

## Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC178362

1 of 55 Page:

# **FCC Radio Test Report** FCC ID: 2AYQ2-ES-T6

## **Original Grant**

Report No. TB-FCC178362

SHENZHEN ESHINE INTERACTION TECHNOLOGY CO.,LTD **Applicant** 

**Equipment Under Test (EUT)** 

**EUT Name** Bluetooth earphone

Model No. ES-T6

ES-T6S, ES-T8, ES-T8S, ES-T9, ES-T9S, ES-T5, ES-T5S Series Model No.

**Brand Name** N/A

Sample ID TBBJ-20201111-18-1#& TBBJ-20201111-18-2#

**Receipt Date** 2020-12-04

**Test Date** 2020-12-04 to 2021-01-16

**Issue Date** 2021-01-16

**Standards** FCC Part 15, Subpart C 15.247

ANSI C63.10: 2013 **Test Method** 

Conclusions **PASS** 

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer:

the report.

: LURN SU : fayta. **Engineer Supervisor** 

**Engineer Manager** 

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

TB-RF-074-1.0





# Contents

| CON | NIENIS                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 5  |
|     | 1.1 Client Information                                       | 5  |
|     | 1.2 General Description of EUT (Equipment Under Test)        | 5  |
|     | 1.3 Block Diagram Showing the Configuration of System Tested |    |
|     | 1.4 Description of Support Units                             | 7  |
|     | 1.6 Description of Test Software Setting                     |    |
|     | 1.7 Measurement Uncertainty                                  | 8  |
|     | 1.8 Test Facility                                            | 9  |
| 2.  | TEST SUMMARY                                                 | 10 |
| 3.  | TEST SOFTWARE                                                | 10 |
| 4.  | TEST EQUIPMENT                                               | 11 |
| 5.  | CONDUCTED EMISSION TEST                                      | 12 |
|     | 5.1 Test Standard and Limit                                  | 12 |
|     | 5.2 Test Setup                                               |    |
|     | 5.3 Test Procedure                                           |    |
|     | 5.4 Deviation From Test Standard                             | 13 |
|     | 5.5 EUT Operating Mode                                       |    |
|     | 5.6 Test Data                                                | 13 |
| 6.  | RADIATED EMISSION TEST                                       | 14 |
|     | 6.1 Test Standard and Limit                                  | 14 |
|     | 6.2 Test Setup                                               | 15 |
|     | 6.3 Test Procedure                                           |    |
|     | 6.4 Deviation From Test Standard                             | 17 |
|     | 6.5 EUT Operating Condition                                  | 17 |
|     | 6.6 Test Data                                                | 17 |
| 7.  | RESTRICTED BANDS REQUIREMENT                                 | 18 |
|     | 7.1 Test Standard and Limit                                  | 18 |
|     | 7.2 Test Setup                                               | 18 |
|     | 7.3 Test Procedure                                           | 18 |
|     | 7.4 Deviation From Test Standard                             | 19 |
|     | 7.5 EUT Operating Condition                                  | 19 |
|     | 7.6 Test Data                                                |    |
| 8.  | BANDWIDTH TEST                                               | 20 |
|     | 8.1 Test Standard and Limit                                  | 20 |
|     | 8.2 Test Setup                                               | 20 |
|     | 8.3 Test Procedure                                           |    |
|     | 8.4 Deviation From Test Standard                             | 20 |
|     | 8.5 EUT Operating Condition                                  | 20 |



Report No.: TB-FCC178362 Page: 3 of 55

|     | 8.6 Test Data                                           | 20 |
|-----|---------------------------------------------------------|----|
| 9.  | PEAK OUTPUT POWER TEST                                  | 21 |
|     | 9.1 Test Standard and Limit                             | 21 |
|     | 9.2 Test Setup                                          |    |
|     | 9.3 Test Procedure                                      | 21 |
|     | 9.4 Deviation From Test Standard                        | 21 |
|     | 9.5 EUT Operating Condition                             | 21 |
|     | 9.6 Test Data                                           |    |
| 10. | POWER SPECTRAL DENSITY TEST                             | 22 |
|     | 10.1 Test Standard and Limit                            | 22 |
|     | 10.2 Test Setup                                         | 22 |
|     | 10.3 Test Procedure                                     | 22 |
|     | 10.4 Deviation From Test Standard                       | 22 |
|     | 10.5 EUT Operating Condition                            | 22 |
|     | 10.6 Test Data                                          | 22 |
| 11. | ANTENNA REQUIREMENT                                     | 23 |
|     | 11.1 Standard Requirement                               | 23 |
|     | 11.2 Deviation From Test Standard                       |    |
|     | 11.3 Antenna Connected Construction                     | 23 |
|     | 11.4 Result                                             | 23 |
| ATT | ACHMENT A CONDUCTED EMISSION TEST DATA                  | 24 |
| ATT | ACHMENT B RADIATED EMISSION TEST DATA                   | 26 |
|     | ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND EDGE TE |    |
|     |                                                         |    |
| ATT | ACHMENT D CHANNEL SEPARATION AND BANDWIDTH TEST DATA    |    |
|     | ACHMENT E PEAK OUTPUT POWER TEST DATA                   |    |
|     | ACHMENT F POWER SPECTRAL DENSITY TEST DATA              |    |
|     | ACHMENT G POWER SPECTRAL DENSITY TEST DATA              |    |
| 4   | ACDIVICINE CITE FOR SECURAL DENSILE ICALIDATA           | 74 |



Report No.: TB-FCC178362 Page: 4 of 55

# **Revision History**

| Report No.   | Version | Description             | Issued Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|---------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TB-FCC178362 | Rev.01  | Initial issue of report | 2021-01-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4000         | 3 100   |                         | A COURS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TOB BE       | 600     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TO TO        |         |                         | TO TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1133         | 103     |                         | CO C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| II O         | 000     | TO THE REAL PROPERTY.   | 1013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6000         |         |                         | The state of the s |
|              | 3       |                         | The same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The same     |         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN .        | 4000    |                         | (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |         |                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



Page: 5 of 55

## 1. General Information about EUT

#### 1.1 Client Information

| Applicant               |   | SHENZHEN ESHINE INTERACTION TECHNOLOGY CO.,LTD                                                                      |
|-------------------------|---|---------------------------------------------------------------------------------------------------------------------|
| Address                 |   | 4F, Flat C, SIDE OF JINPENG INDUSTRIAL ZONE, XUEXIANG COMMUNITY, BANTIAN STREET, LONGGANG DISTRICT, SHENZHEN, CHINA |
| Manufacturer : SHENZHEN |   | SHENZHEN ESHINE INTERACTION TECHNOLOGY CO.,LTD                                                                      |
| Address                 | 3 | 4F, Flat C, SIDE OF JINPENG INDUSTRIAL ZONE, XUEXIANG COMMUNITY, BANTIAN STREET, LONGGANG DISTRICT, SHENZHEN, CHINA |

#### 1.2 General Description of EUT (Equipment Under Test)

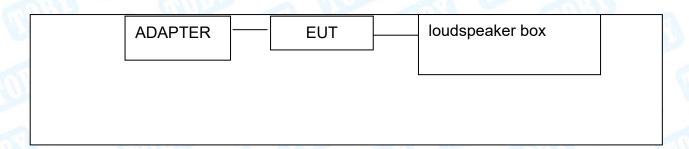
| <b>EUT Name</b>               |                                     | Bluetooth earphone                                                                                 |                                                     |  |  |  |
|-------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| Model(s) No.                  |                                     | ES-T6, ES-T6S, ES-T8, ES-T8S, ES-T9, ES-T9S, ES-T5, ES-T5S                                         |                                                     |  |  |  |
| Model Different               |                                     | All these models are in the same PCB, layout and electrical circuit, the only difference is model. |                                                     |  |  |  |
|                               |                                     | Operation Frequency:                                                                               | Bluetooth 5.0(BLE): 2402MHz~2480MHz                 |  |  |  |
|                               | 1                                   | Number of Channel:                                                                                 | Bluetooth 5.0(BLE): 40 channels see note(3)         |  |  |  |
| Product                       |                                     | RF Output Power:                                                                                   | 2.555 dBm (Max)                                     |  |  |  |
| Description                   | 6                                   | Antenna Gain:                                                                                      | -1 dBi Ceramic Antenna                              |  |  |  |
|                               | )                                   | Modulation Type:                                                                                   | GFSK                                                |  |  |  |
|                               | e e                                 | Bit Rate of Transmitter:                                                                           | 1Mbps&2Mbps                                         |  |  |  |
| Power Supply<br>(Earphone)    | 1                                   | Input: Output DC 5V<br>DC 3.7V by 55mAh Li-io                                                      | Input: Output DC 5V DC 3.7V by 55mAh Li-ion battery |  |  |  |
| Power Supply<br>(Charger Box) |                                     | Input: Output DC 5V DC 3.7V by 2500mAh Li-ion battery                                              |                                                     |  |  |  |
| Software Version              | :                                   | N/A                                                                                                |                                                     |  |  |  |
| Hardware Version : V2.1       |                                     |                                                                                                    |                                                     |  |  |  |
| Connecting I/O Port(S)        | : Please refer to the User's Manual |                                                                                                    |                                                     |  |  |  |

#### Note:

This Test Report is FCC Part 15.247 for Bluetooth, the test procedure follows the FCC KDB 558074 D01 15.247 Meas Guidance v05r02

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.




Page: 6 of 55

## (3) Channel List:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 00      | 2402               | 14      | 2430               | 28      | 2458               |
| 01      | 2404               | 15      | 2432               | 29      | 2460               |
| 02      | 2406               | 16      | 2434               | 30      | 2462               |
| 03      | 2408               | 17      | 2436               | 31      | 2464               |
| 04      | 2410               | 18      | 2438               | 32      | 2466               |
| 05      | 2412               | 19      | 2440               | 33      | 2468               |
| 06      | 2414               | 20      | 2442               | 34      | 2470               |
| 07      | 2416               | 21      | 2444               | 35      | 2472               |
| 08      | 2418               | 22      | 2446               | 36      | 2474               |
| 09      | 2420               | 23      | 2448               | 37      | 2476               |
| 10      | 2422               | 24      | 2450               | 38      | 2478               |
| 11      | 2424               | 25      | 2452               | 39      | 2480               |
| 12      | 2426               | 26      | 2454               |         |                    |
| 13      | 2428               | 27      | 2456               |         |                    |

## 1.3 Block Diagram Showing the Configuration of System Tested

#### **Conducted Test**



#### **Radiated Test**





Page: 7 of 55

#### 1.4 Description of Support Units

| Equipment Information                        |                   |          |      |  |  |  |  |
|----------------------------------------------|-------------------|----------|------|--|--|--|--|
| Name                                         | Used "√"          |          |      |  |  |  |  |
|                                              |                   |          | 1110 |  |  |  |  |
|                                              | Cable Information |          |      |  |  |  |  |
| Number Shielded Type Ferrite Core Length Not |                   |          |      |  |  |  |  |
|                                              |                   | Lilling. |      |  |  |  |  |

#### 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| For Conducted Test                                               |                                                        |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Final Test Mode                                                  | Description                                            |  |  |  |  |
| Mode 1                                                           | Charging + TX Mode Channel 00                          |  |  |  |  |
| For Radiated Test                                                |                                                        |  |  |  |  |
| Final Test Mode                                                  | Description                                            |  |  |  |  |
| Mode 2                                                           | TX Mode                                                |  |  |  |  |
| Mode 3                                                           | TX 1Mbps Mode (Channel 00/20/39)                       |  |  |  |  |
| Mode 4                                                           | TX 2Mbps Mode (Channel 00/20/39)                       |  |  |  |  |
| Note : The adapter and antenna g conduction test provided by TOB | ain provided by the applicant, the verified for the RF |  |  |  |  |

#### Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.



Page: 8 of 55

#### 1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

| Test Software Version | Setup_SmartRF_Studio_7-v2.6.0 |         |          |
|-----------------------|-------------------------------|---------|----------|
| Frequency             | 2402 MHz                      | 2442MHz | 2480 MHz |
| BLE GFSK              | DEF                           | DEF     | DEF      |

#### 1.7 Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| Test Item          | Parameters                                  | Expanded Uncertainty (U <sub>Lab</sub> ) |
|--------------------|---------------------------------------------|------------------------------------------|
| Conducted Emission | Level Accuracy: 9kHz~150kHz 150kHz to 30MHz | ±3.50 dB<br>±3.10 dB                     |
| Radiated Emission  | Level Accuracy:<br>9kHz to 30 MHz           | $\pm$ 4.60 dB                            |
| Radiated Emission  | Level Accuracy:<br>30MHz to 1000 MHz        | ±4.50 dB                                 |
| Radiated Emission  | Level Accuracy: Above 1000MHz               | ±4.20 dB                                 |



Page: 9 of 55

#### 1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

#### **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

#### IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.



Report No.: TB-FCC178362 Page: 10 of 55

## 2. Test Summary

| Standard Se                | ection             | _ ,                                                                         |                     | _        |        |
|----------------------------|--------------------|-----------------------------------------------------------------------------|---------------------|----------|--------|
| FCC                        | IC                 | Test Item                                                                   | Test Sample(s)      | Judgment | Remark |
| 15.203                     | an O               | Antenna<br>Requirement                                                      | TBBJ-20201111-18-2# | PASS     | N/A    |
| 15.207(a)                  | RSS-GEN<br>7.2.4   | Conducted Emission                                                          | TBBJ-20201111-18-1# | PASS     | N/A    |
| 5.205&15.247(d)            | RSS-GEN<br>7.2.2   | Band-Edge & Unwanted Emissions into Restricted Frequency                    | TBBJ-20201111-18-2# | PASS     | N/A    |
| 15.247(a)(2)               | RSS 247<br>5.2 (1) | 6dB Bandwidth                                                               | TBBJ-20201111-18-2# | PASS     | N/A    |
| 15.247(b)(3)               | RSS 247<br>5.4 (4) | Conducted Max Output Power                                                  | TBBJ-20201111-18-2# | PASS     | N/A    |
| 15.247(e)                  | RSS 247<br>5.2 (2) | Power Spectral  Density                                                     | TBBJ-20201111-18-2# | PASS     | N/A    |
| 15.205,<br>5.209&15.247(d) | RSS 247<br>5.5     | Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency | TBBJ-20201111-18-2# | PASS     | N/A    |

#### Test\_Software 3.

| ) | Test Item                   | Test Software | Manufacturer | Version No. |
|---|-----------------------------|---------------|--------------|-------------|
|   | Conducted Emission          | EZ-EMC        | EZ           | CDI-03A2    |
|   | Radiation Emission          | EZ-EMC        | EZ           | FA-03A2RE   |
|   | RF Conducted<br>Measurement | MTS-8310      | MWRFtest     | V2.0.0.0    |



Report No.: TB-FCC178362 Page: 11 of 55

# 4. Test Equipment

| Conducted Emission      | T                                | T                 | 1             | ı             | T             |
|-------------------------|----------------------------------|-------------------|---------------|---------------|---------------|
| Equipment               | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| EMI Test Receiver       | Rohde & Schwarz                  | ESCI              | 100321        | Jul. 06, 2020 | Jul. 05, 2021 |
| RF Switching Unit       | Compliance Direction Systems Inc | RSU-A4            | 34403         | Jul. 06, 2020 | Jul. 05, 2021 |
| AMN                     | SCHWARZBECK                      | NNBL 8226-2       | 8226-2/164    | Jul. 06, 2020 | Jul. 05, 2021 |
| LISN                    | Rohde & Schwarz                  | ENV216            | 101131        | Jul. 06, 2020 | Jul. 05, 2021 |
| Radiation Emission 1    |                                  |                   |               |               |               |
| Equipment               | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer       | Agilent                          | E4407B            | MY45106456    | Jul. 06, 2020 | Jul. 05, 2021 |
| EMI Test Receiver       | Rohde & Schwarz                  | ESPI              | 100010/007    | Jul. 06, 2020 | Jul. 05, 2021 |
| Spectrum Analyzer       | Rohde & Schwarz                  | FSV40-N           | 102197        | Jul. 06, 2020 | Jul. 05, 2021 |
| Bilog Antenna           | ETS-LINDGREN                     | 3142E             | 00117537      | Mar.01, 2020  | Feb. 28, 2022 |
| Horn Antenna            | ETS-LINDGREN                     | 3117              | 00143207      | Mar.01, 2020  | Feb. 28, 2022 |
| Horn Antenna            | ETS-LINDGREN                     | BBHA 9170         | BBHA9170582   | Mar.01, 2020  | Feb. 28, 2022 |
| Loop Antenna            | SCHWARZBECK                      | FMZB 1519 B       | 1519B-059     | Jul. 07, 2020 | Jul. 06, 2021 |
| Pre-amplifier           | Sonoma                           | 310N              | 185903        | Mar.01, 2020  | Feb. 28, 2021 |
| Pre-amplifier           | HP                               | 8449B             | 3008A00849    | Mar.01, 2020  | Feb. 28, 2021 |
| Pre-amplifier           | SKET                             | LNPA_1840G-50     | SK201904032   | Mar.01, 2020  | Feb. 28, 2021 |
| Cable                   | HUBER+SUHNER                     | 100               | SUCOFLEX      | Mar.01, 2020  | Feb. 28, 2021 |
| Positioning Controller  | ETS-LINDGREN                     | 2090              | N/A           | N/A           | N/A           |
| Antenna Conducted       | Emission                         |                   |               |               |               |
| Equipment               | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer       | Agilent                          | E4407B            | MY45106456    | Jul. 06, 2020 | Jul. 05, 2021 |
| Spectrum Analyzer       | Rohde & Schwarz                  | ESPI              | 100010/007    | Jul. 06, 2020 | Jul. 05, 2021 |
| MXA Signal Analyzer     | Agilent                          | N9020A            | MY49100060    | Sep. 11, 2020 | Sep. 10, 2021 |
| Vector Signal Generator | Agilent                          | N5182A            | MY50141294    | Sep. 11, 2020 | Sep. 10, 2021 |
| Analog Signal Generator | Agilent                          | N5181A            | MY50141953    | Sep. 11, 2020 | Sep. 10, 2021 |
| 0                       | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO26 | Sep. 11, 2020 | Sep. 10, 2021 |
| DE Dower Conser         | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO29 | Sep. 11, 2020 | Sep. 10, 2021 |
| RF Power Sensor         | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO31 | Sep. 11, 2020 | Sep. 10, 2021 |
|                         | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO33 | Sep. 11, 2020 | Sep. 10, 2021 |



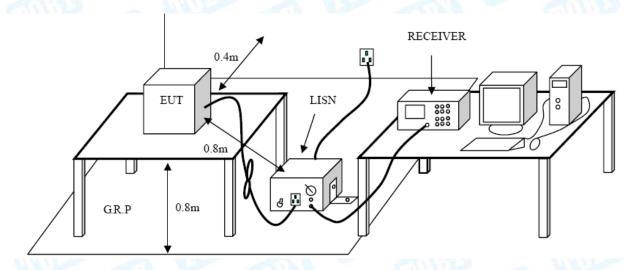
Page: 12 of 55

## 5. Conducted Emission Test

#### 5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

#### 5.1.2 Test Limit


#### **Conducted Emission Test Limit**

| Eroguenov     | Maximum RF Line Voltage (dB <sub>μ</sub> V) |              |  |
|---------------|---------------------------------------------|--------------|--|
| Frequency     | Quasi-peak Level                            | Average Leve |  |
| 150kHz~500kHz | 66 ~ 56 *                                   | 56 ~ 46 *    |  |
| 500kHz~5MHz   | 56                                          | 46           |  |
| 5MHz~30MHz    | 60                                          | 50           |  |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 5.2 Test Setup





Page: 13 of 55

#### 5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

#### 5.4 Deviation From Test Standard

No deviation

#### 5.5 EUT Operating Mode

Please refer to the description of test mode.

#### 5.6 Test Data

Please refer to the Attachment A.



Page: 14 of 55

## 6. Radiated Emission Test

#### 6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d)

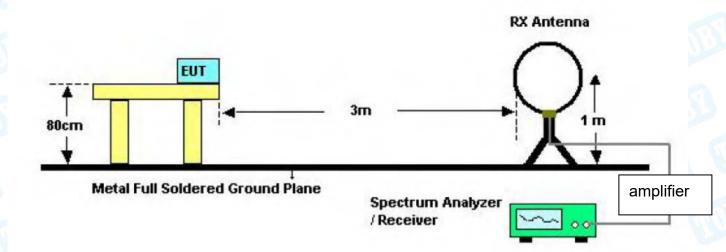
6.1.2 Test Limit

#### Radiated Emission Limits (9kHz~1000MHz)

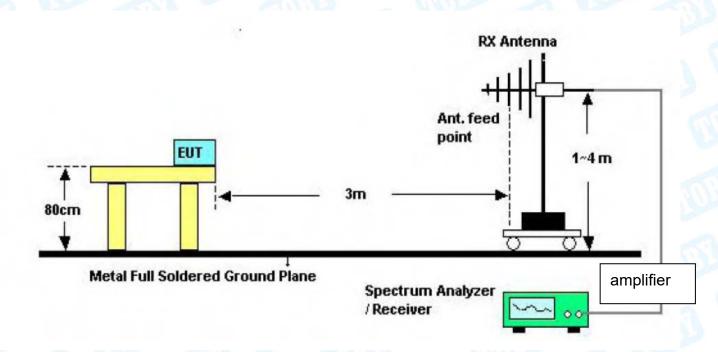
| Frequency<br>(MHz | Field Strength (microvolt/meter) | Measurement Distance (meters) |
|-------------------|----------------------------------|-------------------------------|
| 0.009~0.490       | 2400/F(KHz)                      | 300                           |
| 0.490~1.705       | 24000/F(KHz)                     | 30                            |
| 1.705~30.0        | 30                               | 30                            |
| 30~88             | 100                              | 3                             |
| 88~216            | 150                              | 3                             |
| 216~960           | 200                              | 3                             |
| Above 960         | 500                              | 3                             |

#### Radiated Emission Limit (Above 1000MHz)

| Frequency  | Distance Meters(at 3m) |                     |  |
|------------|------------------------|---------------------|--|
| (MHz)      | Peak<br>(dBuV/m)       | Average<br>(dBuV/m) |  |
| Above 1000 | 74                     | 54                  |  |


#### Note:

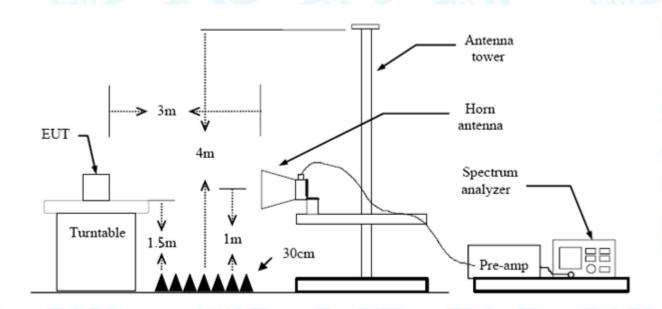
- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)




Page: 15 of 55

## 6.2 Test Setup




Below 30MHz Test Setup



Below 1000MHz Test Setup



Page: 16 of 55



Above 1GHz Test Setup

#### 6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.



Page: 17 of 55

#### 6.4 Deviation From Test Standard

No deviation

## 6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

#### 6.6 Test Data

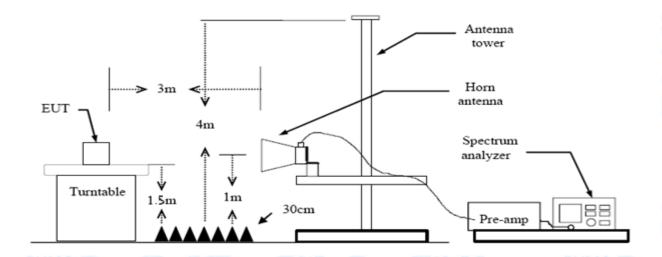
Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.



Page: 18 of 55

## 7. Restricted Bands Requirement


#### 7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

7.1.2 Test Limit

| Restricted Frequency | Distance Mo      | eters(at 3m)        |
|----------------------|------------------|---------------------|
| Band<br>(MHz)        | Peak<br>(dBuV/m) | Average<br>(dBuV/m) |
| 2310 ~2390           | 74               | 54                  |
| 2483.5 ~2500         | 74               | 54                  |

#### 7.2 Test Setup



#### 7.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.



Report No.: TB-FCC178362 Page: 19 of 55

(4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

#### 7.4 Deviation From Test Standard

No deviation

#### 7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

#### 7.6 Test Data

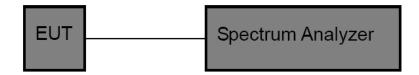
Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.



Page: 20 of 55

#### 8. Bandwidth Test


#### 8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(2)

8.1.2 Test Limit

| FCC Part 15 Subpart C(15.247)/RSS-247 |                                      |             |  |  |  |  |
|---------------------------------------|--------------------------------------|-------------|--|--|--|--|
| Test Item                             | Test Item Limit Frequency Range(MHz) |             |  |  |  |  |
| Bandwidth                             | >=500 KHz<br>(6dB bandwidth)         | 2400~2483.5 |  |  |  |  |

#### 8.2 Test Setup



#### 8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

#### 8.4 Deviation From Test Standard

No deviation

## 8.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

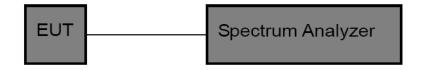
#### 8.6 Test Data

Please refer to the Attachment D.



Page: 21 of 55

## 9. Peak Output Power Test


#### 9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b)(3)

9.1.2 Test Limit

| FCC Part 15 Subpart C(15.247)/RSS-247 |                  |             |  |  |  |
|---------------------------------------|------------------|-------------|--|--|--|
| Test Item Limit Frequency Range(MHz)  |                  |             |  |  |  |
| Peak Output Power                     | 1 Watt or 30 dBm | 2400~2483.5 |  |  |  |

## 9.2 Test Setup



#### 9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 5558074 D01 15.247 Meas Guidance v05r02

Set the RBW≥DTS Bandwidth

- (1) Set VBW≥2\*RBW
- (2) Set Span ≥ 3\*RBW
- (3) Sweep time=auto
- (4) Detector= peak
- (5) Trace mode= maxhold.
- (6) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

#### 9.4 Deviation From Test Standard

No deviation

#### 9.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

#### 9.6 Test Data

Please refer to the Attachment E.



Page: 22 of 55

## 10. Power Spectral Density Test


#### 10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (e)

10.1.2 Test Limit

| FCC Part 15 Subpart C(15.247)        |                    |             |  |  |  |  |
|--------------------------------------|--------------------|-------------|--|--|--|--|
| Test Item Limit Frequency Range(MHz) |                    |             |  |  |  |  |
| Power Spectral Density               | 8dBm(in any 3 kHz) | 2400~2483.5 |  |  |  |  |

#### 10.2 Test Setup



#### 10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 15.247 Meas Guidance v05r02

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
  - (2) Set analyser centre frequency to DTS channel centre frequency.
  - (3) Set the span to 1.5 times the DTS bandwidth.
  - (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
  - (6) Detector: peak(7) Sweep time: auto
  - (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

#### 10.4 Deviation From Test Standard

No deviation

## 10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

#### 10.6 Test Data

Please refer to the Attachment F.



Page: 23 of 55

## 11. Antenna Requirement

#### 11.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 11.2 Deviation From Test Standard

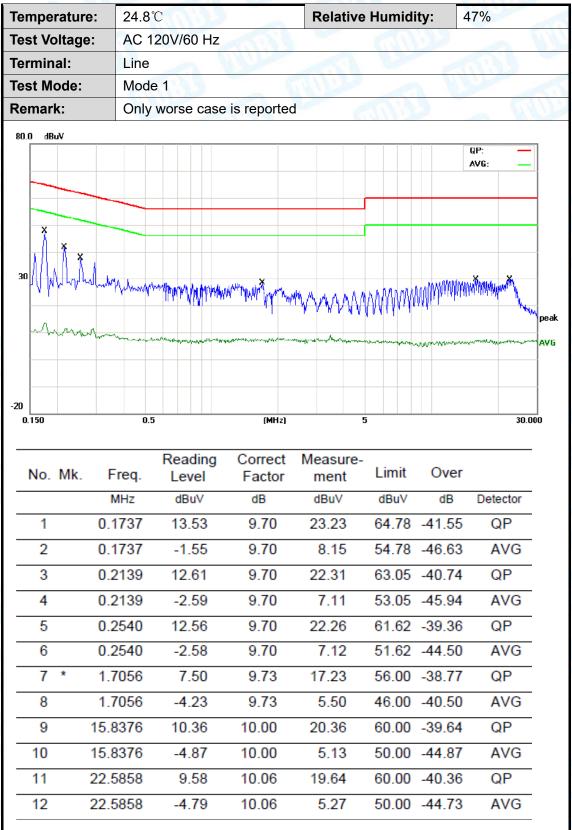
No deviation

#### 11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 4 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

#### 11.4 Result

The EUT antenna is a Ceramic Antenna. It complies with the standard requirement.

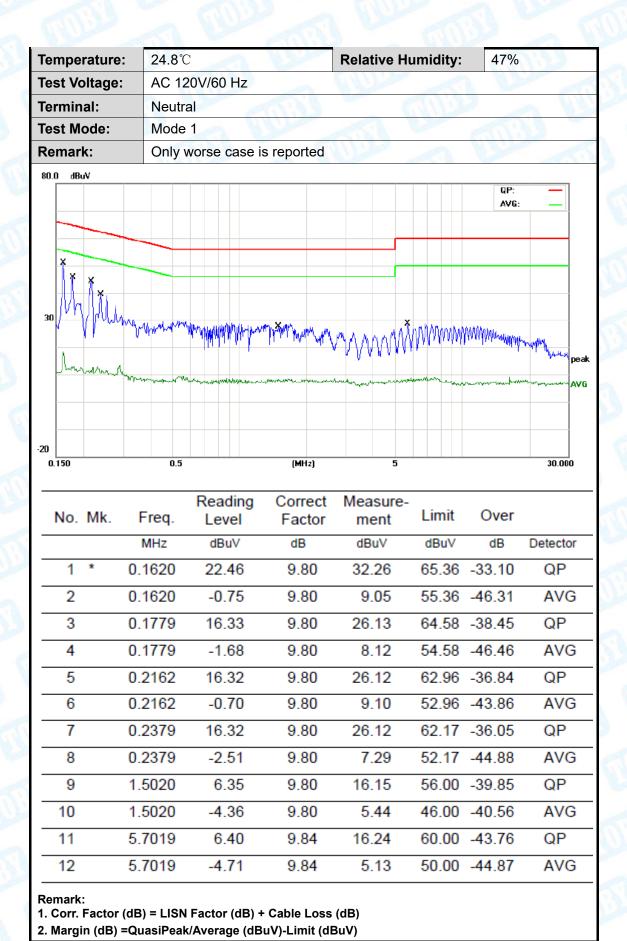

|                    | Antenna Type                       |     |  |  |  |
|--------------------|------------------------------------|-----|--|--|--|
| W. W.              | ⊠Permanent attached antenna        |     |  |  |  |
| Will Street        | ☐Unique connector antenna          | EN. |  |  |  |
| THE REAL PROPERTY. | ☐Professional installation antenna |     |  |  |  |





Page: 24 of 55

## **Attachment A-- Conducted Emission Test Data**




- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)



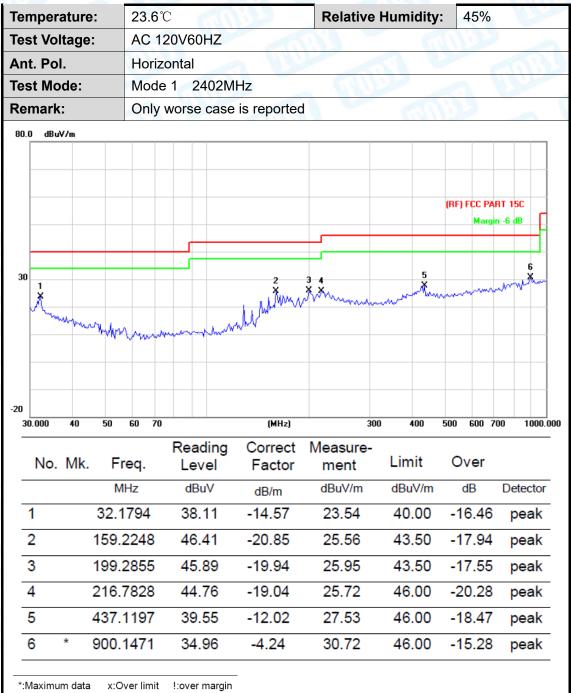


Page: 25 of 55





Page: 26 of 55

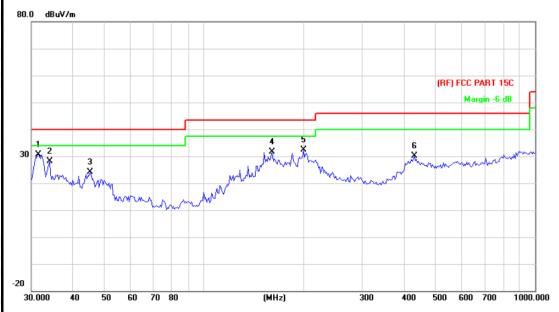

## **Attachment B-- Radiated Emission Test Data**

#### 9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

#### 30MHz~1GHz




- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB $\mu$ V/m)-Limit QPK(dB $\mu$ V/m)





| Temperature:  | 23.6℃                       | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45%       |
|---------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Test Voltage: | AC 120V60HZ                 | THE PARTY OF THE P | Con Marie |
| Ant. Pol.     | Vertical                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Test Mode:    | Mode 1 2402MHz              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Remark:       | Only worse case is reported |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 80.0 dBuV/m   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |



| N | No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|---|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|   |     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1 |     | *   | 31.5091  | 44.80            | -14.08            | 30.72            | 40.00  | -9.28  | peak     |
| 2 |     |     | 34.0363  | 44.00            | -15.96            | 28.04            | 40.00  | -11.96 | peak     |
| 3 |     |     | 45.0583  | 45.55            | -21.44            | 24.11            | 40.00  | -15.89 | peak     |
| 4 |     |     | 160.3454 | 52.45            | -20.79            | 31.66            | 43.50  | -11.84 | peak     |
| 5 |     |     | 199.2855 | 52.38            | -19.94            | 32.44            | 43.50  | -11.06 | peak     |
| 6 |     |     | 431.0316 | 42.12            | -12.07            | 30.05            | 46.00  | -15.95 | peak     |

<sup>\*:</sup>Maximum data x:Over limit !:over margin

**Emission Level= Read Level+ Correct Factor** 





#### Above 1GHz(Only worse case is reported)

| Temperature:  | 23.3℃                                                      | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|---------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Voltage: | DC 5V                                                      | The same of the sa | The same of the sa |  |  |
| Ant. Pol.     | Horizontal                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Test Mode:    | BLE(1Mbps) Mode 2402MHz                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Remark:       | No report for the emission which more than 20 dB below the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|               | prescribed limit.                                          | ani di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

| No. | М | c. Freq. | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|---|----------|------------------|-------|------------------|--------|--------|----------|
|     |   | MHz      | dBuV             | dB    | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | * | 4803.800 | 29.15            | 13.01 | 42.16            | 54.00  | -11.84 | AVG      |
| 2   |   | 4804.100 | 47.29            | 13.01 | 60.30            | 74.00  | -13.70 | peak     |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

| 23.3℃                                   | Relative Humidity:                                        | 43%                                                                                        |  |  |  |
|-----------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|
| DC 5V                                   |                                                           |                                                                                            |  |  |  |
| Vertical                                |                                                           |                                                                                            |  |  |  |
| BLE(1Mbps) Mode 2                       | 402MHz                                                    |                                                                                            |  |  |  |
| No report for the emi prescribed limit. | ssion which more than 20 dE                               | 3 below the                                                                                |  |  |  |
|                                         | DC 5V  Vertical  BLE(1Mbps) Mode 2  No report for the emi | DC 5V  Vertical  BLE(1Mbps) Mode 2402MHz  No report for the emission which more than 20 dB |  |  |  |

| No. | Mk | . Freq.  |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----------|-------|-------------------|------------------|--------|--------|----------|
|     |    | MHz      | dBuV  | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 4803.366 | 33.19 | 13.01             | 46.20            | 54.00  | -7.80  | AVG      |
| 2   |    | 4804.200 | 49.16 | 13.02             | 62.18            | 74.00  | -11.82 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





| Temperature:  | 23.3℃                                   | Relative Humidity:          | 43%         |
|---------------|-----------------------------------------|-----------------------------|-------------|
| Test Voltage: | DC 5V                                   |                             | 1 Comments  |
| Ant. Pol.     | Horizontal                              |                             |             |
| Test Mode:    | BLE(1Mbps) Mode 2                       | 442MHz                      |             |
| Remark:       | No report for the emi prescribed limit. | ssion which more than 20 dB | 3 below the |

| No. | Mk | . Freq.  | _     |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----------|-------|-------|------------------|--------|--------|----------|
|     |    | MHz      | dBuV  | dB    | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 4883.791 | 47.94 | 13.59 | 61.53            | 74.00  | -12.47 | peak     |
| 2   | *  | 4884.064 | 32.00 | 13.60 | 45.60            | 54.00  | -8.40  | AVG      |

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
   Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)

| Temperature:  | 23.3℃ Relative Humidity: 43%                               |  |  |  |  |
|---------------|------------------------------------------------------------|--|--|--|--|
| Test Voltage: | DC 5V                                                      |  |  |  |  |
| Ant. Pol.     | Vertical                                                   |  |  |  |  |
| Test Mode:    | BLE(1Mbps) Mode 2442MHz                                    |  |  |  |  |
| Remark:       | No report for the emission which more than 20 dB below the |  |  |  |  |
|               | prescribed limit.                                          |  |  |  |  |

| No. | Mk | . Freq.  |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----------|-------|-------------------|------------------|--------|--------|----------|
|     |    | MHz      | dBuV  | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 4883.856 | 31.98 | 13.60             | 45.58            | 54.00  | -8.42  | AVG      |
| 2   |    | 4884.172 | 47.67 | 13.60             | 61.27            | 74.00  | -12.73 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





| Temperature:  | 23.3℃ Relative Humidity: 43%                               |   |  |  |  |
|---------------|------------------------------------------------------------|---|--|--|--|
| Test Voltage: | DC 5V                                                      | 1 |  |  |  |
| Ant. Pol.     | Horizontal                                                 | B |  |  |  |
| Test Mode:    | BLE(1Mbps) Mode 2480MHz                                    |   |  |  |  |
| Remark:       | No report for the emission which more than 20 dB below the |   |  |  |  |
|               | prescribed limit.                                          |   |  |  |  |

| No. | Mk | c. Freq. | _     |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----------|-------|-------|------------------|--------|--------|----------|
|     |    | MHz      | dBuV  | dB    | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 4959.695 | 29.02 | 14.15 | 43.17            | 54.00  | -10.83 | AVG      |
| 2   |    | 4960.311 | 47.85 | 14.16 | 62.01            | 74.00  | -11.99 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB $\mu$ V/m)= Corr. (dB/m)+ Read Level (dB $\mu$ V)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)

| Temperature:  | 23.3℃                                                      | Relative Humidity: | 43%  |  |  |  |
|---------------|------------------------------------------------------------|--------------------|------|--|--|--|
| Test Voltage: | DC 5V                                                      |                    |      |  |  |  |
| Ant. Pol.     | Vertical                                                   |                    |      |  |  |  |
| Test Mode:    | BLE(1Mbps) Mode 2480MH                                     | z                  | 10 m |  |  |  |
| Remark:       | No report for the emission which more than 20 dB below the |                    |      |  |  |  |
|               | prescribed limit.                                          |                    |      |  |  |  |

| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB    | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | 4   | 4959.662 | 47.34            | 14.15 | 61.49            | 74.00  | -12.51 | peak     |
| 2   | * 4 | 4960.311 | 30.89            | 14.16 | 45.05            | 54.00  | -8.95  | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





| Temperature:  | 23.3℃ Relative Hun                                           | midity: 43%       |
|---------------|--------------------------------------------------------------|-------------------|
| Test Voltage: | DC 5V                                                        |                   |
| Ant. Pol.     | Horizontal                                                   |                   |
| Test Mode:    | BLE(2Mbps) Mode 2402MHz                                      |                   |
| Remark:       | No report for the emission which more that prescribed limit. | າ 20 dB below the |

| No. | Mk | . Freq.  | Reading Correct Measure-<br>Level Factor ment Lin |       | Limit  | Over   |        |          |
|-----|----|----------|---------------------------------------------------|-------|--------|--------|--------|----------|
|     |    | MHz      | dBuV                                              | dB    | dBuV/m | dBuV/m | dB     | Detector |
| 1   | *  | 4804.160 | 33.50                                             | 13.01 | 46.51  | 54.00  | -7.49  | AVG      |
| 2   |    | 4804.211 | 48.00                                             | 13.02 | 61.02  | 74.00  | -12.98 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)

| Temperature:  | 23.3℃           |             | Relative Humidity:    | 43%         |
|---------------|-----------------|-------------|-----------------------|-------------|
| Test Voltage: | DC 5V           |             |                       | 181         |
| Ant. Pol.     | Vertical        |             |                       |             |
| Test Mode:    | BLE(2Mbps)      | Mode 2402   | MHz                   | LIDE OF     |
| Remark:       | No report for t | he emission | which more than 20 dE | B below the |
|               | prescribed lim  | it.         |                       |             |

| No. | MI | Κ. | Freq.   | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----|---------|------------------|-------|------------------|--------|--------|----------|
|     |    |    | MHz     | dBuV             | dB    | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 48 | 304.101 | 32.91            | 13.01 | 45.92            | 54.00  | -8.08  | AVG      |
| 2   |    | 48 | 04.265  | 49.39            | 13.02 | 62.41            | 74.00  | -11.59 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





| Temperature:  | 23.3℃                                          | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43%       |
|---------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Test Voltage: | DC 5V                                          | LINE TO STATE OF THE PARTY OF T | Con The   |
| Ant. Pol.     | Horizontal                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Test Mode:    | BLE(2Mbps) Mode 2442M                          | 1Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Remark:       | No report for the emission v prescribed limit. | vhich more than 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | below the |

| No. | М | <b>(</b> . | Freq.  |       |       | Measure-<br>ment | Limit  | Over   |          |
|-----|---|------------|--------|-------|-------|------------------|--------|--------|----------|
|     |   |            | MHz    | dBuV  | dB    | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |   | 488        | 34.055 | 47.42 | 13.60 | 61.02            | 74.00  | -12.98 | peak     |
| 2   | * | 488        | 34.621 | 30.67 | 13.61 | 44.28            | 54.00  | -9.72  | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)

| Temperature:  | 23.3℃           | W.             | Relative Humidity:   | 43%       |
|---------------|-----------------|----------------|----------------------|-----------|
| Test Voltage: | DC 5V           |                |                      | 81        |
| Ant. Pol.     | Vertical        |                |                      |           |
| Test Mode:    | BLE(2Mbps)      | Mode 2442M     | Hz                   | LINE TO   |
| Remark:       | No report for t | the emission w | hich more than 20 dB | below the |
|               | prescribed lim  | nit.           |                      |           |

| No. | Mk | c. Freq. |       |       | Correct Measure-<br>Factor ment |        | Limit Over |          |
|-----|----|----------|-------|-------|---------------------------------|--------|------------|----------|
|     |    | MHz      | dBuV  | dB    | dBuV/m                          | dBuV/m | dB         | Detector |
| 1   |    | 4883.699 | 47.93 | 13.59 | 61.52                           | 74.00  | -12.48     | peak     |
| 2   | *  | 4884.022 | 33.13 | 13.60 | 46.73                           | 54.00  | -7.27      | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





| Temperature:  | 23.3℃ Relative Humidity: 43%                               |
|---------------|------------------------------------------------------------|
| Test Voltage: | DC 5V                                                      |
| Ant. Pol.     | Horizontal                                                 |
| Test Mode:    | BLE(2Mbps) Mode 2480MHz                                    |
| Remark:       | No report for the emission which more than 20 dB below the |
|               | prescribed limit.                                          |

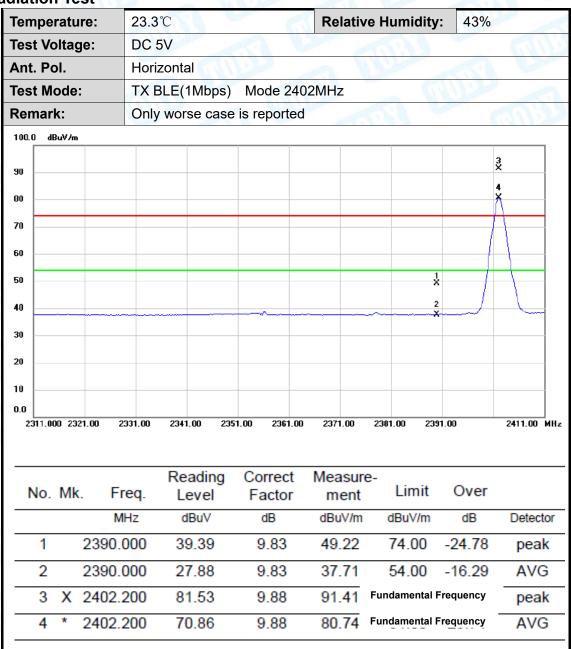
| No. I | Mk. | Freq.   |       |       | Measure-<br>ment | Limit  | Over   |          |
|-------|-----|---------|-------|-------|------------------|--------|--------|----------|
|       |     | MHz     | dBuV  | dB    | dBuV/m           | dBuV/m | dB     | Detector |
| 1     | 4   | 959.582 | 46.23 | 14.15 | 60.38            | 74.00  | -13.62 | peak     |
| 2     | * 4 | 960.115 | 31.49 | 14.15 | 45.64            | 54.00  | -8.36  | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)

| Temperature:  | 23.3℃                                 | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43%       |
|---------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Test Voltage: | DC 5V                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 023       |
| Ant. Pol.     | Vertical                              | The same of the sa |           |
| Test Mode:    | BLE(2Mbps) Mod                        | le 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 Alberta |
| Remark:       | No report for the e prescribed limit. | mission which more than 20 dB b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elow the  |

| No. M | lk. | Freq.  | _     |       | Measure-<br>ment | Limit  | Over   |          |
|-------|-----|--------|-------|-------|------------------|--------|--------|----------|
|       |     | MHz    | dBuV  | dB    | dBuV/m           | dBuV/m | dB     | Detector |
| 1     | 49  | 59.288 | 46.41 | 14.15 | 60.56            | 74.00  | -13.44 | peak     |
| 2 *   | 49  | 60.351 | 33.20 | 14.16 | 47.36            | 54.00  | -6.64  | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)






Page: 34 of 55

# Attachment C-- Restricted Bands Requirement and Band Edge Test Data

#### (1) Radiation Test



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





| Ten  | nperat    | ure   | ):<br> | 23     | 3.3°  | С     | 5          |      | 63     |              |     | Re   | lativ       | e F | lumi  | dity:  | 4                                            | 3%    |         |      |
|------|-----------|-------|--------|--------|-------|-------|------------|------|--------|--------------|-----|------|-------------|-----|-------|--------|----------------------------------------------|-------|---------|------|
| Tes  | t Volta   | age   | :      | D      | C 5   | V     | اللا       | P    |        | 1            | 1   |      |             |     | -     |        | <u>,                                    </u> |       | 1       |      |
| Ant  | . Pol.    |       |        | V      | ertic | cal   |            | 67   |        |              |     |      |             | \\  | 11/1  | فالمرا |                                              |       |         | 63   |
| Tes  | t Mod     | e:    |        | T.     | ΧВ    | LE(1  | Mbı        | ps)  | Mod    | de 2         | 402 | MH:  | z           |     |       |        |                                              | Mil   |         |      |
| Rer  | nark:     |       |        | 0      | nly   | wors  | se c       | ase  | is rep | oorte        | ed  | فللإ |             |     |       |        |                                              |       | A       |      |
| 110. | 0 dBuV    | m     |        |        |       |       |            |      |        |              |     |      |             |     |       |        |                                              |       |         | _    |
| 100  |           |       |        |        |       |       |            |      |        |              |     |      |             |     |       |        |                                              |       |         |      |
| 90   |           |       |        |        |       |       |            |      |        |              |     |      |             |     |       |        |                                              |       | 3<br>X  | -    |
| 80   |           |       |        |        |       |       |            |      |        |              |     |      |             |     |       |        |                                              |       | 4<br>*  |      |
| 70   |           |       |        |        |       |       |            |      |        |              |     |      |             |     |       |        |                                              |       |         |      |
| 60   |           |       |        |        |       |       |            |      |        |              |     |      |             |     |       | 1<br>X |                                              |       | +       |      |
| 50   |           |       |        |        |       |       |            |      |        |              |     |      |             |     |       |        |                                              | 1     |         | -    |
| 40   |           | _     |        |        |       |       |            |      |        |              |     |      |             |     |       | 2<br>X |                                              | بالس  |         | 4    |
| 30   |           |       |        |        |       |       |            |      |        |              |     |      |             |     |       |        |                                              |       |         |      |
| 20   |           |       |        |        |       |       |            |      |        |              |     |      |             |     |       |        |                                              |       |         |      |
| 10.0 |           |       |        |        |       |       |            |      |        |              |     |      |             |     |       |        |                                              |       |         |      |
| 23   | 310.000 2 | 2320. | 00     | 2330.0 | 00    | 2340. | .00        | 2350 | .00    | 2360.        | 00  | 2370 | 0.00        | 236 | 0.00  | 2390   | .00                                          |       | 2410.00 | MHz  |
|      | No.       | Mk    | _      | Fre    | eq.   |       | ead<br>_ev |      |        | orre<br>acto |     |      | easu<br>men |     |       | imit   | 0                                            | ver   |         |      |
| -    |           |       |        | МН     | z     |       | dBu        | V    |        | dB           |     | dl   | BuV/r       | m   | dBı   | uV/m   |                                              | dB    | Det     | ecto |
| _    | 1         |       | 239    | 0.0    | 00    | 4     | 14.2       | 2    | 1      | 1.48         | 3   | 5    | 5.70        | )   | 74    | .00    | -18                                          | 3.30  | ре      | eak  |
| _    | 2         |       | 239    | 0.0    | 00    | 3     | 30.1       | 8    | 1      | 1.48         | 3   | 4    | 1.66        | 6   | 54    | .00    | -12                                          | 2.34  | A'      | VG   |
| _    | 3         | X     | 240    | 2.2    | 00    | 7     | 77.2       | 2    | 1      | 1.56         | 3   | 8    | 8.78        | 3   | Funda | amenta | al Fred                                      | quenc | , pe    | eak  |
| _    | 4         | *     | 240    | 2.2    | 00    | 7     | 70.2       | 2    | 1      | 1.56         | 3   | 8    | 1.78        | 3   | Fund  | ament  | al Fred                                      | auenc | v A'    | VG   |

- Remark:
  1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
  3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)



2570.00 MHz



| Temperature:  | 23.3℃                       | Relative Humidity: | 43% |  |  |  |  |  |
|---------------|-----------------------------|--------------------|-----|--|--|--|--|--|
| Test Voltage: | DC 5V                       |                    |     |  |  |  |  |  |
| Ant. Pol.     | Horizontal                  |                    |     |  |  |  |  |  |
| Test Mode:    | TX BLE(1Mbps) Mode 2480 MHz |                    |     |  |  |  |  |  |
| Remark:       | Only worse case is reported |                    |     |  |  |  |  |  |
| 100.0 dBuV/m  |                             |                    |     |  |  |  |  |  |
| 90 1          |                             |                    |     |  |  |  |  |  |
| 80            |                             |                    |     |  |  |  |  |  |
| 70            |                             |                    |     |  |  |  |  |  |
| 60 X          |                             |                    |     |  |  |  |  |  |
| 50 <b>t</b> × |                             |                    |     |  |  |  |  |  |
| 40            |                             |                    |     |  |  |  |  |  |
| 30            |                             |                    |     |  |  |  |  |  |
| 10            |                             |                    |     |  |  |  |  |  |

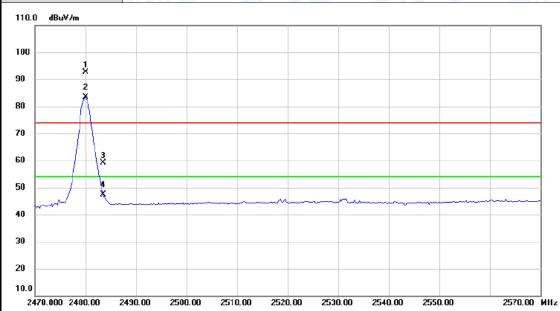
| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure<br>ment | e-<br>Limit   | Over      |          |
|-----|----|----------|------------------|-------------------|-----------------|---------------|-----------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m          | dBuV/m        | dB        | Detector |
| 1   | X  | 2479.800 | 87.47            | 1.85              | 89.32           | Fundamental I | Frequency | peak     |
| 2   | *  | 2480.000 | 78.87            | 1.85              | 80.72           | Fundamental F | requency  | AVG      |
| 3   |    | 2483.500 | 55.21            | 1.88              | 57.09           | 74.00         | -16.91    | peak     |
| 4   |    | 2483.500 | 42.17            | 1.88              | 44.05           | 54.00         | -9.95     | AVG      |

2520.00

2510.00

0.0

2470.000 2480.00


2490.00

- Remark:
  1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





| Temperature:  | 23.3℃                       | Relative Humidity: | 43% |
|---------------|-----------------------------|--------------------|-----|
| Test Voltage: | DC 5V                       |                    |     |
| Ant. Pol.     | Vertical                    |                    |     |
| Test Mode:    | TX BLE(1Mbps) Mode 24       | 80 MHz             |     |
| Remark:       | Only worse case is reported | d                  |     |
| 110.0 dBuV/m  |                             |                    |     |



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure<br>ment | Limit       | Over        |          |
|-----|----|----------|------------------|-------------------|-----------------|-------------|-------------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m          | dBuV/m      | dB          | Detector |
| 1   | Χ  | 2480.000 | 80.57            | 12.11             | 92.68           | Fundamental | Frequency   | peak     |
| 2   | *  | 2480.000 | 71.27            | 12.11             | 83.38           | Fundamenta  | I Frequency | AVG      |
| 3   |    | 2483.500 | 47.03            | 12.14             | 59.17           | 74.00       | -14.83      | peak     |
| 4   |    | 2483.500 | 35.27            | 12.14             | 47.41           | 54.00       | -6.59       | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





| emperature:  | 23.3℃                   | Relative Humidity: | 43%    |  |  |  |  |
|--------------|-------------------------|--------------------|--------|--|--|--|--|
| est Voltage: | DC 5V                   |                    | 1      |  |  |  |  |
| Ant. Pol.    | Horizontal              |                    |        |  |  |  |  |
| Test Mode:   | BLE(2Mbps) Mode 2402MHz |                    |        |  |  |  |  |
| Remark:      | Only worse case is re   | ported             | -      |  |  |  |  |
| 110.0 dBuV/m |                         |                    |        |  |  |  |  |
| 100          |                         |                    |        |  |  |  |  |
| 90           |                         |                    | 3<br>X |  |  |  |  |
| 80           |                         |                    |        |  |  |  |  |
| 70           |                         |                    |        |  |  |  |  |
| 60           |                         | ×                  |        |  |  |  |  |
| 50           |                         | 2                  |        |  |  |  |  |
| 40           |                         |                    |        |  |  |  |  |
| 30           |                         |                    |        |  |  |  |  |
| 20           |                         |                    |        |  |  |  |  |
| 10.0         |                         |                    |        |  |  |  |  |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit   | Over         |                   |
|-----|----|----------|------------------|-------------------|------------------|---------|--------------|-------------------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m  | dB           | Detector          |
| 1   |    | 2390.000 | 44.54            | 11.48             | 56.02            | 74.00   | -17.98       | peak              |
| 2   |    | 2390.000 | 34.31            | 11.48             | 45.79            | 54.00   | -8.21        | AVG               |
| 3   | *  | 2402.000 | 73.21            | 11.56             | 84.77            | Fundame | ntal Frequen | cy 4VG            |
| 4   | X  | 2402.200 | 84.58            | 11.56             | 96.14            | Fundame | ntal Frequen | <sub>cy</sub> eak |

- Remark:
  1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
  3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)





| Temperature:     | <b>23.3</b> ℃           | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43%        |
|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Test Voltage:    | DC 5V                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Ant. Pol.        | Vertical                | ALL THE PROPERTY OF THE PARTY O | 1          |
| Test Mode:       | BLE(2Mbps) Mode         | 2402MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Remark:          | Only worse case is r    | eported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50         |
| 100.0 dBuV/m     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 90               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 X        |
|                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br>X     |
| 80               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Λ          |
| 70               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 60               |                         | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 50               |                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 40               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 30               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 20               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 10               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 0.0              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 2310.000 2320.00 | 2330.00 2340.00 2350.00 | 2360.00 2370.00 2380.00 2390.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2410.00 MI |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit     | Over         |          |
|-----|----|----------|------------------|-------------------|------------------|-----------|--------------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m    | dB           | Detector |
| 1   |    | 2390.000 | 42.77            | 11.48             | 54.25            | 74.00     | -19.75       | peak     |
| 2   |    | 2390.000 | 32.21            | 11.48             | 43.69            | 54.00     | -10.31       | AVG      |
| 3   | X  | 2402.000 | 82.05            | 11.56             | 93.61            | Fundament | al Frequency | peak     |
| 4   | *  | 2402.200 | 71.26            | 11.56             | 82.82            | Fundament | al Frequency | AVG      |

### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)





| emperature:  | 23.3℃           |                         | Relative Humidity:     | 43%         |  |  |  |  |
|--------------|-----------------|-------------------------|------------------------|-------------|--|--|--|--|
| est Voltage: | DC 5V           |                         |                        |             |  |  |  |  |
| nt. Pol.     | Horizontal      |                         |                        |             |  |  |  |  |
| est Mode:    | BLE(2Mbps)      | BLE(2Mbps) Mode 2480MHz |                        |             |  |  |  |  |
| Remark:      | Only worse ca   | ase is reported         |                        |             |  |  |  |  |
| 100.0 dBuV/m |                 |                         |                        |             |  |  |  |  |
| 90 X         |                 |                         |                        |             |  |  |  |  |
| 80           |                 |                         |                        |             |  |  |  |  |
| 70<br>60 3   |                 |                         |                        |             |  |  |  |  |
| 40           |                 |                         |                        |             |  |  |  |  |
| 30           |                 |                         |                        |             |  |  |  |  |
| 20           |                 |                         |                        |             |  |  |  |  |
| 10           |                 |                         |                        |             |  |  |  |  |
|              | 2490.00 2500.00 | 2510.00 2520.00         | 2530.00 2540.00 2550.0 | 0 2570.00 M |  |  |  |  |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure<br>ment | e-<br>Limit   | Over     |          |
|-----|----|----------|------------------|-------------------|-----------------|---------------|----------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m          | dBuV/m        | dB       | Detector |
| 1   | Χ  | 2480.000 | 81.49            | 12.11             | 93.60           | Fundamental F | requency | peak     |
| 2   | *  | 2480.000 | 69.28            | 12.11             | 81.39           | Fundamental F | requency | AVG      |
| 3   |    | 2483.500 | 44.30            | 12.14             | 56.44           | 74.00         | -17.56   | peak     |
| 4   |    | 2483.500 | 32.96            | 12.14             | 45.10           | 54.00         | -8.90    | AVG      |

- Remark:
  1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
  3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)



2570.00 MHz



| Temperature  | 23.3℃         | 1 Promise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Relative Humidity: | 43%       |
|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| Test Voltage | : DC 5V       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                 |           |
| Ant. Pol.    | Vertical      | CONTRACTOR OF THE PARTY OF THE | Chillian           |           |
| Test Mode:   | BLE(2Mbps)    | Mode 2480M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hz                 | CHILDEN . |
| Remark:      | Only worse of | ase is reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 100.0 dBuV/m |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 90 1<br>X    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 90 2<br>X    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 70           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 60           | 3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 50           | X X           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 40           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 30           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 20           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |
| 10           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit     | Over         |          |
|-----|----|----------|------------------|-------------------|------------------|-----------|--------------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m    | dB           | Detector |
| 1   | Χ  | 2480.000 | 79.19            | 12.11             | 91.30            | Fundament | al Frequency | peak     |
| 2   | *  | 2480.000 | 67.63            | 12.11             | 79.74            | Fundament | al Frequency | AVG      |
| 3   |    | 2483.500 | 41.97            | 12.14             | 54.11            | 74.00     | -19.89       | peak     |
| 4   |    | 2483.500 | 34.43            | 12.14             | 46.57            | 54.00     | -7.43        | AVG      |

2520.00

2530.00

2540.00

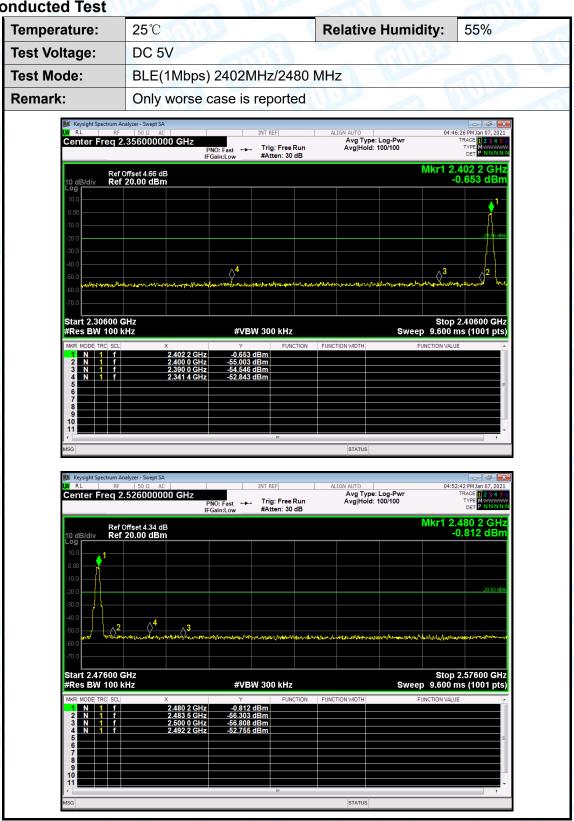
2550.00

### Remark:

2470.000 2480.00

2490.00

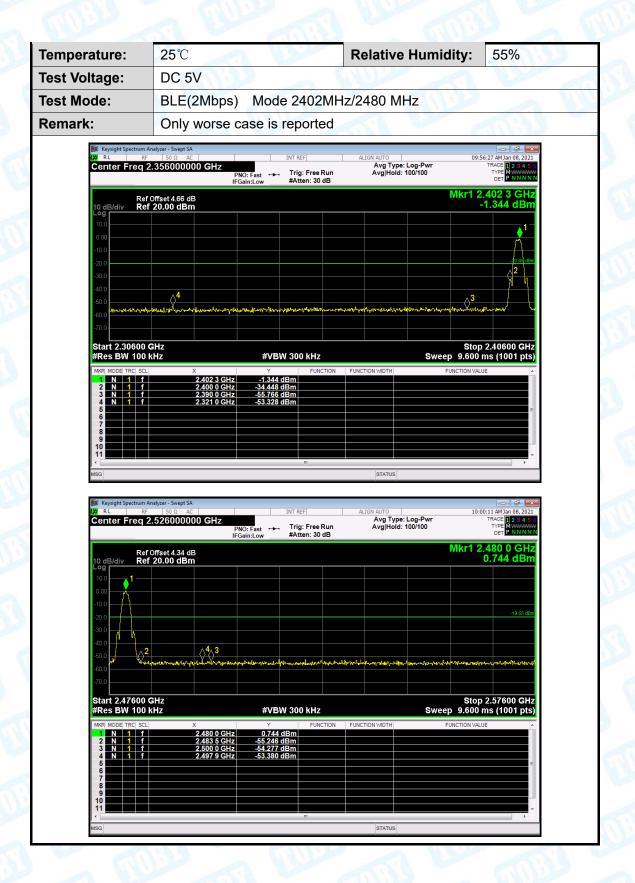
2500.00


2510.00

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)






(2) Conducted Test







Page: 43 of 55







Transmit Freq Error

x dB Bandwidth

-13.047 kHz

664.1 kHz

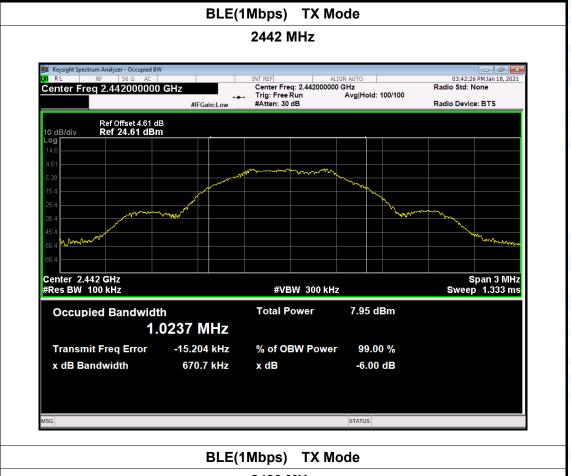
Page: 44 of 55

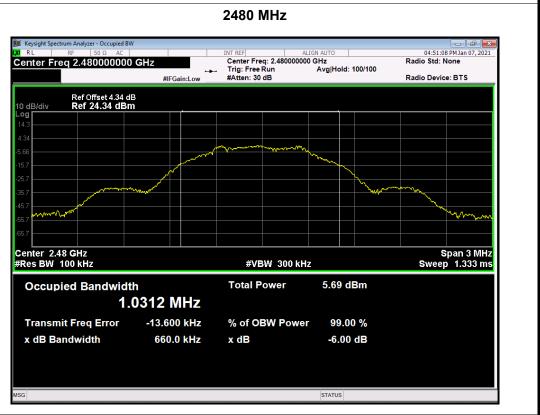
# **Attachment D-- Channel Separation and Bandwidth**

### **Test Data**

| emperature: 25°C                              |                                      |               |           | Rela       | ative H               | : 55      | 55%     |                    |                               |
|-----------------------------------------------|--------------------------------------|---------------|-----------|------------|-----------------------|-----------|---------|--------------------|-------------------------------|
| Voltage:                                      | DC 3                                 | .7V           | 1         |            |                       |           |         |                    |                               |
| Mode:                                         | de(1M)                               | 5             |           | A          |                       |           | _ 6     |                    |                               |
| annel frequency 6dB I                         |                                      |               | Band      | width      | 99                    | % Ban     | dwidth  | n Limit            |                               |
| (MHz) (kHz)                                   |                                      |               |           | (kH        | z)                    |           | (kHz)   |                    |                               |
| 2402                                          |                                      |               | 664.1     |            |                       | 102       | 1.6     |                    |                               |
| 2442                                          |                                      |               | 670.7     | ,          |                       | 1023      | 3.7     |                    | >=500                         |
| 2480                                          |                                      |               | 660.0     | )          |                       | 103       | 1.2     |                    |                               |
|                                               | I                                    |               | BLE(      | (1Mbps)    | TX M                  | ode       |         |                    |                               |
| Keysight Spectrum Ana  RL RF  Center Freq 2.4 | 50 Ω AC                              |               |           | INT REF    | A eq: 2.40200000      | LIGN AUTO |         | 04:44<br>Radio Std | :54 PM Jan 07, 2021           |
| Center Freq 2.4                               | 50 Ω AC<br>10200000<br>F Offset 4.66 | 00 GHz<br>#II | FGain:Low |            | eq: 2.40200000<br>Run |           | 100/100 |                    | :54 PM Jan 07, 2021<br>: None |
| Center Freq 2.4                               | 50 Ω AC<br><b>4020000</b>            | 00 GHz<br>#II |           | Center Fre | eq: 2.40200000<br>Run | 0 GHz     | 100/100 | Radio Std          | :54 PM Jan 07, 2021<br>: None |

% of OBW Power


x dB


99.00 %

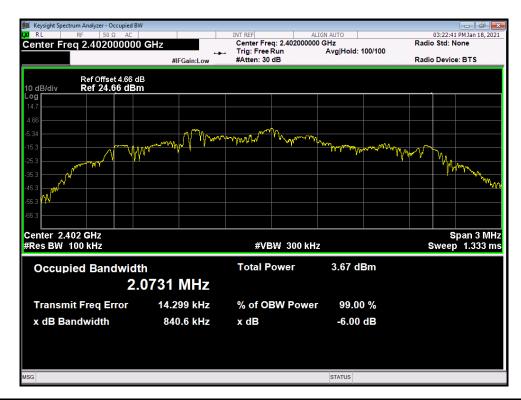
-6.00 dB







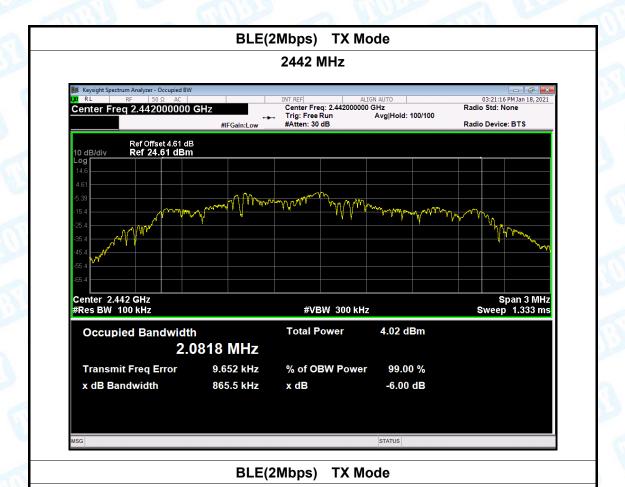







Page: 46 of 55

| Temperature:    | 25°   |                     | Relative Humidity: | 55%   |  |  |  |  |
|-----------------|-------|---------------------|--------------------|-------|--|--|--|--|
| Test Voltage:   | DC    | DC 3.7V             |                    |       |  |  |  |  |
| Test Mode:      | BLE   | BLE TX Mode(2 Mbps) |                    |       |  |  |  |  |
| Channel frequer | псу   | 6dB Bandwidth       | 99% Bandwidth      | Limit |  |  |  |  |
| (MHz)           |       | (kHz)               | (kHz)              | (kHz) |  |  |  |  |
| 2402            | 840.6 |                     | 2073.1             |       |  |  |  |  |
| 2442            |       | 865.5               | 2081.8             | >=500 |  |  |  |  |
| 2480            |       |                     |                    |       |  |  |  |  |


#### 2402 MHz







Page: 47 of 55



### 2480 MHz 03:21:34 PM Jan 18, 2021 Radio Std: None Center Freq 2.480000000 GHz Radio Device: BTS Span 3 MHz Sweep 1.333 ms Center 2.48 GHz #Res BW 100 kHz #VBW 300 kHz **Total Power** 3.84 dBm **Occupied Bandwidth** 2.0903 MHz Transmit Freq Error 17.861 kHz % of OBW Power 99.00 % x dB Bandwidth 863.0 kHz x dB -6.00 dB

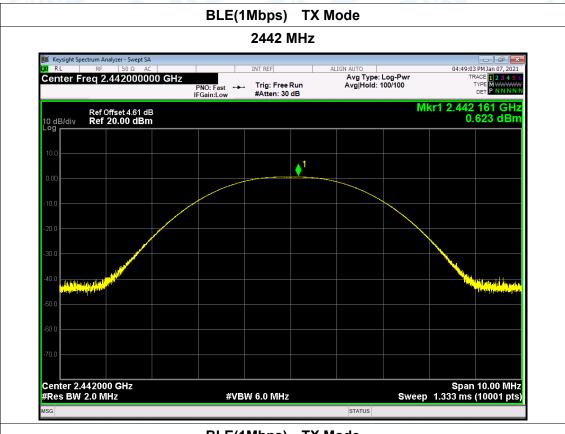




Center 2.402000 GHz #Res BW 2.0 MHz

Span 10.00 MHz Sweep 1.333 ms (10001 pts)

## **Attachment E-- Peak Output Power Test Data**


| Temperature:                          | 25℃                     |                                 | Relative H         | lumidity:   | 55%                                         |  |
|---------------------------------------|-------------------------|---------------------------------|--------------------|-------------|---------------------------------------------|--|
| Test Voltage:                         | DC 5V                   |                                 | 1                  | 4000        |                                             |  |
| Test Mode:                            | TX Mode (BLE1Mbps)      |                                 |                    |             |                                             |  |
| Channel freque                        | ncy (MHz)               | Test Resu                       | It (dBm)           | Limit (dBm) |                                             |  |
| 2402                                  |                         | 0.15                            | 59                 |             |                                             |  |
| 2442                                  | 2442                    |                                 | 23                 | 30          |                                             |  |
| 2480                                  |                         | 0.03                            | 30                 |             |                                             |  |
|                                       |                         | BLE(1Mbps)                      | TX Mode            | 1           |                                             |  |
|                                       |                         | 2402                            | ИНz                |             |                                             |  |
| Keysight Spectrum Analy               |                         |                                 |                    |             |                                             |  |
| Center Freq 2.4                       | 02000000 GHz            | INT REF                         | ALIGN AUTO Ava Tvp | e: Log-Pwr  | 04:44:37 PM Jan 07, 2021<br>TRACE 1 2 3 4 5 |  |
|                                       | 02000000 GH2            | PNO: Fast Trig: Free #Atten: 30 | Run Avg Holo       | : 100/100   | TYPE MWWWW<br>DET P N N N N                 |  |
| Ref Off                               | set 4.66 dB<br>0.00 dBm | FINO. Fast                      | Run Avg Holo       |             | 1 2.402 105 GH:<br>0.159 dBn                |  |
| Ref Off<br>10 dB/div Ref 20           | set 4.66 dB             | FINO. Fast                      | Run Avg Holo       |             | DET P N N N N 1 2.402 105 GH                |  |
| Ref Off                               | set 4.66 dB             | FINO. Fast                      | Run Avg Holo       |             | DET P N N N N 1 2.402 105 GH                |  |
| 10 dB/div Ref 20                      | set 4.66 dB             | FINO. Fast                      | Run AvgjHóic<br>dB |             | DET P N N N N 1 2.402 105 GH                |  |
| 10 dB/div Ref 20                      | set 4.66 dB             | FINO. Fast                      | Run AvgjHóic<br>dB |             | DET P N N N N 1 2.402 105 GH                |  |
| 10 dB/div Ref 20                      | set 4.66 dB             | FINO. Fast                      | Run AvgjHóic<br>dB |             | DET P N N N N 1 2.402 105 GH                |  |
| 10 dB/div Ref Off<br>10 dB/div Ref 20 | set 4.66 dB             | FINO. Fast                      | Run AvgjHóic<br>dB |             | DET P N N N N 1 2.402 105 GH                |  |
| 10 dB/div Ref 20                      | set 4.66 dB             | FINO. Fast                      | Run AvgjHóic<br>dB |             | DET P N N N N 1 2.402 105 GH                |  |


#VBW 6.0 MHz





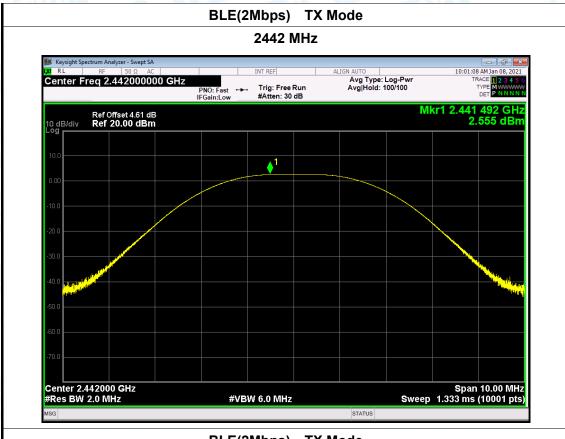
Page: 49 of 55












| emperature:          | 25℃                  |                    |              | Rela           | ative Hu                 | 55%                |                                           |  |  |
|----------------------|----------------------|--------------------|--------------|----------------|--------------------------|--------------------|-------------------------------------------|--|--|
| est Voltage:         | DC 5V                | 30                 |              | 1877           | VIII-                    |                    | M. San                                    |  |  |
| est Mode:            | TX Mode              | TX Mode (BLE2Mbps) |              |                |                          |                    |                                           |  |  |
| hannel freque        | frequency (MHz) Test |                    |              | t Result (dBm) |                          |                    | Limit (dBm)                               |  |  |
| 2402                 |                      | 1.187<br>2.555     |              |                |                          |                    |                                           |  |  |
| 2442                 |                      |                    |              |                |                          | 30                 |                                           |  |  |
| 2480                 |                      |                    | 2.01         | 7              |                          |                    |                                           |  |  |
|                      |                      | BLE                | (2Mbps)      | TX M           | lode                     |                    |                                           |  |  |
|                      |                      |                    | 2402 N       | Hz             |                          |                    |                                           |  |  |
| Keysight Spectrum An | alyzer - Swept SA    |                    | INT REF      | Ι Δ            | LIGN AUTO                |                    | 09:55:14 AM Jan 08, 2021                  |  |  |
|                      | 402000000 GHz        | PNO: Fast          |              | ın             | Avg Type:<br>Avg Hold: 1 | Log-Pwr<br>100/100 | TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN |  |  |
| Ref 0                | ffset 4.66 dB        | IFGain:Low         | #Atten: 30 d |                |                          | Mkr                | 2.402 509 GHz                             |  |  |
| 10 dB/div Ref :      | 20.00 dBm            |                    |              |                |                          |                    | 1.187 dBm                                 |  |  |
| 10.0                 |                      |                    |              | - 1            |                          |                    |                                           |  |  |
| 0.00                 |                      |                    |              | <b>♦</b> 1     |                          |                    |                                           |  |  |
| -10.0                |                      |                    |              |                |                          |                    |                                           |  |  |
| -20.0                |                      |                    |              |                |                          |                    |                                           |  |  |
| -30.0                |                      |                    |              |                |                          |                    |                                           |  |  |
|                      |                      |                    |              |                |                          |                    | Market Land                               |  |  |
| -40.0 May 1991       |                      |                    |              |                |                          |                    | " Company of the second                   |  |  |
| -50.0                |                      |                    |              |                |                          |                    |                                           |  |  |
| -60.0                |                      |                    |              |                |                          |                    |                                           |  |  |
| -70.0                |                      |                    |              |                |                          |                    |                                           |  |  |
| Center 2.40200       | 0 GHz                |                    |              |                |                          |                    | Span 10.00 MHz                            |  |  |
| #Res BW 2.0 M        |                      | #\                 | BW 6.0 MHz   |                |                          | Sweep 1.           | 333 ms (10001 pts)                        |  |  |

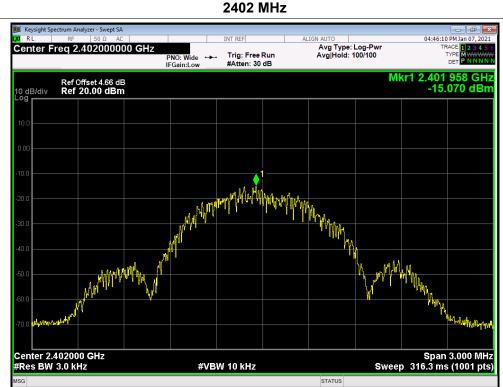




Page: 51 of 55



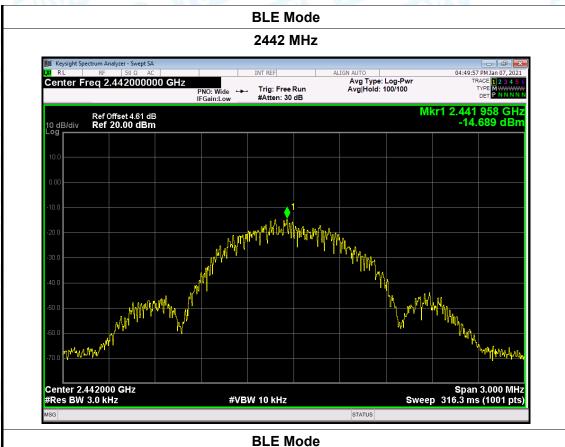


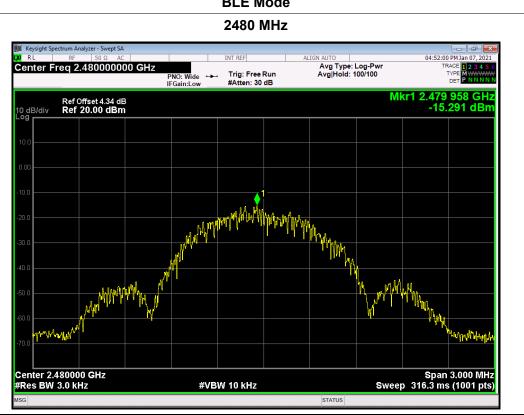





Page: 52 of 55

## **Attachment F-- Power Spectral Density Test Data**


| Temperature:      | 25℃                |               | lumidity: | : 55%   |            |        |  |
|-------------------|--------------------|---------------|-----------|---------|------------|--------|--|
| Test Voltage:     | DC 3.7V            |               | 1         |         |            | ~ 611  |  |
| Test Mode:        | BLE TX Mode(1Mbps) |               |           |         |            |        |  |
| Channel Frequency |                    | Power Density |           | Limit   |            | Result |  |
| (MHz)             |                    | (dBm/3kHz)    |           | (dBm/3l | (dBm/3kHz) |        |  |
| 2402              |                    | -15.0         | 70        |         |            |        |  |
| 2442<br>2480      |                    | -14.6         | 89        | 8       | 8 PA       |        |  |
|                   |                    | -15.291       |           |         |            |        |  |
|                   |                    | BLE M         | lode      | 1       |            |        |  |
|                   |                    | 0.400         |           |         |            |        |  |








Page: 53 of 55










Page: 54 of 55

## **Attachment G-- Power Spectral Density Test Data**

| Temperature:      | <b>25℃</b>         | 30            | Relative Humidity: 55% |            |   |        |  |  |
|-------------------|--------------------|---------------|------------------------|------------|---|--------|--|--|
| Test Voltage:     | DC 3.7V            |               |                        | 40.67      |   | ~ Ost  |  |  |
| Test Mode:        | BLE TX Mode(2Mbps) |               |                        |            |   |        |  |  |
| Channel Frequency |                    | Power Density |                        | Limit      |   | Result |  |  |
| (MHz)             |                    | (dBm/3kHz)    |                        | (dBm/3kHz) |   |        |  |  |
| 2402              |                    | -10.0         | 36                     |            |   |        |  |  |
| 2442              |                    | -9.704        |                        | 8          |   | PASS   |  |  |
| 2480              |                    | -10.2         | 69                     | 1          |   |        |  |  |
|                   |                    | BLE(2Mbps)    | TX Mode                |            | 1 |        |  |  |

### 2402 MHz



Report No.: TB-FCC178362



Page: 55 of 55



----END OF REPORT----