

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190908004

FCC REPORT (BLE)

Applicant: General Procurement, Inc

Address of Applicant: 800 E Dyer Road Santa Ana, CA 92705 United States

Equipment Under Test (EUT)

Product Name: 6.0 inch smartphone

Model No.: Eternity G60

Trade mark: Hyundai

FCC ID: 2AIOHHT3G60

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 20 Aug., 2019

Date of Test: 21 Aug., to 17 Oct., 2019

Date of report issued: 22 Oct., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	22 Oct., 2019	Original

Tanet Wei Date:
Test Engineer

Winner Thang Date: Tested by: 22 Oct., 2019

Reviewed by: 22 Oct., 2019

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4		ST SUMMARY	
- 5		NERAL INFORMATION	
•	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	Measurement Uncertainty	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	Spurious Emission	
	6.7.		
	6.7.	2 Radiated Emission Method	27
7	TES	ST SETUP PHOTO	32
0	E117	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark.

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014
ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	General Procurement, Inc
Address:	800 E Dyer Road Santa Ana, CA 92705 United States
Manufacturer/ Factory:	Shen Zhen Cheng Fong Digital-Tech Limited
Address:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China

5.2 General Description of E.U.T.

Product Name:	6.0 inch smartphone
Model No.:	Eternity G60
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V, 3000mAh
AC adapter:	Model: K-T100501500U
	Input: AC100-240V, 50/60Hz, 0.25A
	Output: DC 5.0V, 1500mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE190908004

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

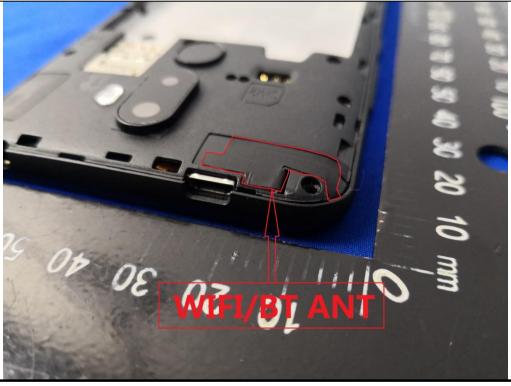
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

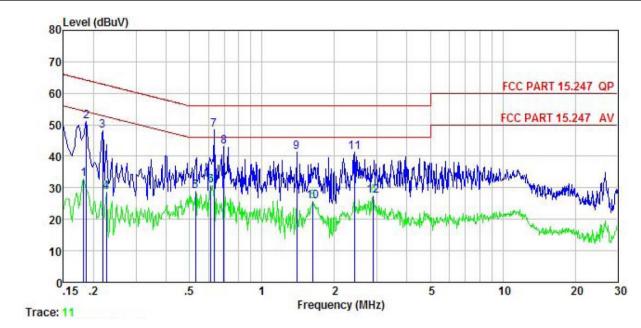

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

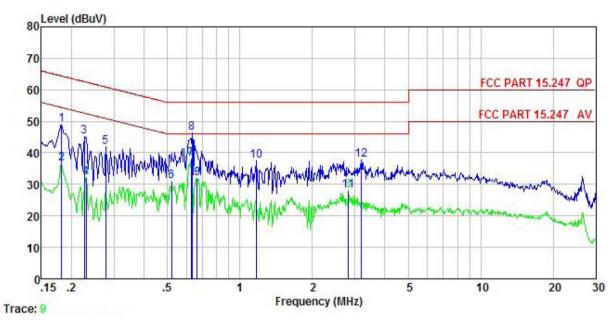
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.0 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	207		
Test Frequency Range:	150 kHz to 30 MHz			
, , ,				
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)		dBuV)	
	, , ,	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5 5-30	56 60	46 50	
	* Decreases with the logar		50	
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4-2014 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.9 for de	tails		
Test mode:	Refer to section 5.3 for de	tails		
Test results:	Passed			

Measurement Data:

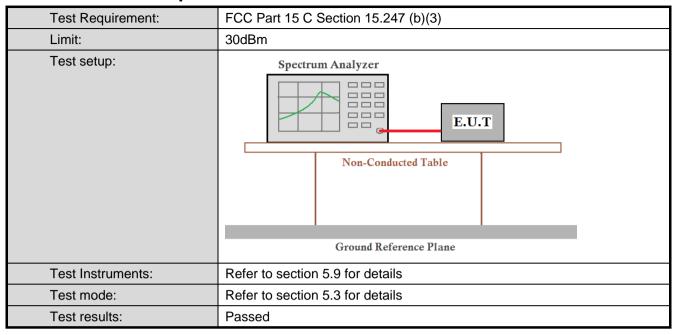
Product name:	6.0 inch smartphone	Product model:	Eternity G60
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	₫B	₫B	dBu₹	dBu∜	<u>d</u> B	
1	0.182	22.47	-0.42	10.77	32.82	54.42	-21.60	Average
1 2 3	0.186	40.88	-0.42	10.76	51.22	64.20	-12.98	QP
3	0.219	37.77	-0.40	10.76	48.13	62.88	-14.75	QP
4	0.226	18.31	-0.40	10.75	28.66	52.61	-23.95	Average
4 5 6 7 8 9	0.529	18.42	-0.39	10.76	28.79	46.00	-17.21	Average
6	0.614	20.22	-0.38	10.77	30.61	46.00	-15.39	Average
7	0.634	38.04	-0.38	10.77	48.43	56.00	-7.57	QP
8	0.694	32.58	-0.38	10.77	42.97	56.00	-13.03	QP
9	1.396	30.89	-0.39	10.91	41.41	56.00	-14.59	QP
10	1.628	15.10	-0.40	10.93	25.63	46.00	-20.37	Average
11	2.422	30.91	-0.42	10.94	41.43		-14.57	
12	2.900	17.03	-0.44	10.92	27.51			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

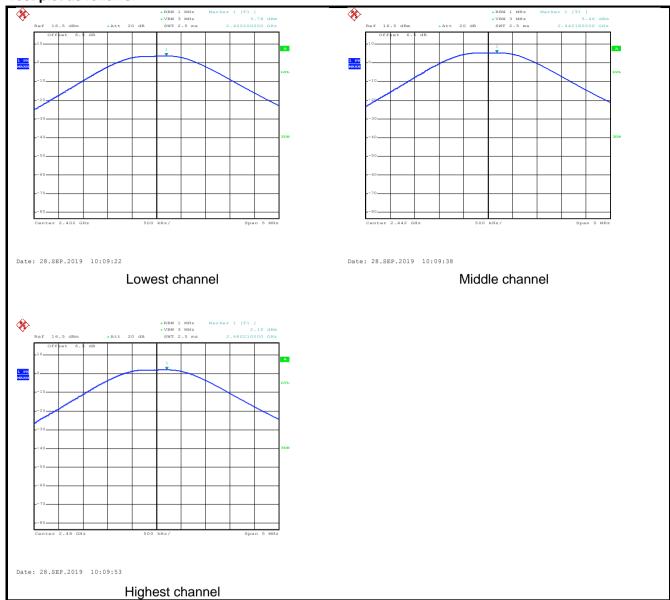
Product name:	6.0 inch smartphone	Product model:	Eternity G60
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	₫B	₫B	dBu₹	dBu₹	<u>d</u> B	
1	0.182	38.79	-0.69	10.77	48.87	64.42	-15.55	QP
2	0.182	26.49	-0.69	10.77	36.57	54.42	-17.85	Average
2	0.226	34.94	-0.67	10.75	45.02	62.61	-17.59	QP
4 5 6 7	0.230	22.10	-0.67	10.75	32.18	52.44	-20.26	Average
5	0.277	31.76	-0.64	10.74	41.86	60.90	-19.04	QP
6	0.521	20.82	-0.65	10.76	30.93	46.00	-15.07	Average
7	0.627	27.81	-0.64	10.77	37.94	46.00	-8.06	Average
8	0.634	36.16	-0.64	10.77	46.29	56.00	-9.71	QP
9	0.665	21.69	-0.64	10.77	31.82	46.00	-14.18	Average
10	1.172	27.39	-0.64	10.89	37.64	56.00	-18.36	QP
11	2.824	17.76	-0.67	10.93	28.02	46.00	-17.98	Average
12	3.190	27.44	-0.68	10.91	37.67		-18.33	

Notes:

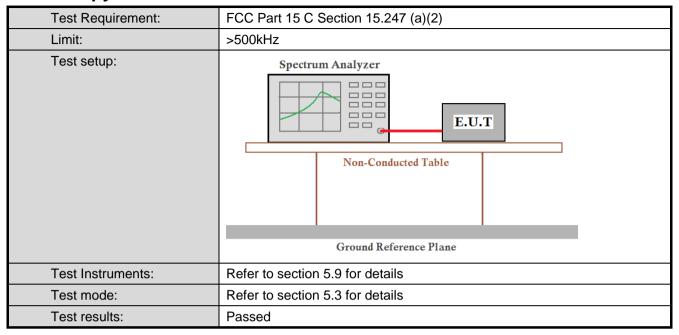
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power



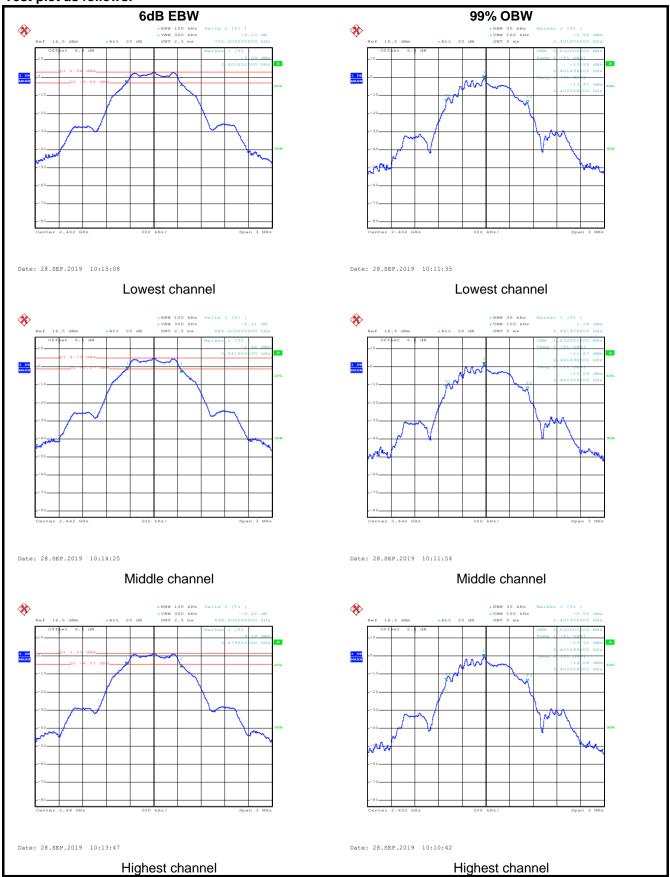
Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	3.76		
Middle	5.46	30.00	Pass
Highest	2.15		



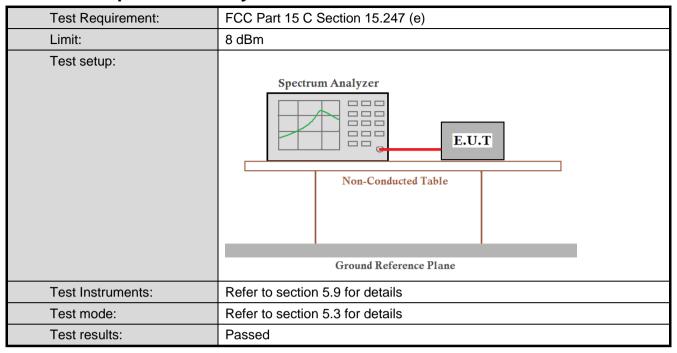
Test plot as follows:

6.4 Occupy Bandwidth



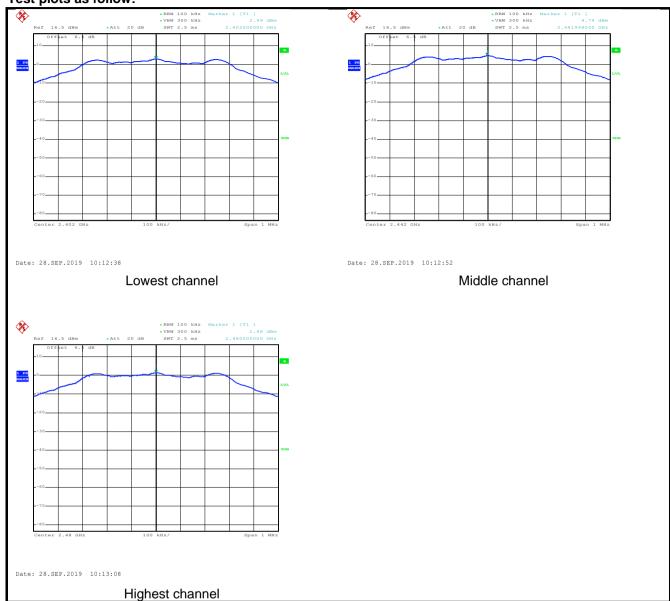
Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.702			
Middle	0.684	>500	Pass	
Highest	0.696			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.032			
Middle	Middle 1.032		N/A	
Highest	1.032			



Test plot as follows:

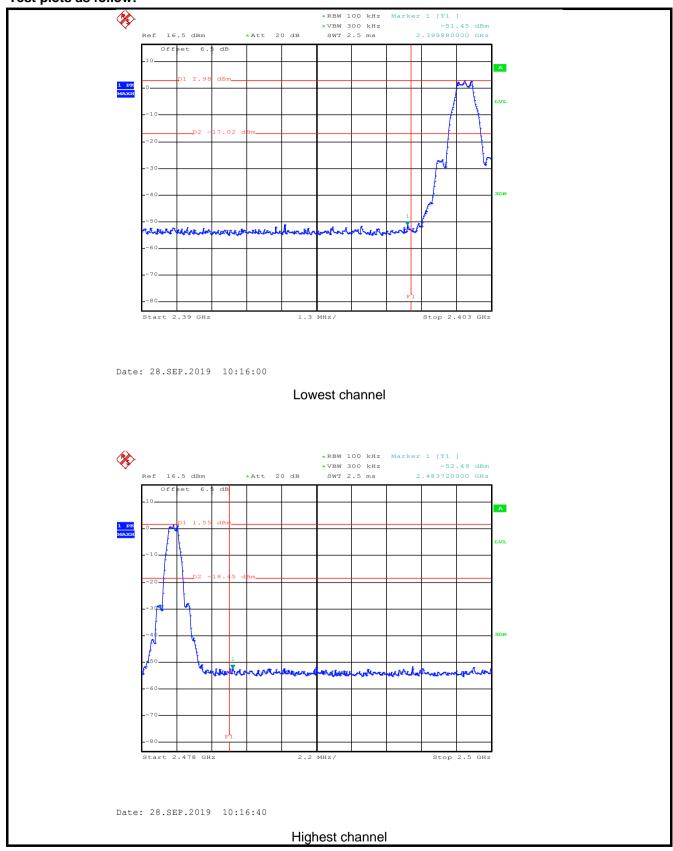
6.5 Power Spectral Density



Measurement Data:

modeum official Batar			
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	2.99		
Middle	4.74	8.00	Pass
Highest	1.46		

Test plots as follow:


6.6 Band Edge

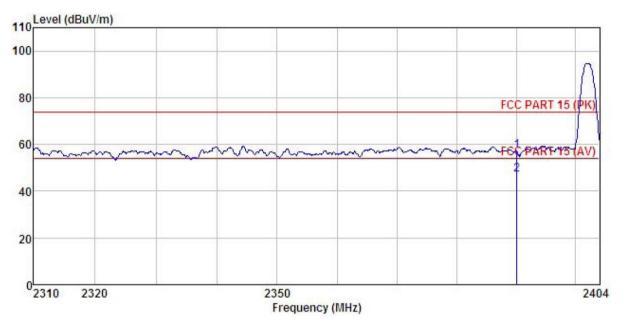
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

6.6.2 Radiated Emission Method

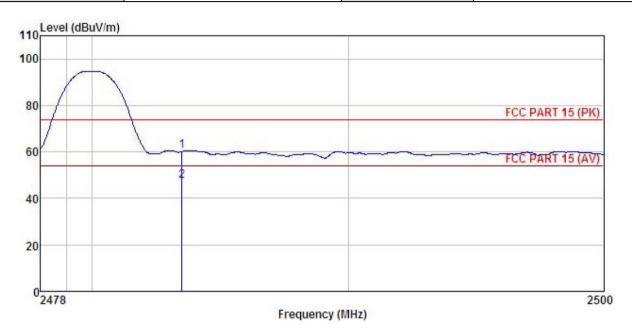
0.0.2	Radiated Ellission i	victilou					
	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209					
	Test Frequency Range:	2.3GHz to 2.5	GHz				
	Test Distance:	3m					
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
	•	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
			RMS	1MHz	3MHz	Average Value	
	Limit:	Frequer	Frequency Limit (dBuV/r			Remark	
					verage Value Peak Value		
	Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horize make the 4. For each case and meters are to find the Specified 6. If the emite the limits of the EU have 10 ce	ad at a 3 meterine the position was set 3 meterine which was menna height is ad to determine zontal and vertical measurement suspected enter then the anterior maximum respectively. Bandwidth wassion level of specified, them T would be red margin wo	er camber. The tacton of the highest eters away from the counted on the top waried from one rate the maximum varical polarization of the top was turned from the ending. The end was turned from the ending of the EUT in peak of testing could be exported. Otherwise the extended th	ble was rotal radiation. The interference of a variable meter to four value of the assort the anterest of the arrange of the a	re-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 is to 360 degrees inction and 10 dB lower than d the peak values ions that did not using peak, quasi-	
	Test setup:	AE Wags	Test Receive	3m 3m and Reference Plane	Antenna Tower		
	Test Instruments:	Refer to section	on 5.9 for deta	ails			
	Test mode:	Refer to section					
	Test results:	Passed					


Product Name:	6.0 inch smartph	6.0 inch smartphone Janet		Product Model: Test mode:		Eternity G60	
est By:	Janet					BLE Tx mode	
est Channel:	Lowest channel		Polarizatio	on:	Vertical		
est Voltage:	AC 120/60Hz		Environme	ent:	Temp: 24℃	Huni: 57%	
110 Level (dBuV	(m)						
110 Level (dbdv)	in)						
100							
						Λ	
80					FCC PAR	T 15 (PK)	
60	\	~~~~~~~	mam	man man	MAPCE RAP	145 (AV)	
			V	7	2		
40							
20							
0 2310 232	20	2350				2404	
2310 232	.0	Frequency	(MHz)			2404	
		enna Cable Pream			ver		

	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	2390.000								
2	2390.000	13.14	27.07	4.69	0.00	46.58	54.00	-7.42	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

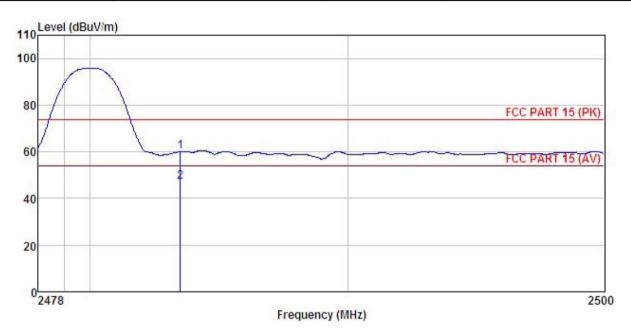
Product Name:	6.0 inch smartphone	Product Model:	Eternity G60		
Test By:	Janet	Test mode:	BLE Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		



	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



				Cable Preamp Loss Factor Level				Remark	
	MHz	dBu∜	dB/m	dB	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2483.500 2483.500								

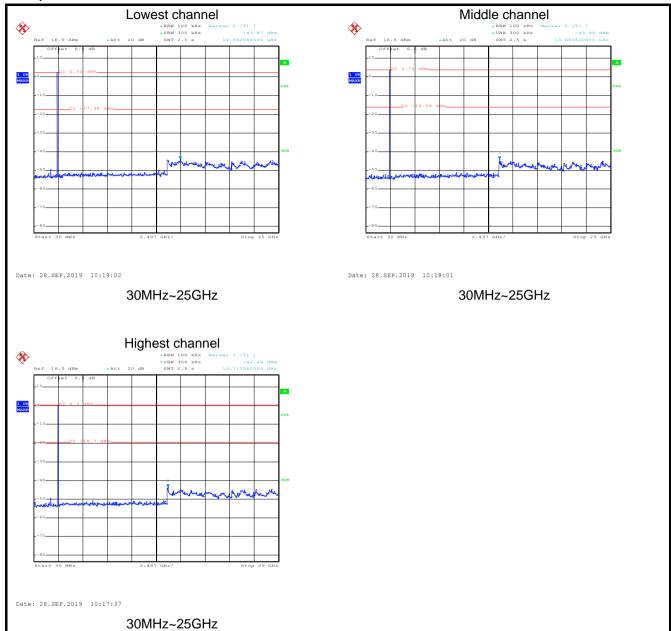
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Read Freq Level		Antenna Factor				Limit Line		Remark
	MHz	dBu₹		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

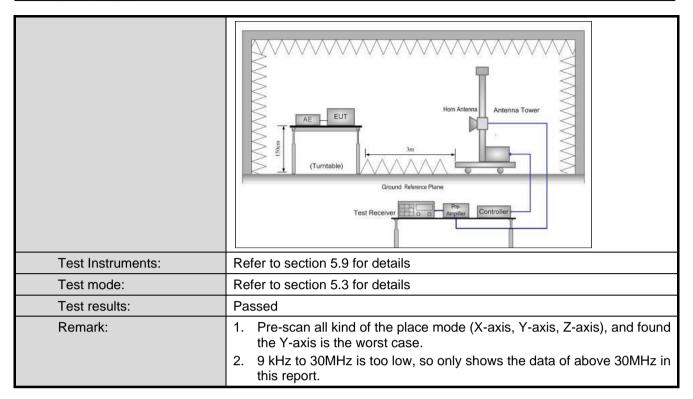
Page 24 of 33


6.7 Spurious Emission

6.7.1 Conducted Emission Method

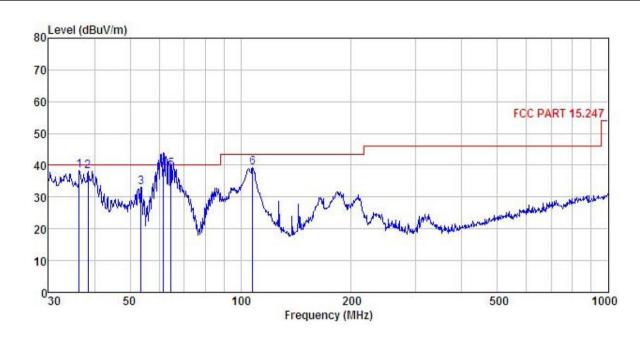
Tost Poquiroment:	ECC Part 15 C Section 15 247 (d)
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test instruments.	IVEIGI 10 SECTION 3.3 IOI UETANS
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209								
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz							
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value			
	Al 4011-	Peak	1MHz	3M	Hz	Peak Value			
	Above 1GHz	RMS	1MHz	3M	Hz	Average Value			
Limit:	Frequency	/ L	mit (dBuV/m @	3m)		Remark			
	30MHz-88M	Hz	40.0		C	Quasi-peak Value			
	88MHz-216M	1Hz	43.5		C	Quasi-peak Value			
	216MHz-960N		46.0			Quasi-peak Value			
	960MHz-1G	Hz	54.0		C	Quasi-peak Value			
	Above 1GF	lz 🖳	54.0			Average Value			
Test Procedure:			74.0	•	<u> </u>	Peak Value table 0.8m(below			
	highest rad The EUT antenna, w tower. The antenr the ground Both horize make the n For each s case and t meters and to find the r The test-re Specified E If the emiss the limit sp of the EUT have 10 dE	liation. was set 3 n hich was mo na height is n I to determin ontal and ver neasurement suspected er hen the ante I the rota tabl maximum rea eceiver syste Sandwidth wit sion level of t ecified, then would be re margin wou	neters away unted on the form of the maximutical polarization in the Enna was turned ding. In Maximum Hore EUT in perfecting could be ported. Other lid be re-tested	from the top of a ne met um valutions of the top he from 0 to Pealold Moeak mode stop wise the done be	ne inter to the action of the	the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data			
Test setup:	EUT	3m 4m 4m 0.8m 1m			Search Antenn Test ceiver —	1			

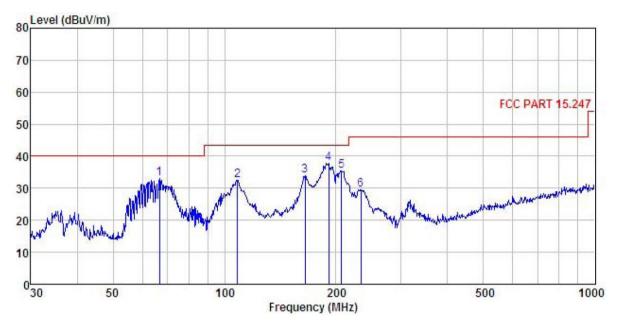


Measurement Data (worst case):

Below 1GHz:

Product Name:	6.0 inch smartphone	Product Model:	Eternity G60
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		ntenna Factor				Limit Line	Over Limit	
	MHz	dBu₹	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	36.381	55.65	11.54	1.11	29.94	38.36	40.00	-1.64	QP
2	38.481	54.89	12.02	1.18	29.91	38.18	40.00	-1.82	QP
2 3 4 5 6	53.505	49.83	11.74	1.32	29.81	33.08	40.00	-6.92	QP
4	61.562	56.55	10.83	1.38	29.77	38.99	40.00	-1.01	QP
5	64.659	57.48	9.69	1.38	29.76	38.79	40.00	-1.21	QP
6	107.888	54.78	11.82	2.03	29.47	39.16	43.50	-4.34	QP


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Test By: Janet Test mode: BLE Tx mode	
Test Frequency:30 MHz ~ 1 GHzPolarization:Horizontal	
Test Voltage:AC 120/60HzEnvironment:Temp: 24°CHu	ıni: 57%

	Freq		Antenna Factor				Limit Line		
_	MHz	dBu∜	<u>dB</u> /m		<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	66.733	52.11	9.23	1.44	29.75	33.03	40.00	-6.97	QP
1 2 3	108.267	48.27	11.79	2.03	29.47	32.62	43.50	-10.88	QP
3	164.908	51.06	9.47	2.62	29.09	34.06	43.50	-9.44	QP
4	191.074	53.49	10.33	2.81	28.89	37.74	43.50	-5.76	QP
5	207.123	50.57	10.92	2.86	28.78	35.57	43.50	-7.93	QP
4 5 6	233.349	43.38	12.03	2.83	28.63	29.61	46.00	-16.39	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

ADOVE IGHZ												
			Test ch	nannel: Lowe	est channel							
			De	tector: Peal	v Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4804.00	47.98	30.85	6.80	41.81	43.82	74.00	-30.18	Vertical				
4804.00	47.92	30.85	6.80	41.81	43.76	74.00	-30.24	Horizontal				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4804.00	40.88	30.85	6.80	41.81	36.72	54.00	-17.28	Vertical				
4804.00	40.92	30.85	6.80	41.81	36.76	54.00	-17.24	Horizontal				
Test channel: Middle channel												
	Deed	A		tector: Peal	value		0	1				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4884.00	48.37	31.20	6.86	41.84	44.59	74.00	-29.41	Vertical				
4884.00	48.22	31.20	6.86	41.84	44.44	74.00	-29.56	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4884.00	41.26	31.20	6.86	41.84	37.48	54.00	-16.52	Vertical				
4884.00	41.82	31.20	6.86	41.84	38.04	54.00	-15.96	Horizontal				
				annel: High								
		1		tector: Peal	k Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	48.69	31.63	6.91	41.87	45.36	74.00	-28.64	Vertical				
4960.00	48.43	31.63	6.91	41.87	45.10	74.00	-28.90	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				

Remark

4960.00

4960.00

41.81

41.99

6.91

6.91

41.87

41.87

38.48

38.66

54.00

54.00

-15.52

-15.34

31.63

31.63

Project No.: CCISE1909080

Vertical

Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.