

RF EXPOSURE EVALUATION REPORT

APPLICANT: Gudsen Technology Co., Ltd

PRODUCT NAME: MOZA iFocus Wireless Follow Focus Motor

MODEL NAME: MOZA iFocus Wireless Follow Focus Motor

BRAND NAME: MOZA

FCC ID : 2AMJR-IFOCUSMOTOR

STANDARD(S) : 47CFR 2.1091

KDB 447498

RECEIPT DATE : 2018-11-03

ISSUE DATE : 2018-12-06

Edited by:

Liang Yumei(Rapporteur)

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

1	Technical Information	3
1.1	Applicant and Manufacturer Information	3
1.2	Paguipment Under Test (EUT) Description	3
1.3	Photographs of the EUT ······	4
1.4	Identification of all used EUT	5
1.5	Applied Reference Documents	5
2.	Device Category and RF Exposure Limit	6
3.	Measurement of RF Output Power	7
4.	RF Exposure Evaluation	8
An	nex A General Information ·····	9

Version	Date	Description
1.0	2018-12-06	Original

1. Technical Information

Note: Provide by manufacturer.

1.1 Applicant and Manufacturer Information

Applicant:	Gudsen Technology Co., Ltd		
Applicant Address:	F\6,10th Building,Jiuxiang Ling Industrial Park,Ave Xili ,Nanshan		
Applicant Address.	District, Shenzhen, China		
Manufacturer:	Gudsen Technology Co., Ltd		
Manufacturar Address.	F\6,10th Building,Jiuxiang Ling Industrial Park,Ave Xili ,Nanshan		
Manufacturer Address:	District, Shenzhen, China		

1.2 Equipment Under Test (EUT) Description

EUT Type:	MOZA iFocus Wireless Follow Focus Motor
Hardware Version:	V1.0
Software Version:	0.4.2
Operating Fraguency Bange	Bluetooth: 2402MHz-2480MHz
Operating Frequency Range:	2.4G ISM: 2440 MHz
Modulation Mode:	Bluetooth: GFSK
wodulation wode:	2.4G ISM: GFSK
Antenna Type:	DIOP Antenna
Antonna Cain.	Bluetooth: 2.26dBi
Antenna Gain:	2.4G ISM: 2.56

1.3 Photographs of the EUT

1. EUT front view

2. EUT rear view

1.4 Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	V1.0	0.4.2

1.5 Applied Reference Documents

Leading reference documents for testing:

No. Identity		Document Title			
1	47 CFR§2.1091	Radio frequency Radiation Exposure Evaluation: mobile devices			
2	2 KDB 447498 D01v06 General RF Exposure Guidance				

Tel: 86-755-36698555

Http://www.morlab.cn

2. Device Category and RF Exposure Limit

Per user manual, Based on 47CFR 2.1091, this device belongs to mobile device category with General Population/Uncontrolled exposure.

Mobile Devices:

47CFR 2.1091(b)

For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. In this context, the term "fixed location" means that the device is physically secured at one location and is not able to be easily moved to another location. Transmitting devices designed to be used by consumers or workers that can be easily re-located, such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 centimeter separation requirement.

GENERAL POPULATION / UNCONTROLLED EXPOSURE

The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category, and the general population/uncontrolled exposure limits apply to these devices.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
I)	B) Limits for General	Population/Uncontro	lled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz

Tel: 86-755-36698555

Http://www.morlab.cn

^{* =} Plane-wave equivalent power density

3. Measurement of RF Output Power

RF Output Power

Mada	Channel	Frequency	Power (dBm)			
Mode		(MHz)	GFSK			
	CH 00	2402	8.13			
LE	CH 19	2440	8.25			
	CH 39	2480	7.76			
Tune-up Limit			8.50			

Mode	Frequency (MHz)	Power (dBm)
2.4G ISM	2440	10.72
Tune-up Limit		11.00

Note: According to KDB 447498, maximum source-based time-average power will be used for calculating MPE.

4. RF Exposure Evaluation

Standalone transmission MPE evaluation

	Bands Frequency (MHz)	Maximum	Antenna	EIDD	Power	Limit 2 for
Bands		Tune-up Limit	Gain	EIRP	density 2	MPE
		(dBm)	(dBi)	(mW)	(mW/cm²)	(mW/cm²)
2.4G LE	2440	8.50	2.26	11.91	0.002	1.0

Bands	Frequency (MHz)	Maximum	Antenna	EIDD	Power	Limit 2 for
		Tune-up Limit	Gain	EIRP	density 2	MPE
		(dBm)	(dBi)	(mW)	(mW/cm²)	(mW/cm²)
2.4G ISM	2440	11.00	2.56	22.70	0.005	1.0

MPE transmit simultaneously evaluation:

Transmit Condition	Power density 1 Power density 2 (mW/cm²) (mW/cm²)		Result	Limit
2.4G LE + 2.4G ISM	0.002	0.005	0.007	1.0

Note:

1. MPE calculation method

Power Density = EIRP/ 4π R²

Where: EIRP = P+G

P = Average Output Power (dBm)

G = Antenna Gain (dBi)

R = Separation Distance (20cm)

2. Only the worst condition for Sub-1G+WLAN 2.4GHz was calculated for transmit simultaneously in this report.

Formula: Result=Power density 1/ limit 1 + Power density 2/ limit $2 \le 1$

3. This device does not support MIMO mode, therefore simultaneous transmission of MPE is not required.

Annex A General Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.	
	Morlab Laboratory	
Laboratory Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang	
	Road, Block 67, BaoAn District, ShenZhen, GuangDong	
	Province, P. R. China	
Telephone:	+86 755 36698555	
Facsimile:	+86 755 36698525	

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
	FL.3,Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

END OF REPORT	

