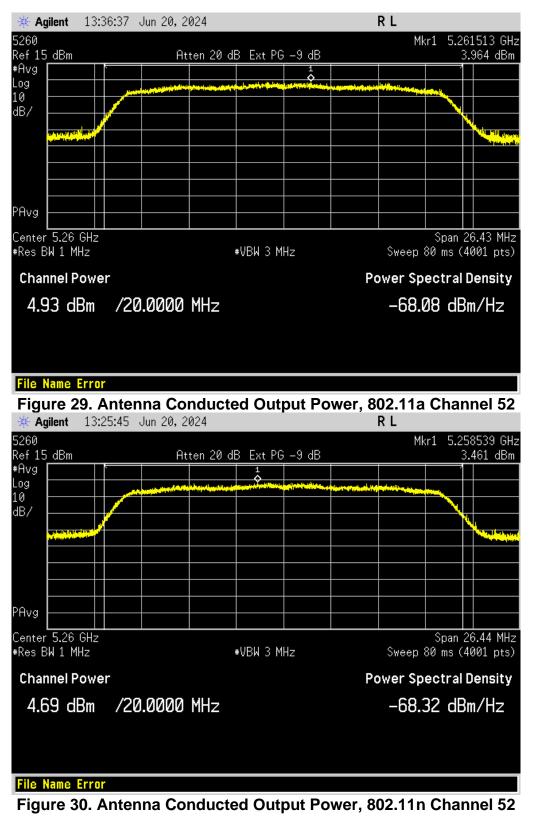
 Test Report Number:
 24-0073

 Issue Date:
 July 18, 2024

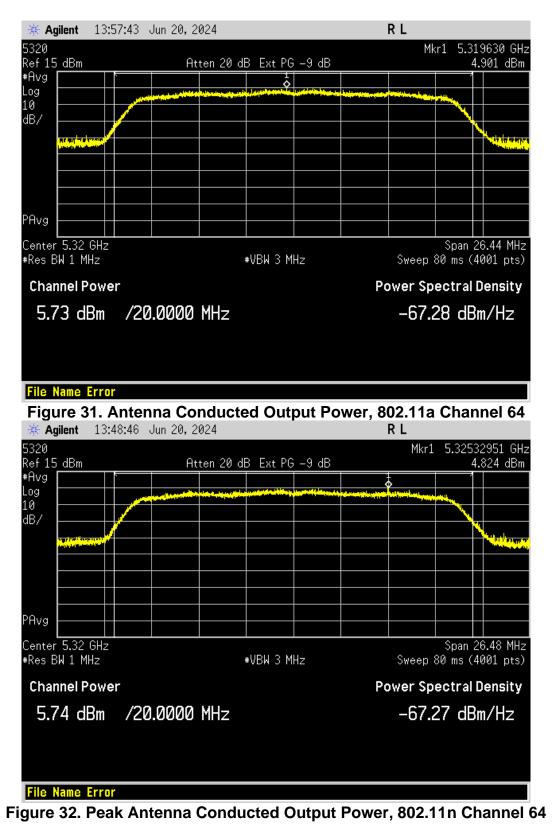
 Customer:
 Inventek Systems

 Model:
 ISM4334X-M4G-L44 Module

2.14 Maximum Conducted Output Power (CFR 15.407 (a) (2))


The transmitter was programmed to operate at a maximum output power across the bandwidth. The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

Average detection was used to collect the measurements. Power within the transmitting bands was measured per FCC KDB Publication 789033 D02 v02 by connecting the spectrum analyzer directly via a short RF cable, and attenuators to the antenna output terminals on the EUT. The spectrum analyzer was set for an impedance of 50 Ω with the RBW set to 1 MHz, the VBW \geq 3*RBW, and spans large enough to encompass the entire 99% bandwidth. The channel power was integrated over the whole band. Average antenna conducted output power is tabulated below.


Frequency of Fundamental (MHz)	Test Data (dBm)	FCC Limit (dBm)	Margin (dB)
	80	2.11a	
5260	4.93	24	19.07
5320	5.73	24	18.27
5500	8.68	24	15.32
5580	8.23	24	15.77
5660	8.54	24	15.46
5700	8.82	24	15.18
	80	2.11n	
5260	4.69	24	19.31
5320	5.74	24	18.26
5500	8.90	24	15.1
5580	7.99	24	16.01
5660	8.56	24	15.44
5700	8.88	24	15.12

Test Date: June 26, 2024 Tested by Signature:

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

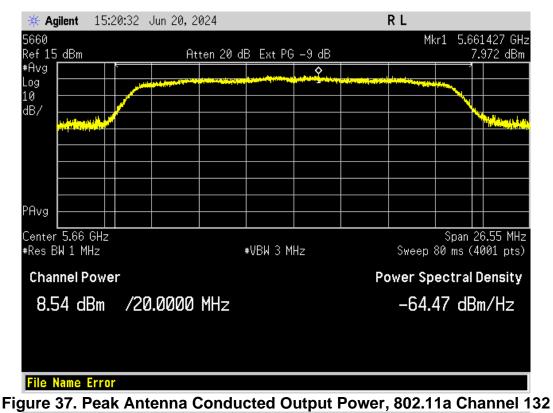
Page 43 of 59

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

5500 Ref 15_dBm	A	tten 20 d	B Ext PG	6 – 9 dB		۱۳۱		199463 GH 7.093 dBm
*Avg _og L0	and the second s		Ŷ					
IB/								an a
PAvg								
Center 5.5 GHz #Res BW 1 MHz			#VBW 3 M	Hz		Sweep		26.54 MHz (4001 pts)
Channel Power					P	ower Sp	ectral	Density
8.68 dBm	/20.0000	MHz				-64.	33 dE	3m/Hz

Page 45 of 59

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module


ггоа	nt 14	4:42:44	Jun	20,20	024				RL		
5580 Ref 15 d	Bm			Att	ten 20 c	IB Ext PG	6 –9 dB		Mkr1		013137 GHz 6.743 dBm
#Avg Log │			معار نوابة الماسي			Ŷ				, ,	
10 - dB/ -		1 de la compañía de									4 _{41.}
÷.		<u>//</u>									
PAvg 📙											
Center 5 #Res BW		z				₩VBW 3 M	Hz		Sweep		26.52 MHz (4001 pts)
Channe	el Pow	/er						P	ower Sp	ectra	Density
8.23	dBm	1	20.00	100	MHz				-64.	78 dE	3m/Hz
	ne Err	or									
File Na											

Agilent 15:04:27 J	iun 20, 2024		F	(L	
5580	0		D.	Mkr1	5.578772 G
lef15dBm Avg 🚺 👔 🏌	Htten 20 dt	3 Ext PG - 9 d	B		6.719 dB
ogʻ				and the second states	
0 B/					
					A HANNAL AND
Avg					
enter 5.58 GHz Res BW 1 MHz		ŧVBW 3 MHz		эр Sweep 80 m	an 26.55 MH is (4001 pt:
Channel Power			Po	wer Spect	ral Density
7.99 dBm /20	аааа мн-			-65.02	dRm/Hz
	.0000 1112			00.02	
File Name Error					
ire 36 Peak Ante	onna Conduc	ted Outpu	It Power	802 11n	Channel

Figure 36. Peak Antenna Conducted Output Power, 802.11n Channel 116

Page 46 of 59

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

🔆 Agilent 15:30:38 Jun 20, 2024 RL 5660 Mkr1 5.660882 GHz Ref 15 dBm Atten 20 dB Ext PG -9 dB 6.967 dBm #Avg \$ Log 10 dB/ PAvg Center 5.66 GHz #Res BW 1 MHz Span 26.53 MHz ₩VBW 3 MHz Sweep 80 ms (4001 pts) **Channel Power Power Spectral Density** 8.56 dBm /20.0000 MHz -64.45 dBm/Hz **File Name Error**

Figure 38. Peak Antenna Conducted Output Power, 802.11n Channel 132

Page 47 of 59

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

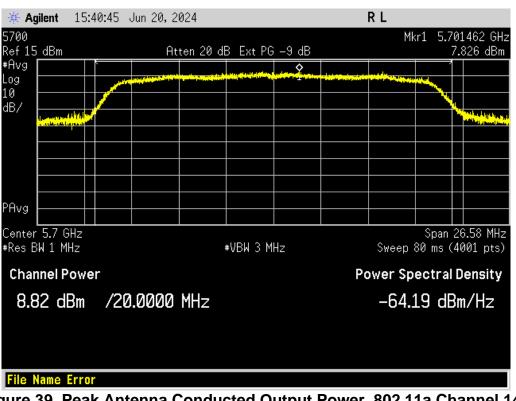


Figure 39. Peak Antenna Conducted Output Power, 802.11a Channel 140

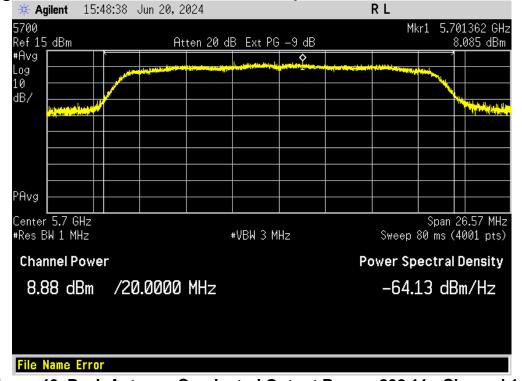


Figure 40. Peak Antenna Conducted Output Power, 802.11n Channel 140

Page 48 of 59

FCC Part 15 Certification/ RSS 247
O7P-341
10147A-341
24-0073
July 18, 2024
Inventek Systems
ISM4334X-M4G-L44 Module

2.15 Power Spectral Density (CFR 15.407(a) (2)) (IC RSS 247 6.2)

The transmitter was placed into a continuous mode of operation at all applicable frequencies. The measurements were performed per the procedures of FCC KDB Procedure 789033 D02 v02. The RBW was set to 1 MHz and the Video Bandwidth was set to $\geq 3^{RBW}$. The span was set to encompass the OBW. The averaging detector was used on the spectrum analyzer to determine the maximum PSD over the corresponding bandwidth.

In the operating bands 5.15 – 5.25 GHz, 5.25 - 5.35 GHz, and 5.47 - 5.725 GHz, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band.

Frequency (MHz)	Test Data (dBm/1 MHz)	FCC Limit (dBm/1 MHz)	Margin (dB)					
802.11a								
5260	3.96	11.00	7.01					
5320	4.90	11.00	6.21					
5500	7.09	11.00	3.64					
5580	6.74	11.00	4.31					
5660	7.97	11.00	3.66					
5700	7.83	11.00	3.28					
	802.11n							
5260	3.46	11.00	7.1					
5320	4.82	11.00	6.82					
5500	7.64	11.00	3.43					
5580	6.72	11.00	3.98					
5660	6.97	11.00	3.22					
5700	8.09	11.00	3.31					

Table 11. Power Spectral Density for 802.11a in the Lower Frequency Bands

See above figures.

US Tech Test Report: FCC Part 15 Certification/ RSS 247 FCC ID: O7P-341 IC: 10147A-341 Test Report Number: 24-0073 Issue Date: July 18, 2024 Customer: Inventek Systems Model: ISM4334X-M4G-L44 Module

2.16 Frequency Stability (CFR 15.407 (g))

The transmitter was placed into a continuous mode of operation at all applicable frequencies. The RBW was set to 1 MHz and the Video Bandwidth was set to \geq 3*RBW. The span was adjusted during testing to ensure measurement accuracy. The carrier frequency was measured from 50°C to -30°C at 10°C increments and at 85% Nominal voltage to 115% Nominal voltage to ensure that it stayed within the band of operation.

Table 12. Frequency	v Stabilitv	/ 50°C to -30°	°C for 802.11a	Channel 52
	,		• • • • • • • • • • • •	

Temperature (°C)	Measured Frequency (MHz)	Allocated Frequency (MHz)	Deviation (ppm)
-30	5258.8650	5258.8150	9.5
-20	5258.8500	5258.8150	6.7
-10	5258.8475	5258.8150	6.2
0	5258.8525	5258.8150	7.1
10	5258.8100	5258.8150	1.0
20 (low voltage)	5258.7750	5258.8150	7.6
20 (Nominal voltage)	5258.8150	5258.8150	0.0
20 (High voltage)	5258.7750	5258.8150	7.6
30	5258.7850	5258.8150	5.7
40	5258.7800	5258.8150	6.7
50	5258.7900	5258.8150	4.8

Actual TX Frequency was: 5258.8150 MHz

Test Date: June 6-14, 2024 Tested by

Signature:

Mantes molto Name: Gabriel Medina

Table 13. Frequency Stability 50°C to -30°C for 802.11n Channel 52

Temperature (°C)	Measured Frequency (MHz)	Allocated Frequency (MHz)	Deviation (ppm)
-30	5258.8650	5258.8400	4.8
-20	5258.8675	5258.8400	5.2
-10	5258.8425	5258.8400	0.5
0	5258.8675	5258.8400	5.2
10	5258.8450	5258.8400	1.0
20 (low voltage)	5258.7925	5258.8400	9.0
20 (Nominal voltage)	5258.8400	5258.8400	0.0
20 (High voltage)	5258.7925	5258.8400	9.0
30	5258.7950	5258.8400	8.6
40	5258.7950	5258.8400	8.6
50	5258.7950	5258.8400	8.6

Actual TX Frequency was: 5258.8400 MHz

Table 14. Frequency Stability 50°C to -30°C for 802.11a Channel64

Temperature (°C)	Measured Frequency (MHz)	Allocated Frequency (MHz)	Deviation (ppm)
-30	5318.8700	5318.8200	9.4
-20	5318.8725	5318.8200	9.9
-10	5318.8450	5318.8200	4.7
0	5318.8550	5318.8200	6.6
10	5318.8350	5318.8200	2.8
20 (low voltage)	5318.8050	5318.8200	2.8
20 (Nominal voltage)	5318.8200	5318.8200	0.0
20 (High voltage)	5318.7800	5318.8200	7.5
30	5318.7750	5318.8200	8.5
40	5318.7700	5318.8200	9.4
50	5318.7950	5318.8200	4.7

Actual TX Frequency was: 5318.8200 MHz

Test Date: June 6-14, 2024

Tested by

Santos melle Signature:

Table 15. Frequency Stability 50°C to -30°C for 802.11n Channel 64

Temperature (°C)	Measured Frequency (MHz)	Allocated Frequency (MHz)	Deviation (ppm)
-30	5318.8650	5318.8200	8.5
-20	5318.8725	5318.8200	9.9
-10	5318.8550	5318.8200	6.6
0	5318.8400	5318.8200	3.8
10	5318.8400	5318.8200	3.8
20 (low voltage)	5318.7900	5318.8200	5.6
20 (Nominal voltage)	5318.8200	5318.8200	0.0
20 (High voltage)	5318.7725	5318.8200	8.9
30	5318.7850	5318.8200	6.6
40	5318.7750	5318.8200	8.5
50	5318.7800	5318.8200	7.5

Actual TX Frequency was: 5318.8200 MHz

Table 16. Frequency Stability 50°C to -30°C for 802.11a Channel 100

Temperature (°C)	Measured Frequency (MHz)	Allocated Frequency (MHz)	Deviation (ppm)
-30	5498.8625	5498.8200	7.7
-20	5498.8675	5498.8200	8.6
-10	5498.8425	5498.8200	4.1
0	5498.8725	5498.8200	9.5
10	5498.8450	5498.8200	4.5
20 (low voltage)	5498.7820	5498.8200	6.9
20 (Nominal voltage)	5498.8200	5498.8200	0.0
20 (High voltage)	5498.7800	5498.8200	7.3
30	5498.8200	5498.8200	0.0
40	5498.7700	5498.8200	9.1
50	5498.7750	5498.8200	8.2

Actual TX Frequency was: 5498.8200 MHz

Test Date: June 6-14, 2024 Tested by

Sartismelle Signature:

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

Table 17. Frequency Stability 50°C to -30°C for 802.11n Channel 100

Temperature (°C)	Measured Frequency (MHz)	Allocated Frequency (MHz)	Deviation (ppm)
-30	5498.8700	5498.8200	9.1
-20	5498.8750	5498.8200	10.0
-10	5498.8700	5498.8200	9.1
0	5498.8400	5498.8200	3.6
10	5498.8400	5498.8200	3.6
20 (low voltage)	5498.8050	5498.8200	2.7
20 (Nominal voltage)	5498.8200	5498.8200	0.0
20 (High voltage)	5498.7950	5498.8200	4.5
30	5498.7850	5498.8200	6.4
40	5498.7750	5498.8200	8.2
50	5498.7900	5498.8200	5.5

Actual TX Frequency was: 5498.8200MHz

Table 18. Frequency Stability 50°C to -30°C for 802.11n Channel 140

Temperature (°C)	Measured Frequency (MHz)	Allocated Frequency (MHz)	Deviation (ppm)
-30	5698.8725	5698.8200	9.2
-20	5698.8725	5698.8200	9.2
-10	5698.8375	5698.8200	3.1
0	5698.8525	5698.8200	5.7
10	5698.8400	5698.8200	3.5
20 (low voltage)	5698.7925	5698.8200	4.8
20 (Nominal voltage)	5698.8200	5698.8200	0.0
20 (High voltage)	5698.7900	5698.8200	5.3
30	5698.8000	5698.8200	3.5
40	5698.7800	5698.8200	7.0
50	5698.7700	5698.8200	8.8

Actual TX Frequency was: 5698.8200 MHz

Test Date: June 6-14, 2024 Tested by

Signature: Jartin melle

Table 19. Frequency Stability 50°C to -30°C for 802.11n Channel 165

Temperature (°C)	Measured Frequency (MHz)	Allocated Frequency (MHz)	Deviation (ppm)
-30	5698.8625	5698.8100	9.2
-20	5698.8650	5698.8100	9.7
-10	5698.8450	5698.8100	6.1
0	5698.8525	5698.8100	7.5
10	5698.8375	5698.8100	4.8
20 (low voltage)	5698.7975	5698.8100	2.2
20 (Nominal voltage)	5698.8100	5698.8100	0.0
20 (High voltage)	5698.7975	5698.8100	2.2
30	5698.8100	5698.8100	0.0
40	5698.7650	5698.8100	7.9
50	5698.7600	5698.8100	8.8

Actual TX Frequency was: 5698.8200 MHz

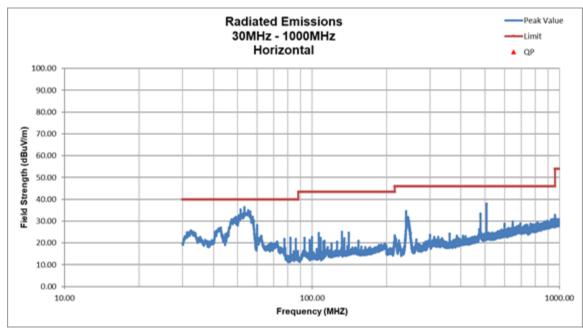
Test Date: June 6-14, 2024 Tested by

Signature: <u>Janto malla</u> Name: <u>Gabriel Medina</u>

2.17 Radiated Digital Emissions (15.407(b) (2,3,9,10), IC RSS 247 6.2)

The test data provided herein is to support the verification requirement for radiated emissions coming from the EUT in a <u>transmitting</u> state per 15.407. Emissions were investigated from 30 MHz to 25 GHz and tested as detailed in KDB Publication 789033 DO2 v02r0.

Measurements were made with the analyzer's resolution bandwidth set to 120 kHz for measurements made below 1 GHz and 1 MHz for measurements made above 1 GHz. The video bandwidth was set to three times the resolution bandwidth; 1 MHz RBW and 3 MHz VBW. The test data were maximized for magnitude by rotating the turntable through 360 degrees and raising and lowering the receiving antenna between 1 to 4 meters in height as a part of the measurement procedure.


Table 20. Spurious Radiated Emissions (30 MHz – 1 GHz)

	Test: FCC Part 15.209						
Frequency (MHz)	Test Data (dBuV)	AF+CL-PA (dB)	Results (dBuV/m)	Limits (dBuV/m)	Distance / Polarization	Margin (dB)	Detector PK / QP/AVG
53.35	49.52	-13.07	36.45	40.0	3m./HORZ	3.6	PK
240.00	45.51	-10.93	34.58	46.0	3m./HORZ	11.4	РК
648.05	31.01	-1.14	29.87	46.0	3m./HORZ	16.1	PK
53.35	49.53	-13.77	35.76	40.0	3m./VERT	4.2	РК
240.00	43.51	-10.83	32.68	46.0	3m./VERT	13.3	PK
960.05	31.22	1.54	32.76	54.0	3m./VERT	21.2	PK

Sample Calculation at 53.35 MHz:

Magnitude of Measured Frequency	49.52	dBuV
+Antenna Factor + Cable Loss - Amplifier Gain	-13.07	dB/m
Corrected Result	36.45	dBuV/m

Test Date: June 26, 2024 Tested by Signature: Martin mall

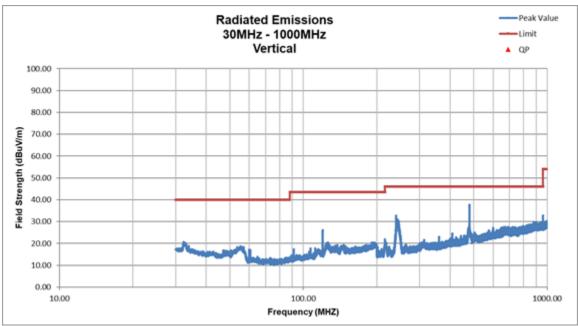


Figure 42. Radiated Emissions, Vertical 30 – 1000 MHz

FCC Part 15 Certification/ RSS 247 O7P-341 10147A-341 24-0073 July 18, 2024 Inventek Systems ISM4334X-M4G-L44 Module

Table 21. Spurious Radiated Emissions (1 GHz – 25 GHz)

	Test: FCC Part 15.407						
Frequency (MHz)	Test Data (dBuV)	AF+CL-PA (dB)	Results (dBuV/m)	Limits (dBuV/m)	Distance / Polarization	Margin (dB)	DETECTOR PK / QP/AVG
All emissions were more than 20 dB below the applicable limit.							

SAMPLE CALCULATION: N/A

Test Date: June 26, 2024 artes melle Tested by Signature:

Name: Gabriel Medina

Page 58 of 59

2.18 Measurement Uncertainty

The measurement uncertainties given were calculated using the method detailed in CISPR 16-4-2. A coverage factor of k=2 was used to give a level of confidence of approximately 95%.

2.18.1 Conducted Emissions Measurement Uncertainty

Measurement Uncertainty (within a 95% confidence level) for this test is \pm 2.78 dB.

2.18.2 Radiated Emissions Measurement Uncertainty

For a measurement distance of 3 m, the measurement uncertainty (with a 95% confidence level) for this test using a Biconical Antenna (30 MHz to 200 MHz) is \pm 5.39 dB. This value includes all elements of measurement.

The measurement uncertainty (with a 95% confidence level) for this test using a Log Periodic Antenna (200 MHz to 1000 MHz) is \pm 5.18 dB.

The measurement uncertainty (with a 95% confidence level) for this test using a Horn Antenna is \pm 5.21dB.

END TEST REPORT