

FCC Test Report

Report No.: 2405Z56633EB

Applicant: SHENZHEN MOCLOUD TECHNOLOGY CO., LTD.

Address: Rm 1401-02, Huatong Bldg., Ganli 2nd Road, Jihua Town,

Longgang Dist., Shenzhen, China

Product Name: SPEAKER

Product Model: MPD523

Multiple Models: N/A

Trade Mark: Maxpower

FCC ID: 2AXUUMPD523

Standards: FCC CFR Title 47 Part 15C (§15.247)

Test Date: 2024-12-02 to 2024-12-16

Test Result: Complied

Report Date: 2024-12-17

Reviewed by:

Approved by:

Frank Yin

Frank Tin

Project Engineer

Jacob Kong

Jacob Gong

Manager

Prepared by:

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-006/V1.1 Page 1 of 68

Announcement

- 1. This test report shall not be reproduced except in full, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	2024-12-17	Original

Contents

1	Gene	ral Info	rmation	4
	1.1	Client	Information	4
	1.2	Produ	ct Description of EUT	4
	1.3	Anten	na information	4
	1.4	Relate	ed Submittal(s)/Grant(s)	5
	1.5	Meas	urement Uncertainty	5
	1.6	Labor	atory Location	5
	1.7	Test N	Methodology	5
2	Desc	ription	of Measurement	6
	2.1	Test 0	Configuration	6
	2.2		Auxiliary Equipment	
	2.3		onnecting Cables	
	2.4		Diagram of Connection between EUT and AE	
	2.5		Setup	
	2.6		Procedure	
	2.7		urement Method	
_	2.8		urement Equipment	
3			5	
	3.1		Summary	
	3.2	Limit .		14
	3.3	AC Li	ne Conducted Emissions Test Data	15
	3.4	Radia	ted emission Test Data	19
	3.5	RF C	onducted Test Data	51
	3	3.5.1	20 dB Emission Bandwidth	51
	3	3.5.2	99% Occupied Bandwidth	51
	3	3.5.3	Maximum Conducted Peak Output Power	52
	3	3.5.4	Channel separation	52
	3	3.5.5	Number of hopping Frequency	
	3	3.5.6	Time of occupancy (dwell time)	53
	3	3.5.7	100 kHz Bandwidth of Frequency Band Edge	54
4	Test	Setup F	Photo	67
5	E.U.T	Photo		68

1 General Information

1.1 Client Information

Applicant:	SHENZHEN MOCLOUD TECHNOLOGY CO., LTD.
Address:	Rm 1401-02, Huatong Bldg., Ganli 2nd Road, Jihua Town, Longgang Dist., Shenzhen, China
Manufacturer:	SHENZHEN MOCLOUD TECHNOLOGY CO., LTD.
Address:	Rm 1401-02, Huatong Bldg., Ganli 2nd Road, Jihua Town, Longgang Dist., Shenzhen, China

1.2 Product Description of EUT

The EUT is SPEAKER that contains Classic Bluetooth radio, this report covers the full testing of the Classic Bluetooth radio.

Sample Serial Number	2UTB-2 for CE&RE test, 2UTB-3 for RF conducted test (assigned by WATC)
Sample Received Date	2024-11-20
Sample Status	Good Condition
Frequency Range	2402MHz - 2480MHz
Maximum Conducted Peak Output Power	-4.87dBm
Modulation Technology	GFSK, π/4-DQPSK, 8DPSK
Spatial Streams	SISO (1TX, 1RX)
Antenna Gain#	-2.9dBi
Power Supply	DC 9V, 2A from AC adapter or DC 7.4V from battery
Adapter Information	Input: AC110-240V, 50/60Hz
	Output: DC 9V/2A,
Modification	Sample No Modification by the test lab

1.3 Antenna information

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Device Antenna information:

The BT antenna is an internal antenna which cannot replace by end-user, please see product internal photos for details.

1.4 Related Submittal(s)/Grant(s)

No related submittal(s)/Grant(s)

1.5 Measurement Uncertainty

no measurement officertainty					
Parameter		Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))			
AC Power Lines Condu	cted Emissions	±3.14dB			
Emissions, Radiated	Below 30MHz	±2.78dB			
	Below 1GHz	±4.84dB			
	Above 1GHz	±5.44dB			
Emissions, Conducted		1.75dB			
Conducted Power		0.74dB			
Frequency Error		150Hz			
Bandwidth		0.34%			
Power Spectral Density		0.74dB			

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

1.6 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: qa@watc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.7 Test Methodology

FCC CFR 47 Part 2

FCC CFR 47 Part 15

KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2020

Report Template: TR-4-E-006/V1.1 Page 5 of 68

2 Description of Measurement

2.1 Test Configuration

Operating channels:							
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
0	2402	39	2441	76	2478		
1	2403	40	2442	77	2479		
				78	2480		
38	2440			/	/		

According to ANSI C63.10-2020 chapter 5.6.1 Table 11 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

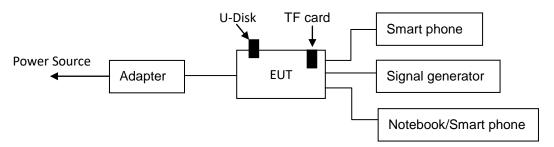
Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

Test Mode:						
Transmitting mode: Keep the EUT in continuous transmitting with modulation						
Exercise software#:	oftware [#] : FrequencyTool_v0.3.0					
		Po	ower Level Setting [#]			
Mode	Data rate	Low Channel	Middle Channel	High Channel		
GFSK	1Mbps	-4	-4	-4		
π/4 DQPSK	2Mbps	-4	-4	-4		
8DPSK	3Mbps	-4	-4	-4		
The exercise softwar	e and the maximum	power setting that pro	vided by manufacture	er.		

Worst-Case Configuration:

For AC power line conducted emission and radiated emission 9kHz-1GHz and above 18GHz were performed with the EUT transmits at the channel with highest output power as worst-case scenario.

Report Template: TR-4-E-006/V1.1 Page 6 of 68

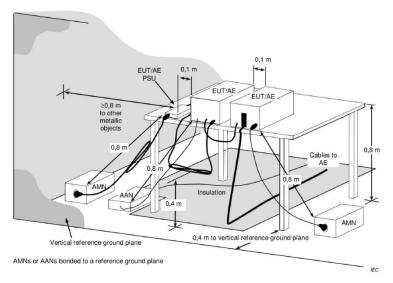

2.2 Test Auxiliary Equipment

Manufacturer	Description	Model	Serial Number
R&S	R&S Signal generator		256300
Sparx	Smart phone	Neo x	Unknown
Unknown	Smart phone	Unknown	Unknown
DELL	Notebook	E5570	52KW7
Unknown	U-Disk	Unknown	Unknown
Unknown	TF card	Unknown	Unknown

2.3 Interconnecting Cables

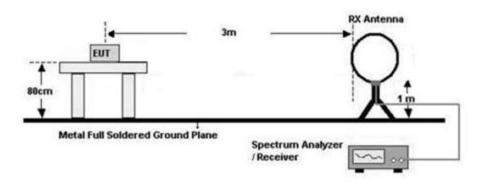
Manufacturer	Description	Length(m)	From	То
Unknown	DC cable	1.2	Adapter	EUT
Unknown	3.5mm to 3.5mm cable	0.5	EUT	Smart phone
Unknown	6.5mm to coaxial cable	1.0	EUT	Signal generator
Unknown	3.5mm to 6.5mm cable	1.5	EUT	Notebook/Smart Phone

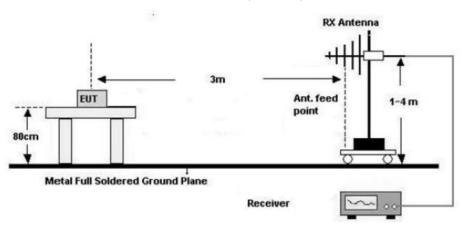
2.4 Block Diagram of Connection between EUT and AE



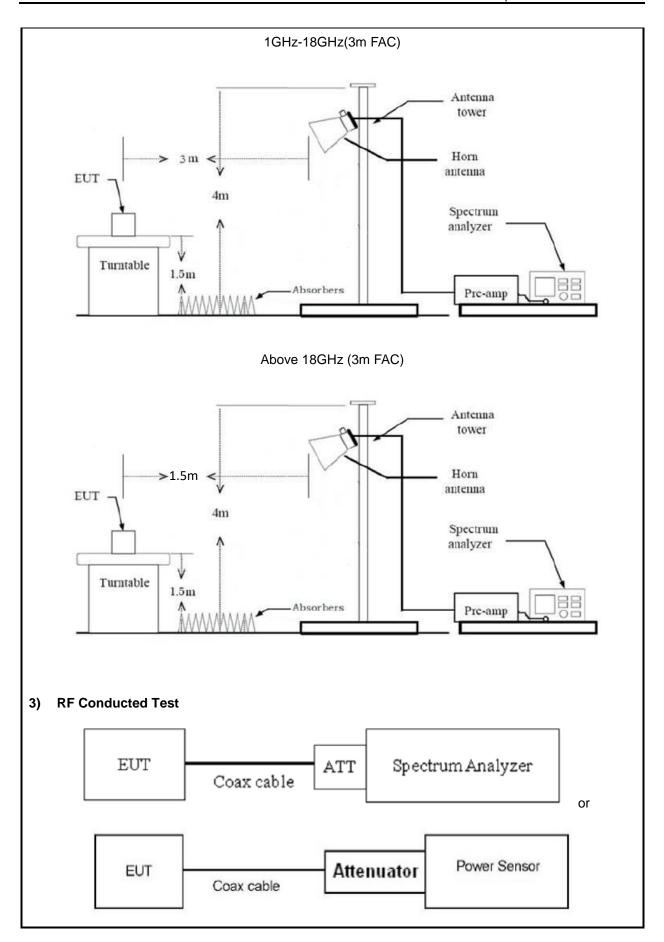
Note: for reference only, the actual connection setup used for testing please refer to the test photos.

2.5 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:


Below 30MHz (3m SAC)

30MHz-1GHz (3m SAC)

2.6 Test Procedure

Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- Both sides of A.C. line are checked for maximum conducted interference. In order to find the
 maximum emission, the relative positions of equipment and all of the interface cables must be
 changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For below 30MHz

- 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).
- 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)

b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

c) For above 1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5 m (above 18GHz).
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. The RBW/VBW of spectrum analyzer is set to 1MHz/3MHz for scan Peak emission, for measured average emission, reduce the VBW to 10Hz. (Note: a high VBW (for example 5kHz) may used to scan average emissions to avoid long sweep time.)
- 4. If the Peak emission complies with the Average limit, then perform average measurement is optional.
- 5. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.

Report Template: TR-4-E-006/V1.1 Page 10 of 68

6. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

RF Conducted Test:

- 1. The antenna port of EUT was connected to the RF port of the test equipment (Power Meter or Spectrum analyzer) through Attenuator and RF cable.
- 2. The cable assembly insertion loss of 7.0dB (including 6.0 dB Attenuator and 1.0 dB cable) was entered as an offset in the power meter. Note: Actual cable loss was unavailable at the time of testing, therefore a loss of 1.0dB was assumed as worst case. This was later verified to be true by laboratory. (if the RF cable provided by client, the cable loss declared by client)
- 3. The EUT is keeping in continuous transmission mode and tested in all modulation modes.

2.7 Measurement Method

Description of Test	Measurement Method	
AC Line Conducted Emissions	ANSI C63.10-2020 Section 6.2	
Maximum Conducted Output Power	ANSI C63.10-2020 Section 7.8.5	
20 dB Emission Bandwidth	ANSI C63.10-2020 Section 6.9.2	
99% Occupied Bandwidth	ANSI C63.10-2020 Section 6.9.3	
Channel separation	ANSI C63.10-2020 Section 7.8.2	
Number of hopping Frequency	ANSI C63.10-2020 Section 7.8.3	
Time of occupancy (dwell time)	ANSI C63.10-2020 Section 7.8.4	
100kHz Bandwidth of Frequency Band Edge	ANSI C63.10-2020 Section 7.8.7.2&6.10	
Radiated emission	ANSI C63.10-2020 Section 7.8&6.3&6.4&6.5&6.6	

2.8 Measurement Equipment

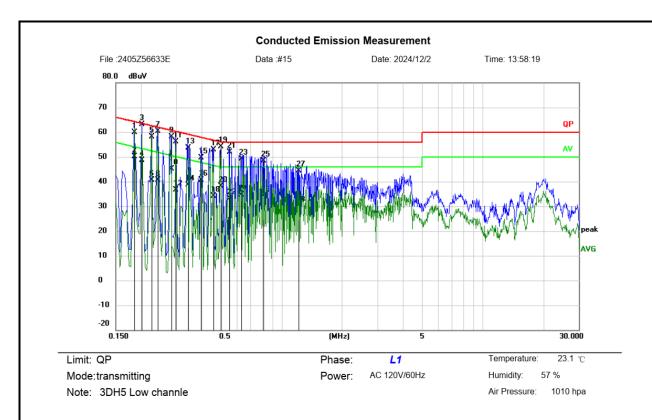
Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date		
AC Line Conducted Emission Test							
ROHDE&	EMI TEST	ESR	101817	2024/6/4	2025/6/3		
SCHWARZ	RECEIVER	LOIX	101017	2024/0/4	2023/0/3		
R&S	LISN	ENV216	101748	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.12	N/A	2024/6/4	2025/6/3		
Farad	Test Software	EZ-EMC	Ver. EMEC-3A1	1	/		
		Radiated Emissio	n Test				
R&S	EMI test receiver	ESR3	102758	2024/6/4	2025/6/3		
ROHDE&	SPECTRUM	FSV40-N	101608	2024/6/4	2025/6/2		
SCHWARZ	ANALYZER	F5V40-IN	101608	2024/6/4	2025/6/3		
SONOMA	Low frequency	310	186014	2024/6/4	2025/6/3		
INSTRUMENT	amplifier	DAM 0440D	504	0004/0/4	0005/0/0		
A.H. Systems	PREAMPLIFIER	PAM-0118P	531	2024/6/4	2025/6/3		
COM-POWER	Amplifier	PAM-840A	461306	2024/8/7	2025/8/6		
BACL	Loop Antenna	1313-1A	4010611	2024/2/7	2027/2/6		
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2026/7/6		
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2026/7/5		
Ducommun technologies	Horn Antenna	ARH-4223-02	1007726-03	2023/7/10	2026/7/9		
Oulitong	Band Reject Filter	OBSF-2400-248 3.5-50N	OE02103119	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.9	N/A	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.13	N/A	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.15	N/A	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.16	N/A	2024/6/4	2025/6/3		
N/A	Coaxial Cable	NO.17	N/A	2024/6/4	2025/6/3		
Audix	Test Software	E3	191218 V9	/	/		
	1	RF Conducted	Test		I.		
ROHDE&	SPECTRUM	FSV40	101419	2024/6/4	2025/6/3		
SCHWARZ	ANALYZER	000.00.4	N1/A	0004/0/4	0005/0/0		
MEEA	6dB attenuator	603-06-1	N/A	2024/6/4	2025/6/3		

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

3 Test Results

3.1 Test Summary

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247 (a)(1)	20dB Emission Bandwidth	Compliance
-	99% Occupied Bandwidth	Report only
§15.247 (a)(1)	Channel separation	Compliance
§15.247 (a)(1)(iii)	Number of hopping Frequency	Compliance
§15.247 (a)(1)(iii)	Time of occupancy (dwell time)	Compliance
§15.247(b)(1)	Maximum Conducted Output Power	Compliance
§15.247(d)	100kHz Bandwidth of Frequency Band Edge	Compliance
§15.205, §15.209, §15.247(d)	Radiated emission	Compliance


3.2 Limit

Test items	Limit
AC Line Conducted Emissions	See details §15.207 (a)
Conducted Output Power	For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.
Channel separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Number of hopping Frequency	Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.
Time of occupancy (dwell time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Spurious Emissions, 100kHz Bandwidth of Frequency Band Edge	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

3.3 AC Line Conducted Emissions Test Data

Test Date:	2024-12-02	Test By:	Lirou Li	
Environment condition:	Temperature: 23.1°C; Relative	Humidity:57%; ATM Pres	ssure: 101.0kPa	

Receiver Setting: 9~150kHz: Pre-scan: RBW: 200Hz, DET: PK/AV; Final measure: RBW: 200Hz, DET: QP/AV 0.15~30MHz: Pre-scan: RBW: 9kHz, DET: PK/AV; Final measure: RBW: 9kHz, DET: QP/AV

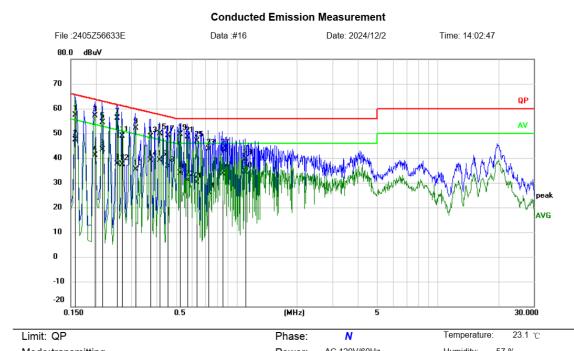
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over Limit		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1860	49.46	10.34	59.80	64.21	-4.41	QP	
2		0.1860	39.77	10.34	50.11	54.21	-4.10	AVG	
3	*	0.2020	52.73	10.31	63.04	63.53	-0.49	QP	
4		0.2020	38.33	10.31	48.64	53.53	-4.89	AVG	
5		0.2260	47.68	10.34	58.02	62.60	-4.58	QP	
6		0.2260	30.27	10.34	40.61	52.60	-11.99	AVG	
7		0.2420	50.07	10.35	60.42	62.03	-1.61	QP	
8		0.2420	30.26	10.35	40.61	52.03	-11.42	AVG	
9		0.2819	47.73	10.38	58.11	60.76	-2.65	QP	
10		0.2819	34.65	10.38	45.03	50.76	-5.73	AVG	
11		0.2980	45.66	10.41	56.07	60.30	-4.23	QP	
12		0.2980	26.18	10.41	36.59	50.30	-13.71	AVG	
13		0.3420	43.16	10.43	53.59	59.15	-5.56	QP	
14		0.3420	28.22	10.43	38.65	49.15	-10.50	AVG	
*:Max	kimum	n data	x:Over limit	!:over m	nargin				Engineer Signature: Lirou

Report Template: TR-4-E-006/V1.1 Page 15 of 68

Limit: QP Phase: L1 Temperature: 23.1 °C

Mode:transmitting Power: AC 120V/60Hz Humidity: 57 %

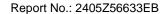
Note: 3DH5 Low channle Air Pressure: 1010 hpa


Receiver Setting: 9~150kHz: Pre-scan: RBW: 200Hz, DET: PK/AV; Final measure: RBW: 200Hz, DET: QP/AV 0.15~30MHz: Pre-scan: RBW: 9kHz, DET: PK/AV; Final measure: RBW: 9kHz, DET: QP/AV

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over Limit		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
15	0.3980	39.05	10.48	49.53	57.90	-8.37	QP	
16	0.3980	30.17	10.48	40.65	47.90	-7.25	AVG	
17	0.4580	42.34	10.50	52.84	56.73	-3.89	QP	
18	0.4580	23.71	10.50	34.21	46.73	-12.52	AVG	
19	0.4980	43.61	10.51	54.12	56.03	-1.91	QP	
20	0.4980	27.73	10.51	38.24	46.03	-7.79	AVG	
21	0.5500	41.35	10.53	51.88	56.00	-4.12	QP	
22	0.5500	22.67	10.53	33.20	46.00	-12.80	AVG	
23	0.6300	38.62	10.54	49.16	56.00	-6.84	QP	
24	0.6300	23.98	10.54	34.52	46.00	-11.48	AVG	
25	0.8100	37.78	10.61	48.39	56.00	-7.61	QP	
26	0.8100	23.53	10.61	34.14	46.00	-11.86	AVG	
27	1.2140	33.72	10.69	44.41	56.00	-11.59	QP	
28	1.2140	19.35	10.69	30.04	46.00	-15.96	AVG	

Report Template: TR-4-E-006/V1.1

^{*:}Maximum data x:Over limit !:over margin Engineer Signature: Lirou



Mode: transmittingPower:AC 120V/60HzHumidity:57 %Note:3DH5 Low channleAir Pressure:1010 hpa

Receiver Setting: 9~150kHz: Pre-scan: RBW: 200Hz, DET: PK/AV; Final measure: RBW: 200Hz, DET: QP/AV 0.15~30MHz: Pre-scan: RBW: 9kHz, DET: PK/AV; Final measure: RBW: 9kHz, DET: QP/AV

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over Limit				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1	0.1580	47.16	10.23	57.39	65.57	-8.18	QP			
2	0.1580	37.24	10.23	47.47	55.57	-8.10	AVG			
3	0.1980	46.75	10.31	57.06	63.69	-6.63	QP			
4	0.1980	30.81	10.31	41.12	53.69	-12.57	AVG			
5	0.2140	44.10	10.32	54.42	63.05	-8.63	QP			
6	0.2140	32.99	10.32	43.31	53.05	-9.74	AVG			
7 *	0.2540	45.69	10.37	56.06	61.63	-5.57	QP			
8	0.2540	27.37	10.37	37.74	51.63	-13.89	AVG			
9	0.3140	41.64	10.42	52.06	59.86	-7.80	QP			
10	0.3140	25.08	10.42	35.50	49.86	-14.36	AVG			
11	0.2700	38.54	10.38	48.92	61.12	-12.20	QP			
12	0.2700	27.04	10.38	37.42	51.12	-13.70	AVG			
13	0.3740	38.08	10.47	48.55	58.41	-9.86	QP			
14	0.3740	28.59	10.47	39.06	48.41	-9.35	AVG			
*:Maximun	n data 🗀	x:Over limit	!:over m	nargin				Engineer Signature:	Lirou	

Limit: QP Phase: N Temperature: 23.1 °C

Mode:transmitting Power: AC 120V/60Hz Humidity: 57 %

Note: 3DH5 Low channle Air Pressure: 1010 hpa

Receiver Setting: 9~150kHz: Pre-scan: RBW: 200Hz, DET: PK/AV; Final measure: RBW: 200Hz, DET: QP/AV 0.15~30MHz: Pre-scan: RBW: 9kHz, DET: PK/AV; Final measure: RBW: 9kHz, DET: QP/AV

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over Limit		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
15		0.4140	39.42	10.48	49.90	57.57	-7.67	QP	
16		0.4140	28.60	10.48	39.08	47.57	-8.49	AVG	
17		0.4540	38.62	10.50	49.12	56.80	-7.68	QP	
18		0.4540	26.25	10.50	36.75	46.80	-10.05	AVG	
19		0.5220	39.24	10.51	49.75	56.00	-6.25	QP	
20		0.5220	23.31	10.51	33.82	46.00	-12.18	AVG	
21		0.5700	38.03	10.49	48.52	56.00	-7.48	QP	
22		0.5700	20.40	10.49	30.89	46.00	-15.11	AVG	
23		0.7260	33.28	10.47	43.75	56.00	-12.25	QP	
24		0.7260	15.66	10.47	26.13	46.00	-19.87	AVG	
25		0.6340	36.44	10.48	46.92	56.00	-9.08	QP	
26		0.6340	19.71	10.48	30.19	46.00	-15.81	AVG	
27		0.8500	33.03	10.52	43.55	56.00	-12.45	QP	
28		0.8500	23.15	10.52	33.67	46.00	-12.33	AVG	
29		1.1100	28.99	10.57	39.56	56.00	-16.44	QP	
30		1.1100	23.89	10.57	34.46	46.00	-11.54	AVG	

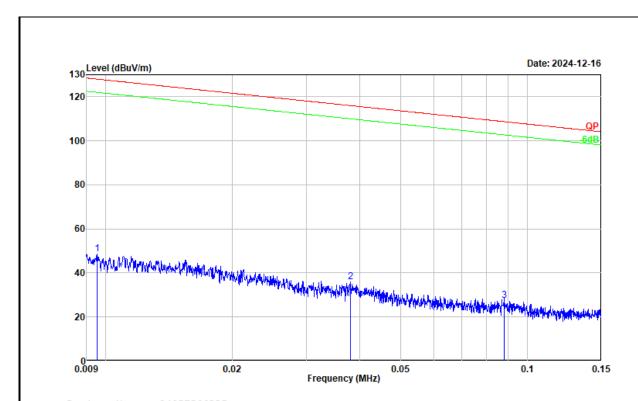
Remark:

Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB)

Correct Factor(dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB)

Over Limit = Measurement - Limit

Report Template: TR-4-E-006/V1.1


^{*:}Maximum data x:Over limit !:over margin Engineer Signature: Lirou

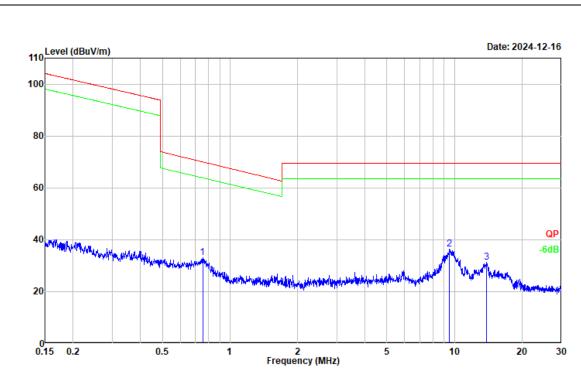
3.4 Radiated emission Test Data

9 kHz-30MHz:

Test Date:	2024-12-16	Test By:	Bard Huang	
Environment condition:	Temperature: 23.9°C; Relative	Humidity:33%; ATM Pres	ssure: 101.0kPa	

Project No. : 2405Z56633E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 23.9℃/33%R.H./101.0kPa


Tested by : Bard Huang Polarization : PARALLEL Remark : 3DH5 2402

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	0.010	11.18	37.57	48.75	128.01	-79.26	Peak
2	0.038	13.04	22.85	35.89	115.99	-80.10	Peak
3	0.088	11.88	15.72	27.60	108.69	-81.09	Peak

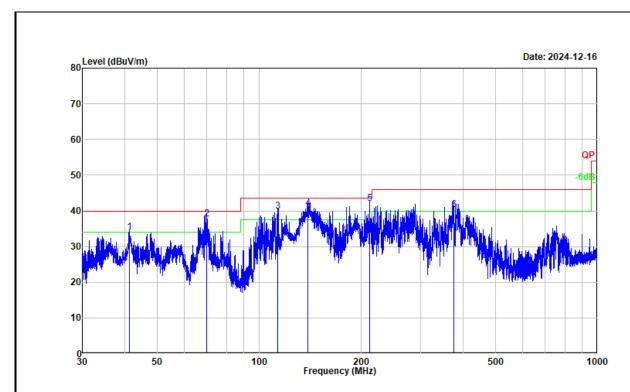
Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor Over Limit = Result - Limit SA setting: RBW/VWB: 200Hz/1kHz, DET: PK

Environment : 23.9℃/33%R.H./101.0kPa

Tested by : Bard Huang Polarization : PARALLEL Remark : 3DH5 2402

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	0.756	30.32	2.83	33.15	69.96	-36.81	Peak
2	9.471	40.05	-3.64	36.41	69.54	-33.13	Peak
3	13.909	34.96	-3.64	31.32	69.54	-38.22	Peak


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

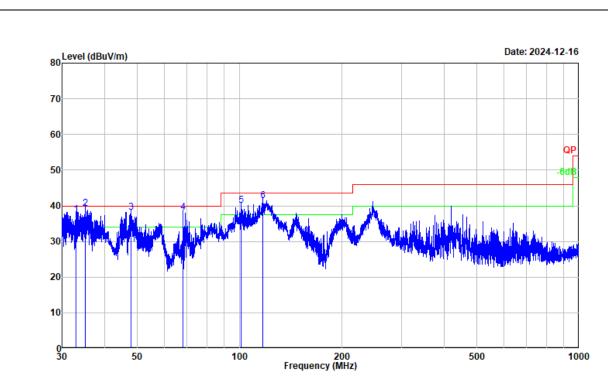
Result = Reading + Factor Over Limit = Result - Limit SA setting: RBW/VWB: 9kHz/30kHz, DET: PK

30MHz-1GHz:

Test Date:	2024-12-16	Test By:	Bard Huang	
Environment condition:	Temperature: 23.9°C; Relative	Humidity:33%; ATM Pres	ssure: 101.0kPa	

Project No. : 2405Z56633E-RF Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 23.9℃/33%R.H./101.0kPa Tested by : Bard Huang Polarization : horizontal Remark : 3DH5 2402MHz

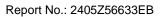

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	41.367	46.75	-12.67	34.08	40.00	-5.92	QP
2	69.814	53.97	-16.28	37.69	40.00	-2.31	QP
3	113.316	54.64	-14.70	39.94	43.50	-3.56	QP
4	139.484	58.27	-17.60	40.67	43.50	-2.83	QP
5	212.456	55.87	-13.88	41.99	43.50	-1.51	QP
6	376.103	49.76	-9.43	40.33	46.00	-5.67	QP

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

SA setting: Pre-scan: RBW/VWB: 100Hz/300kHz, DET: PK Final measure: RBW: 120kHz, DET: QP

Environment : 23.9℃/33%R.H./101.0kPa


Tested by : Bard Huang Polarization : vertical Remark : 3DH5 2402MHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	32.950	52.73	-15.13	37.60	40.00	-2.40	QP
2	35.189	53.87	-14.68	39.19	40.00	-0.81	QP
3	48.015	50.31	-12.16	38.15	40.00	-1.85	QP
4	68.211	53.77	-15.56	38.21	40.00	-1.79	QP
5	101.244	54.30	-14.12	40.18	43.50	-3.32	QP
6	116.847	56.80	-15.32	41.48	43.50	-2.02	QP

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

SA setting: Pre-scan: RBW/VWB: 100Hz/300kHz, DET: PK Final measure: RBW: 120kHz, DET: QP

Above 1GHz:

Test Date:	2024-12-09~2024-12-10	Test By:	Luke Li
Environment condition:	Temperature: 23.4~23.9°C; Re 101.0~101.1kPa	lative Humidity:46~49%;	ATM Pressure:

Frequency (MHz)	Reading level (dBµV)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark			
			GFS	SK						
		T	Low Cha	annel	<u>, </u>		T			
4804.000	50.82	horizontal	-2.87	47.95	74.00	-26.05	Peak			
4804.000	48.55	vertical	-2.87	45.68	74.00	-28.32	Peak			
Middle Channel										
4882.000	50.02	horizontal	-2.32	47.70	74.00	-26.30	Peak			
4882.000	48.28	vertical	-2.32	45.96	74.00	-28.04	Peak			
			High Ch	annel						
4960.000	48.19	horizontal	-2.18	46.01	74.00	-27.99	Peak			
4960.000	48.62	vertical	-2.18	46.44	74.00	-27.56	Peak			
			π/4 DQ	PSK						
			Low Ch	annel			T			
4804.000	49.90	horizontal	-2.87	47.03	74.00	-26.97	Peak			
4804.000	47.10	vertical	-2.87	44.23	74.00	-29.77	Peak			
			Middle C	hannel						
4882.000	47.42	horizontal	-2.32	45.10	74.00	-28.90	Peak			
4882.000	49.64	vertical	-2.32	47.32	74.00	-26.68	Peak			
			High Ch	annel						
4960.000	48.53	horizontal	-2.18	46.35	74.00	-27.65	Peak			
4960.000	47.39	vertical	-2.18	45.21	74.00	-28.79	Peak			
			8DPS	SK						
			Low Cha	annel						
4804.000	49.22	horizontal	-2.87	46.35	74.00	-27.65	Peak			
4804.000	49.86	vertical	-2.87	46.99	74.00	-27.01	Peak			
			Middle C	hannel						
4882.000 50.06 horizontal -2.32 47.74 74.00 -26.26 Peak										
4882.000	47.38	vertical	-2.32	45.06	74.00	-28.94	Peak			

Report No.: 2405Z56633EB

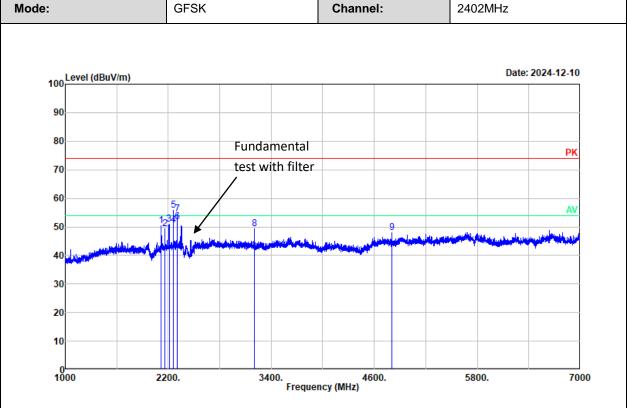
High Channel										
4960.000 48.73 horizontal -2.18 46.55 74.00 -27.45 Peak										
4960.000	47.53	vertical	-2.18	45.35	74.00	-28.65	Peak			

Remark:

Corrected Amplitude= Reading level + corrected Factor

Corrected Factor = Antenna factor + Cable loss - Amplifier gain

Margin = Corrected Amplitude - Limit


For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.

The emission levels of other frequencies that were lower than the limit 20dB, not show in test report.

Test plot for example as below:

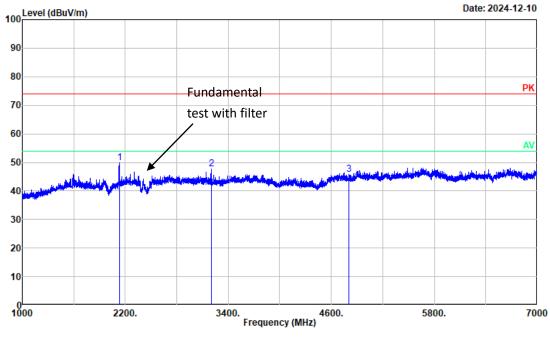
1-18GHz:

Project No. : 2405Z56633E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 23.9° C/49%R.H./101.1kPa

Tested by : Luke Li Polarization : horizontal Remark : DH5 2402

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2113.000	54.86	-4.32	50.54	74.00	-23.46	Peak
2	2162.000	53.31	-4.02	49.29	74.00	-24.71	Peak
3	2210.000	54.43	-3.56	50.87	74.00	-23.13	Peak
4	2258.000	54.14	-3.36	50.78	54.00	-3.22	Average
5	2258.000	59.24	-3.36	55.88	74.00	-18.12	Peak
6	2306.000	55.13	-3.37	51.76	54.00	-2.24	Average
7	2306.000	57.85	-3.37	54.48	74.00	-19.52	Peak
8	3202.000	52.35	-3.16	49.19	74.00	-24.81	Peak
9	4804.000	50.82	-2.87	47.95	74.00	-26.05	Peak


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

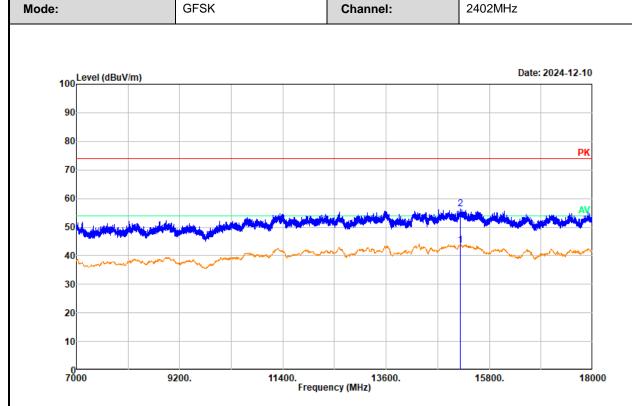
Result = Reading + Factor
Over Limit = Result - Limit
A setting: Peak: RBW/VWB: 1MHz/3MHz,

SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/1kHz, DET: PK

Environment : $23.9^{\circ}C/49\%R.H./101.1kPa$

Tested by : Luke Li Polarization : vertical Remark : DH5 2402

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1	2132.000 3203.000	54.04 50.71	-4.22 -3.14	49.82 47.57	74.00 74.00	-24.18 -26.43	Peak Peak
3	4804.000	48.55	-2.87	45.68	74.00	-28.32	Peak

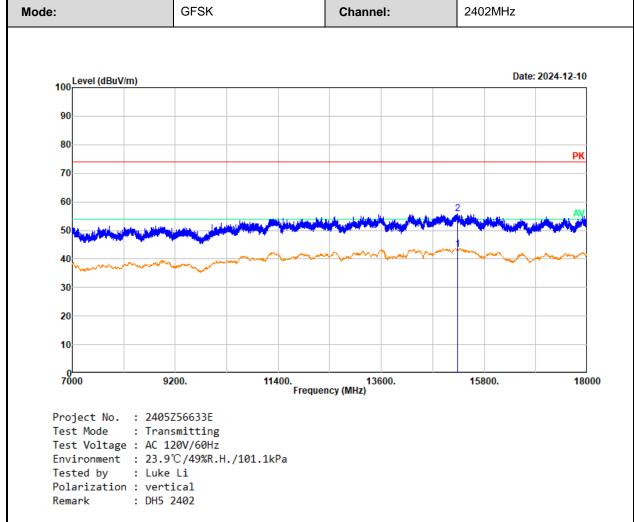

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/1kHz, DET: PK

Report Template: TR-4-E-006/V1.1

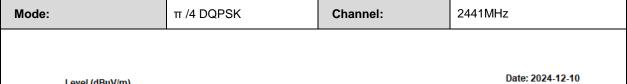
Environment : $23.9\,^{\circ}$ C/49%R.H./101.1kPa Tested by : Luke Li

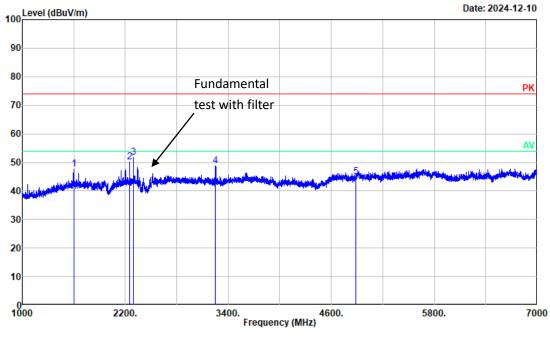

Polarization : horizontal Remark : DH5 2402

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	15181.000	38.43	5.25	43.68	54.00	-10.32	Average
2	15181.000	51.00	5.25	56.25	74.00	-17.75	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

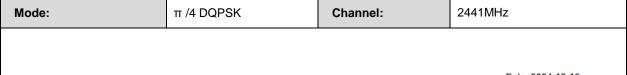


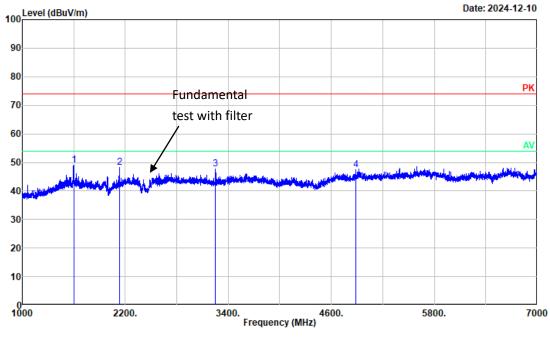

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector	
1 2	15229.000 15229.000	38.07 50.69	5.24 5.24	43.31 55.93	54.00 74.00	-10.69 -18.07	Average Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

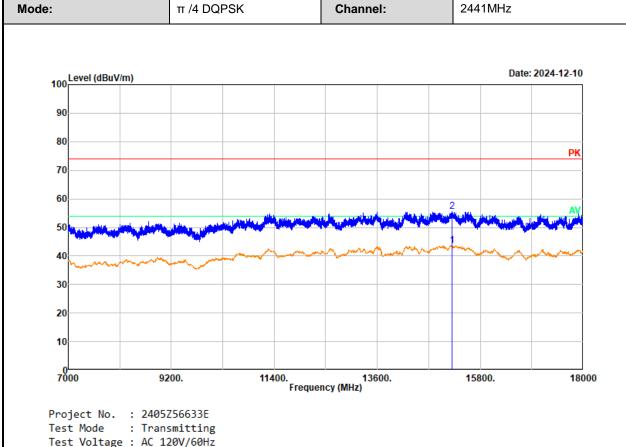
Environment : $23.9^{\circ}C/49\%R.H./101.1kPa$


Tested by : Luke Li Polarization : horizontal Remark : 2DH5 2441


No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	1599.000	52.27	-4.46	47.81	74.00	-26.19	Peak
2	2248.000	53.43	-3.36	50.07	74.00	-23.93	Peak
3	2297.000	55.06	-3.38	51.68	74.00	-22.32	Peak
4	3252.000	51.90	-3.01	48.89	74.00	-25.11	Peak
5	4882.000	47.42	-2.32	45.10	74.00	-28.90	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor


Environment : $23.9^{\circ}C/49\%R.H./101.1kPa$

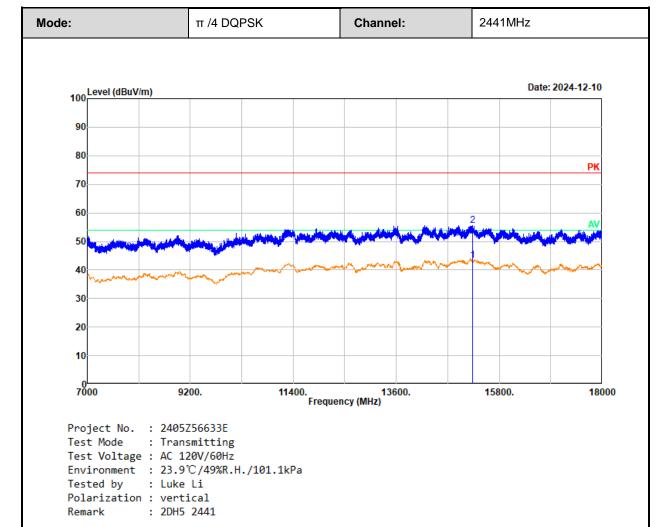
Tested by : Luke Li Polarization : vertical Remark : 2DH5 2441

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	1599.000	53.56	-4.46	49.10	74.00	-24.90	Peak
2	2133.000	52.46	-4.22	48.24	74.00	-25.76	Peak
3	3252.000	50.58	-3.01	47.57	74.00	-26.43	Peak
4	4882.000	49.64	-2.32	47.32	74.00	-26.68	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Test Voltage : AC 120V/60Hz

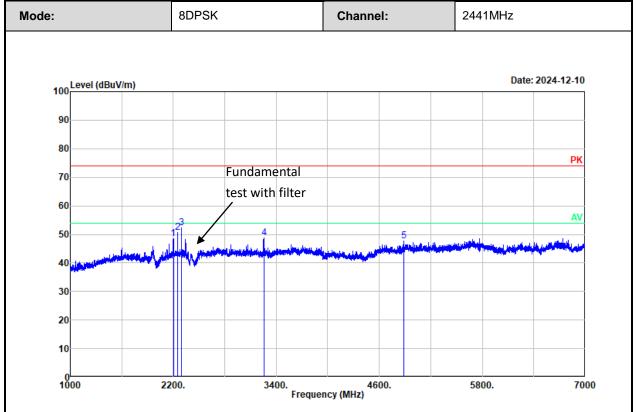
Environment : $23.9^{\circ}C/49\%R.H./101.1kPa$


Tested by : Luke Li Polarization : horizontal Remark : 2DH5 2441

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	15190.000	38.26	5.26	43.52	54.00	-10.48	Average
2	15190.000	50.42	5.26	55.68	74.00	-18.32	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

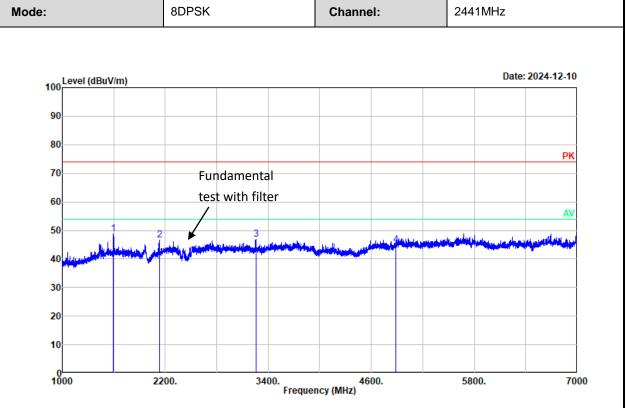


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
_	15229.000	38.01	5.24	43.25	54.00	-10.75	Average
	15229.000	50.41	5.24	55.65	74.00	-18.35	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

Environment : $23.9^{\circ}C/49\%R.H./101.1kPa$

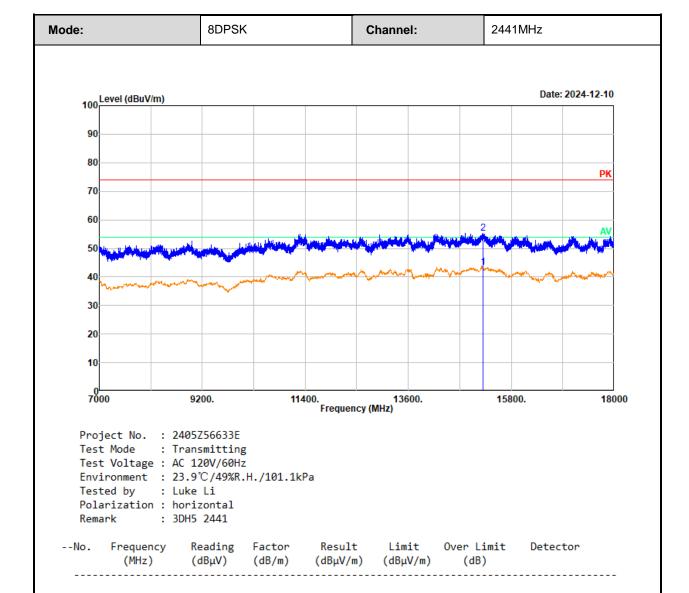

Tested by : Luke Li Polarization : horizontal Remark : 3DH5 2441

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2201.000	52.11	-3.61	48.50	74.00	-25.50	Peak
2	2248.000	54.14	-3.36	50.78	74.00	-23.22	Peak
3	2297.000	55.74	-3.38	52.36	74.00	-21.64	Peak
4	3254.000	51.81	-3.01	48.80	74.00	-25.20	Peak
5	4882.000	50.06	-2.32	47.74	74.00	-26.26	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

Environment : 23.9℃/49%R.H./101.1kPa

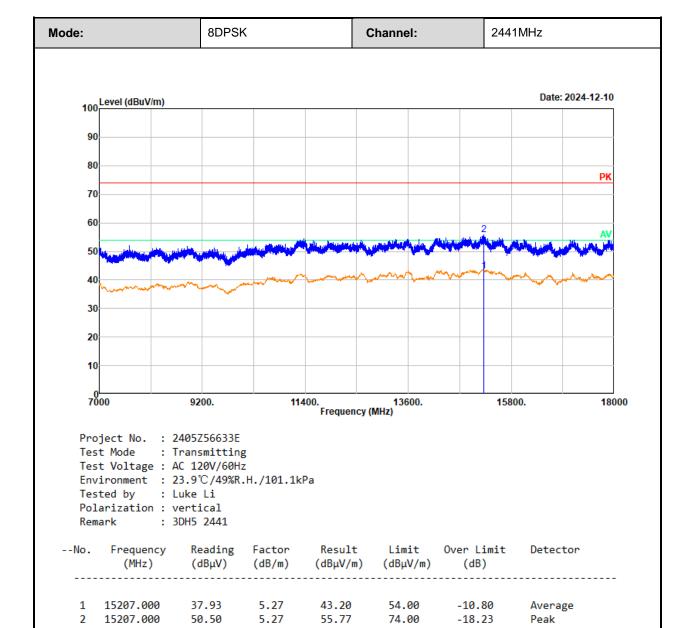

Tested by : Luke Li Polarization : vertical Remark : 3DH5 2441

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	1598.000	53.29	-4.47	48.82	74.00	-25.18	Peak
2	2130.000	50.74	-4.23	46.51	74.00	-27.49	Peak
3	3255.000	49.98	-3.01	46.97	74.00	-27.03	Peak
4	4882.000	47.38	-2.32	45.06	74.00	-28.94	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Average Peak

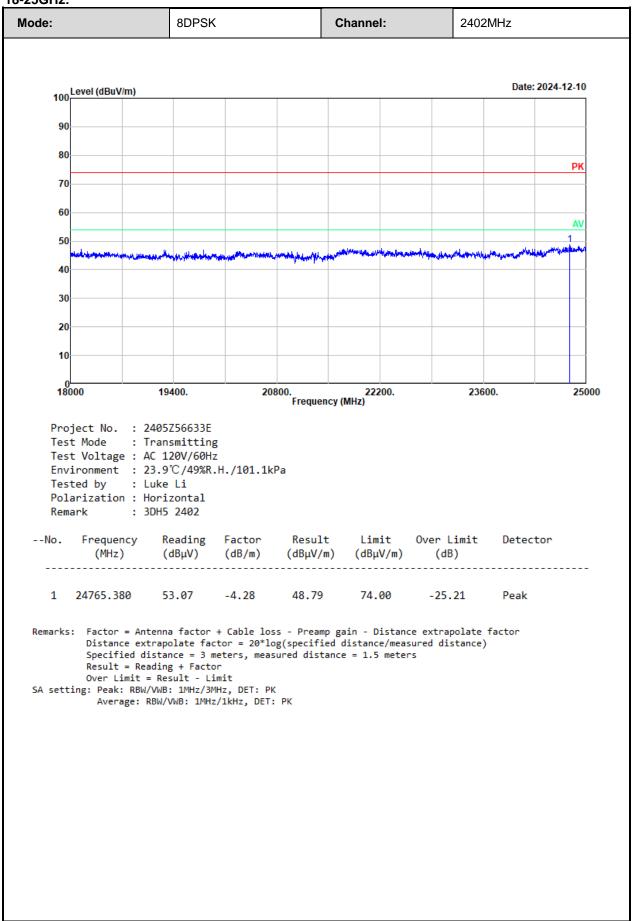
Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor


 1
 15203.000
 38.19
 5.28
 43.47
 54.00
 -10.53

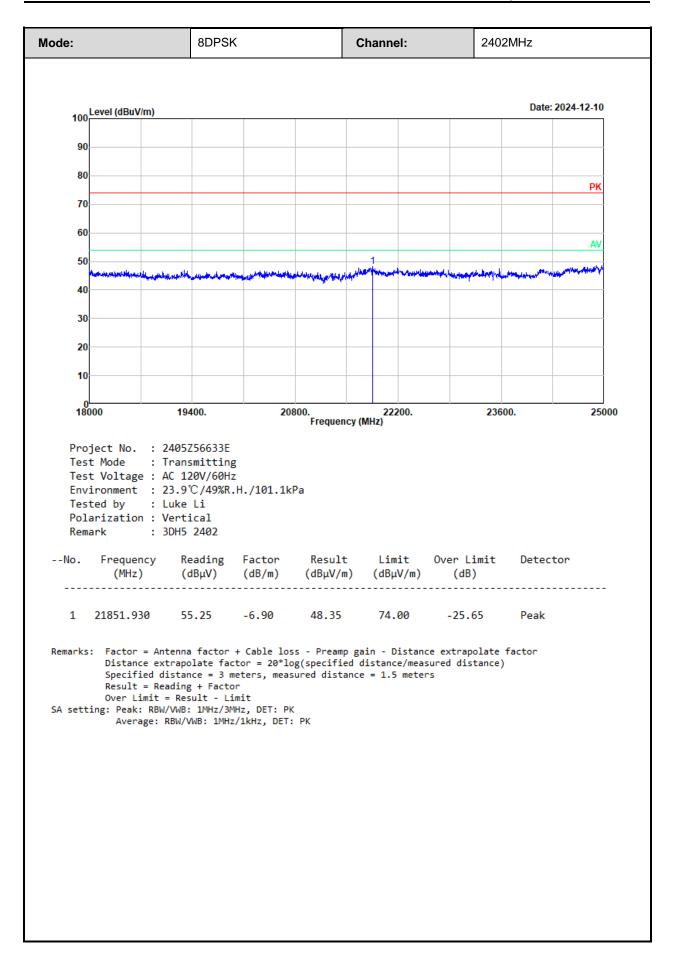
 2
 15203.000
 50.11
 5.28
 55.39
 74.00
 -18.61

Over Limit = Result - Limit

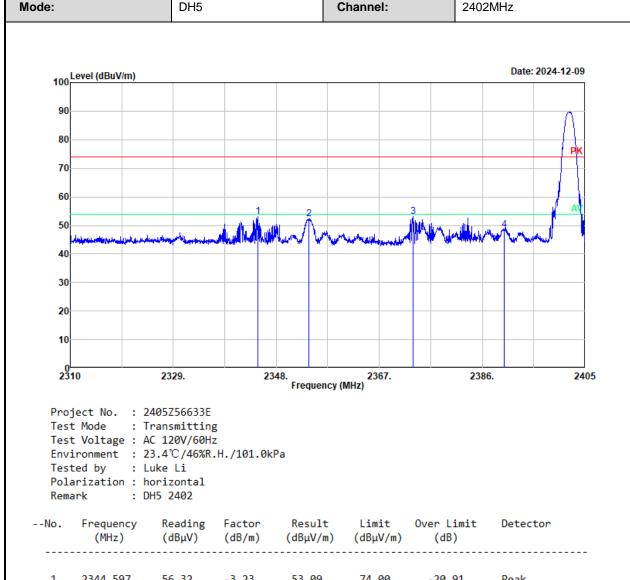
SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/1kHz, DET: PK


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor Over Limit = Result - Limit


SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK
Average: RBW/VWB: 1MHz/1kHz, DET: PK

18-25GHz:



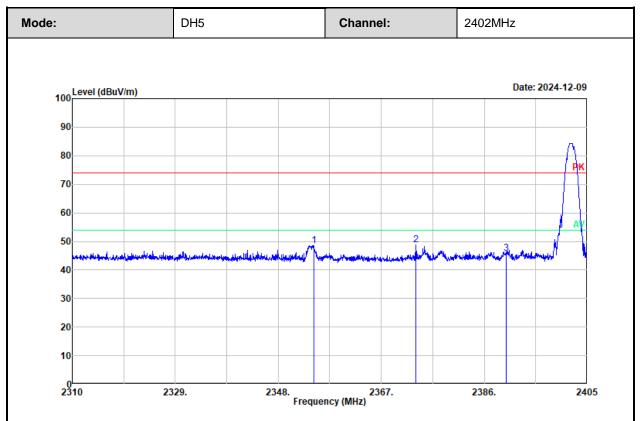
Radiated Band edge:

 2344.597
 56.32
 -3.23
 53.09
 74.00
 -20.91

 2354.007
 55.53
 -3.22
 52.31
 74.00
 -21.69

 2373.302
 56.32
 -3.20
 53.12
 74.00
 -20.88

 2390.000
 51.79
 -3.18
 48.61
 74.00
 -25.39
 1 Peak Peak 2 3 Peak Peak


Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

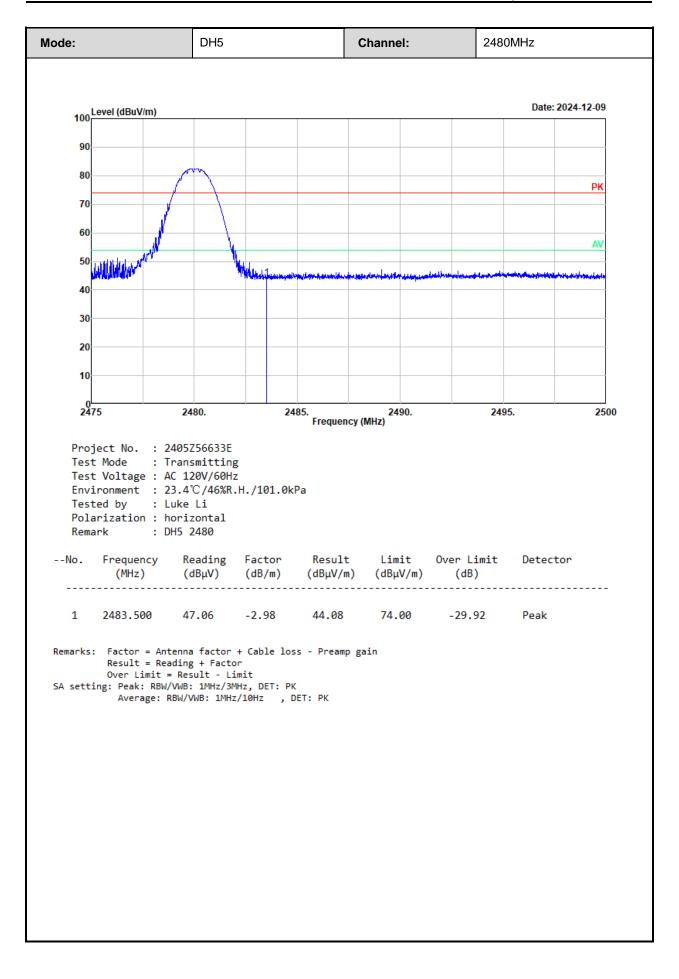
SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/10Hz , DET: PK

Report Template: TR-4-E-006/V1.1

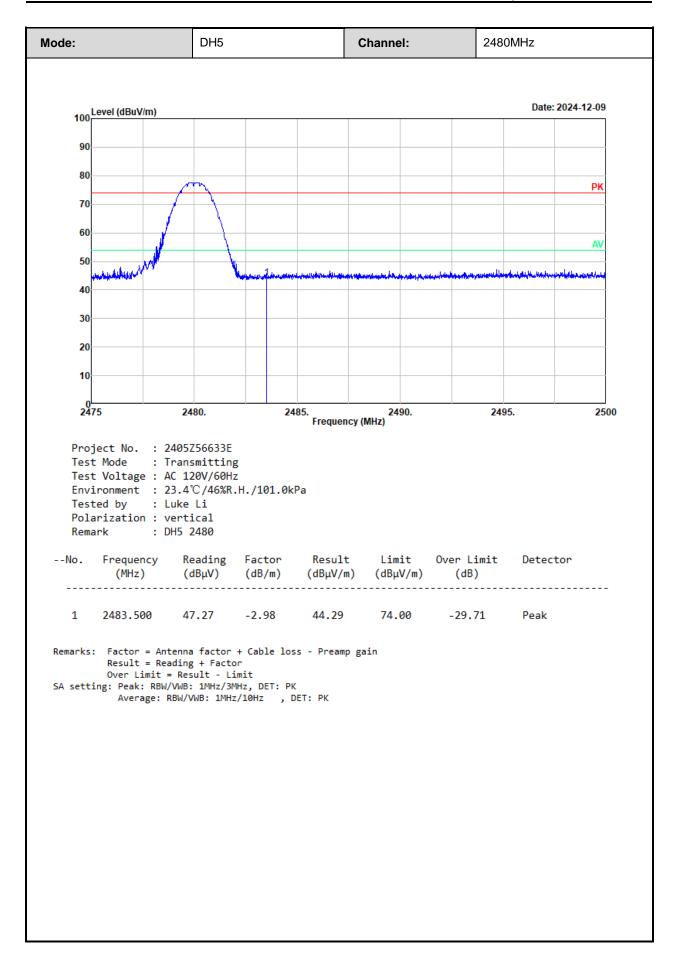
Environment : 23.4°C/46%R.H./101.0kPa Tested by : Luke Li

Polarization : vertical : DH5 2402 Remark

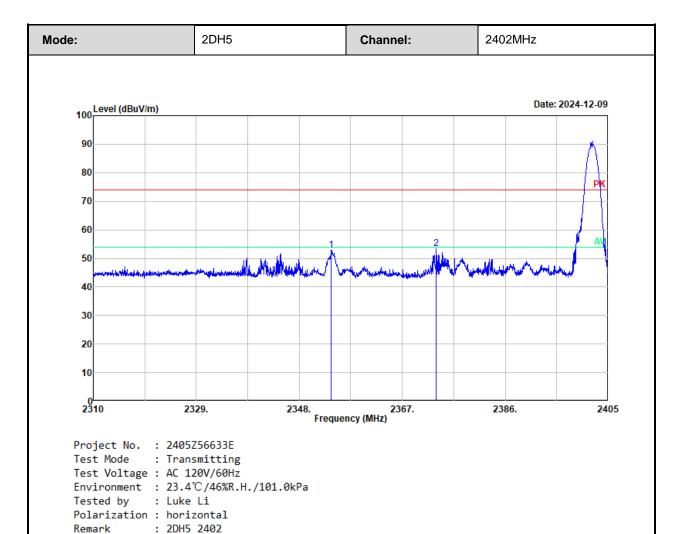
No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2354.530	51.83	-3.22	48.61	74.00	-25.39	Peak
2	2373.349	51.85	-3.20	48.65	74.00	-25.35	Peak
3	2390.000	48.99	-3.18	45.81	74.00	-28.19	Peak


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor


Over Limit = Result - Limit
SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/10Hz , DET: PK

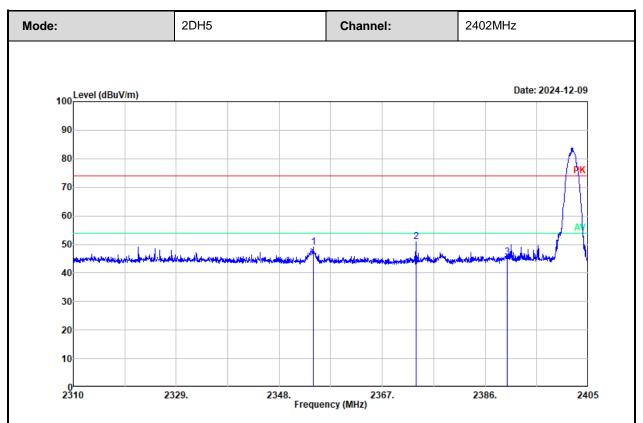
Report Template: TR-4-E-006/V1.1



Peak

No.	Frequency (MHz)	Reading (dBμV)		Result (dBµV/m)		Over Limit (dB)	Detector	
1	2353.912	56.18	-3.22	52.96	74.00	-21.04	Peak	

2373.302 56.47 -3.20 53.27 74.00 -20.73


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

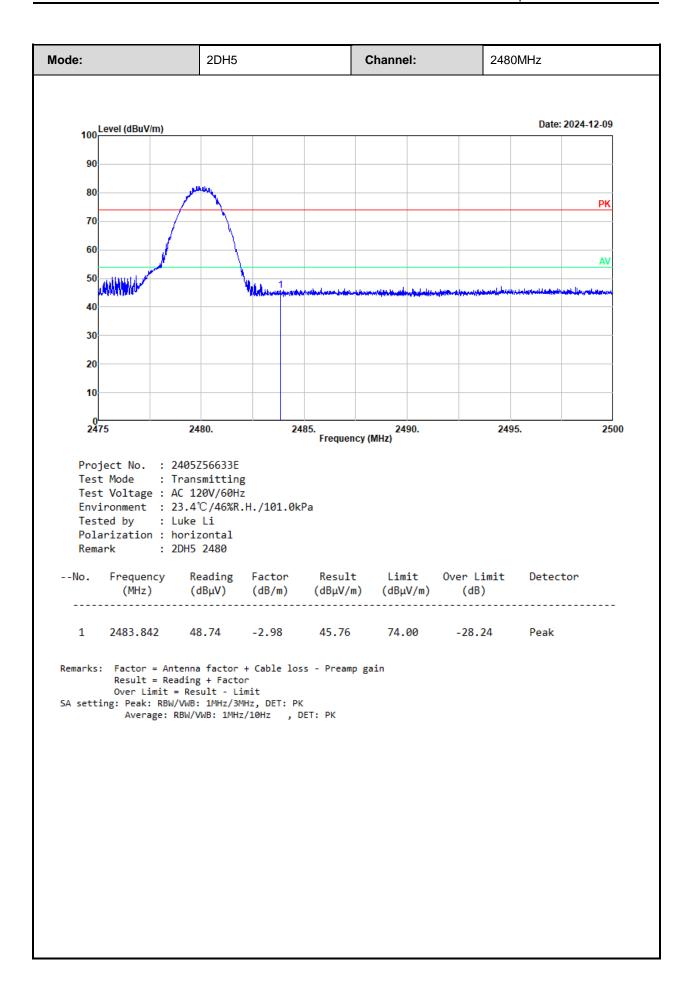
Result = Reading + Factor

2

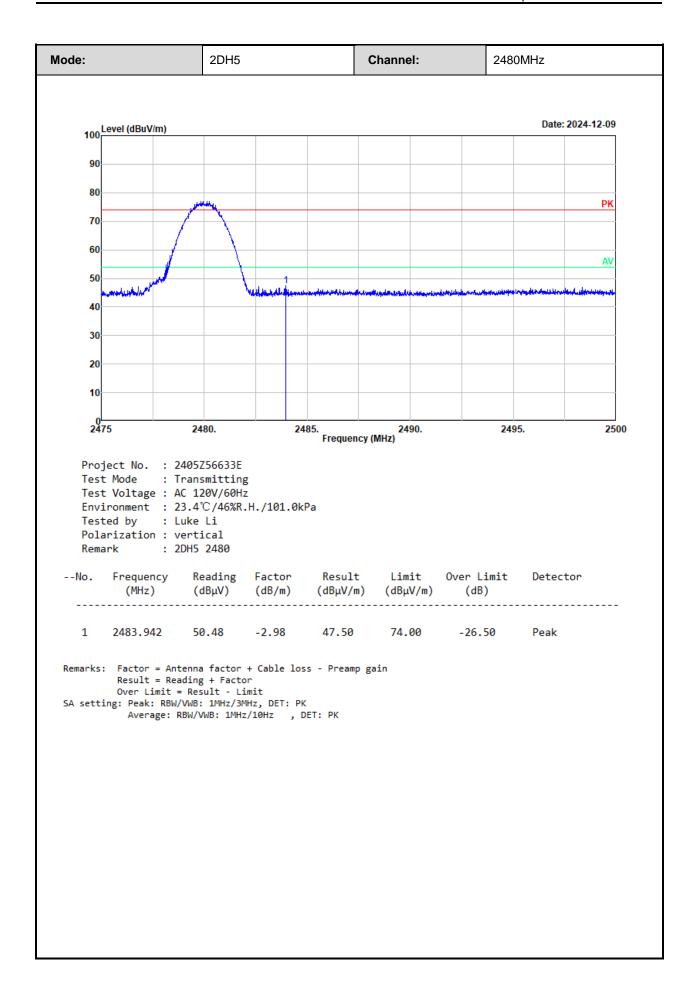
Over Limit = Result - Limit
SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/10Hz , DET: PK

Environment : $23.4^{\circ}\text{C}/46\%\text{R.H.}/101.0\text{kPa}$

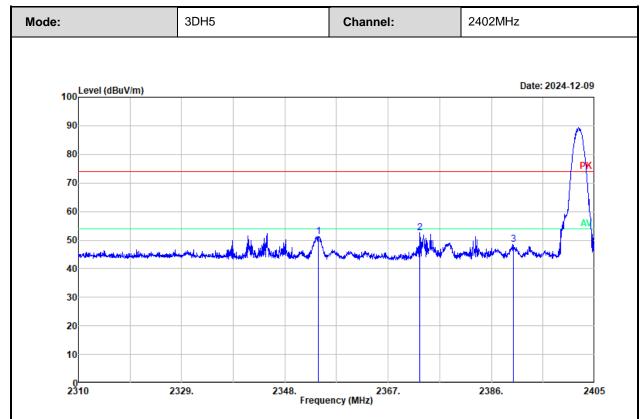
Tested by : Luke Li Polarization : vertical Remark : 2DH5 2402


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1 2 3	2354.245	52.22	-3.22	49.00	74.00	-25.00	Peak
	2373.207	54.24	-3.20	51.04	74.00	-22.96	Peak
	2390.000	48.84	-3.18	45.66	74.00	-28.34	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

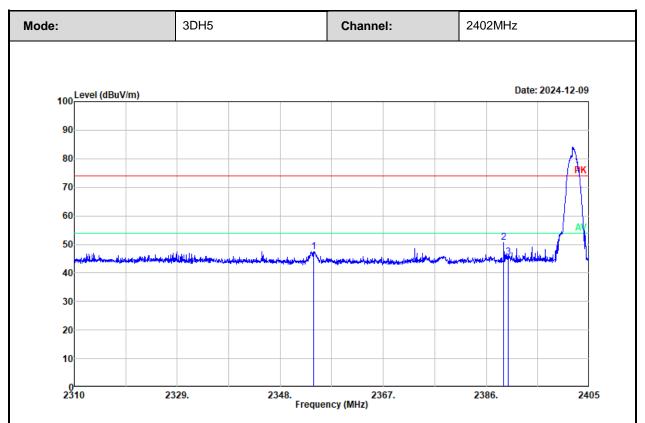

Over Limit = Result - Limit

SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/10Hz , DET: PK



Environment : $23.4^{\circ}/46\%R.H./101.0kPa$ Tested by : Luke Li

Polarization : horizontal Remark : 3DH5 2402


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1	2354.150	54.45	-3.22	51.23	74.00	-22.77	Peak
2	2372.874	55.86	-3.20	52.66	74.00	-21.34	Peak
3	2390.000	51.66	-3.18	48.48	74.00	-25.52	Peak

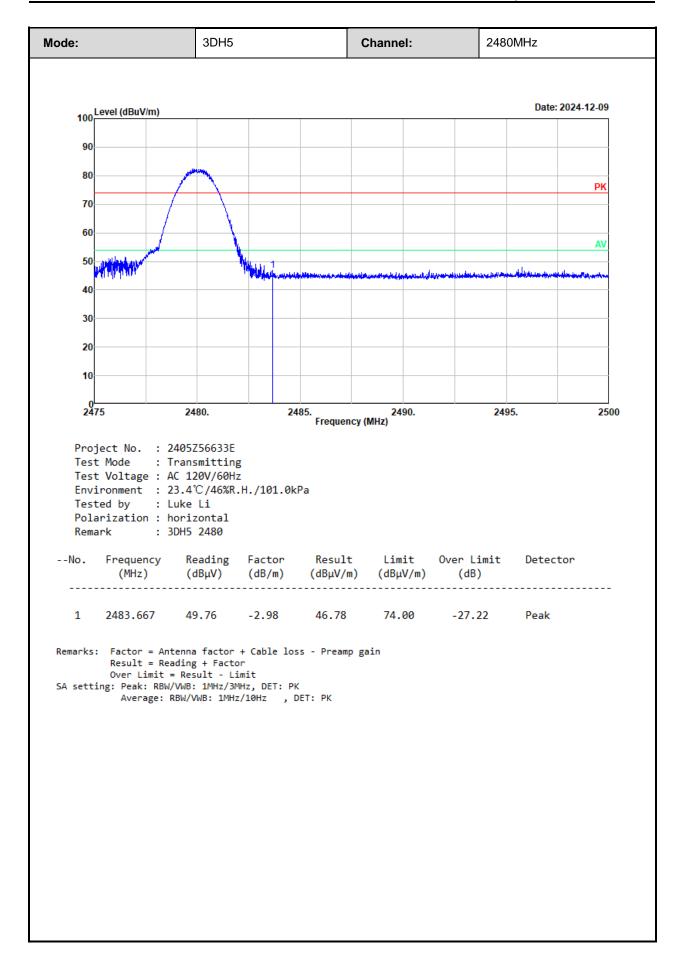
Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

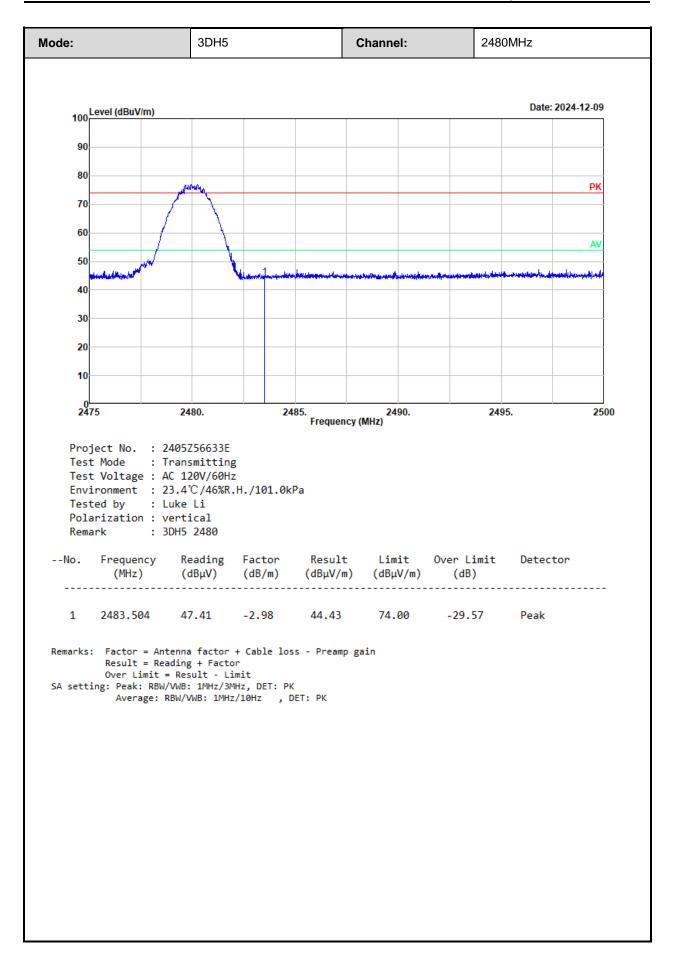
Over Limit = Result - Limit
SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/10Hz , DET: PK

Environment : $23.4^{\circ}\text{C}/46\%\text{R.H.}/101.0\text{kPa}$

Tested by : Luke Li Polarization : vertical Remark : 3DH5 2402


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1 2	2354.102	50.76	-3.22	47.54	74.00	-26.46	Peak
	2389.222	53.79	-3.18	50.61	74.00	-23.39	Peak
	2390.000	48.60	-3.18	45.42	74.00	-28.58	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor


Over Limit = Result - Limit

SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/10Hz , DET: PK

3.5 RF Conducted Test Data

Test Date:	2024-12-10	Test By:	Ryan Zhang
Environment condition:	Temperature: 25.4°C; Relative	Humidity: 47%; ATM Pre	ssure: 101.0kPa

3.5.1 20 dB Emission Bandwidth

Mode	Channel	Result (MHz)	Verdict
	Low	0.955	Pass
DH1	Middle	0.982	Pass
	High	0.985	Pass
	Low	1.309	Pass
2DH1	Middle	1.318	Pass
	High	1.321	Pass
	Low	1.300	Pass
3DH1	Middle	1.303	Pass
	High	1.303	Pass

3.5.2 99% Occupied Bandwidth

Mode	Channel	99% OBW (MHz)
	Low	0.906
DH1	Middle	0.912
	High	0.906
	Low	1.188
2DH1	Middle	1.188
	High	1.188
	Low	1.182
3DH1	Middle	1.185
	High	1.188

Report Template: TR-4-E-006/V1.1 Page 51 of 68

3.5.3 Maximum Conducted Peak Output Power

Mode	Channel	Result (dBm)	Limit (dBm)	Verdict
	Low	-5.27	21.00	Pass
DH1	Middle	-9.66	21.00	Pass
	High	-12.62	21.00	Pass
	Low	-4.89	21.00	Pass
2DH1	Middle	-9.27	21.00	Pass
	High	-13.42	21.00	Pass
	Low	-4.87	21.00	Pass
3DH1	Middle	-9.25	21.00	Pass
	High	-13.34	21.00	Pass

3.5.4 Channel separation

Mode	Channel	Result (MHz)	Limit (MHz)	Verdict
	Low	1.003	0.873	Pass
DH1	Middle	1.003	0.879	Pass
	High	1	0.881	Pass

Note: Limit≤2/3*20dB BW

Only the GFSK mode was test since $\pi/4$ -DQPSK and 8DPSK has the same channel plan.

3.5.5 Number of hopping Frequency

Mode	Channel	Result	Limit	Verdict
DH1	Hopping	79	15	Pass
2DH1	Hopping	79	15	Pass
3DH1	Hopping	79	15	Pass

Report Template: TR-4-E-006/V1.1 Page 52 of 68

3.5.6 Time of occupancy (dwell time)

Mode	Channel	Pulse width (ms)	Dwell time (s)	Limit (s)	Verdict
DH1	Hopping	0.641	0.205	0.400	Pass
DH3	Hopping	1.898	0.304	0.400	Pass
DH5	Hopping	3.153	0.336	0.400	Pass
2DH1	Hopping	0.638	0.204	0.400	Pass
2DH3	Hopping	1.898	0.304	0.400	Pass
2DH5	Hopping	3.153	0.336	0.400	Pass
3DH1	Hopping	0.630	0.202	0.400	Pass
3DH3	Hopping	1.898	0.304	0.400	Pass
3DH5	Hopping	3.158	0.337	0.400	Pass

Note:

DH5:Dwell time=Pulse width (ms) × (1600/2/79) ×31.6 s

DH3:Dwell time=Pulse width (ms) × (1600/4/79) ×31.6 s

DH5:Dwell time=Pulse width (ms) × (1600/6/79) ×31.6 s

2DH5: Dwell time=Pulse width (ms) × (1600/2/79) ×31.6 s

2DH3: Dwell time=Pulse width (ms) × (1600/4/79) ×31.6 s

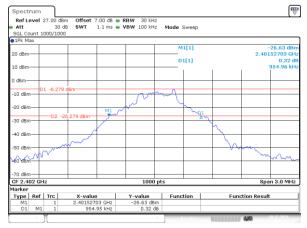
2DH5: Dwell time=Pulse width (ms) × (1600/6/79) ×31.6 s

3DH5: Dwell time=Pulse width (ms) × (1600/2/79) ×31.6 s

3DH3: Dwell time=Pulse width (ms) × (1600/4/79) ×31.6 s

3DH5: Dwell time=Pulse width (ms) × (1600/6/79) ×31.6 s

3.5.7 100 kHz Bandwidth of Frequency Band Edge

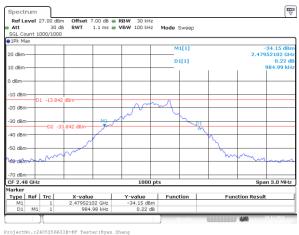

Mode	Channel	Result (dB)	Limit (dB)	Verdict
DH1	Low	29.87	20.00	Pass
	High	38.40	20.00	Pass
	Hopping_Lower	30.51	20.00	Pass
	Hopping_Upper	38.05	20.00	Pass
2DH1	Low	30.32	20.00	Pass
	High	37.65	20.00	Pass
	Hopping_Lower	29.40	20.00	Pass
	Hopping_Upper	37.80	20.00	Pass
3DH1	Low	30.02	20.00	Pass
	High	37.80	20.00	Pass
	Hopping_Lower	28.89	20.00	Pass
	Hopping_Upper	37.46	20.00	Pass

Test Plots:

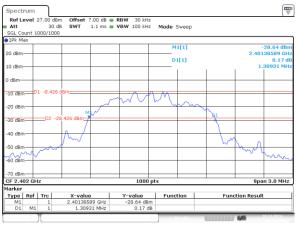

20 dB Emission Bandwidth:

DH1_Low 0.979MHz

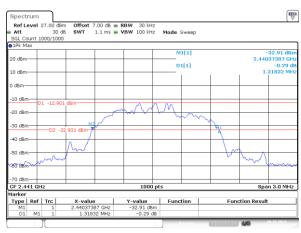
ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 20:07:04


DH1_Middle 0.982MHz

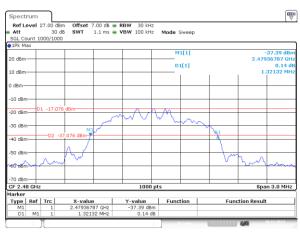
ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang


Date: 10.DEC.2024 16:00:09

DH1 High 0.985MHz

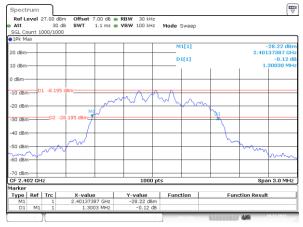

ProjectNo.:2405256633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:02:52

2DH1 Low 1.309MHz


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:37:20

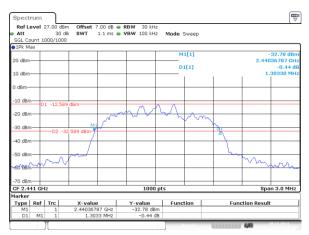
2DH1_Middle 1.318MHz

Date: 10.DEC.2024 16:42:45


2DH1_High 1.321MHz

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:46:16

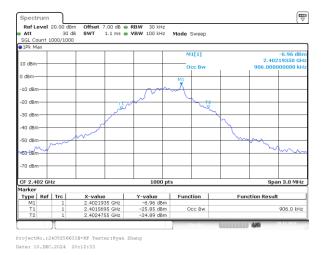
3DH1_Low 1.300MHz


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:50:56

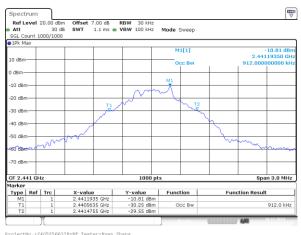
3DH1_High 1.303MHz

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:57:06

3DH1_Middle 1.303MHz

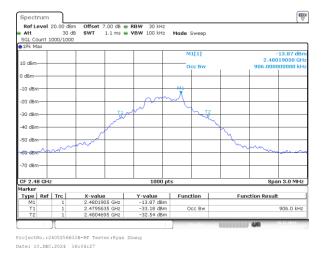


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:54:56

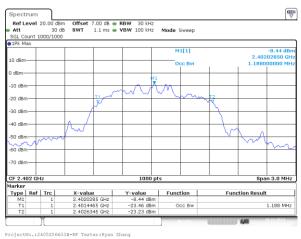


99% Occupied Bandwidth:

DH1 Low 0.906MHz

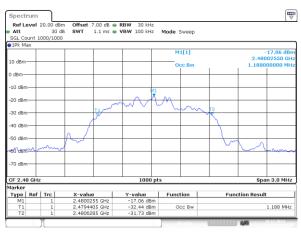


DH1_Middle 0.912MHz

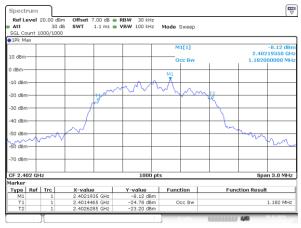


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:00:27

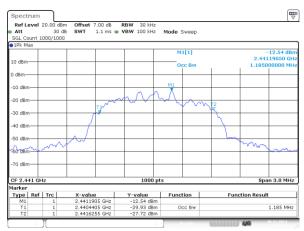
DH1_High 0.906MHz


2DH1_Low 1.188MHz

2DH1_Middle 1.188MHz


2DH1_High 1.188MHz

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:47:52



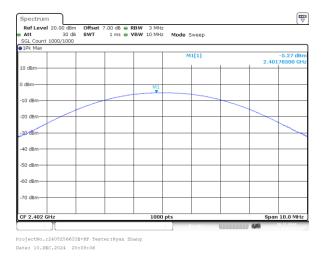
3DH1_Low 1.182MHz

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:52:56

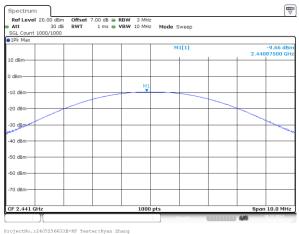
3DH1_Middle 1.185MHz

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:55:14

3DH1_High 1.188MHz

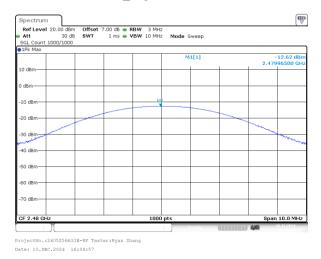


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:58:43

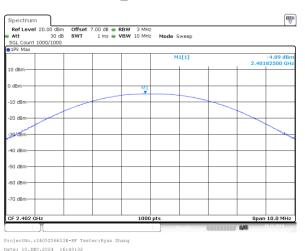


Maximum Conducted Peak Output Power:

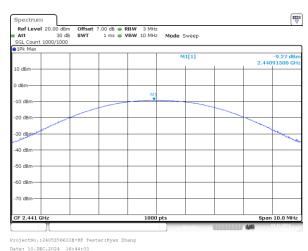
DH1_Low -6.80dBm

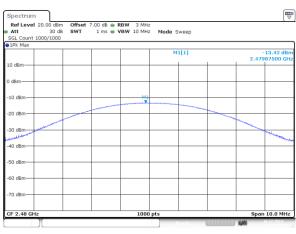


DH1_Middle -9.66dBm

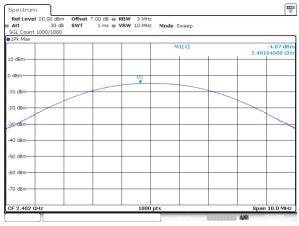


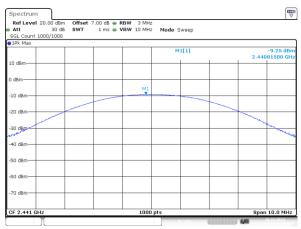
ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:01:03

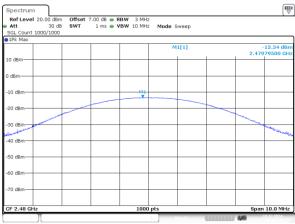

DH1_High -12.62dBm


2DH1_Low -4.89dBm

2DH1_Middle -9.27dBm


2DH1_High -13.42dBm

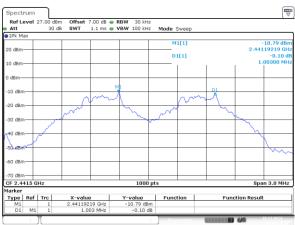

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:48:24


3DH1_Low -4.87dBm

3DH1_Middle -9.25dBm

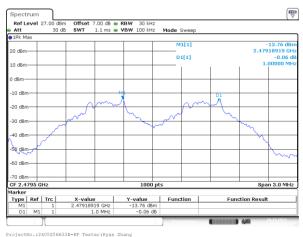
3DH1_High -13.34dBm

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 17:00:37



Channel separation:

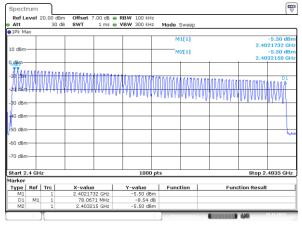
DH1_Low 1MHz



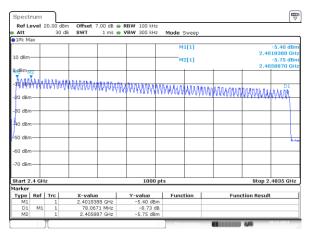
DH1_Middle 1.003MHz

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:02:20

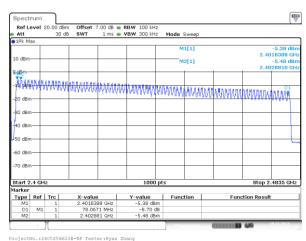
DH1_High 1MHz



rojectno.:2405256633E-RF Tester:Ryan Zhang Mate: 10.DEC.2024 16:06:16


Number of hopping Frequency

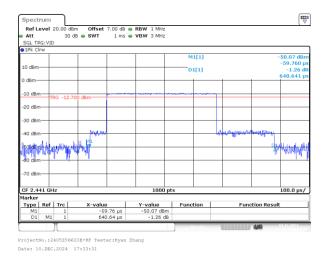
DH1_Hopping 79


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 17:25:28

2DH1_Hopping 79

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 17:32:26

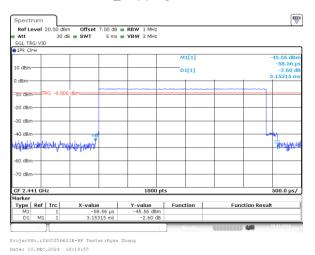
3DH1_Hopping 79



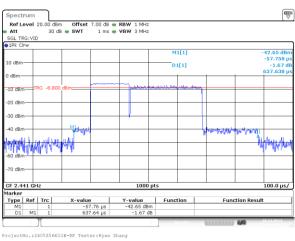
ProjectNo.:2405256633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 17:29:18

Time of occupancy (dwell time)

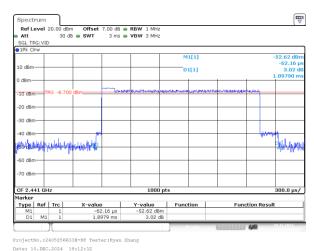
DH1_Hopping 0.641ms

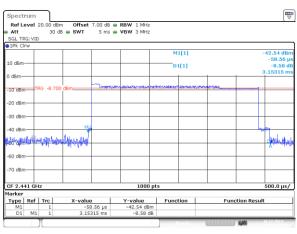


DH3_Hopping 1.898ms

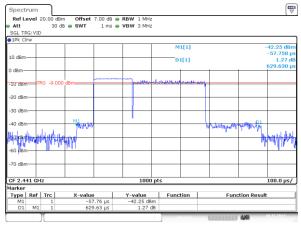


Date: 10.DEC.2024 17:34:36

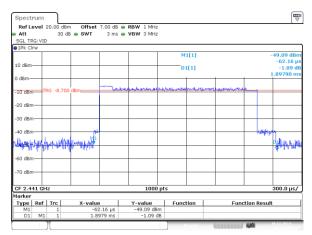

DH5_Hopping 3.153ms


2DH1_Hopping 0.638ms

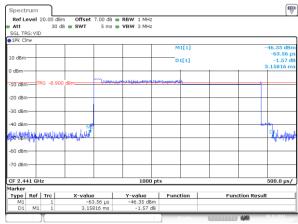
2DH3_Hopping 1.898ms


2DH5_Hopping 3.153ms

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 18:13:15



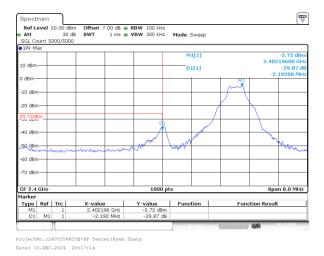
3DH1_Hopping 0.630ms


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 18:13:58

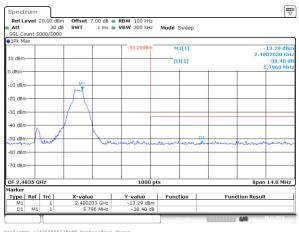
3DH3_Hopping 1.898ms

ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 18:14:44

3DH5_Hopping 3.158ms

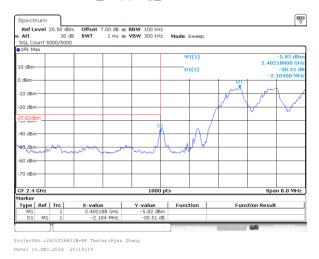


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 18:15:53

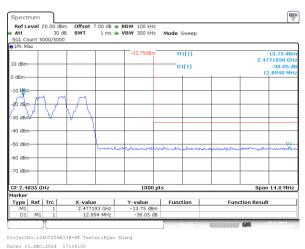


100kHz Bandwidth of Frequency Band Edge:

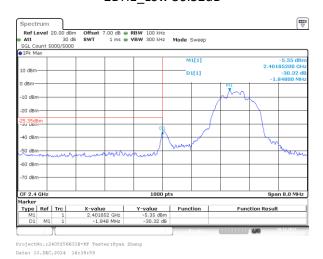
DH1_Low 30.20dB

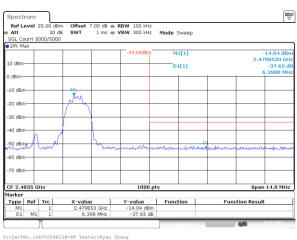


DH1_High 38.40dB

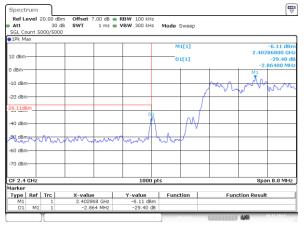


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang Date: 10.DEC.2024 16:04:09

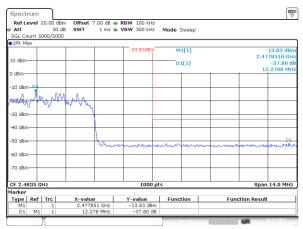

DH1_Hopping_Lower 30.60dB


DH1_Hopping_Upper 38.05dB

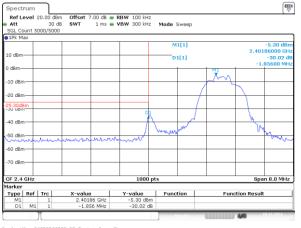
2DH1_Low 30.32dB


2DH1_High 37.65dB

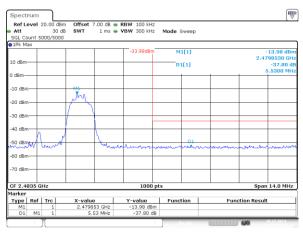
ProjectNo.:2405Z56633E-RF Tester:Ryan Zhan Date: 10.DEC.2024 16:47:34



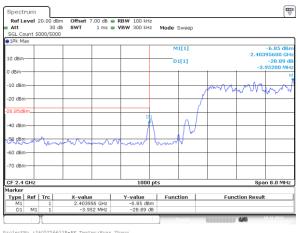
2DH1_Hopping_Lower 29.40dB


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang

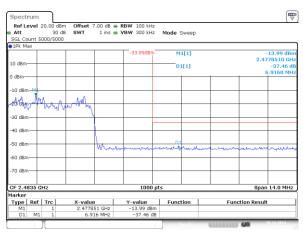
2DH1_Hopping_Upper 37.80dB


ProjectNo.:2405Z56633E-RF Tester:Ryan Zhang

3DH1_Low 30.02dB


Date: 10.DEC.2024 16:52:37

3DH1_High 37.80dB



Date: 10.DEC.2024 16:58:24

3DH1 Hopping Lower 28.89dB

3DH1 Hopping Upper 37.46dB

4 Test Setup Photo

Please refer to the attachment 2405Z56633E Test Setup photo.

5 E.U.T Photo

Please refer to the attachment 2405Z56633E External photo and 2405Z56633E Internal photo.

---End of Report---