

TEST REPORT

N°: 154193-717699-B (File#988963)

Version: 01

Subject	Electromagnetic compatibility and Radio spectrum Matters (ERM) tests according to standards: FCC CFR 47 Part 15, Subpart C RSS-247 Issue 2.0 RSS-210 Issue 9.0				
Issued to	ASTEEL				
	43 Chemin du Vieux Chêne				
	38240 - MEYLAN				
	FRANCE				
Apparatus under test					
♥ Product	Domotic gateway				
Strade mark	SOMFY / OVERKIZ				
Schulen Manufacturer	SOMFY				
Nodel under test	Smartkiz / TaHoma Beecon				
🏷 Serial number	O17196101F0106				
♥ FCCID	DWNBEECON				
♥ IC	12049A-BEECON				
Conclusion	See Test Program chapter §1				
Test date	March 20, 2018 to March 26, 2018				
Test location	MOIRANS				
IC Test site	6500A-3				
Composition of docum	ent 50 pages				
Document issued on	December 4, 2018				
Written by Jonathan PAI Tests operat	UC Anthony MERLIN				
reste opera					

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measurement. This document doesn't anticipate any certification decision.

LCIE

Laboratoire Central des Industries Electriques Une société de Bureau Veritas ZI Centr'alp 170 rue de Chatagnon 38430 Moirans FRANCE Tél : +33 4 76 07 36 36 contact@lcie.fr www.lcie.fr

PUBLICATION HISTORY

Version	Date	Author	Modification
01	December 4, 2018	Jonathan PAUC	Creation of the document

Each new edition of this test report replaces and cancels the previous edition. The control of the old editions of report is under responsibility of client.

SUMMARY

1.	TEST PROGRAM	4
2.	SYSTEM TEST CONFIGURATION	6
3.	CONDUCTED EMISSION DATA	11
4.	RADIATED EMISSION DATA	14
5.	BANDWIDTH (15.247)	22
6.	BANDWIDTH (15.231)	24
7.	MOMENTARY OPERATION (15.231)	26
8.	MAXIMUM PEAK OUTPUT POWER (15.247)	28
9.	POWER SPECTRAL DENSITY (15.247)	31
10.	BAND EDGE MEASUREMENT (15.247)	33
11.	OCCUPIED BANDWIDTH	37
12.	ANNEX 1 (GRAPHS)	40
13.	UNCERTAINTIES CHART	50

1. **TEST PROGRAM**

Standard:

- FCC Part 15, Subpart C 15.247 - ANSI C63.10 (2013) - RSS-247 Issue 2.0

- RSS-Gen Issue 5

- RSS-210 – issue 9

- 558074 D01 DTS Measurement Guidance v05

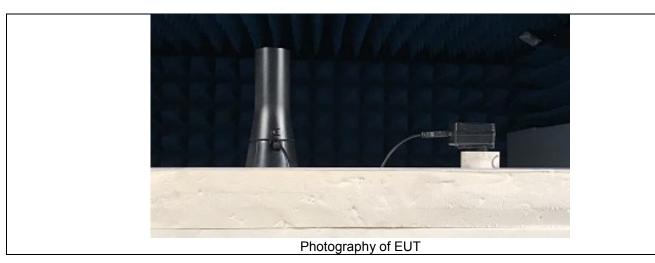
EMISSION TEST		RESULTS				
	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	Ø PASS		
Limits for conducted disturbance at mains ports	150-500kHz	66 to 56	56 to 46			
150kHz-30MHz	0.5-5MHz	56	46			
	5-30MHz	5-30MHz 60 50				
Radiated emissions 9kHz-30MHz <i>CFR</i> 47 §15.209 (a) <i>CFR</i> 47 §15.247 (d) <i>RSS-247</i> §5.5	9kHz-490kHz : (Measure at 30r 490kHz-1.705M	Measure at 300m 9kHz-490kHz : 67.6dBµV/m /F(kHz) Measure at 30m 490kHz-1.705MHz : 87.6dBµV/m /F(kHz) 1.705FHJz : 20MHz : 20.5 dBµV/m				
Radiated emissions 30MHz-25GHz* CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5 Highest frequency :2480MHz (Declaration of provider)	Measure at 3m 30MHz-88MHz 88MHz-216MHz 216MHz-960MH	1.705MHz-30MHz : 29.5 dBμV/m Measure at 3m 30MHz-88MHz : 40 dBμV/m 88MHz-216MHz : 43.5 dBμV/m 216MHz-960MHz : 46.0 dBμV/m Above 960MHz : 54.0 dBμV/m				
Radiated emissions 30MHz-6GHz* CFR 47 §15.209 (a) CFR 47 §15.231 (b) RSS-210 A.1.2 Highest frequency :2480MHz (Declaration of provider)	Measure at 3m 40.66MHz-40.7l 70MHz-130MHz 130MHz-174MH 174MHz-260MH 260MHz-470MH Above 470MHz	☑ PASS □ FAIL □ NA □ NP				
Fundamental field strength limit CFR 47 §15.231 (b) RSS-210 §A.1.2	70MHz-130MHz 130MHz-174MH 174MHz-260MH	МНz : 67 dBµV/m z : 61.9dBµV/m łz : 61.9 to 71.5dBµV łz : 71.5dBµV/m łz : 71.5-81.9 dBµV/m		☑ PASS □ FAIL □ NA □ NP		
Bandwidth 6dB CFR 47 §15.247 (a) (2) RSS-247 §5.2	At least 500kH	At least 500kHz				
Bandwidth of Momentary Signals CFR 47 §15.231 (c) RSS-210 §A.1.3	<0.25% of cent	<0.25% of center frequency				
Momentary Operation CFR 47 §15.231 (a)(1)(2) RSS-210 §A.1.1 (a)(b)	Transmission o	Transmission duration < 5 seconds				

EMISSION TEST	LIMITS	RESULTS
Power spectral Density CFR 47 §15.247 (e) RSS-247 §5.2	Limit: 8dBm/3kHz	☑ PASS □ FAIL □ NA □ NP
Maximum Peak Output Power CFR 47 §15.247 (b) RSS-247 §5.4	Limit: 30dBm Conducted or Radiated measurement	☑ PASS □ FAIL □ NA □ NP
Band Edge Measurement CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5	Limit: -20dBc or Radiated emissions limits in restricted bands	☑ PASS □ FAIL □ NA □ NP
Occupied bandwidth RSS-Gen §4.6.1	No limit	☑ PASS □ FAIL □ NA □ NP
Receiver Spurious Emission** RSS-Gen §4.10	See RSS-Gen §4.10	□ PASS □ FAIL ☑ NA □ NP

*§15.33: The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees. - If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz. - If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5CHz. If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz,

while taking smallest of both. **Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter.


2. SYSTEM TEST CONFIGURATION

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT):

Smartkiz / TaHoma Beecon

Serial Number: 017196101F0106

Power supply:

During all the tests, EUT is supplied by V_{nom} : 230 VAC / 50 Hz or 100Vdc / 60Hz For measurement with different voltage, it will be presented in test method.

Name	Туре	Rating	Reference / Sn	Comments
Supply1	☑ AC □ DC □ Battery	100-240V / 50-60Hz	BI12T-050200-IU	/

Inputs/outputs - Cable:

Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
Supply	DC Jack (secondary "Supply1")	2			\checkmark	/

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
Laptop	DELL	/	Used to Launch command (zigbee & RTS)
Converter USB to Ethernet	TU2-ET100	RA1746U500119	Used to boot up Test firmware
Converter USB to Ethernet	D-LINK DUB-E100	908D78045C1D	Used to boot up Test firmware
HUB	NETGEAR GS105v2	1FD1815D04472	Used to boot up Test firmware

Equipment information:

Туре:	ZIGBEE □ RF4CE				4CE		
Frequency band:	[2400 – 2483.5] MHz						
Spectrum Modulation:			⊠ D	SSS			
Number of Channel:				6			
Spacing channel:			5M	lHz			
Channel bandwidth:	2MHz						
Antenna Type:	☑ Integral			ternal		Dedicated	
Antenna connector:	🗆 Yes			No	۲ ک	emporary for test	
				1			
Transmit chains:				antenna			
			Gain 1	I: 0dBi			
Beam forming gain:	No						
Receiver chains	1						
Type of equipment:	✓ Stand-alone	е	🗆 PI	ug-in		Combined	
Ad-Hoc mode:		Yes	-		⊠ No		
Adaptivity mode:	✓ Yes (Load Based) □ Off				□ No		
			Assessment Tim				
Duty cycle:	Continuous d		☑ Interm			□ 100% duty	
Equipment type:	Produce	ction me		Pre-production model			
	Tmin:		□ -20°C	□ 0°C		⊡ -10°C	
Operating temperature range:				20°C			
	Tmax:		□ 35°C	□ 55°C	2	⊠ 40°C	
Type of power source:	AC power sup	ply	DC pov			Battery	
Operating voltage range:	Vnom:			V/50Hz □ XVdc		□ XVdc	
Geo-location capability:	 ☐ Yes (The geographical location determined by the equipment is not accessible to the end user as defined in section 4.3.2.12.2 of ETSI EN 300 328 V2.1.1 standard) 			⊠ No			
Minimum performance criteria for Receiver blocking test:	☑ PER less that	n or eq	ual to 10%	□ Alternativ	e perfo	ormance criteria (4)	

CHAN	CHANNEL PLAN					
Channel	Frequency (MHz)					
Cmin: 11	2405					
12	2410					
13	2415					
14	2420					
15	2425					
16	2430					
17	2435					
Cmid: 18	2440					
19	2445					
20	2450					
21	2455					
22	2460					
23	2465					
24	2470					
25	2475					
Cmax: 26	2480					

DATA RATE					
Data Rate (Mbps)	Worst Case Modulation				
0.25	O-QPSK	\checkmark			

Equipment information: (Declared by provider)

TX Frequency band:	[433.05 – 434.79] MHz							
RX Frequency band:	None							
Number of channel:				1				
Channel separation:	None							
Channel bandwidth:	100 kHz							
Receiver bandwidth	None							
Channel tested:			Fnom: 43	33.42 MHz				
	□ Polite spectrum access						SS	
		<u> </u>		CCA	time:		ms	
Spectrum Access Mechanism:	⊠ Duty	Cycle	9	Minimal	unit of defer	ral period:		
				Deadtii	ne T _{DIS} :	-	ms	
Adaptive Frequency Agility:					\square	No		
	☑ DSSS or None			Hop cha	nnel BW:		kHz	
Spread Spectrum Modulation:				Number of channels:				
				Return time to a hop		channel:	Ms	
				CCA implemented:		/ 🗆 No		
Type of equipment:	✓ Stand-alone	;		□ Plug-in		□ Cor	nbined	
RF mode:	⊠ TX		TX /RX			✓ Standby		
Antenna Type:	🗆 Exte	ernal		☑ Internal				
Antenna connector:	Permanent external		Permanent internal	□ None (only for te				
Antenna Gain:			C)dBi				
Equipment type:	☑ Producti	on mo	odel		Prot	otype		
	Tmin:		□ -20°C	□ 0°C		☑ -1	0 °C	
Temperature range:	Tnom:				0°C			
Tara farman	Tmax: □ 35°C		□ 55°C			O°C		
Type of power source:	AC power supp Vmin:	лу		er suppiy		ery(Selec □ VDC		
Test source voltage:	Vnim. Vnom:		☑ 207V/50Hz ☑ 230V/50Hz		L L			
······································			☑ 253V/50Hz					

NC : Not communicated by customer

2.2. EUT CONFIGURATION

The EUT is set in the following modes during tests with simulator / software v2.0

- Permanent emission with modulation on a fixed channel in the data rate that produced the highest power

- Permanent reception

All tests are performed at Cmin, Cmid and Cmax. (Zigbee) & Cnom (RTS)

Following commands with the specific test software "

Command						
Permanent Emission (Zigbee – 15.247):	Permanent Emi	ssion (RTS – 15.231) :				
init efr32 init efr32 start 1 efr32 set-chan < <i>num channel></i> efr32 set-power 14 0 efr32 stream start efr32 stop 1	sx1243 tx on	 % Initialisation % Initialisation RTS (Test mode) % Pure Carrier frequency % Modulated Carrier frequency 				

2.3. EQUIPMENT MODIFICATIONS

 \square None \square Modification:

2.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of 52.5dB μ V is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dB μ V/m.

FS = 52.5 + 7.4 + 1.1 – 29 = 32 dBµV/m

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m. Level in μ V/m = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

2.5. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period

3. CONDUCTED EMISSION DATA

3.1. ENVIRONMENTAL CONDITIONS

Date of test	:	September 19, 2018
Test performed by	:	Jonathan PAUC
Atmospheric pressure (hPa)	:	990
Relative humidity (%)	:	50
Ambient temperature (°C)	:	23

3.2. TEST SETUP

Mains terminals

The EUT and auxiliaries are set:
☑ 80cm above the ground on the non-conducting table (Table-top equipment)
□ 10cm above the ground on isolating support (Floor standing equipment)
The distance between the EUT and the LISN is 80cm. The EUT is 40cm away for the vertical ground plane.

The EUT is powered by V_{nom}.

The EUT is powered through a LISN (measure). Auxiliaries are powered by another LISN.

Test setup

Test setup

3.3. TEST METHOD

The product has been tested according to ANSI C63.10 and FCC Part 15 subpart C. The product has been tested with 120V/60Hz power line voltage and compared to the FCC Part 15 limits. Measurement bandwidth was 9kHz from 150kHz to 30MHz. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is $50\Omega / 50\mu$ H. The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured. Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Measurements are performed on the phase (L1) and neutral (N) of power line voltage. Graphs are obtained in PEAK detection. Measures are also performed in Quasi-Peak and Average for any strong signal.

3.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable + self	-	-	A5329578	10/17	10/19
Probe - Current	SCHAFFNER	CSP9160	A1290017	10/17	10/19
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	12/17	12/18
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	10/17	10/19
Transient limiter	RHODE & SCHWARZ	ESH3-Z2	A7122204	02/18	02/19

Note: In our quality system, the test equipment calibration due is more & less 2 months

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None □ Divergence:

3.6. TEST RESULTS

Measurements are performed on the phase (L1) and neutral (N) of the power line.

Results: (PEAK detection)	
Measure on L1:	graph Emc#1
Measure on N:	graph Emc#2

(see annex 1) (see annex 1)

3.7. CONCLUSION

Conducted emission data measurement performed on the sample of the product Smartkiz / TaHoma Beecon, SN: O17196101F0106, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.

4. RADIATED EMISSION DATA

4.1. ENVIRONMENTAL CONDITIONS

Date of test	:	June 13, 2018
Test performed by	:	Jonathan PAUC
Atmospheric pressure (hPa)	:	991
Relative humidity (%)	:	34
Ambient temperature (°C)	:	21

4.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set:

 $\ensuremath{\boxtimes}$ 80cm above the ground on the non-conducting table (Table-top equipment) - Below 1GHz

☑ 150cm above the ground on the non-conducting table (Table-top equipment) - Above 1GHz

□ 10cm above the ground on isolating support (Floor standing equipment)

The EUT is powered by V_{nom}.

Test setup on OATS

Anechoic Chamber - Photo of setup

4.3. TEST METHOD

The product has been tested according to ANSI C63.10, FCC part 15 subpart C.

Characterization on 10 meters open site from 9kHz to 1GHz:

Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 9kHz below 30MHz and 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown.

Frequency list has been created with anechoic chamber pre-scan results.

Characterization on 3 meters full anechoic chamber from 1GHz to 12.75GHz:

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 1MHz from 1GHz to 12.75GHz.

Test is performed in horizontal (H) and vertical (V) polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. The height antenna is

 \Box On mast, varied from 1m to 4m

☑ Fixed and centered on the EUT (EUT smaller than the beamwidth of the measurement antenna, ANSI C63.10 §6.6.5) Frequency list has been created with anechoic chamber pre-scan results.

4.4. TEST EQUIPMENT LIST

ANECHOIC CHAMBER – SPURIOUS / CARRIER MEASUREMENT									
DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	CAL_DATE	CAL_DUE				
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	10/17	10/19				
Semi-Anechoic chamber #3	SIEPEL	-	D3044017	03/16	03/19				
Turntable chamber (Cage#3)	ETS Lingren	Model 2165	F2000371	-	-				
Turntable controller (Cage#3)	ETS Lingren	Model 2090	F2000444	-	-				
Table C3	LCIE	-	F2000461	-	-				
Rehausse Table C3	LCIE	-	F2000511						
BAT EMC	NEXIO	v3.9.0.10	L1000115						
Amplifier 9kHz - 40GHz	LCIE SUD EST		A7102082	10/17	10/18				
Cable 1 < GHz	-	< 1GHz	A5329637	02/18	02/19				
Cable Measure @3m 18GHz	-	18GHz	A5329038	12/17	12/18				
Cable Measure Analyzer-Amplifier SMA	STORMFLEX	26GHz	A5329681	12/17	12/18				
Cable Measure @1m	STORMFLEX	26GHz	A5329682	12/17	12/18				
Cable Measure @1m	STORMFLEX	26GHz	A5329680	12/17	12/18				
Antenna Bi-log	CHASE	CBL6111A	C2040172	09/18	09/20				
Antenna horn 18GHz	EMCO	3115	C2042029	09/18	09/20				
Radiated emission comb generator	BARDET	-	A3169050	-	-				
HF Radiated emission comb generator	LCIE SUD EST	-	A3169088	-	-				

OATS								
DESCRIPTION	MANUFACTURER	MODEL	N° LCIE					
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	12/17	12/18			
Emission Cable	SUCOFLEX	6GHz	A5329061	03/18	03/19			
Emission Cable	-	6GHz	A5329069	07/17	07/18			
Cable (OATS)	-	1GHz	A5329623	03/18	03/19			
Antenna Bi-log	CHASE	CBL6111A	C2040051	01/18	01/19			
Turntable / Mast controller (OATS)	ETS Lindgren	Model 2066	F2000372	-	-			
Antenna mast (OATS)	ETS Lindgren	2071-2	F2000392	-	-			
Turntable (OATS)	ETS Lindgren	Model 2187	F2000403	-	-			
Table C1/OATS	LCIE	-	F2000445					
OATS	-	-	F2000409	10/17	10/18			
HF Radiated emission comb generator	LCIE SUD EST	-	A3169088	-	-			

Note: In our quality system, the test equipment calibration due is more & less 2 months

4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

□ Divergence:

4.6. TEST RESULTS

4.6.1. Pre-characterization at 3 meters [30MHz-1GHz]

See graphs for 30MHz-1GHz:

Graph identifier	Polarization	Mode	EUT position	Channel	Comments
Emr# 1	H & V	ТХ	Axis XY	Cmin - Zigbee	See annex 1
Emr# 2	H & V	TX	Axis XY	Cmid - Zigbee	See annex 1
Emr# 3	H & V	ТХ	Axis XY	Cmax - Zigbee	See annex 1
Emr# 4	H & V	ТХ	Axis XY	Cnom - RTS	See annex 1

4.6.2. Pre-characterization at 3 meters [1GHz-12.75GHz]

See graphs for 1GHz-12.75GHz:

Graph identifier	Polarization	Mode	EUT position	Channel	Comments
Emr# 5	H & V	TX	Axis XY	Cmin - Zigbee	See annex 1
Emr# 6	H & V	TX	Axis XY	Cmid - Zigbee	See annex 1
Emr# 7	H & V	TX	Axis XY	Cmax - Zigbee	See annex 1
Emr# 8	H & V	TX	Axis XY	Cnom - RTS	See annex 1

4.6.3. Characterization on 10 meters open site from 30MHz to 1GHz

Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

	RTS – 15.231 (Fundamental Frequency)									
No	Frequency	Limit	Measure	Margin	Angle	Pol	Ht	Correc.	Comments	
	(MHz)	Quasi-Peak	Quasi-Peak	(Mes-Lim)	Table	Ant.	Ant.	Factor		
		(dBµV/m)	(dBµV/m)	(dB)	(deg)		(cm)	(dB)		
1	433.420	80.8	76.4	-4.4	124	V	217	20.7	/	

RTS – 15.231 – Spurious Frequency									
No	Frequency (MHz)	Limit Quasi-Peak (dBµV/m)	Measure Quasi-Peak (dBµV/m)	Margin (Mes-Lim) (dB)	Angle Table (deg)	Pol Ant.	Ht Ant. (cm)	Correc. Factor (dB)	Comments
2	866.880	61.9	42.2	-19.7	0	V	100	29.5	/

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

4.6.4. Characterization on 3meters anechoic chamber from 1GHz to 12.75GHz

Worst case final data result:

The frequency list is created from the results obtained during the pre-characterization in anechoic chamber. Measurements are performed using a PEAK and AVERAGE detection.

15.247 - Zigbee - Cmin								
Frequency (MHz)	Mes.Avg (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)				
4811.182	25.4	54.0	-28.6	-3.2				
7217.130	38.4	54.0	-15.6	0.7				
4811.125	38.5	54.0	-15.5	-3.2				
7217.130	38.8	54.0	-15.2	0.7				
Frequency (MHz)	Mes.Peak (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)				
4811.182	48.0	74.0	-26.0	-3.2				
7217.130	43.5	74.0	-30.5	0.7				
4811.125	48.1	74.0	-25.9	-3.2				
7217.130	47.3	74.0	-26.7	0.7				

15.247 - Zigbee - Cmid					
Frequency (MHz)	Mes.Avg (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)	
4880.875	40.4	54.0	-13.6	-3.0	
7321.380	40.1	54.0	-13.9	0.8	
4880.875	39.2	54.0	-14.8	-3.0	
7321.380	37.6	54.0	-16.4	0.8	
Frequency (MHz)	Mes.Peak (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)	
4880.875	48.9	74.0	-25.1	-3.0	
7321.380	49.3	74.0	-24.7	0.8	
4880.875	47.2	74.0	-26.8	-3.0	
7321.380	49.2	74.0	-24.8	0.8	

15.247 - Zigbee - Cmax						
Frequency (MHz)	Mes.Avg (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)		
4961.130	38.0	54.0	-16.0	-2.8		
7441.138	37.5	54.0	-16.5	0.8		
4961.130	37.8	54.0	-16.2	-2.8		
7441.138	38.7	54.0	-15.3	0.8		
Frequency (MHz)	Mes.Peak (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)		
4961.130	47.6	74.0	-26.4	-2.8		
7441.138	49.3	74.0	-24.7	0.8		
4961.130	48.0	74.0	-26.0	-2.8		
7441.138	48.8	74.0	-25.2	0.8		

		15.231 - RTS		
Frequency (MHz)	Mes.Avg (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)
1300.266	47.6	61.9	-14.2	-15.0
6067.950	49.7	61.9	-12.2	-1.9
1300.472	46.3	61.9	-15.6	-15.0
3901.076	50.3	61.9	-11.6	-5.2
4334.418	50.0	61.9	-11.8	-4.7
6068.006	49.1	61.9	-12.8	-1.9
Frequency (MHz)	Mes.Peak (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)
1300.266	47.2	81.9	-34.7	-15.0
6067.950	51.9	81.9	-30.0	-1.9
1300.472	46.3	81.9	-35.6	-15.0
3901.076	50.3	81.9	-31.6	-5.2
4334.418	50.2	81.9	-31.7	-4.7
6068.006	52.7	81.9	-29.2	-1.9

4.7. CONCLUSION

Radiated emission data measurement performed on the sample of the product Smartkiz / TaHoma Beecon, SN: O17196101F0106, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247/RSS-210 limits.

5. BANDWIDTH (15.247)

5.1. TEST CONDITIONS

Date of test	:	March 20, 2018
Test performed by	:	Jonathan PAUC
Atmospheric pressure (hPa)	:	989
Relative humidity (%)	:	23
Ambient temperature (°C)	:	24

5.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 13.6dB

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete, a delta marker is used to measure the frequency difference as the emission bandwidth.

Measurement Procedure: §8.1 Option 1 (DTS Measurement Guidance)

1. Set resolution bandwidth (RBW) = 100kHz.

- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

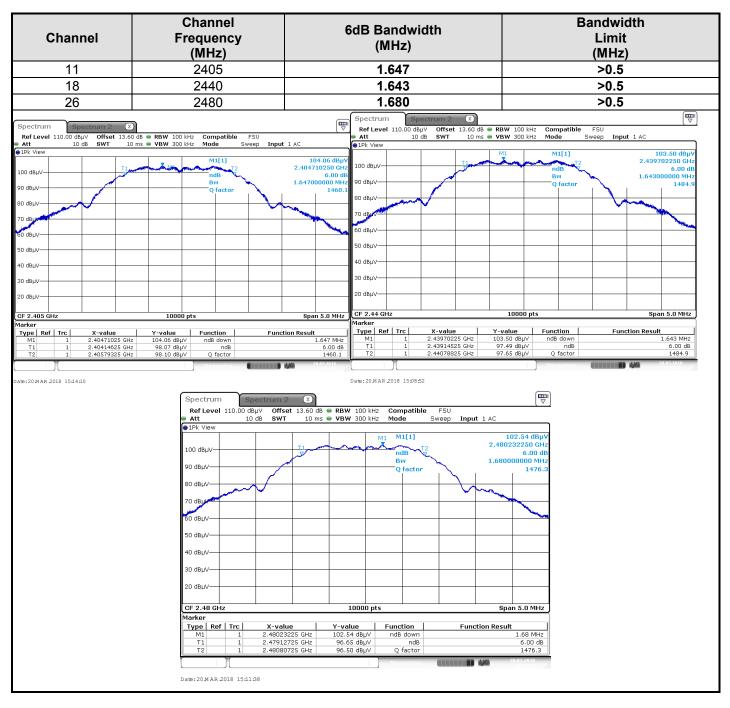
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

5.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	6GHz	A5329635	02/18	02/19
Cable SMA	-	6GHz	A5329637	02/18	02/19
Attenuator 10dB	AEROFLEX	-	A7122268	06/17	06/18
Spectrum Analyser	RHODE & SCHWARZ	ESR7	A2642026	02/17	04/18*

* : under derogation

Note: In our quality system, the test equipment calibration due is more & less 2 months


5.1. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

Mone

 \Box Divergence:

5.2. TEST SEQUENCE AND RESULTS

5.3. CONCLUSION

Bandwidth measurement performed on the sample of the product Smartkiz / TaHoma Beecon, SN: O17196101F0106, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.

6. BANDWIDTH (15.231)

6.1. TEST CONDITIONS

Date of test	:	June 4, 2018
Test performed by	:	Jonathan PAUC
Atmospheric pressure (hPa)	:	989
Relative humidity (%)	:	23
Ambient temperature (°C)	:	50

6.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete. Offset: Attenuator+cable = 1.5db

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete, a delta marker is used to measure the frequency difference as the emission bandwidth.

Measurement Procedure: §6.9.2 (ANSI C63-10 2013)

- 1. Set resolution bandwidth (RBW) = 1 to 5% of OBW
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

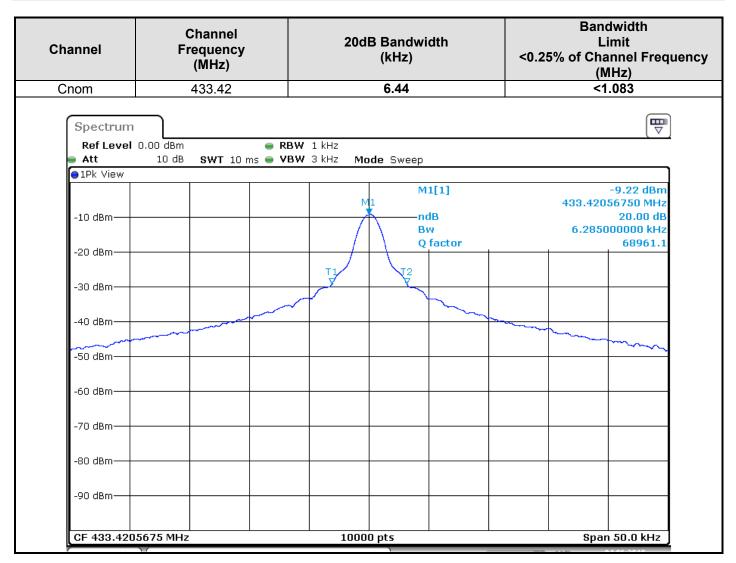
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

6.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	6GHz	A5329635	02/18	02/19
Cable SMA	-	6GHz	A5329637	02/18	02/19
Attenuator 10dB	AEROFLEX	-	A7122268	06/17	06/18
Spectrum Analyser	RHODE & SCHWARZ	ESR7	A2642026	02/17	04/18*

* : under derogation

Note: In our quality system, the test equipment calibration due is more & less 2 months


6.1. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

□ Divergence:

6.2. TEST SEQUENCE AND RESULTS

6.3. CONCLUSION

Bandwidth measurement performed on the sample of the product Smartkiz / TaHoma Beecon, SN: O17196101F0106, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-210 limits.

7. MOMENTARY OPERATION (15.231)

7.1. TEST CONDITIONS

Date of test Test performed by		September 19, 2018 Jonathan PAUC
Atmospheric pressure (hPa)	:	989
Relative humidity (%)	:	23
Ambient temperature (°C)	:	50

7.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured time transmission is measured and recorded; Offset: Attenuator+cable = 1.5db

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured time transmission is measured and recorded;

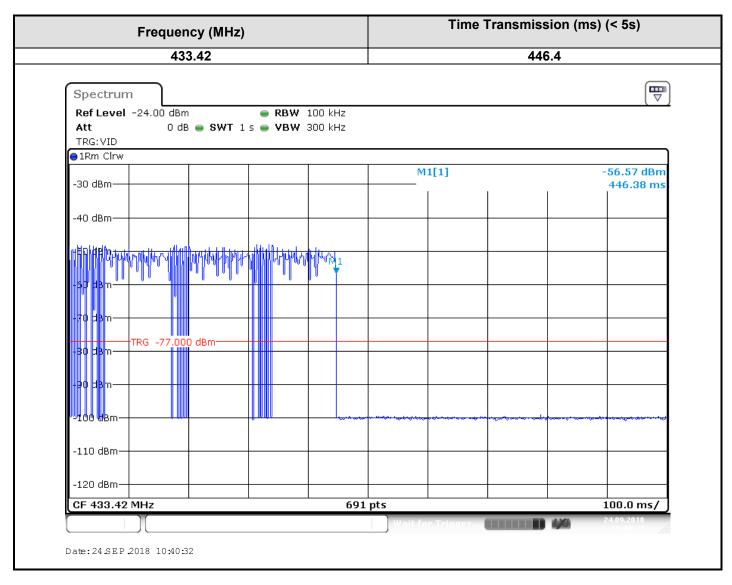
7.3. SETUP

- (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
- (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

7.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	6GHz	A5329635	02/18	02/19
Attenuator 10dB	AEROFLEX	-	A7122268	06/18	06/19
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060051	03/18	03/19

Note: In our quality system, the test equipment calibration due is more & less 2 months


7.1. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

Mone

Divergence:

7.2. TEST SEQUENCE AND RESULTS

7.3. CONCLUSION

Momentary operation performed on the sample of the product Smartkiz / TaHoma Beecon, SN: O17196101F0106, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-210 limits.

8. MAXIMUM PEAK OUTPUT POWER (15.247)

8.1. TEST CONDITIONS

Date of test	:	March 20, 2018
Test performed by	:	Jonathan PAUC
Atmospheric pressure (hPa)	:	989
Relative humidity (%)	:	23
Ambient temperature (°C)	:	24

8.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 13.6dB

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.

- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

- d is the distance in meters from which the field strength was measured.

- P is the power in watts for which you are solving:

$$P = \frac{(E \, a)}{30 \, G}$$

 $(E_d)^2$

Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT. • ☑ *RBW* ≥ *DTS bandwidth* §9.1.1 (*DTS Measurement Guidance*)

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq 3 x RBW.

c) Set span \ge 3 x RBW

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

• 🗆 Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

a) Set the RBW = 1 MHz.

b) Set the VBW \geq 3 x RBW

c) Set the span \geq 1.5 x DTS bandwidth.

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

8.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	6GHz	A5329635	02/18	02/19
Cable SMA	-	6GHz	A5329637	02/18	02/19
Attenuator 10dB	AEROFLEX	-	A7122268	06/17	06/18
Spectrum Analyser	RHODE & SCHWARZ	ESR7	A2642026	02/17	04/18

Note: In our quality system, the test equipment calibration due is more & less 2 months

8.1. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None

□ Divergence:

8.2. TEST SEQUENCE AND RESULTS

Modulation:

8.3. CONCLUSION

Maximum Peak Output Power measurement performed on the sample of the product Smartkiz / TaHoma Beecon, SN: O17196101F0106, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 limits.

9. POWER SPECTRAL DENSITY (15.247)

9.1. TEST CONDITIONS

Date of test	:	March 20, 2018
Test performed by	:	Jonathan PAUC
Atmospheric pressure (hPa)	:	989
Relative humidity (%)	:	23
Ambient temperature (°C)	:	24

9.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 13.6dB

□ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.

- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

- d is the distance in meters from which the field strength was measured.

- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30G}$$

Measurement Procedure PKPSD: §10.2 (DTS Measurement Guidance)

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: 3 kHz.

d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

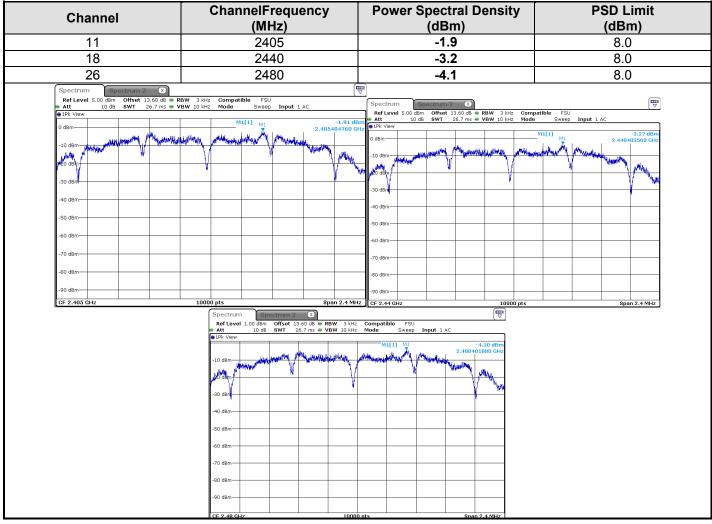
i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.3. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 \square None \square Divergence:

9.4. TEST EQUIPMENT LIST


DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	18GHz	A5329688	02/18	02/19
Attenuator 10dB	AEROFLEX	-	A7122268	06/17	06/18
Spectrum Analyser	RHODE & SCHWARZ	ESR7	A2642026	02/17	04/18*

* : under derogation

Note: In our quality system, the test equipment calibration due is more & less 2 months

9.5. TEST SEQUENCE AND RESULTS

Modulation:

9.6. CONCLUSION

Power Spectral Density measurement performed on the sample of the product Smartkiz / TaHoma Beecon, SN: O17196101F0106, in configuration and description presented in this test report, show levels *below* the FCC CFR 47 Part 15 and RSS-247 limits.

10. BAND EDGE MEASUREMENT (15.247)

10.1. TEST CONDITIONS

Date of test	: March 21, 2018	March 26th 2018
Test performed by	: Jonathan PAUC	Jonathan PAUC
Atmospheric pressure (hPa)	: 990	991
Relative humidity (%)	: 31	25
Ambient temperature (°C)	: 21	22
,		

10.2. LIMIT

RF antenna conducted test: § 11 (DTS Measurement Guidance)

Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB. *For -20dBc limit, lowest power output level is considered, worst case.*

Radiated emission test: § 12 (DTS Measurement Guidance)

Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See results in Radiated emissions section before.

10.3. SETUP

The EUT is placed in an anechoic chamber; levels have been corrected to be in compliant with Peak Output Power measurement. The EUT is turn ON; the graphs of the restrict frequency band are recorded with a display line indicating the highest level and other the 20dB offset below to show compliance with 15.247 (d) and 15.205. The emissions in restricted bands are compared to 15.209 limits. RBW: 100kHz

VBW: 300kHz

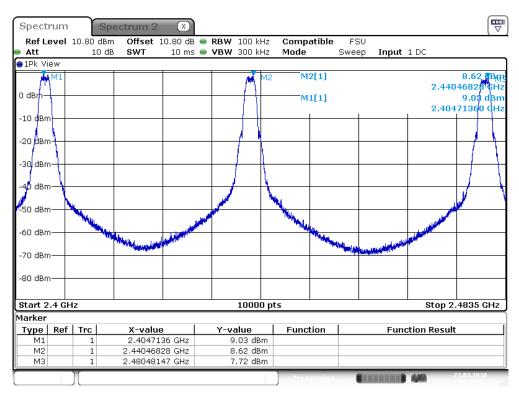
10.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	18GHz	A5329688	02/18	02/19
Attenuator 10dB	AEROFLEX	-	A7122268	06/17	06/18
Spectrum Analyser	RHODE & SCHWARZ	ESR7	A2642026	02/17	04/18*

*Under derogation

Note: In our quality system, the test equipment calibration due is more & less 2 months

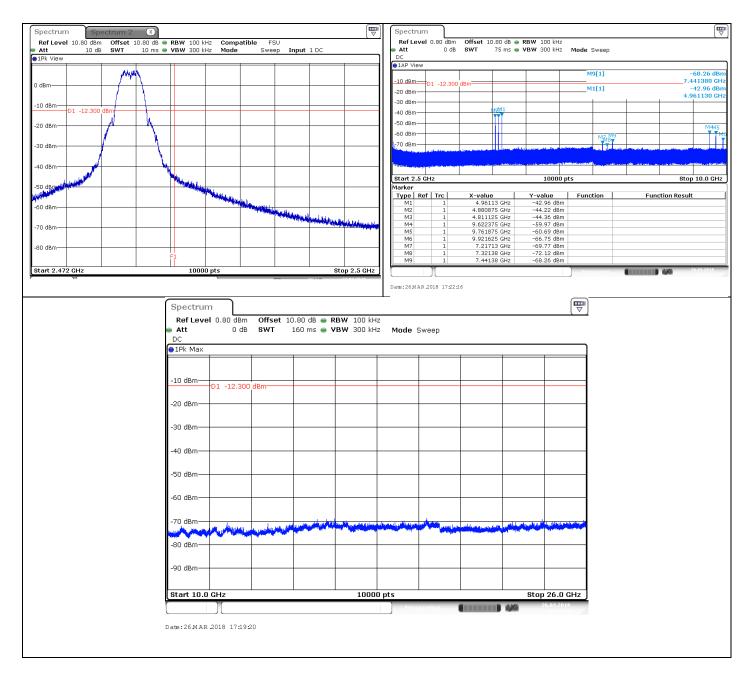
10.1. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION


Mone

□ Divergence:

10.2. TEST SEQUENCE AND RESULTS

Offset: Attenuator+cable 10.8dB **GRAPH / MODULATION.**


Date: 21 MAR 2018 16:14:03

Worst Case - Channel 26 : Limit (20dBc) is -12.3dBm

Spectrum									Spectrun		ectrum 2	X						
Att	-9.20 dBm Off 10 dB SW	i set 10.80 dB ● /T 353 ms ●	VBW 200 Hz VBW 1 kHz	z Compatik z <u>Mo</u> de	ble FSU Sweep	Input 1 D	С		🗢 Att	l -9.20 dBm 10 dB	Offset 1 SWT	u.80 dB 👄 29.9 ms 👄	KBW 10 kH VBW 30 kH	iz Compa iz Mode		Input 1	DC	
1Pk View									●1Pk View									
D1	1 -12.300 dBm-									D1 -12.300	dBm							
20 dBm		<u> </u>	++						-20 dBm									
									-30 dBm									
30 dBm																		
40 dBm									-40 dBm									
									-50 dBm									
-50 dBm									SO USIN									
60 dBm									-60 dBm									
									TO dow									
70 dBm			+ +						-70 dBm									
0.0 40									-80 dBm									
80 dBm									Volation Ashed	designation of	<u>Litit anni an a</u>	a printed states from the	ut den dit finski k	and the second second	a hurring the hold first	and the Annalytic	Nganga kang kalanan d	in the second second
g0 dBm									-90 dBm									
90 dBm	MANNA CARLAND	indle but the here he	ا م م ا م						-100 dBm—									
100 dBm	· Jacutation Military	www.industryty.ac/big/04/	a national designations	with the state of	vannande	Marth and the for po	man walk	Vinantingel Vielan 44										
			10021				Ot	50 0 kt/-	Start 150.	0 kHz			1000	10 pts			Stop	30.0 MH
Start 9.0 kHz			10000) pts			Stop 1	50.0 kHz	(a									ſ
Spectrum Refievel -	-9.20 dBm Off	m 2 🛛 🗙	RBW 100 PE	Hz Compati	ible FSU				Spectrun Ref Leve	n Spe I -9.20 dBm	offset 1	X	RBW 1004	Hz Comp	atible 🖙	SU		(
Att	10 dB SW	/T 10 ms 🖷	VBW 300 kH	-iz Mode		Input 11	DC		Att	10 dB	SWT	12 ms 🖷	VBW 300	Hz Mode	Swee	ep Input	1 DC	
1Pk View									●1Pk View	D1 -12.300	dBm							
10	1 -12.300 dBm									01 -12.300	ubiii							
20 dBm			+ +						-20 dBm									
30 dBm									-30 dBm									
SO UDITI																		
40 dBm			+						-40 dBm									
									-50 dBm									
50 dBm									50 dbiii									
60 dBm									-60 dBm									
								1	Aund and the curst	والقربانية والمعارفة	الباسخة فاطلعه	antennitilectula		dillore and	الاغ محاملة فالألمين		البريوسية بالأر	ومعاولة وحادر
70 dBm	محدوقانا فبالإرغانية	فستلتاذ ويع وتهييا وأحديون	La	الألبار ومعصومة والله														
-80 dBm		All and a second se		A					-80 dBm									
oo dom																		
-90 dBm			+						-90 dBm									
									-100 dBm-									
-100 dBm																		
Start 30.0 Mi	1H7		10000	0 nts			Ston	1.0 GHz	Start 1.0 0	Hz			1000	0 pts			Sto	p 2.2 GF
Spectrum		ım 2 🗵	10000	7 pts			0100		Spectrun		C cou unto o	×						ſ
		fset 10.80 dB 🖷	RBW 100 ki	Hz Comnat	tible ESU	1				10.80 dBm	offset 1		RBW 100 k	Hz Comp	atible FS	iU		
Att	10 dB SW	/T 10 ms 👄	VBW 300 kH	Hz Mode	Sweep	Input 1	DC		Att	10 dB				Hz Mode		ep Input :	L DC	
1Pk View	01 -12.300 dBm-								●1Pk View						,MAAA			
									0 dBm							1		
20 dBm									o upili									
30 dBm				└───┼					-10 dBm	D1 -12.300	dBm				+			
										1 12,000					N I	W		
40 dBm			+						-20 dBm									
50 d8m									-30 dBm					⊢		1		
50 dBm —														J.		N N		
			4	───┼					-40 dBm					1				
60 dBm							M	A COLORIS COLORIS	-50 dBm				LINE RALING	*			What we wanted	william and
60 dBm		and a second second		والمراجعة الاعتراقية والتعالية	A CARLER AND A CARLER	a de la competencia de	Hand Hall				ألحانون فالمحرب	البط فيتلج المعالمة					1	
60 dBm	udanina dinastan	and the second second	he complete winds	Lorenza and a starting of the	· · · · ·				-60 dBm	L	North Contraction							
ni fitti ta da anta	<u>alaniaastaastaa</u>		ter engen state ander						a land a state of the state of	Contraction of the owner of	MUMPLE .							
ni in the state of t	(shadaarda astan	<u>alihika dina kanan</u>	had a proposited days in the set						-60 dBm									
-60 dBm	(administration)								-70 dBm									
80 dBm			<u>het an en en</u>															
80 dBm			<u> </u>						-70 dBm				F1					

11. OCCUPIED BANDWIDTH

11.1. TEST CONDITIONS

Date of test	:	March 21, 2018
Test performed by	:	Jonathan PAUC
Atmospheric pressure (hPa)	:	991
Relative humidity (%)	:	31
Ambient temperature (°C)	:	21

11.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete. Offset: Attenuator+cable 10.8dB

□ Radiated measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

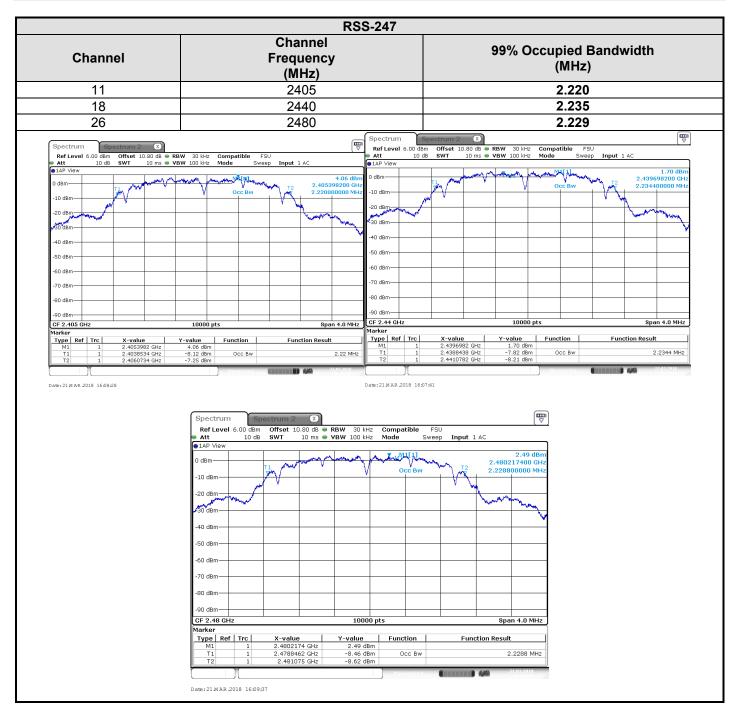
Measurement Procedure:

- a) RBW shall be in the range of 1% to 5% of the anticipated occupied bandwidth
- b) Set the video bandwidth (VBW) \ge 3 x RBW
- c) SPAN = Capture all products of the modulation process
- d) Detector = Peak.
- e) Trace mode = max hold.
- f) Sweep = auto couple.
- g) Allow the trace to stabilize.
- h) OBW 99% function of spectrum analyzer used

11.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable SMA	-	18GHz	A5329688	02/18	02/19
Attenuator 10dB	AEROFLEX	-	A7122268	06/17	06/18
Spectrum Analyser	RHODE & SCHWARZ	ESR7	A2642026	02/17	04/18

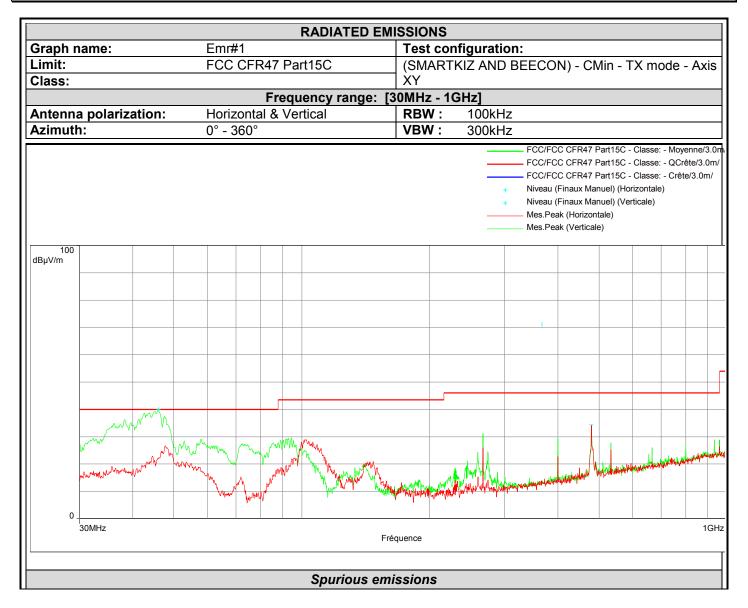
Note: In our quality system, the test equipment calibration due is more & less 2 months


11.1. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

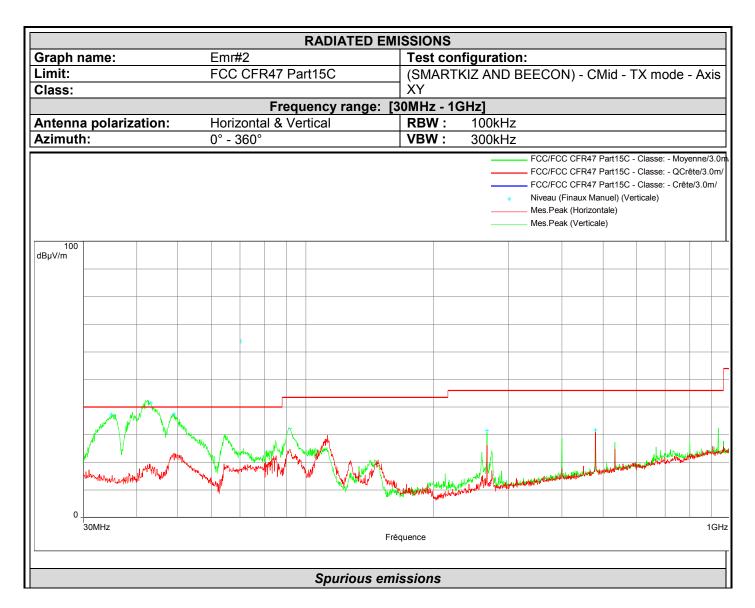
☑ None

Divergence:

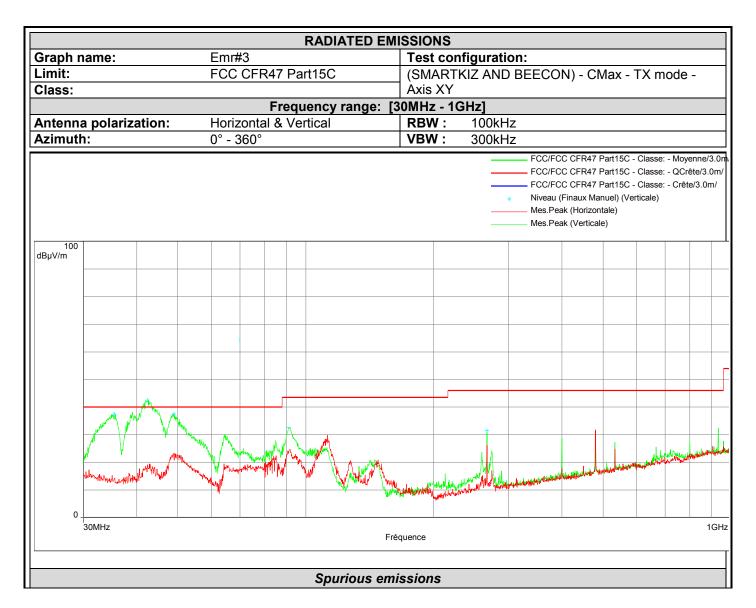
11.2. TEST SEQUENCE AND RESULTS

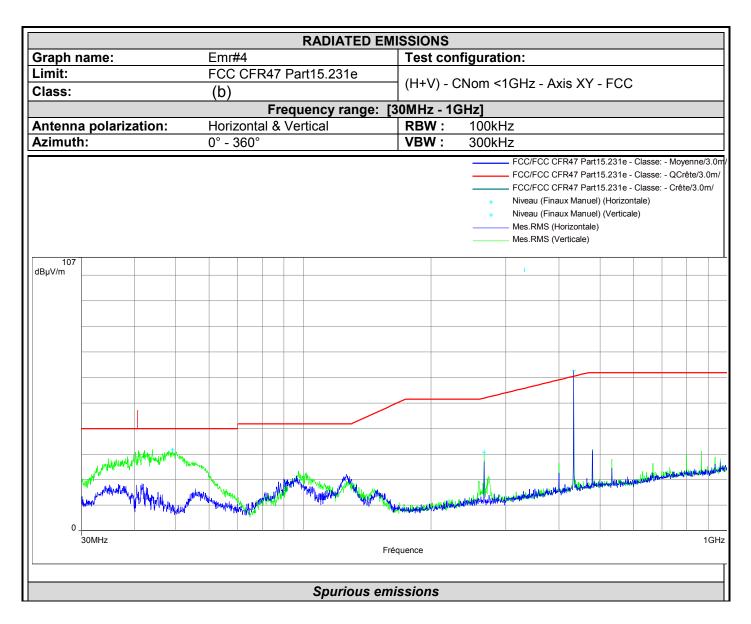


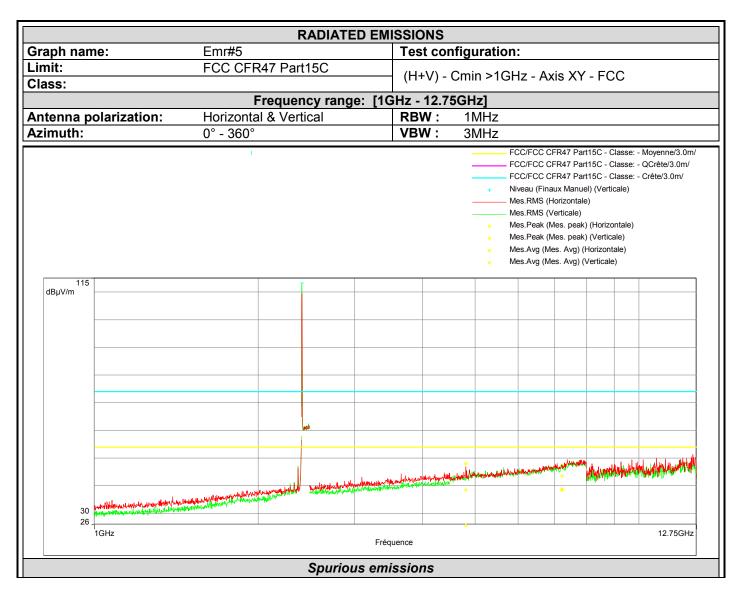
Channel	Char Frequ (MH	ency z)	99% Occupied Bandwidth (kHz)	0.25%	Limit (MHz) 0.25% of Channel frequen	
Cnom	433.	42	19.103		1.083	
Spectrum Ref Level -2.00 Att) dBm 15 dB SWT 1.9 ms (RBW 1 kHz	Mode Auto FFT			
●1Pk View						
-10 dBm			M1 M1[1] Occ B			-8.72 dBm 20870 MHz 749638 kHz
-30 dBm		T1				
-40 dBm						
-60 dBm	here and the second sec			- marine and a second	human	· ·····
-70 dBm						
-80 dBm						
-90 dBm						
CF 433.42 MHz		69	91 pts		Span	200.0 kHz
Marker						
Type Ref Tr M1	C X-value 1 433.42087 M 1 433.411027 M 1 433.43013 M	Hz -37.82	dBm dBm Occ B		unction Result 19.1027	: 49638 kHz



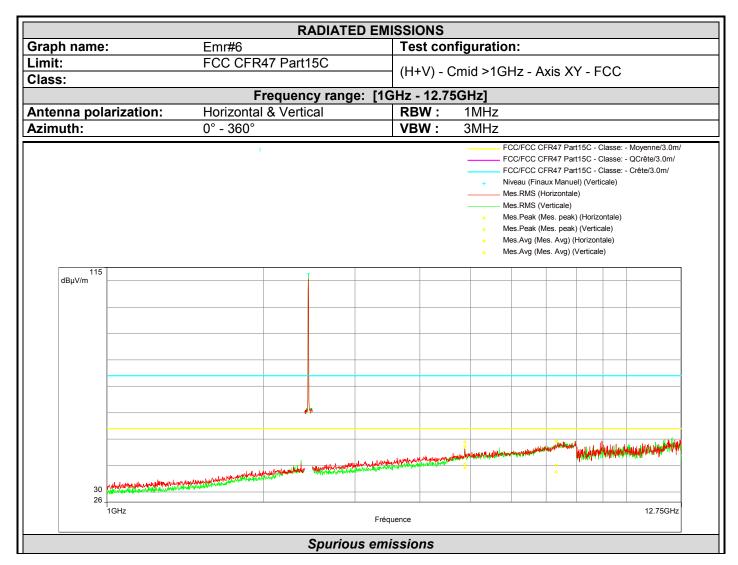
12. ANNEX 1 (GRAPHS)


Frequency (MHz)	Peak Level (dBµV/m)	Polarization
45.963	40.0	Vertical
480.000	34.4	Horizontal


Frequency (MHz)	Peak Level (dBµV/m)	Polarization
34.845	37.5	Vertical
43.192	41.6	Vertical
49.006	37.5	Vertical
91.829	32.2	Vertical
266.680	31.6	Vertical
480.000	31.8	Vertical


Frequency (MHz)	Peak Level (dBµV/m)	Polarization
35.423	37.5	Vertical
42.478	42.6	Vertical
49.006	37.5	Vertical
91.234	32.6	Vertical
266.680	31.6	Vertical

Frequency (MHz)	Peak Level (dBµV/m)	Polarization
433.400	62.8	Horizontal
49.193	31.7	Vertical
266.680	30.7	Vertical



Frequency (MHz)	Peak Level (dBµV/m)	Polarization
2405.494	113.2	Vertical

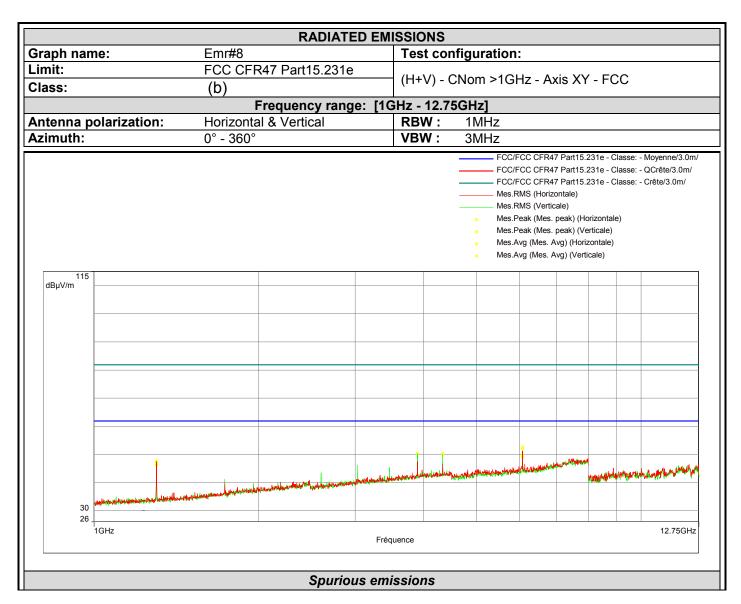
Frequency (MHz)	Mes.Avg (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)
4811.182	25.4	54.0	-28.6	-3.2
7217.130	38.4	54.0	-15.6	0.7
4811.125	38.5	54.0	-15.5	-3.2
7217.130	38.8	54.0	-15.2	0.7

Frequency (MHz)	Mes.Peak (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)
4811.182	48.0	74.0	-26.0	-3.2
7217.130	43.5	74.0	-30.5	0.7
4811.125	48.1	74.0	-25.9	-3.2
7217.130	47.3	74.0	-26.7	0.7

Frequency (MHz)	Peak Level (dBµV/m)	Polarization
2439.512	112.7	Vertical

Frequency (MHz)	Mes.Avg (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)
4880.875	40.4	54.0	-13.6	-3.0
7321.380	40.1	54.0	-13.9	0.8
4880.875	39.2	54.0	-14.8	-3.0
7321.380	37.6	54.0	-16.4	0.8

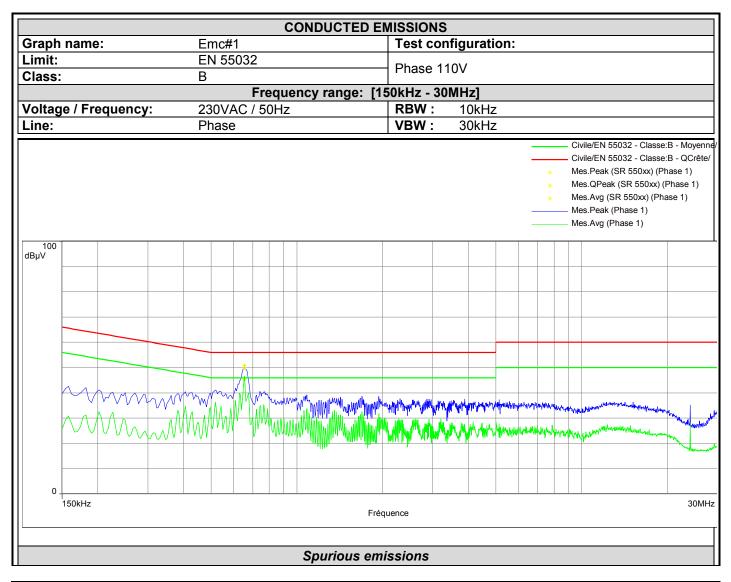
Frequency (MHz)	Mes.Peak (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)
4880.875	48.9	74.0	-25.1	-3.0
7321.380	49.3	74.0	-24.7	0.8
4880.875	47.2	74.0	-26.8	-3.0
7321.380	49.2	74.0	-24.8	0.8


			RADIATE	ED EMISSIO	ONS						
Fraph name	e :	Emr#7		Tes	st confi	guration	:				
.imit:		FCC CFR47 Par	rt15C	/U_		- nax >1G⊦			FC	C	
lass:					•		12 - AX	15 / 1	- FC	C	
				e: [1GHz -							
ntenna po		Horizontal & Ver	tical	RB		1MHz					
zimuth:		0° - 360°		VB\	W :	3MHz					
							CC/FCC CF	R47 Par R47 Par ux Manue orizontale erticale) es. peak s. peak s. Avg) (l	15C - C 15C - C 1) (Vertic 2) (Horizon) (Vertica Horizonta	lasse: - lasse: - cale) ntale) ale) ale)	Moyenne/3.0m/ QCrête/3.0m/ Crête/3.0m/
115 dBµV/m			I								
asprim											
_											
_											
			, /1								
				1	for the start of the bill	wind the state of	a and the second	nift have a state	, Milyelevyle	Hillestelles	signed and the second second
30	al & the first and the first a	the free provides and the second s	u Uystatataatiit			•		8			
26	GHz										12.75GHz

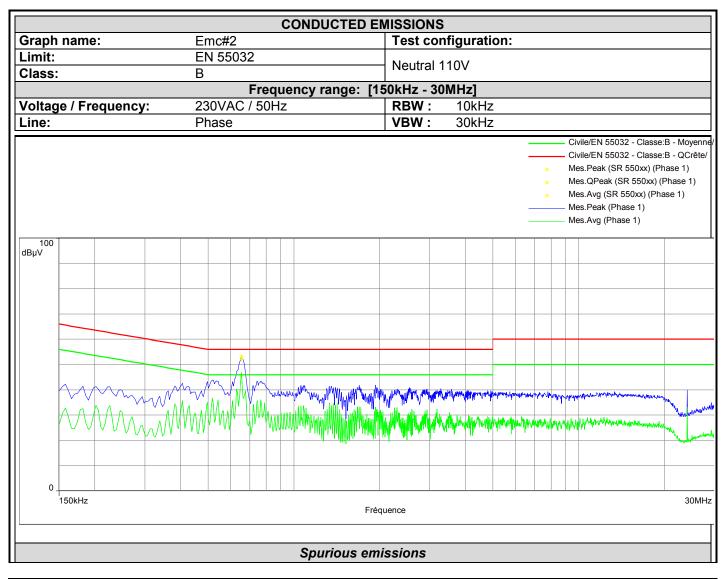
Frequency (MHz)	Peak Level (dBµV/m)	Polarization
2479.492	112.7	Vertical

Frequency (MHz)	Mes.Avg (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)
4961.130	38.0	54.0	-16.0	-2.8
7441.138	37.5	54.0	-16.5	0.8
4961.130	37.8	54.0	-16.2	-2.8
7441.138	38.7	54.0	-15.3	0.8

Frequency (MHz)	Mes.Peak (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)
4961.130	47.6	74.0	-26.4	-2.8
7441.138	49.3	74.0	-24.7	0.8
4961.130	48.0	74.0	-26.0	-2.8
7441.138	48.8	74.0	-25.2	0.8



Mes.Avg (dBµV/m) Limite (dBµV/m) Mes.-Lim. (dB) Correction (dB) Frequency (MHz) 1300.266 47.6 61.9 -14.2 -15.0 6067.950 49.7 61.9 -12.2 -1.9 1300.472 46.3 61.9 -15.6 -15.0 3901.076 50.3 61.9 -11.6 -5.2 4334.418 50.0 61.9 -11.8 -4.7 6068.006 49.1 61.9 -12.8 -1.9


Frequency (MHz)	Mes.Peak (dBµV/m)	Limite (dBµV/m)	MesLim. (dB)	Correction (dB)
1300.266	47.2	81.9	-34.7	-15.0
6067.950	51.9	81.9	-30.0	-1.9
1300.472	46.3	81.9	-35.6	-15.0
3901.076	50.3	81.9	-31.6	-5.2
4334.418	50.2	81.9	-31.7	-4.7
6068.006	52.7	81.9	-29.2	-1.9

Frequenc y (MHz)	Mes.Peak (dBµV)	Mes.QPe ak (dBµV)	LimQP (dBµV)	Mes.QPe ak- LimQP (dB)	Mes.Avg (dBµV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)	Line	Correctio n (dB)
0.654	50.8	49.7	56.0	-6.3	45.3	46.0	-0.7	Phase 1	19.5

Frequenc y (MHz)	Mes.Peak (dBµV)	Mes.QPe ak (dBµV)	LimQP (dBµV)	Mes.QPe ak- LimQP (dB)	Mes.Avg (dBµV)	LimAvg (dBµV)	Mes.Avg- LimAvg (dB)	Line	Correctio n (dB)
0.654	53.1	52.3	56.0	-3.7	45.7	46.0	-0.3	Phase 1	19.5

13. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / <i>Wide uncertainty</i> <i>laboratory</i> (k=2) ± x	Incertitude Iimite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.51 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.26 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.45 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	3.09 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.20 dB	6.3 dB
		1

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par la norme, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limits values.