

Report No. : EED32I00297001 Page 1 of 70

TEST REPORT

Product Name : WIFI module

Trade mark : GSD

Model/Type reference : W7LM1110, W7LM1110A

Serial Number : N/A

 Report Number
 : EED32I00297001

 FCC ID
 : 2AC23-W7LM1110

Date of Issue : Dec. 19, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Hui Zhou Gaoshengda Technology Co., LTD NO.75 Zhongkai Development Area, Huizhou, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Reviewed by S

Tom - chen
Tom chen (Test Project)

Compiled by:

Kevin lan (Project Engineer)

1

Approved by:

Sheek Luo (Lab supervisor)

Dec. 19, 2016

Kevin yang (Reviewer)

Check No.: 2457512532

Report No.: EED32I00297001

2 Version

Version No.	Date	(6)	Description	
00	Dec. 19, 2016		Original	
	**	√ °>		
	(7)			

Report No. : EED32I00297001 Page 3 of 70

3 Test Summary

3 rest Summary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

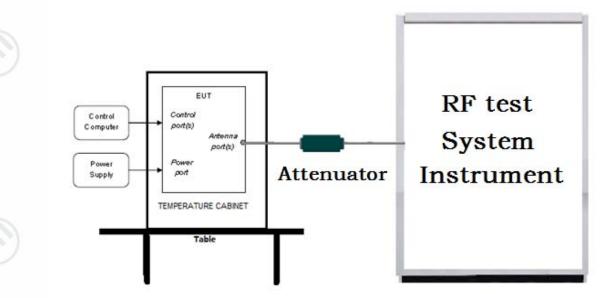
The tested sample and the sample information are provided by the client.

Model No.: W7LM1110, W7LM1110A

Only the model W7LM1110 was tested, since the modules ontology, Antenna type and Antenna gain are all the same only the Antenna size is different

4 Content

· Jointoint					
1 COVER PAGE			•••••		1
2 VERSION		••••••		•••••	2
TEST SUMMARY	••••••	••••••		•••••	3
4 CONTENT			/°N		4
5 TEST REQUIREMENT				•••••	5
5.1.1 For Conducted to 5.1.2 For Radiated Em	est setup hissions test setup Emissions test setup				5 5
5.2 TEST ENVIRONMENT					6
6 GENERAL INFORMATIO	N	•••••		•••••	8
6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATI 6.4 DESCRIPTION OF SUPE 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVIATION FROM STAN 6.8 ABNORMALITIES FROM 6.9 OTHER INFORMATION F 6.10 MEASUREMENT UNCE	N OF EUT ON SUBJECTIVE TO THIS STAPORT UNITS IDARDS STANDARD CONDITIONS REQUESTED BY THE CUSTON SERTAINTY (95% CONFIDENCE	MER			
7 EQUIPMENT LIST					
Appendix B): 6dB Occ Appendix C): Band-ed Appendix D): RF Conc Appendix E): Power S Appendix F): Antenna Appendix G): AC Powe Appendix H): Restricte	ed Peak Output Power upied Bandwidth ge for RF Conducted Emis ducted Spurious Emissions pectral Density Requirement er Line Conducted Emissions d bands around fundament Spurious Emissions	ssionsonon	ted)		
PHOTOGRAPHS OF TEST	SETUP			•••••	65
PHOTOGRAPHS OF EUT (CONSTRUCTIONAL DETA	AILS		•••••••••••••••••••••••••••••••••••••••	67



Report No. : EED32I00297001 Page 5 of 70

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

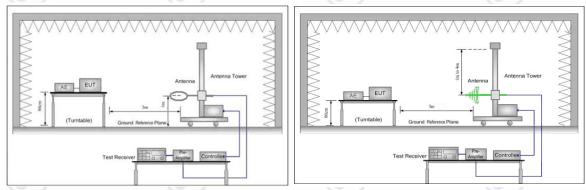
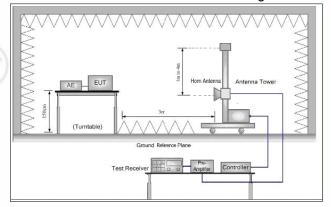
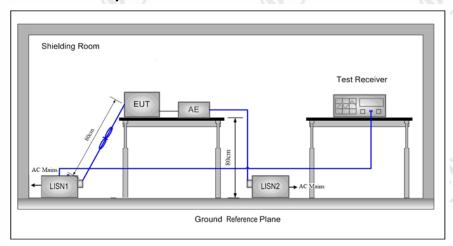


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

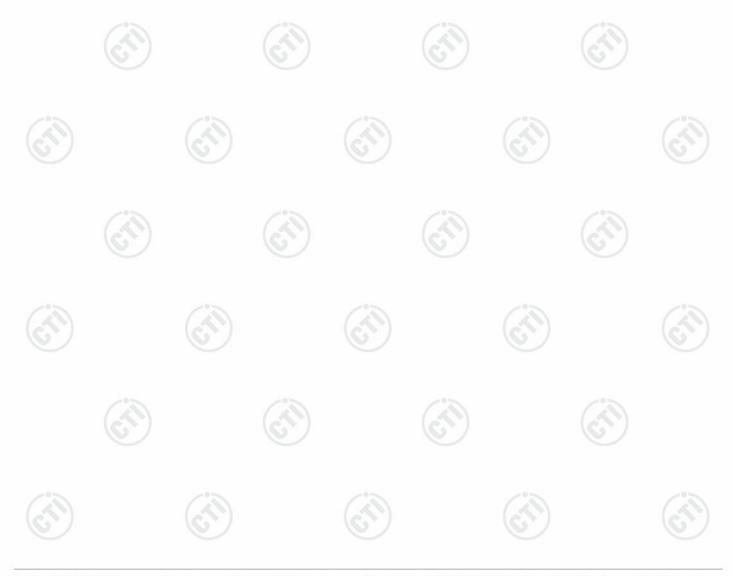
5.2 Test Environment

Operating Environment:		
Temperature:	22°C	
Humidity:	53% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tv	RF Channel			
rest wode	Tx	Low(L)	Middle(M)	High(H)	
902 11h/a/a/UT20\	2412MUz - 2462 MUz	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz	
802.11n(HT40)	0.4001411 0.450 1411	Channel 1	Channel 4	Channel7	
	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz	
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).				


Report No. : EED32I00297001 Page 7 of 70

Test mode:

Pre-scan under all rate at lowest channel 1

Mode			8	02.11b					
Data Rate		1Mbp	s 2Mbp	s 5.5Mbp	s 11Mbp	s			
Power(dBm)		20.25	5 20.3	1 20.34	20.38		- O S		
Mode	((1)		(4	80	2.11g	(4)		(a
Data Rate	1/2	6Mbp	s 9Mbp	s 12Mbps	s 18Mbp	s 24Mbp	s 36Mbp	s 48Mbps	54Mbps
Power(dBm	1)	22.64	22.6	1 22.60	22.57	22.54	22.53	22.50	22.41
Mode					802.11n	(HT20)	·		
Data Rate	6.5	Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	2	0.63	20.61	20.59	20.55	20.53	20.50	20.47	20.34
Mode		802.11n (HT40)							
Data Rate	13.	5Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps
Power(dBm)	2	0.78	20.74	20.71	20.70	20.66	20.64	20.61	20.55
			1	100	-		100		1.67

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

Report No. : EED32I00297001 Page 8 of 70

6 General Information

6.1 Client Information

Applicant:	Hui Zhou Gaoshengda Technology Co., LTD	
Address of Applicant:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China	
Manufacturer:	Hui Zhou Gaoshengda Technology Co., LTD	0
Address of Manufacturer:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China	

6.2 General Description of EUT

Product Name:	WIFI module		
Model No.(EUT):	W7LM1110, W7LM1110A		
Trade Mark:	GSD		
EUT Supports Radios application:	WiFi b/g/n(HT20/HT40): 2412-2462MHz		
Power Supply:	DC 5V		
Sample Received Date:	Nov. 18, 2016	Ci)	
Sample tested Date:	Nov. 18, 2016 to Dec. 19, 2016	(0,0)	(0,)

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz			
Channel Numbers: IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels				
Channel Separation:	5MHz			
Type of Modulation: IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40): OFDM (64QAM, 16QAM, QPSK,				
Test Power Grade:	19(manufacturer declare)			
Test Software of EUT:	MT7601USB.exe(manufacturer declare)			
Antenna Type and Gain:	PIFA Antenna			
Antenna Gain:	3dBi			
Test Voltage:	AC 120V/60Hz, AC 240V/50Hz			

- 1									
	Operation Frequency each of channel(802.11b/g/n HT20)								
	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
١	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
	3	2422MHz	6	2437MHz	9	2452MHz			

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint Call: 0755-33681700 \\ Call: 0755-336817$

Report No. : EED32I00297001 Page 9 of 70

Operation Frequency each of channel(802.11n HT40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2422MHz	4	2437MHz	7	2452MHz		
2	2427MHz	5	2442MHz	(3)			
3	2432MHz	6	2447MHz	(c_{i}^{-1})	(6,71)		

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	S/N	Model	Supplied by
AE1	Laptop	Lenovo	EB22995690	E46L	СТІ
AE2	Mouse	L.Selectron	E0703009435HVKF	OP-200	СТІ
AE3	PC	DELL	JMNBGZX	OPTIPLEX330	CTI
AE4	Monitor	EIZO	2160033 TA	S1703	CTI
AE5	Keyboard	Lenovo	60203893	LXH-EKB-10YA	CTI
AE6	Mouse	HP	674316-001	SM-2022	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

Report No. : EED32I00297001 Page 10 of 70

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None

6.8 Abnormalities from Standard Conditions None

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE source conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dedicted Courieus amission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
1 - 2	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32I00297001 Page 12 of 70

7 Equipment List

q,p	RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017			
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017			
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017			

Conducted disturbance Test								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017			
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017			
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017			
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017			
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017			
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017			

Report No.: EED32I00297001

	3M S	emi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029- 4	(3)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001	(C.)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-12-2016	01-11-2017

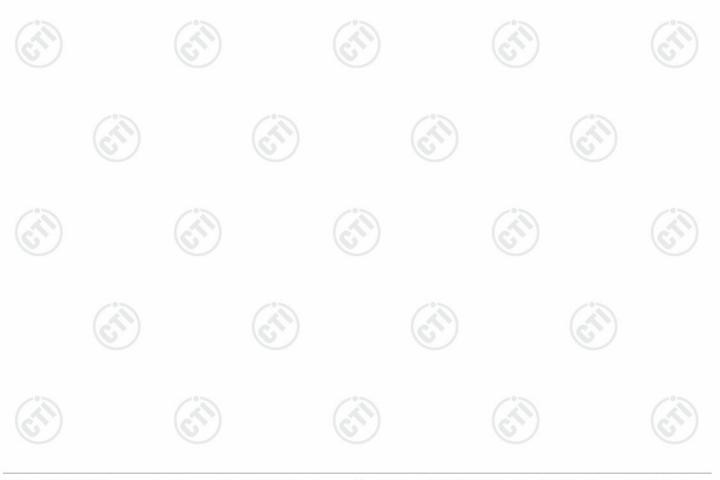
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
3	KDB 558074 D01 v03r05	DTS Meas Guidance

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

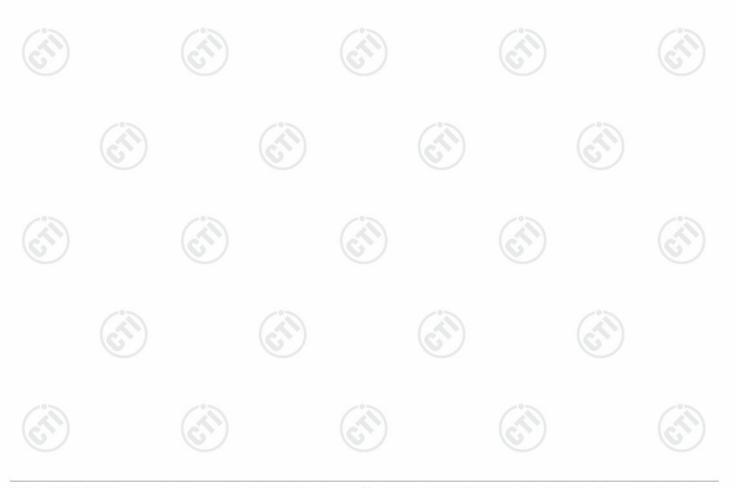

Appendix A): Conducted Peak Output Power

Test Procedure

- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	20.38	PASS
11B	MCH	20.05	PASS
11B	нсн	20.35	PASS
11G	LCH	22.64	PASS
11G	MCH	22.74	PASS
11G	HCH	23.15	PASS
11N20SISO	LCH	20.63	PASS
11N20SISO	MCH	21.15	PASS
11N20SISO	HCH	21.55	PASS
11N40SISO	LCH	20.78	PASS
11N40SISO	МСН	21.64	PASS
11N40SISO	HCH	21.74	PASS



Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	10.07	12.244	PASS	((1,2)
11B	MCH	9.050	12.081	PASS	
11B	НСН	9.032	12.117	PASS	
11G	LCH	16.35	16.481	PASS	
11G	MCH	16.36	16.473	PASS	
11G	НСН	16.36	16.486	PASS	Peak
11N20SISO	LCH	17.31	17.577	PASS	detector
11N20SISO	MCH	17.08	17.557	PASS	
11N20SISO	нсн	17.53	17.574	PASS	(0,)
11N40SISO	LCH	36.29	36.173	PASS	
11N40SISO	MCH	36.29	36.144	PASS	
11N40SISO	НСН	35.93	36.160	PASS	

Test Graph

Report No.: EED32I00297001

Report No.: EED32I00297001

Page 19 of 70

11N40SISO/LCH

11N40SISO/MCH

Report No.: EED32I00297001

11N40SISO/HCH

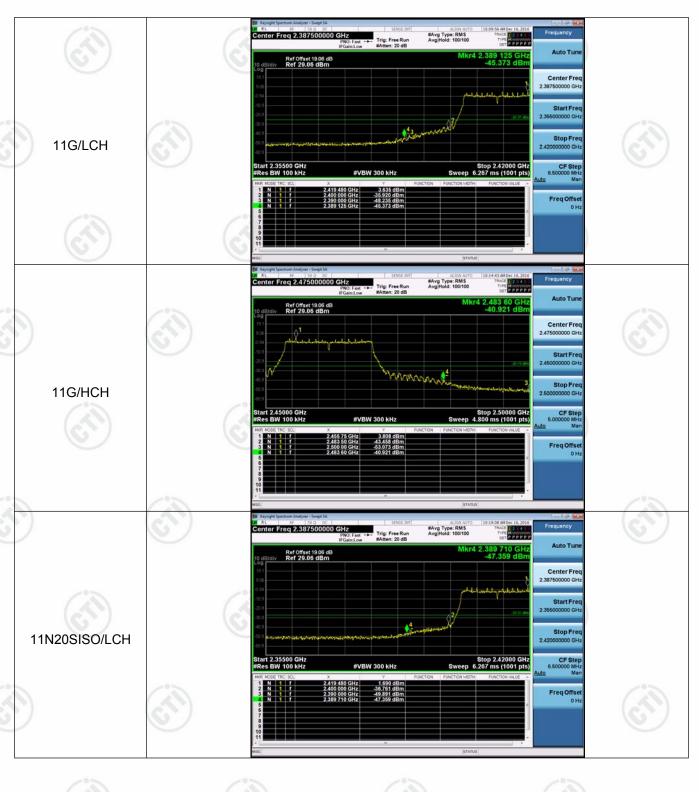
36.160 MHz -47.739 kHz 35.93 MHz

Report No. : EED32I00297001 Page 21 of 70

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	6.019	-50.260	-23.98	PASS
11B	НСН	5.443	-50.439	-24.56	PASS
11G	LCH	3.635	-45.373	-26.37	PASS
11G	НСН	3.808	-40.921	-26.19	PASS
11N20SISO	LCH	1.690	-47.359	-28.31	PASS
11N20SISO	нсн	3.246	-45.418	-26.75	PASS
11N40SISO	LCH	-0.949	-41.157	-30.95	PASS
11N40SISO	HCH	-0.921	-44.333	-30.92	PASS


Test Graph

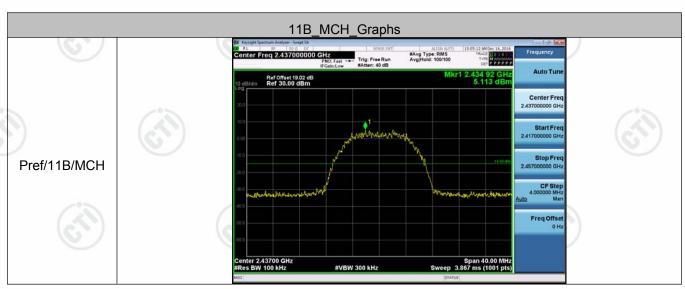
Report No. : EED32I00297001 Page 23 of 70

Report No. : EED32I00297001 Page 24 of 70

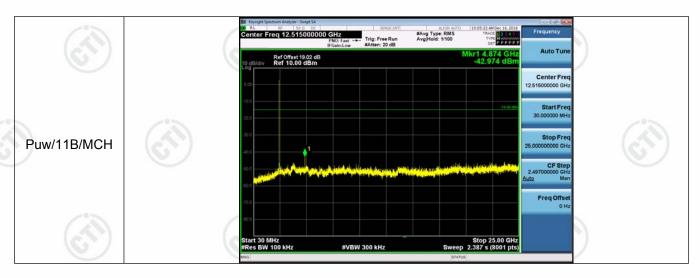
Appendix D): RF Conducted Spurious Emissions

Result Table

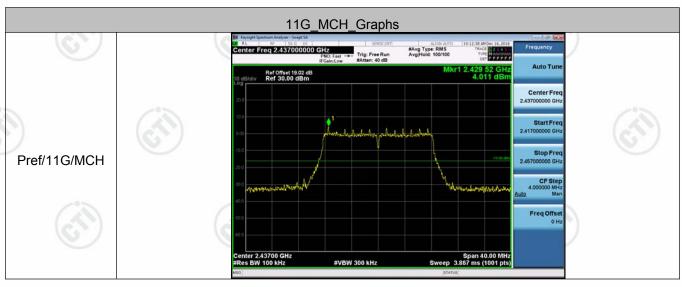

11000111 70110			100	/
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	6.08	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	5.113	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	6.037	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	3.289	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	4.011	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	3.737	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	1.451	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	2.034	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	HCH	3.023	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-0.595	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	0.19	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	HCH	0.34	<limit< td=""><td>PASS</td></limit<>	PASS



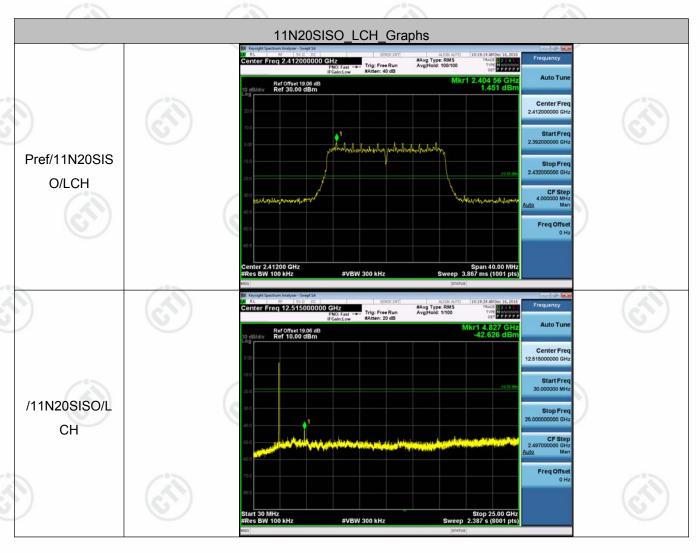
Report No. : EED32I00297001 Page 25 of 70

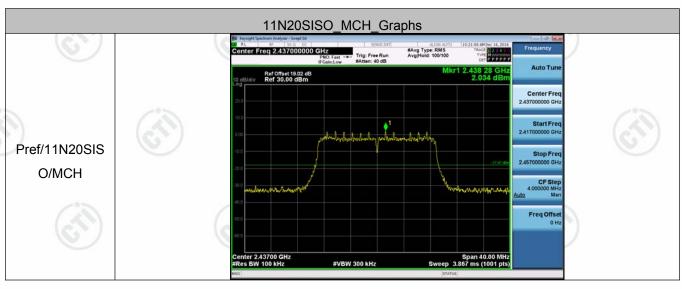

Test Graph

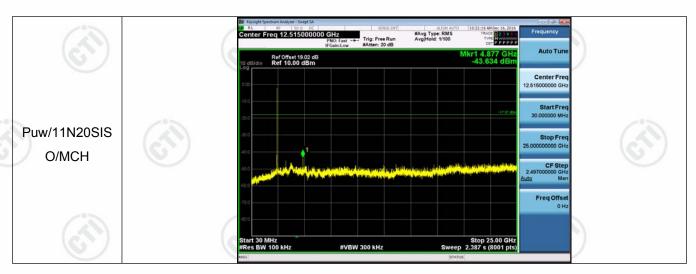




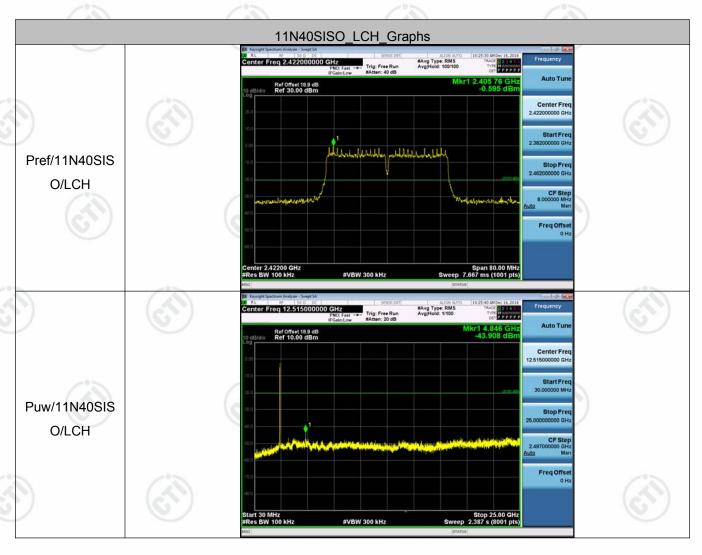

Report No. : EED32I00297001 Page 27 of 70

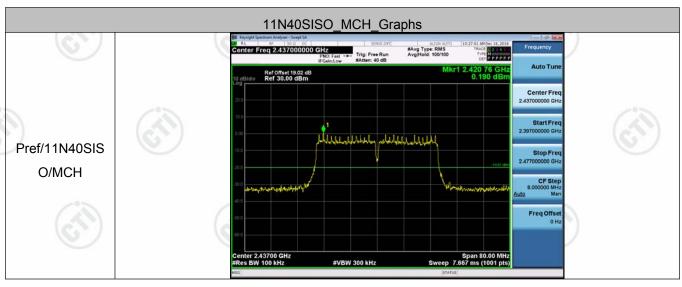


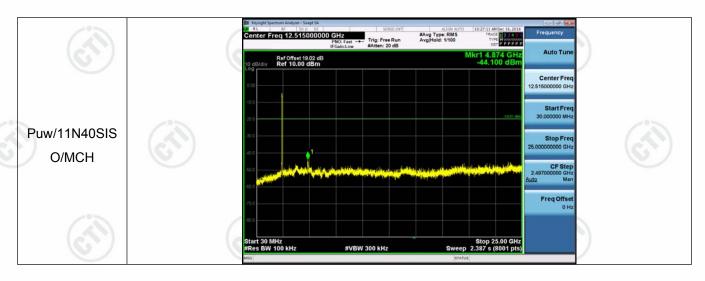


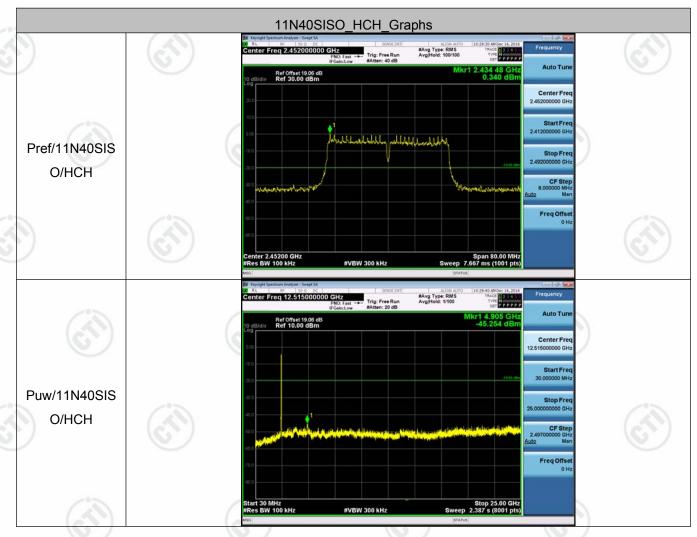

Report No. : EED32I00297001 Page 29 of 70

Report No. : EED32I00297001 Page 30 of 70






Report No. : EED32I00297001 Page 31 of 70

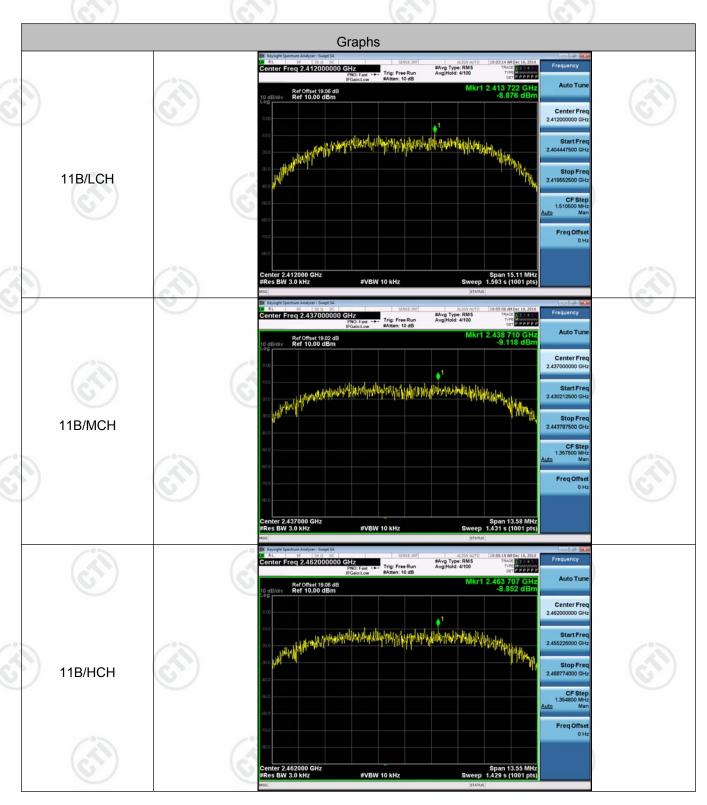


Report No. : EED32I00297001 Page 32 of 70

Report No. : EED32I00297001 Page 33 of 70

Appendix E): Power Spectral Density

Result Table

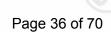

Mode	Channel	Power Spectral Density[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
11B	LCH	-8.876	8	PASS
11B	MCH	-9.118	8	PASS
11B	НСН	-8.852	8	PASS
11G	LCH	-12.163	8	PASS
11G	MCH	-12.131	8	PASS
11G	HCH	-11.049	8	PASS
11N20SISO	LCH	-13.358	8	PASS
11N20SISO	MCH	-13.421	8	PASS
11N20SISO	НСН	-13.317	8	PASS
11N40SISO	LCH	-16.665	8	PASS
11N40SISO	MCH	-14.836	8	PASS
11N40SISO	НСН	-15.801	8	PASS

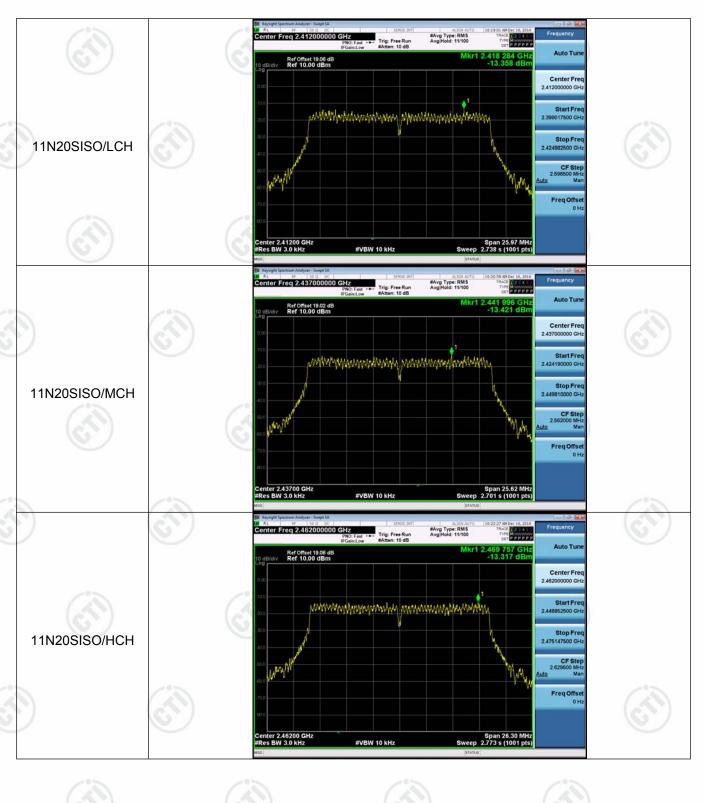
Report No. : EED32I00297001 Page 34 of 70

Test Graph

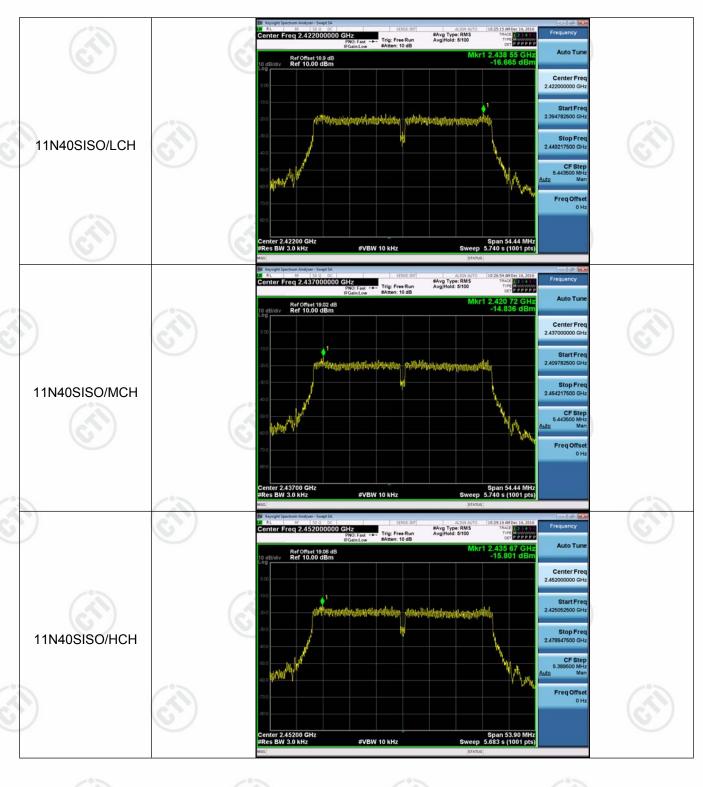


Report No.: EED32I00297001





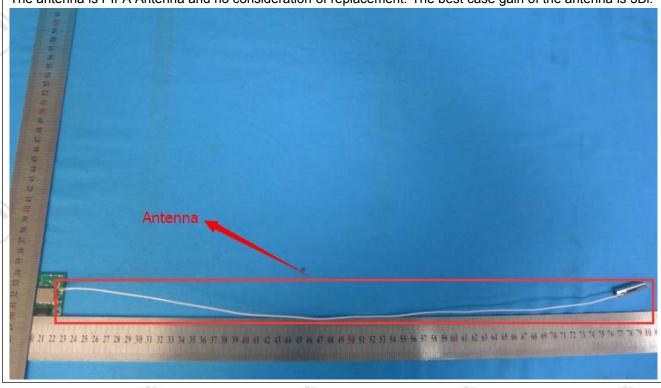
Report No.: EED32I00297001



Report No. : EED32I00297001 Page 38 of 70

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

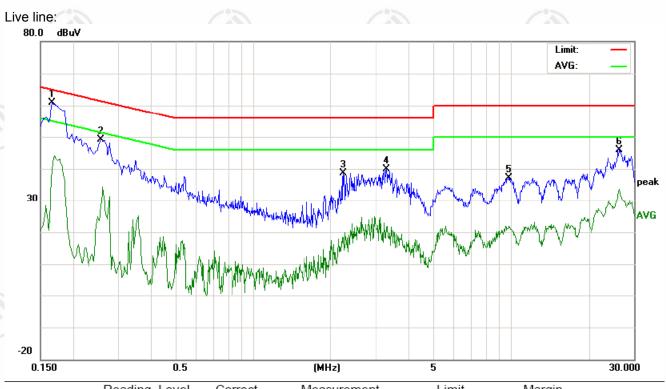
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 3Bi.

Report No. : EED32I00297001 Page 39 of 70

Appendix G): AC Power Line Conducted Emission


(40)									
est Procedure:	Test free	quency range	:150KHz-3	30MHz		(0)			
	1)The mains terminal disturbance voltage test was conducted in a shielded room.								
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN which was bonded to the ground reference plane in the same way as the LISN 1 from the same way as the								
	the u	ınit being mea	asured. A r	nultiple socket or N provided the ra	utlet strip wa	s used to co			
	3)The ta refer horiz	abletop EUT ence plane. A contal ground	And for flo		ngement, the	e EUT was p	olaced o		
	shall refer	be 0.4 m f ence plane w	rom the vas bonded	a vertical ground rertical ground roll to the horizontal to the horizontal toundary of the u	reference plant al ground ref	ane. The veence plane	ertical greet. The Li		
	refer dista of the	ence plane for nce was between EUT and as	or LISNs reen the cl sociated e	mounted on top osest points of tl quipment was at	of the ground the LISN 1 are least 0.8 m to	and reference and the EUT. Ifrom the LISI	e plane. All other N 2.		
	the i			emission, the rel e changed acco					
imit:		(67)		(67)		(6)			
				l im	nit (dBµV)				
	Frequ	uency range (MHz)	Quasi-peak	<u> </u>	rerage			
	(in)	0.15-0.5	13	66 to 56*	56	to 46*			
	(62)	0.5-5	(C.)	56	((2)	46			
		5-30		60		50			
	to 0.	50 MHz.	•	th the logarithm on the transite the transite the transite transit	·	·	nge 0.15		
easurement Data									
n initial pre-scan wa	s performe	d on the live a	and neutra	I lines with peak	detector.				
uasi-Peak and Aver	•			•		mized peak e	emission		
tected.	C :>		/3	·		·			

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 40 of 70

No.	Freq.		aing_Le dBuV)	vel	Factor	IV	leasuren (dBuV)		Lir (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1660	51.14	47.95	25.18	9.80	60.94	57.75	34.98	65.15	55.15	-7.40	-20.17	Р	
2	0.2580	39.36		18.08	9.80	49.16		27.88	61.49	51.49	-12.33	-23.61	Р	
3	2.2420	28.75		8.42	10.00	38.75		18.42	56.00	46.00	-17.25	-27.58	Р	
4	3.2980	29.99		11.73	10.00	39.99		21.73	56.00	46.00	-16.01	-24.27	Р	
5	9.7700	27.00		11.42	10.00	37.00		21.42	60.00	50.00	-23.00	-28.58	Р	
6	26.3700	36.17		23.84	9.80	45.97		33.64	60.00	50.00	-14.03	-16.36	Р	

Report No. : EED32I00297001 Page 41 of 70

Neutral line: 80.0 dBuV Limit: AVG: peak 30 AVG -20 30.000 0.150 0.5 (MHz) 5 Reading Level Correct Measurement Limit Margin

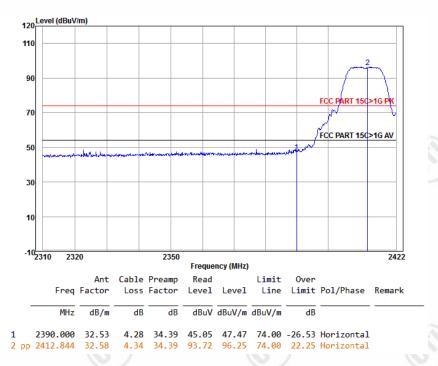
	No.	Freq.		dBuV)	vei	Factor	IV	(dBuV)		(dB	uV)		dB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1660	51.28	43.00	16.70	9.80	61.08	52.80	26.50	65.15	55.15	-12.35	-28.65	Р	
	2	0.2540	40.00		21.59	9.80	49.80		31.39	61.62	51.62	-11.82	-20.23	Р	
3	3	2.6300	28.19		10.23	10.00	38.19		20.23	56.00	46.00	-17.81	-25.77	Р	
•	4	3.3060	25.41		3.91	10.00	35.41		13.91	56.00	46.00	-20.59	-32.09	Р	
	5	10.0380	26.53		11.01	10.00	36.53		21.01	60.00	50.00	-23.47	-28.99	Р	
Ī	6	27.3700	35.69		20.52	9.80	45.49		30.32	60.00	50.00	-14.51	-19.68	Р	

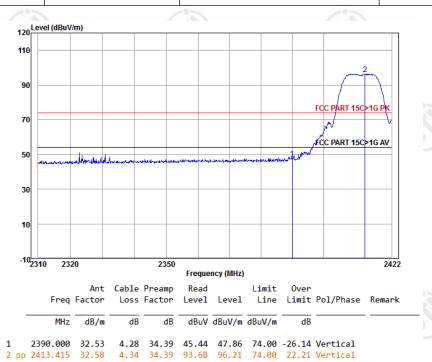
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC 120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Appendix H): Restricted bands around fundamental frequency (Radiated)

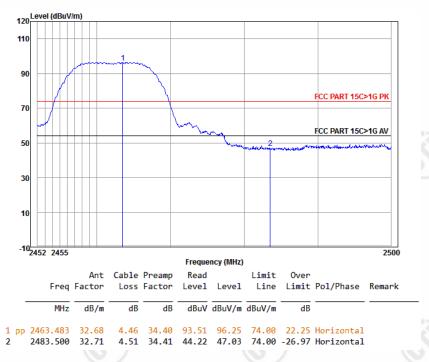
(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	. Quasi-peak	120kHz	300kHz	Quasi-peak	(
	Abaua 4011	Peak	1MHz	3MHz	Peak	-03
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	 a. The EUT was plat at a 3 meter sendetermine the plate of the EUT was sended as a mounted or c. The antenna hedetermine the magnetic polarizations of the antenna was was turned from 	rocedure as below: aced on the top of a roni-anechoic camber. To sition of the highest ret 3 meters away from a the top of a variable-ight is varied from one aximum value of the fithe antenna are set to cted emission, the EU tuned to heights from 0 degrees to 360 deg	the table wa adiation. the interfer height anter meter to fo ield strength make the n T was arran a 1 meter to irees to find	ence-receinna tower. ur meters n. Both horneasurement ged to its value of the maxim	rs above the 360 degrees ving antenna above the grizontal and vent. worst case along the rotate and the rotate and reading.	to a, whice ound vertica nd the able
	Bandwidth with f. Place a marker frequency to sho	r system was set to Po Maximum Hold Mode. at the end of the restri ow compliance. Also me spectrum analyzer pl ighest channel	cted band c neasure any	losest to the	ne transmit s in the restri	cted
	Bandwidth with f. Place a marker frequency to sho bands. Save the for lowest and h Above 1GHz test p g. Different betwee to fully Anechoic 18GHz the dista h. Test the EUT ir i. The radiation mon	Maximum Hold Mode. at the end of the restri ow compliance. Also me spectrum analyzer pl	cted band coneasure any ot. Repeat for table 0.8 ble is 1.5 me the Highest ormed in X, xis positionic necessity.	losest to the common series of	ne transmit in the restri ower and mod Anechoic Ch .5 meter(Ab	cted dulation nambe ove
Limit:	Bandwidth with f. Place a marker frequency to sho bands. Save the for lowest and h Above 1GHz test p g. Different betwee to fully Anechoic 18GHz the dista h. Test the EUT ir i. The radiation mon	Maximum Hold Mode. at the end of the restriction compliance. Also me spectrum analyzer plaighest channel complete the state of the test site. Chamber change for noce is 1 meter and take the lowest channel, the lowest channel, the sasurements are perfected, and found the X at	cted band coneasure any ot. Repeat for table 0.8 ble is 1.5 me the Highest ormed in X, xis positioniquencies me	losest to the commissions of each position of each position of the commission of the	ne transmit in the restri ower and mod Anechoic Ch .5 meter(Ab	cted dulation nambe ove
imit:	Bandwidth with f. Place a marker frequency to sho bands. Save the for lowest and h Above 1GHz test p g. Different betwee to fully Anechoic 18GHz the dista h. Test the EUT ir i. The radiation marker Transmitting mod j. Repeat above p	Maximum Hold Mode. at the end of the restriction compliance. Also me spectrum analyzer plaighest channel rocedure as below: It is above is the test site. Chamber change for nace is 1 meter and take the lowest channel, the lowest channel, the lowest channel, the lowest channel are perfected, and found the X are rocedures until all frequency.	cted band cheasure any ot. Repeat for table 0.8 ole is 1.5 methe Highest ormed in X, ixis positioniquencies methe Management (1/m @3m)	losest to the emissions for each posterior of the emissions for each posterior of the emissions of the emission of the emissi	ne transmit s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca as complete.	cted dulation nambe ove
imit:	Bandwidth with f. Place a marker frequency to sho bands. Save the for lowest and h Above 1GHz test p g. Different betwee to fully Anechoic 18GHz the dista h. Test the EUT ir i. The radiation mo Transmitting mo j. Repeat above p Frequency	Maximum Hold Mode. at the end of the restriction compliance. Also me spectrum analyzer plaighest channel compliance is the test site. Chamber change for nabove is the test site channel of the lowest	cted band coneasure any ot. Repeat for table 0.8 ble is 1.5 method in X, ixis positioniquencies method (//m @3m)	losest to the emissions for each posterior of the emissions or each posterior of the emissions of the emissi	Anechoic Cr. 5 meter(Ab	cted dulation nambe ove
imit:	Bandwidth with f. Place a marker frequency to sho bands. Save the for lowest and h Above 1GHz test p g. Different betwee to fully Anechoic 18GHz the dista h. Test the EUT ir i. The radiation many Transmitting mod j. Repeat above p Frequency 30MHz-88MH	Maximum Hold Mode. at the end of the restriction compliance. Also me a spectrum analyzer plaighest channel concedure as below: It is chamber change for nabove is the test site. Chamber change for nabove is 1 meter and take the lowest channel, the lowest channel, the assurements are perfede, and found the X at a rocedures until all frequency. Limit (dBµV) dz 43.	cted band cheasure any ot. Repeat for table 0.8 ole is 1.5 methe Highest ormed in X, xis positioni uencies method (//m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which in easured wa Rer Quasi-pe	Anechoic Ch.5 meter(Ab	cted dulation nambe ove
Limit:	Bandwidth with f. Place a marker frequency to sho bands. Save the for lowest and h Above 1GHz test p g. Different betwee to fully Anechoic 18GHz the dista h. Test the EUT ir i. The radiation material transmitting mod j. Repeat above p Frequency 30MHz-88MH 88MHz-216MI	Maximum Hold Mode. at the end of the restriction compliance. Also me spectrum analyzer plighest channel compliance is the test site. Chamber change for nace is 1 meter and take the lowest channel, the lowest channel, the assurements are perfede, and found the X at rocedures until all frequency. Limit (dBµV) Iz 40. Hz 43. Hz 46.	cted band coneasure any ot. Repeat for table 0.8 ble is 1.5 method in X, xis positioni uencies method (//m @3m) 0 5 0	losest to the community community community community community. Z axis programmed was red was red was red was red Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Cr.5 meter(Ab	cted dulation nambe ove
Limit:	Bandwidth with f. Place a marker frequency to sho bands. Save the for lowest and h Above 1GHz test p g. Different betwee to fully Anechoid 18GHz the dista h. Test the EUT ir i. The radiation monormality and p Frequency 30MHz-88MH 88MHz-216MH 216MHz-960M	Maximum Hold Mode. at the end of the restriction compliance. Also me a spectrum analyzer plaighest channel compliance is the test site. Chamber change for nabove is the test site. Chamber change for nabove is 1 meter and table the lowest channel, the lowest channel, the lowest channel is a surrements are perfede, and found the X a rocedures until all frequency. Limit (dBµV)	cted band cheasure any ot. Repeat for table 0.8 ble is 1.5 me the Highest brand in X, axis positioniquencies me (//m @3m) 0 5 0 0	losest to the commissions or each posterior of the commissions of the	Anechoic Cr.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value	cted dulation nambe ove

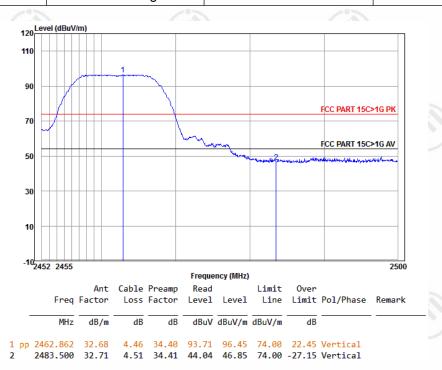



Report No. : EED32I00297001 Page 43 of 70

Test plot as follows:

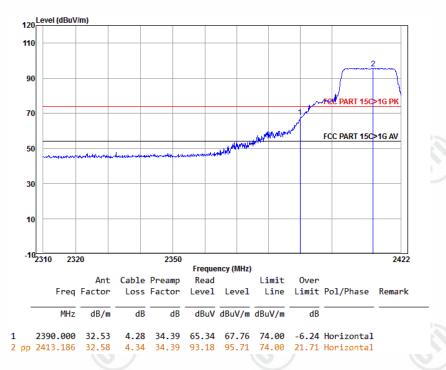
Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

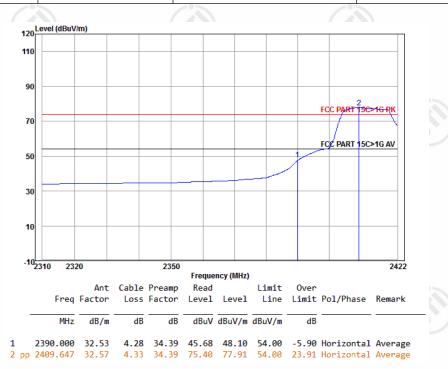

Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Report No. : EED32I00297001 Page 44 of 70

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

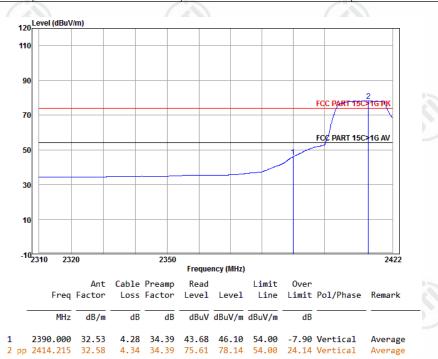

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Report No. : EED32I00297001 Page 45 of 70

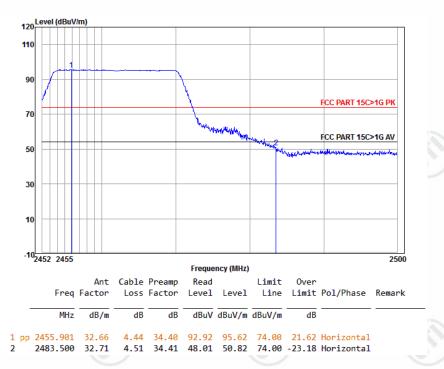
Worse case mode:	802.11g (6Mbps)		(17-2)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

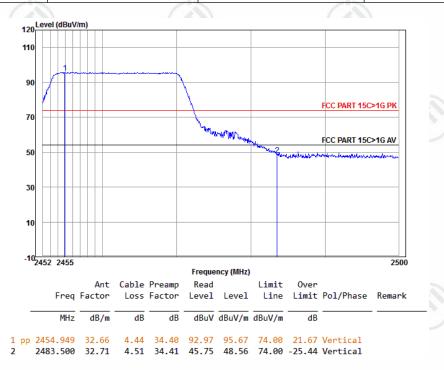
Wors	se case mode:	802.11g (6Mbps)		
Freq	uency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average



Report No. : EED32I00297001 Page 46 of 70

Worse case mode:	802.11g (6Mbps)	(6.52)	(6,75)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak


Worse cas	e mode:	802.11g (6Mbps)		
Frequency	: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average



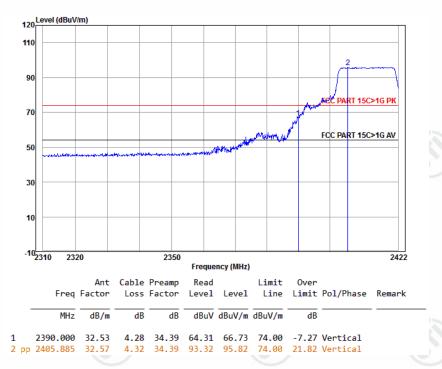
Report No. : EED32I00297001 Page 47 of 70

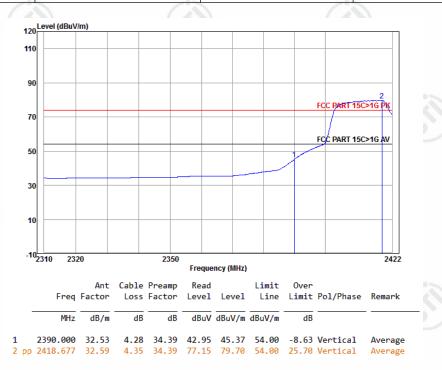
Worse case mode:	802.11g (6Mbps)	(6,5)	(6.57)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Page	40		70
Page	ΔX	α	/()

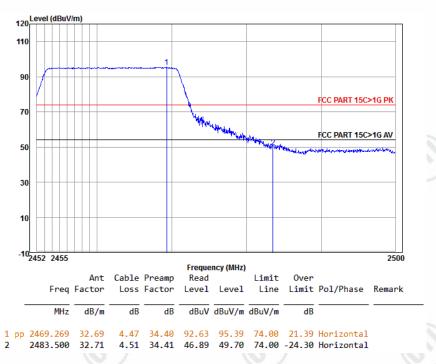
Worse case mode:	802.11n(HT20) (6.5Mbps)	(27)	(25)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

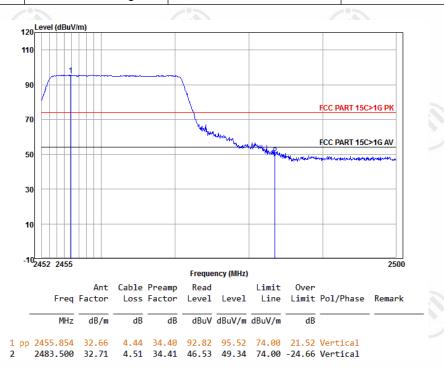

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average


Report No. : EED32I00297001 Page 49 of 70

Worse case mode:	802.11n(HT20) (6.5Mbps)	(6.5)	(6,5)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode: 802.11n(HT20) (6.5Mbps)

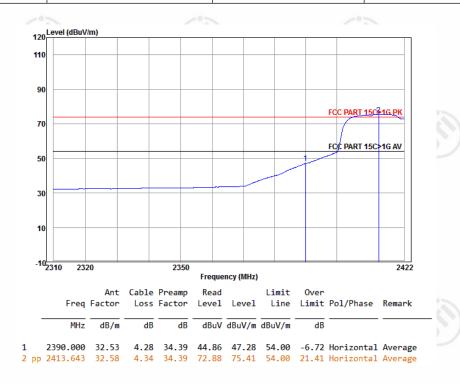

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Average



Report No. : EED32I00297001 Page 50 of 70

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	(41)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

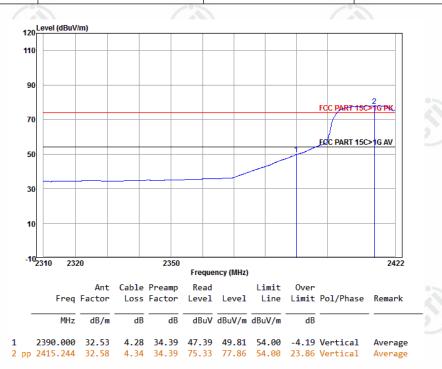
Worse case mode:	802.11n(HT20) (6.5Mb	ps)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Report No.: EED32I00297001 Page 51 of 70

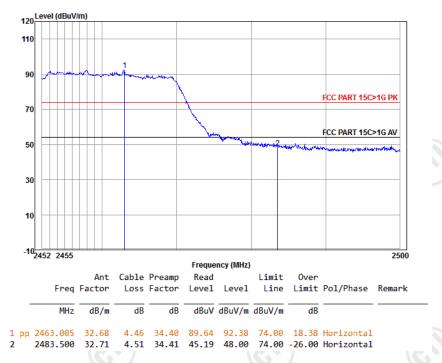
Worse case mode:	802.11n(HT40) (13.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

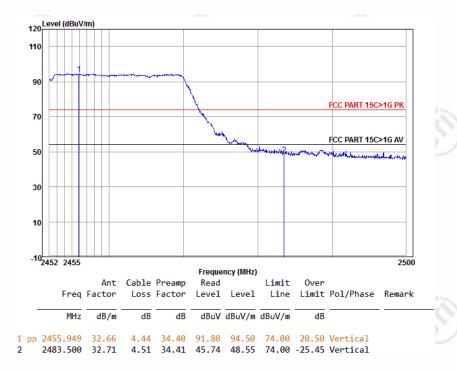
Worse case mode:	802.11n(HT40) (13.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average



Page	52	Λf	70
rauc	JZ	U	<i>i</i> U

Worse case mode:	802.11n(HT40) (13.5Mbps) (2)	(2)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak


Worse case mode:	802.11n(HT40) (13.5Mbps)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average



Report No.: EED32I00297001 Page 53 of 70

Worse case mode:	802.11n(HT40) (13.5Mbps		
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT40) (13.5Mbps)	
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Vertical	Remark: Peak

Note:

1) Through Pre-scan transmitting mode with all kind of modulation and data rate, and the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

Page 54 of 70

Report No.: EED32I00297001

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
Final Test Level =Receiver Reading - Correct Factor
Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor

Report No. : EED32I00297001 Page 55 of 70

Appendix I): Radiated Spurious Emissions

Receiver Setup:

10.51	1.00			10.7
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

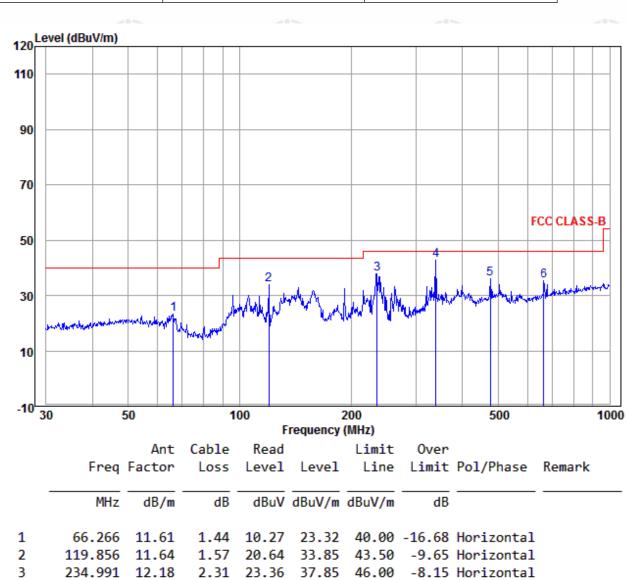
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)...
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

		• •
	m	11

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-	(4-)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

42.94

35.90

35.38

5

339.589

475.499

663.473

2.65

3.06

3.66

25.74

15.06

11.82

46.00

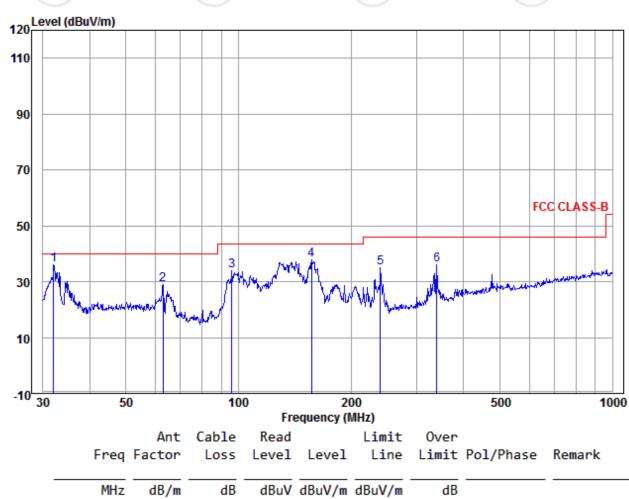
14.55

17.78

19.90

-3.06 Horizontal

46.00 -10.10 Horizontal


46.00 -10.62 Horizontal

Test mode: Transmitting Vertical

1 pp	32.067	12.89	1.04	22.08	36.01	40.00	-3.99	Vertical
2	62.871	12.77	1.44	14.79	29.00	40.00	-11.00	Vertical
3	96.099	12.44	1.58	20.06	34.08	43.50	-9.42	Vertical
4	157.007	10.00	1.68	26.14	37.82	43.50	-5.68	Vertical
5	239.987	12.25	2.32	20.51	35.08	46.00	-10.92	Vertical
6	330 580	1/ 55	2 65	19 76	35 06	16 00	10 04	Vontical

Report No. : EED32I00297001 Page 58 of 70

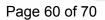
Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1135.731	30.07	2.44	35.03	46.30	43.78	74.00	-30.22	Pass	Horizontal
1439.090	30.75	2.77	34.73	46.12	44.91	74.00	-29.09	Pass	Horizontal
4824.000	34.73	5.10	34.35	44.49	49.97	74.00	-24.03	Pass	Horizontal
5660.469	35.64	6.67	34.30	41.87	49.88	74.00	-24.12	Pass	Horizontal
7236.000	36.42	6.69	34.90	38.74	46.95	74.00	-27.05	Pass	Horizontal
9648.000	37.93	7.70	35.07	39.03	49.59	74.00	-24.41	Pass	Horizontal
1319.777	30.50	2.65	34.84	45.40	43.71	74.00	-30.29	Pass	Vertical
3634.910	33.07	5.50	34.57	43.61	47.61	74.00	-26.39	Pass	Vertical
4824.000	34.73	5.10	34.35	45.21	50.69	74.00	-23.31	Pass	Vertical
6017.064	35.91	7.41	34.31	40.82	49.83	74.00	-24.17	Pass	Vertical
7236.000	36.42	6.69	34.90	38.81	47.02	74.00	-26.98	Pass	Vertical
9648.000	37.93	7.70	35.07	38.54	49.10	74.00	-24.90	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1093.183	29.96	2.38	35.08	46.31	43.57	74.00	-30.43	Pass	Horizontal
3757.208	32.97	5.48	34.58	43.69	47.56	74.00	-26.44	Pass	Horizontal
4874.000	34.84	5.09	34.33	44.98	50.58	74.00	-23.42	Pass	Horizontal
5956.109	35.87	7.33	34.30	42.07	50.97	74.00	-23.03	Pass	Horizontal
7311.000	36.43	6.76	34.90	40.99	49.28	74.00	-24.72	Pass	Horizontal
9748.000	38.03	7.61	35.05	38.90	49.49	74.00	-24.51	Pass	Horizontal
1195.049	30.21	2.51	34.97	47.18	44.93	74.00	-29.07	Pass	Vertical
1319.777	30.50	2.65	34.84	49.36	47.67	74.00	-26.33	Pass	Vertical
4874.000	34.84	5.09	34.33	45.32	50.92	74.00	-23.08	Pass	Vertical
5910.798	35.83	7.23	34.30	42.07	50.83	74.00	-23.17	Pass	Vertical
7311.000	36.43	6.76	34.90	39.21	47.50	74.00	-26.50	Pass	Vertical
9748.000	38.03	7.61	35.05	38.54	49.13	74.00	-24.87	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Fred	uency: 24	62MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1195.049	30.21	2.51	34.97	47.41	45.16	74.00	-28.84	Pass	Horizontal
3993.903	32.80	5.44	34.60	43.50	47.14	74.00	-26.86	Pass	Horizontal
4924.000	34.94	5.07	34.32	45.05	50.74	74.00	-23.26	Pass	Horizontal
6203.700	36.01	7.22	34.43	41.74	50.54	74.00	-23.46	Pass	Horizontal
7386.000	36.44	6.83	34.90	39.22	47.59	74.00	-26.41	Pass	Horizontal
9848.000	38.14	7.53	35.03	38.60	49.24	74.00	-24.76	Pass	Horizontal
1079.357	29.92	2.37	35.10	48.84	46.03	74.00	-27.97	Pass	Vertical
1364.182	30.60	2.69	34.80	46.95	45.44	74.00	-28.56	Pass	Vertical
3700.260	33.02	5.49	34.57	45.80	49.74	74.00	-24.26	Pass	Vertical
4924.000	34.94	5.07	34.32	44.99	50.68	74.00	-23.32	Pass	Vertical
7386.000	36.44	6.83	34.90	41.24	49.61	74.00	-24.39	Pass	Vertical
9848.000	38.14	7.53	35.03	37.73	48.37	74.00	-25.63	Pass	Vertical

Test mode:	802.11g(6N	6Mbps) Test Frequency: 2412MHz Remark: Peak				eak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1110.008	30.00	2.41	35.06	45.67	43.02	74.00	-30.98	Pass	Horizontal
1319.777	30.50	2.65	34.84	49.04	47.35	74.00	-26.65	Pass	Horizontal
4824.000	34.73	5.10	34.35	44.22	49.70	74.00	-24.30	Pass	Horizontal
6379.864	36.10	7.05	34.54	41.60	50.21	74.00	-23.79	Pass	Horizontal
7236.000	36.42	6.69	34.90	41.09	49.30	74.00	-24.70	Pass	Horizontal
9648.000	37.93	7.70	35.07	38.75	49.31	74.00	-24.69	Pass	Horizontal
1182.943	30.18	2.50	34.98	45.66	43.36	74.00	-30.64	Pass	Vertical
1668.044	31.18	2.98	34.54	47.36	46.98	74.00	-27.02	Pass	Vertical
4824.000	34.73	5.10	34.35	43.84	49.32	74.00	-24.68	Pass	Vertical
5747.586	35.71	6.87	34.30	42.64	50.92	74.00	-23.08	Pass	Vertical
7236.000	36.42	6.69	34.90	40.38	48.59	74.00	-25.41	Pass	Vertical
9648.000	37.93	7.70	35.07	38.70	49.26	74.00	-24.74	Pass	Vertical



Test mode:	802.11g(6N	1bps)	Test Fred	quency: 24	37MHz	eak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1121.367	30.03	2.42	35.05	46.44	43.84	74.00	-30.16	Pass	Horizontal
1319.777	30.50	2.65	34.84	49.52	47.83	74.00	-26.17	Pass	Horizontal
4874.000	34.84	5.09	34.33	44.56	50.16	74.00	-23.84	Pass	Horizontal
6363.645	36.09	7.06	34.53	41.78	50.40	74.00	-23.60	Pass	Horizontal
7311.000	36.43	6.76	34.90	41.09	49.38	74.00	-24.62	Pass	Horizontal
9748.000	38.03	7.61	35.05	37.91	48.50	74.00	-25.50	Pass	Horizontal
1087.632	29.94	2.38	35.09	46.06	43.29	74.00	-30.71	Pass	Vertical
1374.639	30.62	2.71	34.79	45.68	44.22	74.00	-29.78	Pass	Vertical
1668.044	31.18	2.98	34.54	47.59	47.21	74.00	-26.79	Pass	Vertical
4874.000	34.84	5.09	34.33	42.12	47.72	74.00	-26.28	Pass	Vertical
7311.000	36.43	6.76	34.90	40.13	48.42	74.00	-25.58	Pass	Vertical
9748.000	38.03	7.61	35.05	38.82	49.41	74.00	-24.59	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	62MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)		Antenna Polaxis	
1319.777	30.50	2.65	34.84	49.71	48.02	74.00	-25.98	Pass	Horizontal	
1537.557	30.94	2.86	34.64	49.18	48.34	74.00	-25.66	Pass	Horizontal	
4924.000	34.94	5.07	34.32	44.52	50.21	74.00	-23.79	Pass	Horizontal	
5910.798	35.83	7.23	34.30	41.52	50.28	74.00	-23.72	Pass	Horizontal	
7386.000	36.44	6.83	34.90	40.18	48.55	74.00	-25.45	Pass	Horizontal	
9848.000	38.14	7.53	35.03	40.31	50.95	74.00	-23.05	Pass	Horizontal	
1090.404	29.95	2.38	35.09	46.31	43.55	74.00	-30.45	Pass	Vertical	
1340.089	30.54	2.67	34.82	46.67	45.06	74.00	-28.94	Pass	Vertical	
1663.803	31.17	2.97	34.54	46.54	46.14	74.00	-27.86	Pass	Vertical	
4946.072	34.99	5.06	34.31	42.01	47.75	74.00	-26.25	Pass	Vertical	
7386.000	36.44	6.83	34.90	41.07	49.44	74.00	-24.56	Pass	Vertical	
9848.000	38.14	7.53	35.03	39.74	50.38	74.00	-23.62	Pass	Vertical	

Page 61 of 70

/°>					_°S					
Test mode:	802.11n(HT	720)(6.5N	(lbps)	Test Freque	ency: 2412M	Hz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1319.777	30.50	2.65	34.84	49.15	47.46	74.	00	-26.54	Pass	Horizontal
1553.293	30.97	2.88	34.63	47.88	47.10	74.	00	-26.90	Pass	Horizontal
4824.000	34.73	5.10	34.35	42.30	47.78	74.	00	-26.22	Pass	Horizontal
5836.044	35.78	7.07	34.30	40.59	49.14	74.	00	-24.86	Pass	Horizontal
7236.000	36.42	6.69	34.90	38.93	47.14	74.	00	-26.86	Pass	Horizontal
9648.000	37.93	7.70	35.07	40.43	50.99	74.	00	-23.01	Pass	Horizontal
1159.096	30.13	2.47	35.01	46.41	44.00	74.	00	-30.00	Pass	Vertical
1461.238	30.79	2.79	34.71	45.50	44.37	74.	00	-29.63	Pass	Vertical
4824.000	34.73	5.10	34.35	43.20	48.68	74.	00	-25.32	Pass	Vertical
5971.290	35.88	7.37	34.30	41.40	50.35	74.	00	-23.65	Pass	Vertical
7236.000	36.42	6.69	34.90	40.22	48.43	74.00		-25.57	Pass	Vertical
9648.000	37.93	7.70	35.07	38.99	49.55	74.	00	-24.45	Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Freque	ency: 2437M	lHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lin (dBµ)		Over Limit (dB)	Result	Antenna Polaxis	
1162.051	30.13	2.47	35.00	46.10	43.70	74.	00	-30.30	Pass	Horizontal	
1319.777	30.50	2.65	34.84	49.93	48.24	74.	00	-25.76	Pass	Horizontal	
4874.000	34.84	5.09	34.33	44.63	50.23	74.	00	-23.77	Pass	Horizontal	
5956.109	35.87	7.33	34.30	41.24	50.14	74.	00	-23.86	Pass	Horizontal	
7311.000	36.43	6.76	34.90	41.01	49.30	74.	00	-24.70	Pass	Horizontal	
9748.000	38.03	7.61	35.05	38.86	49.45	74.	00	-24.55	Pass	Horizontal	
1201.149	30.23	2.52	34.96	45.71	43.50	74.	00	-30.50	Pass	Vertical	
1605.554	31.07	2.92	34.59	44.23	43.63	74.	00	-30.37	Pass	Vertical	
4874.000	34.84	5.09	34.33	42.54	48.14	74.	00	-25.86	Pass	Vertical	
6001.768	35.90	7.43	34.30	41.09	50.12	74.	00	-23.88	Pass	Vertical	
7311.000	36.43	6.76	34.90	40.64	48.93	74.	00	-25.07	Pass	Vertical	
9748.000	38.03	7.61	35.05	40.04	50.63	74.	00	-23.37	Pass	Vertical	

Report No. : EED32I00297001 Page 62 of 70

°										
Test mode:	802.11n(HT	720)(6.5N	(lbps)	Test Freque	ency: 2462M	lHz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)		mit V/m)	Over Limit (dB)	Result	Antenna Polaxis
1195.049	30.21	2.51	34.97	46.14	43.89	74.	.00	-30.11	Pass	Horizontal
1439.090	30.75	2.77	34.73	46.47	45.26	74.	.00	-28.74	Pass	Horizontal
4924.000	34.94	5.07	34.32	43.22	48.91	74.	.00	-25.09	Pass	Horizontal
5762.235	35.72	6.90	34.30	41.31	49.63	74.	.00	-24.37	Pass	Horizontal
7386.000	36.44	6.83	34.90	40.30	48.67	74.	.00	-25.33	Pass	Horizontal
9848.000	38.14	7.53	35.03	39.98	50.62	74.	.00	-23.38	Pass	Horizontal
1185.958	30.19	2.50	34.98	46.87	44.58	74	.00	-29.42	Pass	Vertical
1668.044	31.18	2.98	34.54	46.32	45.94	74	.00	-28.06	Pass	Vertical
4924.000	34.94	5.07	34.32	44.36	50.05	74	.00	-23.95	Pass	Vertical
5956.109	35.87	7.33	34.30	41.55	50.45	74	.00	-23.55	Pass	Vertical
7386.000	36.44	6.83	34.90	40.86	49.23	74.00		-24.77	Pass	Vertical
9848.000	38.14	7.53	35.03	39.84	50.48	74	.00	-23.52	Pass	Vertical

Test mode:	802.11n(HT	40)(13.5	Mbps)	Test Frequency: 2422MHz Rema				ark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis	
1127.091	30.05	2.43	35.04	46.54	43.98	74.	.00	-30.02	Pass	Horizontal	
1553.293	30.97	2.88	34.63	47.02	46.24	74.00		-27.76	Pass	Horizontal	
4844.000	34.77	5.10	34.34	40.78	46.31	74.00		-27.69	Pass	Horizontal	
5940.967	35.86	7.30	34.30	41.50	50.36	74.00		-23.64	Pass	Horizontal	
7266.000	36.43	6.72	34.90	40.36	48.61	74.	.00	-25.39	Pass	Horizontal	
9688.000	37.97	7.66	35.06	38.55	49.12	74.	.00	-24.88	Pass	Horizontal	
1093.183	29.96	2.38	35.08	47.07	44.33	74	.00	-29.67	Pass	Vertical	
1350.362	30.57	2.68	34.81	45.65	44.09	74	.00	-29.91	Pass	Vertical	
4844.000	34.77	5.10	34.34	41.30	46.83	74	.00	-27.17	Pass	Vertical	
5776.922	35.73	6.93	34.30	41.55	49.91	74	.00	-24.09	Pass	Vertical	
7266.000	36.43	6.72	34.90	40.11	48.36	74.00		-25.64	Pass	Vertical	
9688.000	37.97	7.66	35.06	39.65	50.22	74	.00	-23.78	Pass	Vertical	

Report No.: EED32I00297001 Page 63 of 70

			105		205		70~			
Test mode: 802.11n(HT40)(13.5Mbps)				Test Fr	equency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m	Ove Lim (dE	it Result	Antenna Polaxis	
1138.626	30.07	2.44	35.03	45.89	43.37	74.00	-30.	63 Pass	Horizontal	
1319.777	30.50	2.65	34.84	47.42	45.73	74.00	-28.	27 Pass	Horizontal	
4874.000	34.84	5.09	34.33	45.00	50.60	74.00	-23.	40 Pass	Horizontal	
6315.233	36.07	7.11	34.50	42.24	50.92	74.00	-23.	08 Pass	Horizontal	
7311.000	36.43	6.76	34.90	40.72	49.01	74.00	-24.	99 Pass	Horizontal	
9748.000	38.03	7.61	35.05	39.90	50.49	74.00	-23.	51 Pass	Horizontal	
1198.095	30.22	2.51	34.97	45.96	43.72	74.00	-30.	28 Pass	Vertical	
1668.044	31.18	2.98	34.54	47.30	46.92	74.00	-27.	08 Pass	Vertical	
4874.000	34.84	5.09	34.33	43.03	48.63	74.00	-25.	37 Pass	Vertical	
5732.974	35.70	6.83	34.30	41.93	50.16	74.00	-23.	84 Pass	Vertical	
7311.000	36.43	6.76	34.90	40.43	48.72	74.00	-25.	28 Pass	Vertical	
9748.000	38.03	7.61	35.05	39.25	49.84	74.00	-24.	16 Pass	Vertical	

Test mode:	802.11n(HT	40)(13.5	Mbps)	Test Frequency: 2452MHz Remark:				rk: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1127.091	30.05	2.43	35.04	46.94	44.38	74	1.00	-29.62	Pass	Horizontal
1319.777	30.50	2.65	34.84	47.99	46.30	74	1.00	-27.70	Pass	Horizontal
4904.000	34.90	5.07	34.33	42.51	48.15	74.00		-25.85	Pass	Horizontal
5925.863	35.85	7.27	34.30	41.36	50.18	74.00		-23.82	Pass	Horizontal
7356.000	36.44	6.80	34.90	40.34	48.68	74	1.00	-25.32	Pass	Horizontal
9808.000	38.10	7.56	35.04	38.92	49.54	74	1.00	-24.46	Pass	Horizontal
1176.935	30.17	2.49	34.99	45.71	43.38	74	1.00	-30.62	Pass	Vertical
1659.574	31.16	2.97	34.54	46.83	46.42	74	1.00	-27.58	Pass	Vertical
4904.000	34.90	5.07	34.33	43.11	48.75	74	1.00	-25.25	Pass	Vertical
5895.771	35.82	7.20	34.30	41.68	50.40	74	1.00	-23.60	Pass	Vertical
7356.000	36.44	6.80	34.90	40.24	48.58	74.00		-25.42	Pass	Vertical
9808.000	38.10	7.56	35.04	39.10	49.72	74	1.00	-24.28	Pass	Vertical

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been

Page 64 of 70

displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.


Report No. : EED32I00297001 Page 65 of 70

PHOTOGRAPHS OF TEST SETUP

Test Model No.: W7LM1110

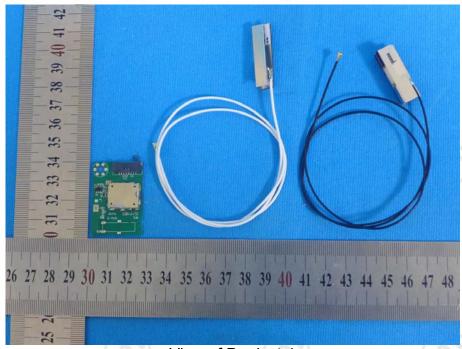
Radiated spurious emission Test Setup-1(Below 30MHz)

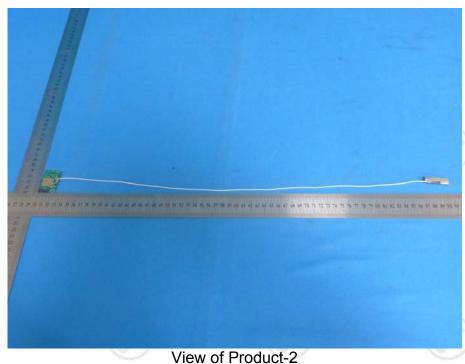
Radiated spurious emission Test Setup-2(Below 1GHz)

Report No. : EED32I00297001 Page 66 of 70

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

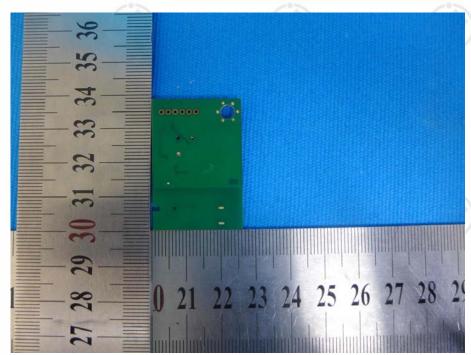


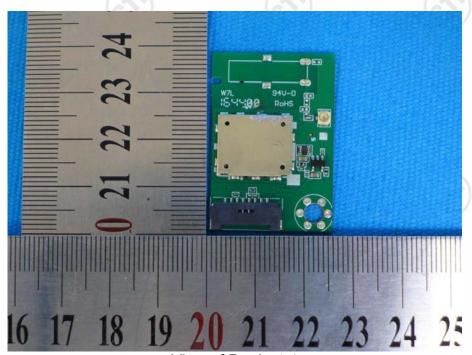

Report No.: EED32I00297001 Page 67 of 70

PHOTOGRAPHS OF EUT Constructional Details

Test Model No.: W7LM1110

View of Product-1

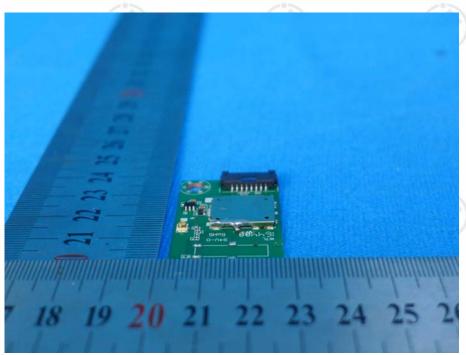


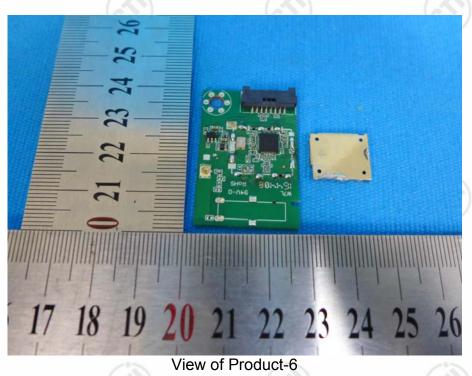


Report No. : EED32I00297001 Page 68 of 70

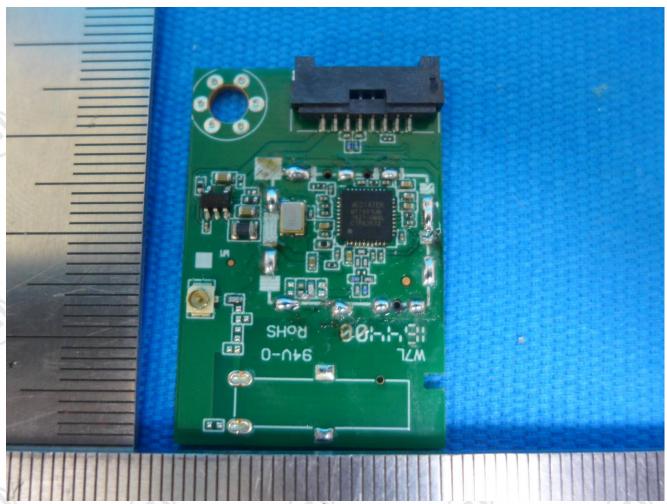
View of Product-3

View of Product-4





View of Product-5



Report No. : EED32I00297001 Page 70 of 70

View of Product-7

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

