

Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2ADYY-W03

Product: Smart Watch

Model No.: W03

Trade Mark: TECNO

Report No.: WSCT-A2LA-R&E231100022A-LE

Issued Date: 12 December 2023

Issued for:

TECNO MOBILE LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192 FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

世标检测认证股份 Mon * P p (Shenzhen) Co., Ltd.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

WSEI

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

TABLE OF CONTENTS

/1.	Test Certification	3	
2.	Test Result Summary	4	
3.	EUT Description	5	
4.		6	K
	4.1. TEST ENVIRONMENT AND MODE	6	
1	4.2. DESCRIPTION OF SUPPORT UNITS	6	L
5.	Facilities and Accreditations	7	
1	5.1. FACILITIES	7	
LT	5.2. ACCREDITATIONS	7	
	5.3. MEASUREMENT UNCERTAINTY	8	J
	5.4. MEASUREMENT INSTRUMENTS	9	
6.	Test Results and Measurement Data	10	7
/	6.1. ANTENNA REQUIREMENT	10	
	6.2. CONDUCTED EMISSION	11	
97	6.3. CONDUCTED OUTPUT POWER	12	
	6.4. EMISSION BANDWIDTH	19	
	6.5. POWER SPECTRAL DENSITY	24	K
	6.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	29	7
/	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	40	

Please Contact with WSCT www.wsct-cert.com

Certificate Number 5768.01

Report No.: WSCT-A2LA-R&E231100018A-LE

1. Test Certification

Product: Smart Watch

Model No.: W03

Trade Mark: TECNO

Applicant: TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Manufacturer: TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Date of Test: 23 November 2023 ~ 05 December 2023

Applicable FCC CFR Title 47 Part 15 Subpart C Section 15.247

Standards: KDB 558074 D01 DTS Meas Guidance v04

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

X		\sim	X.	\times
Tested By:	Wan Xian	Checked By:	(highway	WATE
	(Wang Xiang)		(Qin Shuiquan)	m & Testing
WEIGH	WHO WHO			SET Sign
Approved By:	Lindin	Date: _	12 December 2010	* '01' '00'
WSET	(Liu Fuxin)	WSIT	WHITE	AWSIG
	\times		\times	
WESTER	Wister	NV2	WESTER	

World Standard Stand

MITTER

WSET

WATER

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

2. Test Result Summary

プログスタ 前 (日) マー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー		/ / A T m m
Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS
6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	1§5.2 <mark>47(d)</mark> §2.1051, §2.1057	PASS
Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
	Antenna requirement AC Power Line Conducted Emission Conducted Peak Output Power 6dB Emission Bandwidth Power Spectral Density Band Edge	Antenna requirement §15.203/§15.247 (c) AC Power Line Conducted Emission §15.207 Conducted Peak Output Power \$15.247 (b)(3) \$2.1046 6dB Emission Bandwidth \$15.247 (a)(2) \$2.1049 Power Spectral Density \$15.247 (e) Band Edge \$2.1051, §2.1057 Spurious Emission

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

WETER WETER

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

3. **EUT Description**

Product Name:	Smart Watch
Model :	W03
Trade Mark:	TECNO
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	2MHz
Number of Channel:	40
Modulation Technology:	GFSK
Antenna Type	Integral Antenna
Antenna Gain:	0 dBi
Operating Voltage	Li-ion Battery :502027 Voltage: 3.7V Rated Capacity: 250mAh
	Limited Charge Voltage: 4.2V
Remark:	N/A.

Operation Frequency each of channel

Operation	il i requello	y cacii o	Citatillei				11
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	X		X		X		X
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	emark: Channel 0, 19 & 39 have been tested.						

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86,755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

200	Equipment	Model No.	Serial No.	FCC ID	Trade Name
	V		1	1	/ /

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5. Facilities and Accreditations

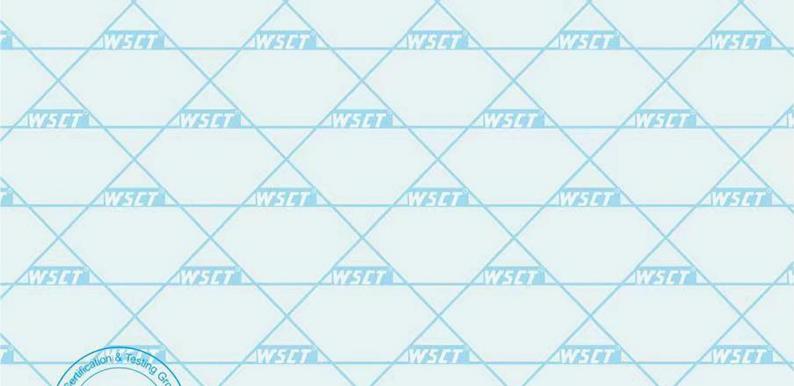
5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732


China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number: 5768.01

游认证股份 then) Co. Ltd.

NOW * PI

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Η,	Cormue	nce of approximately 95 %.	V
/	No.	Item	MU
	1	Power Spectral Density	±3.2dB
	2	Duty Cycle and Tx-Sequence and Tx-Gap	±1%
	3 // 5 /	Medium Utilisation Factor	±1.3%
	4	Occupied Channel Bandwidth	±2.4%
/	5	Transmitter Unwanted Emission in the out-of Band	±1.3%
	6	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%
	7 X	Receiver Spurious Emissions	±2.5%
	8	Conducted Emission Test	±3.2dB
	9	RF power, conducted	±0.16dB
/	10	Spurious emissions, conducted	±0.21dB
	11	All emissions, radiated(<1GHz)	±4.7dB
	12	All emissions, radiated(>1GHz)	±4.7dB
	13	Temperature	±0.5°C
/	14	Humidity	±2.0%

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.4.MEASUREMENT INSTRUMENTS

	ATTIGATE	ATTIGUE	ATTIVE		THE SHAPE	100	7
/	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
1	Test software	/	EZ-EMC	CON-03A	A		
9	Test software		MTS8310	11074		FIRM	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	5
,	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	
	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
7	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	
,	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	
	Pre-Amplifier	CDSI	PAP-1G18-38	X	11/05/2023	11/04/2024	
7	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2023	7/28/2024	
20.	9*6*6 Anechoic			-	11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2023	11/04/2024	-
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	š
1	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	
1	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
4	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	ŀ
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	١
	RF cable	Murata	MXHQ87WA300 0		11/05/2023	11/04/2024	/
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	ŝ
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
7	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
2	Power sensor	Anritsu	MX248XD	/	11/05/2023	11/04/2024	-
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	1
							1

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-com.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

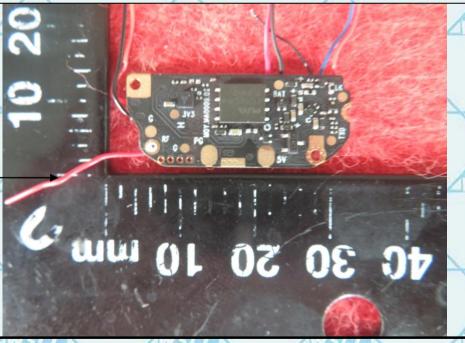
6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 0 dBi.

World Stark in Dryston Communication to Drystoup

tenna

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX 86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

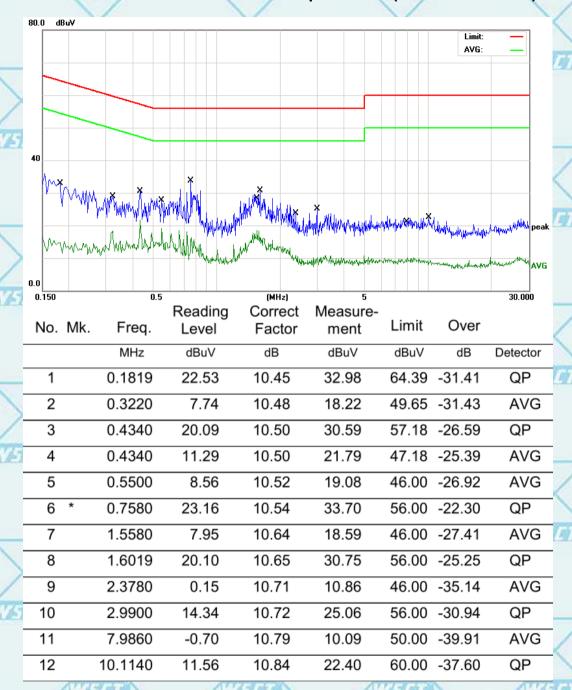
6.2. Conducted Emission

.2.1. Test Specification	
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2014
Frequency Range:	150 kHz to 30 MHz
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto
Limits:	Frequency range (MHz) Limit (dBuV) 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50
\times	Reference Plane
NIET THE SHEET	40cm 10cm Filter AC power
Test Setup:	Test table/Insulation plane Remark E.U.T. Equipment Under Test
AVISTOT AVIS	
Test Mode:	Charging + Transmitting Mode
WSET	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main
Test Procedure:	refer to the block diagram of the test setup and photographs).
WETER	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all o the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement.
Test Result:	PASS
12/	

SOUND WITH MAN

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com



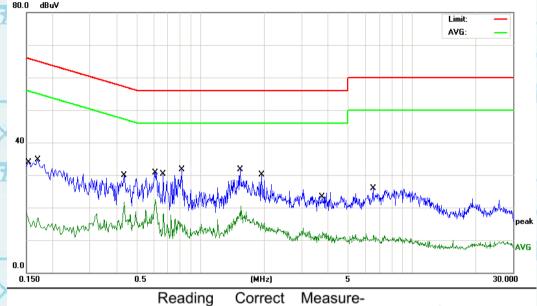
Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

6.2.2. Test data

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E231100018A-LE

www.wsct-cert.com

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) Please Contact with WSCT

2	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
7			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
Ī	1		0.1500	7.97	10.45	18.42	55.99	-37.57	AVG
Ī	2		0.1700	24.29	10.45	34.74	64.96	-30.22	QP
ĺ	3		0.4340	19.35	10.50	29.85	57.18	-27.33	QP
>	4		0.4340	11.21	10.50	21.71	47.18	-25.47	AVG
ľ	5	*	0.6100	11.94	10.53	22.47	46.00	-23.53	AVG
2	6		0.6700	7.59	10.53	18.12	46.00	-27.88	AVG
Ī	7		0.8139	21.18	10.54	31.72	56.00	-24.28	QP
Ī	8		1.5420	21.15	10.64	31.79	56.00	-24.21	QP
Ī	9		1.5580	9.77	10.64	20.41	46.00	-25.59	AVG
>	10		1.9420	19.37	10.70	30.07	56.00	-25.93	QP
	11		3.7820	1.78	10.73	12.51	46.00	-33.49	AVG
	12		6.5260	15.10	10.77	25.87	60.00	-34.13	QP

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN Factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

Page 13 of 46

Member of the WSCT INC

DUOM * PI

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074
Limit:	30dBm
Test Setup:	
Took Mode.	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

AVE THE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605. E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100018A-LE

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.3.2. Test Data

BLE 1M				
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result	
Lowest	8.24	30.00	PASS	
Middle	8.59	30.00	PASS	
Highest	8.35	30.00	PASS	

A STATE OF THE STA	ATT TO STATE OF THE PARTY OF TH	The state of the s	
	BLE 2N	Л	
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result
Lowest	8.51	30.00	PASS
Middle	8.76	30.00	PASS
Highest	8.49	30.00	PASS

Test plots as follows:

Toup (Shenz)

MONOW * PIT

世标检测认证股份

WHITE	WSGT	AVETUE .	WESTER	WSI
WETER	Wister	WEIGH	NI STREET	176599
WETH	IV-5101	WETER	W-510	Wester
WE191	NIFIE	X	W 5-7-97	Wister
11/2/14/	N/STO	VIETUE .	WASTER	NVETO A
steption & Testino	W/5747	X	X	W-5141

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Span 10.00 MHz Sweep 1.33 ms (10001 pts)

.II 🔖

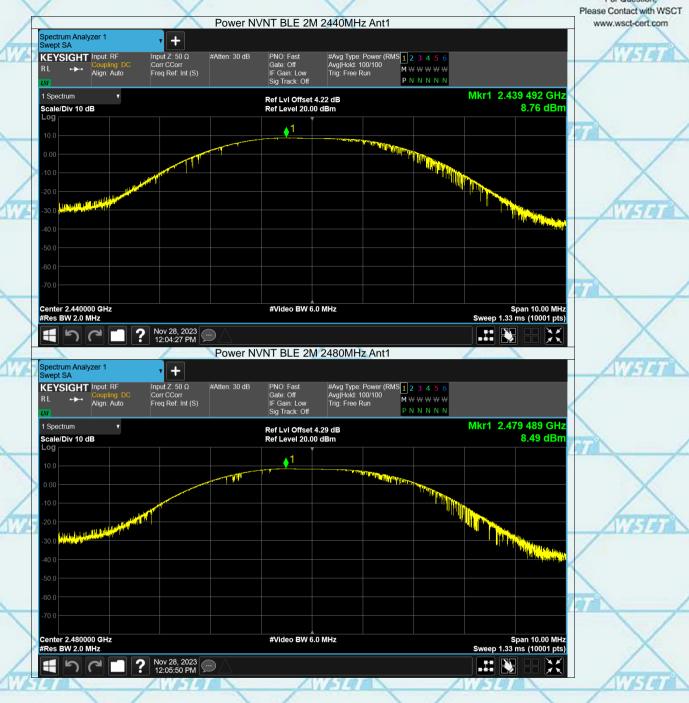
Report No.: WSCT-A2LA-R&E231100018A-LE

Center 2.402000 GHz #Res BW 2.0 MHz

? Nov 28, 2023

Power NVNT BLE 1M 2480MHz Ant1

#Video BW 6.0 MHz



Report No.: WSCT-A2LA-R&E231100018A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

MONOW * DIT

Report No.: WSCT-A2LA-R&E231100018A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074
Limit:	>500kHz
Test Setup:	EUT EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

Page 19 of 46

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

Member of the WSCT INC.

Report No.: WSCT-A2LA-R&E231100018A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.4.2. Test data

В	E1M	WASTER	AVE.	
/	Test channel	6dB Emis	sion Bandwidth (kHz)	
	rest channel	BT LE mode	Limit	Result
	Lowest	0.502	>500k	WATER
	Middle	0.502	>500k	PASS
	Highest	0.504	>500k	

BLE 2M

	Test channel	6dB Emission I	Bandwidth (kHz)	
ı	rest channel	BT LE mode	Limit	Result
ì	Lowest	0.833	>500k	WSET
I	Middle	0.827	>500k	PASS
l	Highest	0.800	>500k	

Test plots as follows:

NV-191	77579	WHITE	WATER	WEIGH	
	THE AVE		$\langle $	2514	NI STATE
VV-14	W/55191	Wister	W/51.01	WESTER	
	TO AVE			75101	NISTUTE N
NV-19	WATER	WEIGH	Wister	WETER	
soni & 7				15/17	VI510

世标检测从证数份 Group (Shenzhen) Co. Ltd.

Signal Comments

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E231100018A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E231100018A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.5. Power Spectral Density

6.5.1. Test Specification

Z 1 4 7 4 6 Z 1 6 7 4	7 4 7 7 9 6 7 7 9 6 7
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

6.5.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018	
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018	
Antenna Connector	TCT	RFC-01	N/A W	Sep. 27, 2018	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

世标检测认证股份 Group (Shenzhen) Co., Ltd

Report No.: WSCT-A2LA-R&E231100018A-LE

6.5.3. Test data

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Toot channel	Power Spectral D	ensity (dBm/3kHz)	
Test channel	BLE 1M	Limit	Result
Lowest	-1.37	8 dBm/3kHz	
Middle	-1.75	8 dBm/3kHz	PASS
Highest	-1.52	8 dBm/3kHz	

	Test channel	Power Spectral D	ensity (dBm/3kHz)	
7	rest channel	BLE 2M	Limit	Result
	Lowest	-1.75	8 dBm/3kHz	
1	Middle	-2.11	8 dBm/3kHz	PASS
	Highest	-1.92	8 dBm/3kHz	

Test plots as follows:

oup (Shenz

SIGNOW * DIT

WEIGH	Wester	WHITE	WEIGH	Witter	
	$\langle \ \rangle$				57.0
WSIG	Wiston	Wiston	W/51/01	V/6-191	
	191				1500
AVE 141	WEID	WEIGHT	NISTER	YETA	
incation &	\times		$\langle \ \rangle$		674 6

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26998192 26992308 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

(Shenz

世标检测认证股份

MONOW * PIT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E231100018A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100018A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

ertificate #5768.01

Please Contact with WSCT

6.6. Conducted Band Edge and Spurious Emission Measurement

6.6.1. Test Specification FCC Part15 C Section 15.247 (d) **Test Requirement:** KDB558074 **Test Method:** In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB 30dB relative to the maximum PSD level in 100 kHz by Limit: RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Test Setup: **EUT** Spectrum Analyzer Test Mode: Refer to item 4.1 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the Test Procedure: maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Test Result:

PASS

Report No.: WSCT-A2LA-R&E231100018A-LE

Test Data

Certificate #5768.01 For Question,
Please Contact with WSCT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-758-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Function Value

Report No.: WSCT-A2LA-R&E231100018A-LE

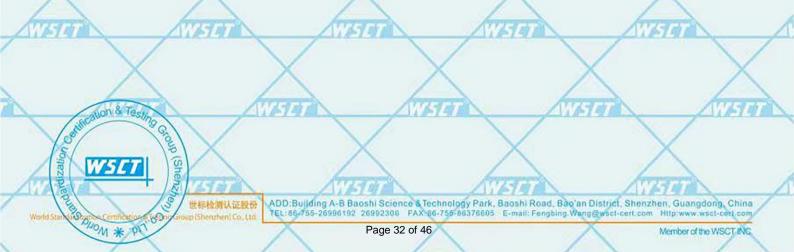
Function

8.363 dBm -44.99 dBm -54.18 dBm 43 54 dBm

? Nov 28, 2023

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com





Report No.: WSCT-A2LA-R&E231100018A-LE

Band Edge NVNT BLE 2M 2402MHz Ant1 Ref

? Nov 28, 2023 ... 12:02:45 PM

Report No.: WSCT-A2LA-R&E231100018A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100018A-LE Conducted RF Spurious Emission

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992308 FAX-86-755-96376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Nov 28, 2023

Report No.: WSCT-A2LA-R&E231100018A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Input Z: 50 Ω
Corr CCorr
Freq Ref: Int (S)

? Nov 28, 2023

Report No.: WSCT-A2LA-R&E231100018A-LE

KEYSIGHT Input: RF

1 Spectrum

Scale/Div 10 dB

Align: Auto

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Nov 28, 2023

Report No.: WSCT-A2LA-R&E231100018A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100018A-LE

? Nov 28, 2023

-31.11 dBm -40.50 dBm -46.85 dBm -31.11 dBm

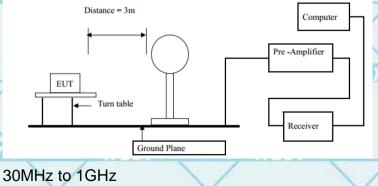
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231100018A-LE

Nov 28, 2023 12:07:03 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01


For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7. Radiated Spurious Emission Measurement

6.7.1. Test Specification

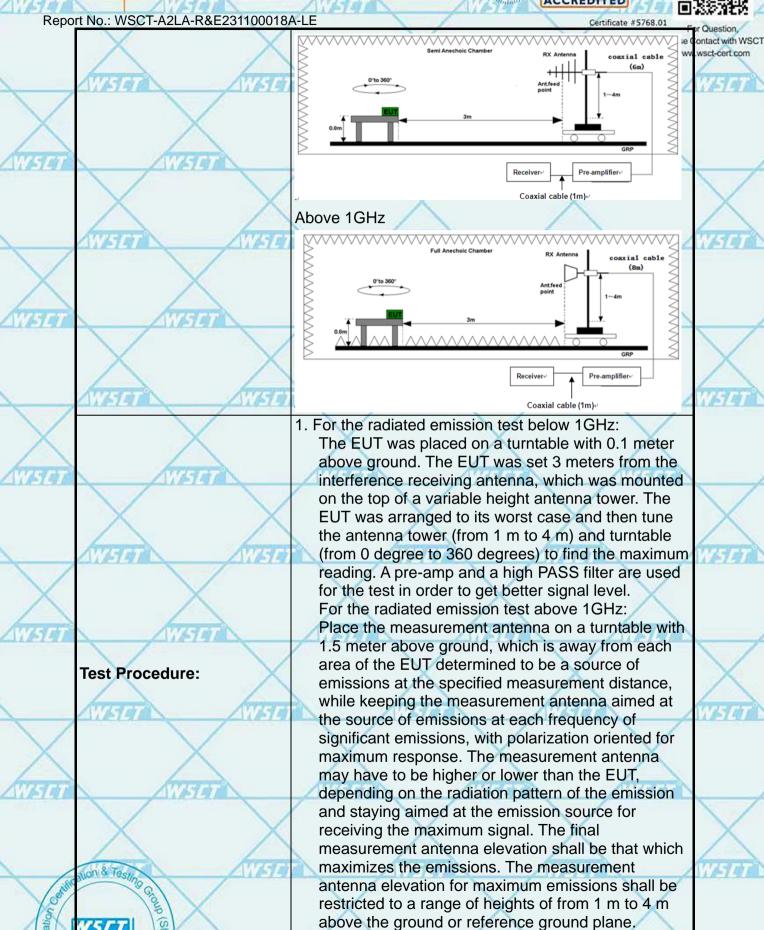
6.	7.1. Test Specification		- J. H. L. H. H	1			/
	Test Requirement:	FCC Part15	C Sectio	n 15.209		X	
	Test Method:	ANSI C63.10):2014	172514		11675	
	Frequency Range:	9 kHz to 25 (GHz			/	
	Measurement Distance:	3 m			X		
	Antenna Polarization:	Horizontal &	Vertical	1	1757		1
	Operation mode:	Refer to item	4.1				
		Frequency	Detector		VBW	Remark	
3	N/STATE OF	9kHz- 150kHz	Quasi-pea	ak 200Hz	1kHz	Quasi-peak Va	alue
	Receiver Setup:	150kHz- 30MHz	Quasi-pea	ak 9kHz	30kHz	Quasi-peak Va	alue
	X	30MHz-1GHz	Quasi-pea	ak 100KHz	300KHz	Quasi-peak Va	alue
		Above 1GHz	Peak	1MHz	3MHz	Peak Value	е
-	AV299 AV499		Peak	1MHz	10Hz	Average Val	lue
		Frequency		Field Strength		Measurement	
		Frequency		(microvolts/meter)		Distance (meters)	
5		0.009-0.490		2400/F(KHz)		300	
ď	17574	0.490-1.7		24000/F(KHz)	30	
		1.705-3		30 100 150		30 3 3	
	X	30-88	A				
		88-216					
	Limit:	216-96 Above 9	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 500		3	
1		Above 9	00	500	The state of	3	1
		X		\sim	Measure	ment	
		Frequency		eld Strength	Distan		tor
	WSIN	ATTIGATE	(mic	rovolts/meter)	(meter	s)	-
	1000	Above 1GHz	1	500	3	Avera	ge
		Above Toriz	_//	5000	3	Peak	k
		For radiated	emission	ns below 30	30MHz		
7	AVE 19 AVE 19	Di	stance = 3m		200	Computer	/
	V	4				Computer	
			1		Pre -	-Amplifier	
7	Test setup:		,				1

Test setup: WS/

W5ET

DUOM * PIT

世标检测认证股份


(Shen

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wangs@wsci-cert.com Http://www.wsci-cert.com

AWSLIL	Z 1679 M	ANSIE ANSIE A	
Repor	rt No.: WSCT-A2LA-R&E231100018		ertificate #5768.01 For Question
	X	Corrected Reading: Antenna Factor + C Read Level - Preamp Factor = Level	able LossPhase Contact with WSCT www.wsct-cert.com
	WATER WATER	3. For measurement below 1GHz, If the er	
		of the EUT measured by the peak dete lower than the applicable limit, the peal	
X	X	level will be reported. Otherwise, the er	
AVS14	WETER	measurement will be repeated using the detector and reported.	e quasi-peak
		4. Use the following spectrum analyzer set	
	\triangle	Span shall wide enough to fully capt emission being measured;	ure the
	AVE 19 III	(2) Set RBW=100 kHz for f < 1 GHz; VE	BW ≥RBW;
X	\times	Sweep = auto; Detector function = p max hold;	eak; Trace =
AVSET	WEIGH	(3) Set RBW = 1 MHz, VBW= 3MHz for for peak measurement.	f 1 GHz
		For average measurement: VBW = 10	Hz, when
		duty cycle is no less than 98 percent. V	
	AVETO AVETO	when duty cycle is less than 98 percenthe minimum transmission duration over	
X		transmitter is on and is transmitting at in power control level for the tested mode	ts maximum
WHI	Test mode:	Refer to section 4.1 for details	1727
	Test results:	PASS	
	Note: Freq. = Emission frequency in MH Reading level (dBµV) = Receiver reading		X
	Corr. Factor (dB) = Attenuation factor + (Cable loss	AT FIRM

Note: Freq. = Emission frequency in MHz Reading level (dB μ V) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB) Limit (dB μ V) = Limit stated in standard Margin (dB) = Level (dB μ V) - Limits (dB μ V)

WSIGT

AVSTO

WSI

AWSET

WSET Shep

Monday but

WHAT

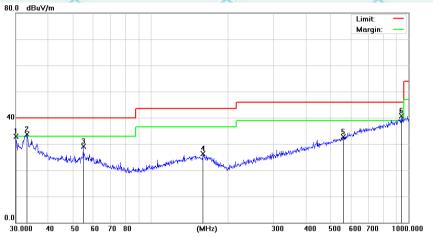
STOTAL AVIS

AWSET

世标检测认证股份 group (Shenzhen) Co. Ltd.

Report No.: WSCT-A2LA-R&E231100018A-LE

Certificate #5768.01


For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7.2. Test Data

Please refer to following diagram for individual

Below 1GHz

AWSET

No	Mk. F	reg.	Reading Level	Correct	Measure- ment	Limit	Over	191
140.		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	X	0000	34.72	-1.73	32.99	40.00	-7.01	QP
2		0950	35.22	-1.61	33.61	40.00	-6.39	QP
3	54.8	3348	30.62	-1.46	29.16	40.00	-10.84	QP
4	159.7	7844	26.21	0.19	26.40	43.50	-17.10	QP
4 5	558.7	7302	26.09	6.60	32.69	46.00	-13.31	QP
6	* 938.8	3326	27.02	13.69	40.71	46.00	-5.29	QP

WATER OF

X

WELL

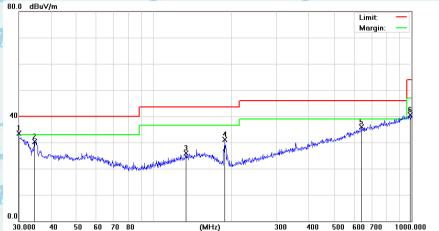
AWSET.

W5GT Shenz

S DUOM * PIT

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26998192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wsci-cert.com/



Report No.: WSCT-A2LA-R&E231100018A-LE

Vertical:

Certificate #5768.01 For Question,

Please Contact with WSCT www.wsct-cert.com

X

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	TT.
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	* /	30.0000	35.29	-1.73	33.56	40.00	-6.44	QP
2	AW	34.6385	31.82	-1.42	30.40	40.00	-9.60	QP
3	1	33.6188	26.96	-1.07	25.89	43.50	-17.61	QP
4	1	88.4125	34.38	-3.27	31.11	43.50	-12.39	QP
45	1	38.3686	27.19	8.68	35.87	46.00	-10.13	QP
6	ç	86.0717	26.17	14.25	40.42	54.00	-13.58	QP
	1 2 3 4 5	2 3 1 4 1 5 6	MHz 1 * 30.0000 2 34.6385 3 133.6188 4 188.4125 5 638.3686	No. Mk. Freq. Level MHz dBuV 1 * 30.0000 35.29 2 34.6385 31.82 3 133.6188 26.96 4 188.4125 34.38 5 638.3686 27.19	No. Mk. Freq. Level Factor MHz dBuV dB 1 * 30.0000 35.29 -1.73 2 34.6385 31.82 -1.42 3 133.6188 26.96 -1.07 4 188.4125 34.38 -3.27 5 638.3686 27.19 8.68	No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 1 * 30.0000 35.29 -1.73 33.56 2 34.6385 31.82 -1.42 30.40 3 133.6188 26.96 -1.07 25.89 4 188.4125 34.38 -3.27 31.11 5 638.3686 27.19 8.68 35.87	No. Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 1 * 30.0000 35.29 -1.73 33.56 40.00 2 34.6385 31.82 -1.42 30.40 40.00 3 133.6188 26.96 -1.07 25.89 43.50 4 188.4125 34.38 -3.27 31.11 43.50 5 638.3686 27.19 8.68 35.87 46.00	No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB 1 * 30.0000 35.29 -1.73 33.56 40.00 -6.44 2 34.6385 31.82 -1.42 30.40 40.00 -9.60 3 133.6188 26.96 -1.07 25.89 43.50 -17.61 4 188.4125 34.38 -3.27 31.11 43.50 -12.39 5 638.3686 27.19 8.68 35.87 46.00 -10.13

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

World Starking Commonton Convisions (Starking Commonton Convisions (Starking Commonton Convisions (Starking Convis

AVET O

WSET

ZVI-14

Report No.: WSCT-A2LA-R&E231100018A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Above 1GHz

Frog		Low channel: 2402MHz							
Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
(IVIIIZ)	H/V	PK	AV	PK	AV	PK	AV		
4804	V	59.11	41.50	74	54	-14.89	-12.50		
7206	V	59.94	39.02	74	54	-14.06	-14.98		
4804		58.91	40.79	74	54	-15.09	-13.21		
7206	Н	59.62	40.62	74	54	-14.38	-13.38		

						<u> </u>					
	Freq.		Middle channel: 2440MHz								
(MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)				
	(IVITZ)	H/V	PK	AV	PK	AV	PK	AV			
	4880	V	59.21	39.23	74	54	-14.79	-14.77			
	7320	V	59.52	40.29	74	54	-14.48	-13.71			
	4880	1/5H7	59.79	39.55	74	54	-14.21	-14.45			
	7320	H	59.27	40.27	74	54	-14.73	-13.73			

					^				
	Eroa	High channel: 2480 MHz							
2	Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)	
	(IVITIZ)	H/V	PK	AV	PK	AV	PK	AV	
	4960	V	58.28	40.39	74	54	-15.72	-13.61	
	7440	V	59.44	39.97	74	54	-14.56	-14.03	
ì	4960	MET 7	59.85	39.74	74	54	-14.15	-14.26	
	7440	H	59.73	40.73	74	54	-14.27	-13.27	

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

NISTH I	WHI	WEID	W5197	N/F/AT	
			X	X	X
NIE!	er W	777 W	STATE	WSEIT	AVETHA
X	X	X	X	X	
AVETTE	NIST OF STREET	WESTER	AVISTA A	WETGT	
1185		and the	CO A S		THE STATE OF THE S

世标检测认证股份 iroup (Shenzhen) Co., Ltd.

oup (Shen

Report No.: WSCT-A2LA-R&E231100018A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Restricted Bands Requirements

oup (Shenz

S DUOM * PIT

Test result for GFSK Mode (the worst case)

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
	AVESTER		Low Cha	nnel	AUZTE		11123
2390	62.44	-8.76	53.68	74	20.32	H	PK
2390	53.46	-8.76	44.70	54	9.30	нХ	AV
2390	60.57	-8.73	51.84	74	22.16	V	PK
2390	54.53	-8.73	45.80	54	8.20	V	AV
			High Cha	nnel			
2483.5	60.92	-8.76	52.16	74	21.84	Н	PK
2483.5	54.91	-8.76	46.15	54	7.85	Н	AV
2483.5	63.24	-8.73	54.51	74	19.49	V	PK
2483.5	54.51	-8.73	45.78	54	8.22	V	AV

W-5191	Wister	WSU	WSI	Wister	
				NASTATI	
W-5141	Wister	Wiston	W/51@1	WSIA	
				AVI-5101	
WHITE	WATER	WETH	NVSIA	WATER	
ation & 7				STOP AWSTON	

Page 46 of 46

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.