

# FCC Test Report

Report No.: AGC11775240905FR01

| FCC ID                | : | 2A8K2MSWNM02-MSPKR              |
|-----------------------|---|---------------------------------|
| APPLICATION PURPOSE   | : | Original Equipment              |
| PRODUCT DESIGNATION   | : | Manta Sleep White Noise Machine |
| BRAND NAME            | : | Manta Sleep                     |
| MODEL NAME            | : | MSWHITENOISE02-MSPKR            |
| APPLICANT             | : | Manta Sleep LLC                 |
| DATE OF ISSUE         | : | Oct. 30, 2024                   |
| STANDARD(S)           | : | FCC Part 15 Subpart C §15.247   |
| <b>REPORT VERSION</b> | : | V1.0                            |







# **Report Revise Record**

| Report Version | Revise Time | Issued Date   | Valid Version | Notes           |  |
|----------------|-------------|---------------|---------------|-----------------|--|
| V1.0           | /           | Oct. 30, 2024 | Valid         | Initial Release |  |



## **Table of Contents**

| 1. General Information                                   | 5  |
|----------------------------------------------------------|----|
| 2. Product Information                                   | 6  |
| 2.1 Product Technical Description                        | 6  |
| 2.2 Test Frequency List                                  | 6  |
| 2.3 Related Submittal(S) / Grant (S)                     | 7  |
| 2.4 Test Methodology                                     | 7  |
| 2.5 Receiver Input Bandwidth                             |    |
| 2.6 Equally Average Use of Frequencies and Behaviour     | 7  |
| 2.7 Pseudorandom Frequency Hopping Sequence              |    |
| 2.8 Special Accessories                                  | 9  |
| 2.9 Equipment Modifications                              |    |
| 2.10 Antenna Requirement                                 | 9  |
| 3. Test Environment                                      |    |
| 3.1 Address of The Test Laboratory                       |    |
| 3.2 Test Facility                                        |    |
| 3.3 Environmental Conditions                             | 11 |
| 3.4 Measurement Uncertainty                              | 11 |
| 3.5 List of Equipment Used                               |    |
| 4. System Test Configuration                             | 14 |
| 4.1 EUT Configuration                                    | 14 |
| 4.2 EUT Exercise                                         | 14 |
| 4.3 Configuration of Tested System                       | 14 |
| 4.4 Equipment Used in Tested System                      |    |
| 4.5 Summary of Test Results                              |    |
| 5. Description of Test Modes                             |    |
| 6. RF Output Power Measurement                           | 17 |
| 6.1 Provisions Applicable                                |    |
| 6.2 Measurement Procedure                                |    |
| 6.3 Measurement Setup (Block Diagram of Configuration)   |    |
| 6.4 Measurement Result                                   |    |
| 7. 20dB Bandwidth and 99% Occupied Bandwidth Measurement |    |
| 7.1 Provisions Applicable                                |    |
| 7.2 Measurement Procedure                                |    |
| 7.3 Measurement Setup (Block Diagram of Configuration)   | 24 |
| 7.4 Measurement Results                                  |    |
| 8. Conducted Band Edge and Out-of-Band Emissions         |    |
| 8.1 Provisions Applicable                                |    |
| 8.2 Measurement Procedure                                |    |
| 8.3 Measurement Setup (Block Diagram of Configuration)   |    |
| 8.4 Measurement Results                                  |    |



| 9. Radiated Spurious Emission                              | 51 |
|------------------------------------------------------------|----|
| 9.1 Measurement Limit                                      |    |
| 9.2 Measurement Procedure                                  |    |
| 9.3 Measurement Setup (Block Diagram of Configuration)     |    |
| 9.4 Measurement Result                                     |    |
| 10. Number of Hopping Frequency Measurement                |    |
| 10.1 Provisions Applicable                                 |    |
| 10.2 Measurement Procedure                                 |    |
| 10.3 Measurement Setup (Block Diagram of Configuration)    |    |
| 10.4 Measurement Result                                    |    |
| 11. Time of Occupancy (Dwell Time) Measurement             |    |
| 11.1 Provisions Applicable                                 |    |
| 11.2 Measurement Procedure                                 |    |
| 11.3 Measurement Setup (Block Diagram of Configuration)    |    |
| 11.4 Measurement Result                                    |    |
| 12. Frequency Separation Measurement                       |    |
| 12.1 Provisions Applicable                                 |    |
| 12.2 Measurement Procedure                                 |    |
| 12.3 Measurement Setup (Block Diagram of Configuration)    |    |
| 12.4 Measurement Result                                    |    |
| 13. AC Power Line Conducted Emission Test                  |    |
| 13.1 Measurement Limit                                     |    |
| 13.2 Measurement Setup (Block Diagram of Configuration)    |    |
| 13.3 Preliminary Procedure of Line Conducted Emission Test |    |
| 13.4 Final Procedure of Line Conducted Emission Test       |    |
| 13.5 Measurement Results                                   |    |
| Appendix I: Photographs of Test Setup                      |    |
| Appendix II: Photographs of Test EUT                       |    |



# **1. General Information**

| Applicant                    | Manta Sleep LLC                                                                     |
|------------------------------|-------------------------------------------------------------------------------------|
| Address                      | 680 S Cache Street Suite 100 Box 7403 Jackson, WY 83001 USA                         |
| Manufacturer                 | Manta Sleep LLC                                                                     |
| Address                      | 680 S Cache Street Suite 100 Box 7403 Jackson, WY 83001 USA                         |
| Factory                      | Mission Electronic Limited                                                          |
| Address                      | 3F Building C, YUSHENG Industrial Area, LiaoKeng, ShiYan, Baoan, Shenzhen,<br>China |
| Product Designation          | Manta Sleep White Noise Machine                                                     |
| Brand Name                   | Manta Sleep                                                                         |
| Test Model                   | MSWHITENOISE02-MSPKR                                                                |
| Series Model(s)              | N/A                                                                                 |
| Difference Description       | N/A                                                                                 |
| Date of receipt of test item | Sep. 27, 2024                                                                       |
| Date of Test                 | Sep. 27, 2024 to Oct. 30, 2024                                                      |
| Deviation from Standard      | No any deviation from the test method                                               |
| Condition of Test Sample     | Normal                                                                              |
| Test Result                  | Pass                                                                                |
| Test Report Form No          | AGCER-FCC-BR_EDR-V1                                                                 |

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By

AS li

Cici Li (Project Engineer)

Oct. 30, 2024

Reviewed By

Calvin Liu (Reviewer)

Oct. 30, 2024

Approved By

Max Zhang

Max Zhang (Authorized Officer)

Oct. 30, 2024



# 2. Product Information

## 2.1 Product Technical Description

| Frequency Band            | 2400MHz-2483.5MHz                                  |
|---------------------------|----------------------------------------------------|
| Operation Frequency Range | 2402MHz-2480MHz                                    |
| Bluetooth Version         | V5.4                                               |
| Modulation Type           | BR 🖾 GFSK, EDR 🖾 $\pi$ /4-DQPSK, $\boxtimes$ 8DPSK |
| Number of channels        | 79 Channels                                        |
| Channel Separation        | 1 MHz                                              |
| Maximum Transmitter Power | -2.745dBm                                          |
| Hardware Version          | V1.0                                               |
| Software Version          | V1.0                                               |
| Antenna Designation       | PCB Antenna                                        |
| Antenna Gain              | 0.143dBi                                           |
| Power Supply              | DC 5V by adapter                                   |

## 2.2 Test Frequency List

| Frequency Band                                                                                            | Channel Number | Frequency |  |  |  |
|-----------------------------------------------------------------------------------------------------------|----------------|-----------|--|--|--|
|                                                                                                           | 0              | 2402 MHz  |  |  |  |
|                                                                                                           | 1              | 2403 MHz  |  |  |  |
|                                                                                                           | :              | :         |  |  |  |
| 2400~2483.5MHz                                                                                            | 39             | 2441MHz   |  |  |  |
|                                                                                                           | :              | :         |  |  |  |
|                                                                                                           | 77             | 2479 MHz  |  |  |  |
|                                                                                                           | 78             | 2480 MHz  |  |  |  |
| Note: f = 2402 + 1k MHz, k = 0,, 78 ; "f "is the operating frequency (MHz); "k" is the operating channel. |                |           |  |  |  |



## 2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2A8K2MSWNM02-MSPKR**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

## 2.4 Test Methodology

The tests were performed according to following standards:

| No. | Identity                                         | Document Title                                                                                                                                                                                  |
|-----|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | FCC 47 CFR Part 2                                | Frequency allocations and radio treaty matters; general rules and regulations                                                                                                                   |
| 2   | 2 FCC 47 CFR Part 15 Radio Frequency Devices     |                                                                                                                                                                                                 |
| 3   | ANSI C63.10-2013                                 | American National Standard for Testing Unlicensed Wireless Devices                                                                                                                              |
| 4   | KDB 558074<br>D01 15.247 Meas<br>Guidance v05r02 | Guidance for compliance measurements on Digital Transmission Systems,<br>Frequency Hopping Spread Spectrum system, and Hybrid system devices<br>operating under Section 15.247 of the FCC rules |

#### 2.5 Receiver Input Bandwidth

The input bandwidth of the receiver is 1.3MHz, in every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally, the type of connection (e.g. single of multi slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also, the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

## 2.6 Equally Average Use of Frequencies and Behaviour.

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection.

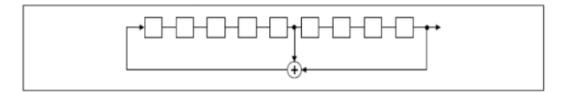
2. Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD\_ADDRESS. The BD\_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24MSB's of the 48BD\_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For behavior action with other units only offset is used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30).

In most case it is implemented as 28 bits counter. For the deriving of the hopping sequence the entire. LAP (24 bits),4LSB's(4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:


The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer (and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always differ from the first one.



## 2.7 Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of The PRBS Sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

| 44 | 35 | 78 | 03 | 20 | 76 | 02       | 19 |   | 2   | 1 64 | 75 |
|----|----|----|----|----|----|----------|----|---|-----|------|----|
|    |    |    |    |    |    | 1        |    | 1 |     |      |    |
|    |    |    |    | -  |    |          |    |   |     |      |    |
|    |    |    |    |    | ;  |          |    |   | i i |      |    |
|    |    |    | └  | i  |    | <u>i</u> |    | 1 | i   |      |    |

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



## 2.8 Special Accessories

Not available for this EUT intended for grant.

## 2.9 Equipment Modifications

Not available for this EUT intended for grant.

#### 2.10 Antenna Requirement

#### Standard Requirement

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

#### EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 0.143dBi.



## 3. Test Environment

## 3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

## 3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

#### A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

#### IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.



## **3.3 Environmental Conditions**

|                         | Normal Conditions |
|-------------------------|-------------------|
| Temperature range (°C)  | 15 - 35           |
| Relative humidity range | 20 % - 75 %       |
| Pressure range (kPa)    | 86 - 106          |
| Power supply            | DC 5V by adapter  |

#### **3.4 Measurement Uncertainty**

The reported uncertainty of measurement y  $\pm$ U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Item                                          | Measurement Uncertainty    |  |  |
|-----------------------------------------------|----------------------------|--|--|
| Uncertainty of Conducted Emission for AC Port | $U_c = \pm 2.9 \text{ dB}$ |  |  |
| Uncertainty of Radiated Emission below 1GHz   | $U_c = \pm 3.9 \text{ dB}$ |  |  |
| Uncertainty of Radiated Emission above 1GHz   | $U_c = \pm 4.9 \text{ dB}$ |  |  |
| Uncertainty of total RF power, conducted      | $U_c = \pm 0.8 \text{ dB}$ |  |  |
| Uncertainty of RF power density, conducted    | $U_c = \pm 2.6 \text{ dB}$ |  |  |
| Uncertainty of spurious emissions, conducted  | $U_c = \pm 2 \%$           |  |  |
| Uncertainty of Occupied Channel Bandwidth     | $U_c = \pm 2 \%$           |  |  |



## 3.5 List of Equipment Used

| • R         | RF Conducted Test System |                        |              |            |            |                              |                              |  |  |
|-------------|--------------------------|------------------------|--------------|------------|------------|------------------------------|------------------------------|--|--|
| Used        | Equipment No.            | Test Equipment         | Manufacturer | Model No.  | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |
| $\square$   | AGC-ER-E036              | Spectrum Analyzer      | Agilent      | N9020A     | MY49100060 | 2024-05-24                   | 2025-05-23                   |  |  |
| $\boxtimes$ | AGC-ER-E062              | Power Sensor           | Agilent      | U2021XA    | MY54110007 | 2024-02-01                   | 2025-01-31                   |  |  |
| $\boxtimes$ | AGC-ER-E063              | Power Sensor           | Agilent      | U2021XA    | MY54110009 | 2024-02-01                   | 2025-01-31                   |  |  |
| $\boxtimes$ | AGC-EM-A001              | 6dB Attenuator         | Eeatsheep    | LM-XX-6-5W | N/A        | 2023-09-21                   | 2025-09-20                   |  |  |
|             | AGC-ER-E083              | Signal Generator       | Agilent      | E4421B     | US39340815 | 2024-05-23                   | 2025-05-22                   |  |  |
| $\boxtimes$ | N/A                      | RF Connection<br>Cable | N/A          | 1#         | N/A        | Each time                    | N/A                          |  |  |
| $\boxtimes$ | N/A                      | RF Connection<br>Cable | N/A          | 2#         | N/A        | Each time                    | N/A                          |  |  |

| • F         | Radiated Spurious Emission |                                  |              |            |            |                              |                              |  |  |
|-------------|----------------------------|----------------------------------|--------------|------------|------------|------------------------------|------------------------------|--|--|
| Used        | Equipment No.              | Test Equipment                   | Manufacturer | Model No.  | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |
| $\square$   | AGC-EM-E046                | EMI Test Receiver                | R&S          | ESCI       | 10096      | 2024-02-01                   | 2025-01-31                   |  |  |
|             | AGC-EM-E116                | EMI Test Receiver                | R&S          | ESCI       | 100034     | 2024-05-24                   | 2025-05-23                   |  |  |
| $\square$   | AGC-EM-E061                | Spectrum Analyzer                | Agilent      | N9010A     | MY53470504 | 2024-05-28                   | 2025-05-27                   |  |  |
| $\boxtimes$ | AGC-EM-E086                | Loop Antenna                     | ZHINAN       | ZN30900C   | 18051      | 2024-03-05                   | 2026-03-04                   |  |  |
| $\boxtimes$ | AGC-EM-E001                | Wideband Antenna                 | SCHWARZBECK  | VULB9168   | D69250     | 2023-05-11                   | 2025-05-10                   |  |  |
|             | AGC-EM-E029                | Broadband Ridged<br>Horn Antenna | ETS          | 3117       | 00034609   | 2024-03-31                   | 2025-03-30                   |  |  |
| $\square$   | AGC-EM-E082                | Horn Antenna                     | SCHWARZBECK  | BBHA 9170  | #768       | 2023-09-24                   | 2025-09-23                   |  |  |
| $\square$   | AGC-EM-E146                | Pre-amplifier                    | ETS          | 3117-PA    | 00246148   | 2024-07-24                   | 2026-07-23                   |  |  |
| $\square$   | AGC-EM-A119                | 2.4GHz Filter                    | SongYi       | N/A        | N/A        | 2024-05-23                   | 2025-05-22                   |  |  |
| $\square$   | AGC-EM-A138                | 6dB Attenuator                   | Eeatsheep    | LM-XX-6-5W | N/A        | 2023-06-09                   | 2025-06-08                   |  |  |
|             | AGC-EM-A139                | 6dB Attenuator                   | Eeatsheep    | LM-XX-6-5W | N/A        | 2023-06-09                   | 2025-06-08                   |  |  |

| • A         | AC Power Line Conducted Emission |                   |              |            |            |                              |                              |  |  |
|-------------|----------------------------------|-------------------|--------------|------------|------------|------------------------------|------------------------------|--|--|
| Used        | Equipment No.                    | Test Equipment    | Manufacturer | Model No.  | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |
| $\boxtimes$ | AGC-EM-E045                      | EMI Test Receiver | R&S          | ESPI       | 101206     | 2024-05-28                   | 2025-05-27                   |  |  |
| $\square$   | AGC-EM-A130                      | 6dB Attenuator    | Eeatsheep    | LM-XX-6-5W | DC-6GZ     | 2023-06-09                   | 2025-06-08                   |  |  |
| $\square$   | AGC-EM-E023                      | AMN               | R&S          | 100086     | ESH2-Z5    | 2024-05-28                   | 2025-05-27                   |  |  |

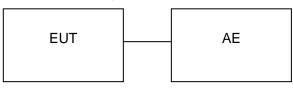


| • Tes       | Test Software |                     |              |                                 |                     |  |  |
|-------------|---------------|---------------------|--------------|---------------------------------|---------------------|--|--|
| Used        | Equipment No. | Test Equipment      | Manufacturer | Model No.                       | Version Information |  |  |
| $\boxtimes$ | AGC-EM-S001   | CE Test System      | R&S          | ES-K1                           | V1.71               |  |  |
| $\boxtimes$ | AGC-EM-S003   | RE Test System      | FARA         | EZ-EMC                          | V.RA-03A            |  |  |
| $\boxtimes$ | AGC-EM-S004   | RE Test System      | Tonscend     | TS <sup>+</sup> Ver2.1(JS32-RE) | 4.0.0.0             |  |  |
| $\boxtimes$ | AGC-ER-S012   | BT/WIFI Test System | Tonscend     | JS1120-2                        | 2.6                 |  |  |
| $\square$   | AGC-EM-S011   | RSE Test System     | Tonscend     | TS+-Ver2.1(JS36-RSE)            | 4.0.0.0             |  |  |

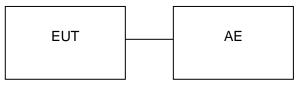


# 4. System Test Configuration

## **4.1 EUT Configuration**


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

## 4.2 EUT Exercise


The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

## 4.3 Configuration of Tested System

Radiated Emission Configure:



Conducted Emission Configure:



## 4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

#### ☑ Test Accessories Come From The Laboratory

| No. | Equipment   | Manufacturer | Model No. | Specification Information | Cable |
|-----|-------------|--------------|-----------|---------------------------|-------|
| 1   | Control Box | RISYM        | USB-TTL   | -                         |       |

☑ Test Accessories Come From The Manufacturer

| No. | Equipment | Manufacturer                                 | Model No.     | Specification Information                                      | Cable            |
|-----|-----------|----------------------------------------------|---------------|----------------------------------------------------------------|------------------|
| 1   | Adapter   | Guangdong<br>Sangu<br>Technology<br>Co., LTD | 5G-0502000AUC | Input: 100-240V~50/60Hz 0.6A<br>MAX<br>Output: 5.0V 2.0A 10.0W | 2.46m,unshielded |



#### 4.5 Summary of Test Results

| Item | FCC Rules            | Description of Test                           | Result |
|------|----------------------|-----------------------------------------------|--------|
| 1    | §15.203&15.247(b)(4) | Antenna Equipment                             | Pass   |
| 2    | §15.247 (b)(1)       | RF Output Power                               | Pass   |
| 3    | §15.247 (a)(1)       | 20 dB Bandwidth                               | Pass   |
| 4    | §15.247 (d)          | Conducted Band Edge and Out-of-Band Emissions | Pass   |
| 5    | §15.209              | Radiated Spurious Emission                    | Pass   |
| 6    | §15.247 (a)(1)(iii)  | Number of Hopping Frequency                   | Pass   |
| 7    | §15.247 (a)(1)(iii)  | Time of Occupancy                             | Pass   |
| 8    | §15.247 (a)(1)       | Frequency Separation                          | Pass   |
| 9    | §15.207              | AC Power Line Conducted Emission              | Pass   |



# 5. Description of Test Modes

| Data Rate / ModulationData Rate / ModulationBluetooth – BR_EDR (GFSK/π /4-DQPSK/8DPSK)Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps (AC/DC adapter)<br>Mode 2: Bluetooth Tx CH39_2441 MHz_1Mbps (AC/DC adapter)<br>Mode 3: Bluetooth Tx CH78_2480 MHz_1Mbps (AC/DC adapter)<br>Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps (AC/DC adapter)<br>Mode 5: Bluetooth Tx CH39_2441 MHz_2Mbps (AC/DC adapter)<br>Mode 5: Bluetooth Tx CH39_2441 MHz_2Mbps (AC/DC adapter)<br>Mode 6: Bluetooth Tx CH78_2480 MHz_2Mbps (AC/DC adapter)<br>Mode 6: Bluetooth Tx CH78_2480 MHz_3Mbps (AC/DC adapter)<br>Mode 7: Bluetooth Tx CH39_2441 MHz_3Mbps (AC/DC adapter)<br>Mode 8: Bluetooth Tx CH39_2441 MHz_3Mbps (AC/DC adapter)<br>Mode 9: Bluetooth Tx CH78_2480 MHz_3Mbps (AC/DC adapter)                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bluetooth – BR_EDR (GFSK/π /4-DQPSK/8DPSK)Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps (AC/DC adapter)<br>Mode 2: Bluetooth Tx CH39_2441 MHz_1Mbps (AC/DC adapter)<br>Mode 3: Bluetooth Tx CH78_2480 MHz_1Mbps (AC/DC adapter)<br>Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps (AC/DC adapter)<br>Mode 5: Bluetooth Tx CH39_2441 MHz_2Mbps (AC/DC adapter)<br>Mode 5: Bluetooth Tx CH39_2441 MHz_2Mbps (AC/DC adapter)<br>Mode 6: Bluetooth Tx CH78_2480 MHz_2Mbps (AC/DC adapter)<br>Mode 6: Bluetooth Tx CH78_2480 MHz_2Mbps (AC/DC adapter)<br>Mode 6: Bluetooth Tx CH78_2480 MHz_3Mbps (AC/DC adapter)<br>Mode 8: Bluetooth Tx CH39_2441 MHz_3Mbps (AC/DC adapter)<br>Mode 8: Bluetooth Tx CH39_2441 MHz_3Mbps (AC/DC adapter)<br>Mode 9: Bluetooth Tx CH78_2480 MHz_3Mbps (AC/DC adapter) |
| Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps (AC/DC adapter)<br>Mode 2: Bluetooth Tx CH39_2441 MHz_1Mbps (AC/DC adapter)<br>Mode 3: Bluetooth Tx CH78_2480 MHz_1Mbps (AC/DC adapter)<br>Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps (AC/DC adapter)<br>Mode 5: Bluetooth Tx CH39_2441 MHz_2Mbps (AC/DC adapter)<br>Mode 5: Bluetooth Tx CH39_2441 MHz_2Mbps (AC/DC adapter)<br>Mode 6: Bluetooth Tx CH78_2480 MHz_2Mbps (AC/DC adapter)<br>Mode 6: Bluetooth Tx CH78_2480 MHz_2Mbps (AC/DC adapter)<br>Mode 7: Bluetooth Tx CH00_2402 MHz_3Mbps (AC/DC adapter)<br>Mode 8: Bluetooth Tx CH39_2441 MHz_3Mbps (AC/DC adapter)<br>Mode 9: Bluetooth Tx CH78_2480 MHz_3Mbps (AC/DC adapter)                                                                                                       |
| Mode10: Bluetooth Tx Hopping-1Mbps (AC/DC adapter)<br>Mode11: Bluetooth Tx Hopping-2Mbps (AC/DC adapter)<br>Mode12: Bluetooth Tx Hopping-3Mbps (AC/DC adapter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AC Conducted Emission Mode 1: Bluetooth Link + USB Cable (Powered from AC Adapter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ol> <li>Only the result of the worst case was recorded in the report, if no other cases.</li> <li>For Radiated Emission, 3axis were chosen for testing for each applicable mode.</li> <li>For Conducted Test method, a temporary antenna connector is provided by the manufacture.<br/>Software Setting Diagram</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| return code: 0x0<br>配置数据发送成功:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 清除曰志                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

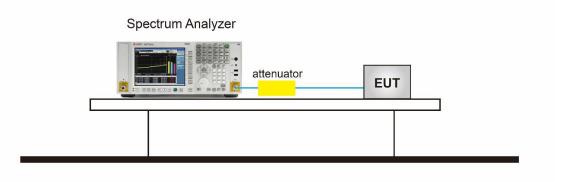


# 6. RF Output Power Measurement

## **6.1 Provisions Applicable**

The maximum out power permissible output power is 1 Watt for all frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels.

The maximum out power permissible output power is 0.125 watts for all other frequency hopping systems in the 2400-2483.5 MHz band.


## 6.2 Measurement Procedure

⊠For Peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW  $\geq$  RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

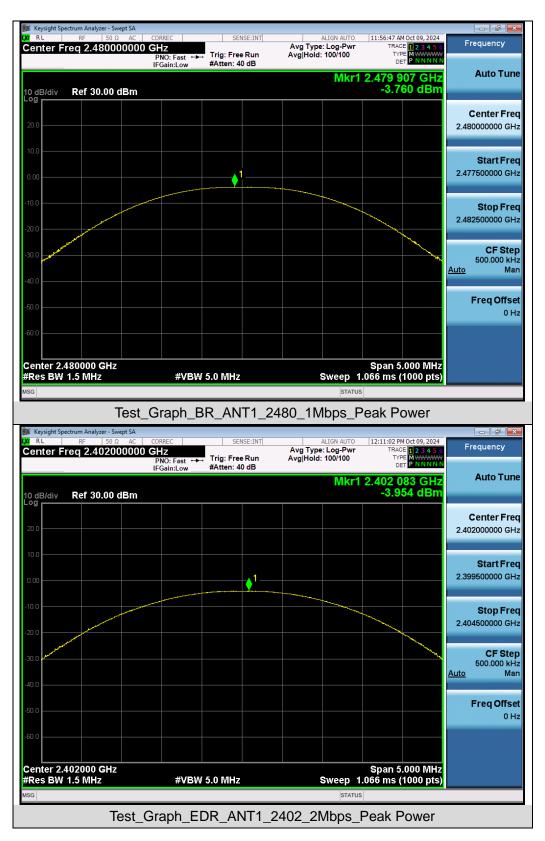
## 6.3 Measurement Setup (Block Diagram of Configuration)

For peak power test setup

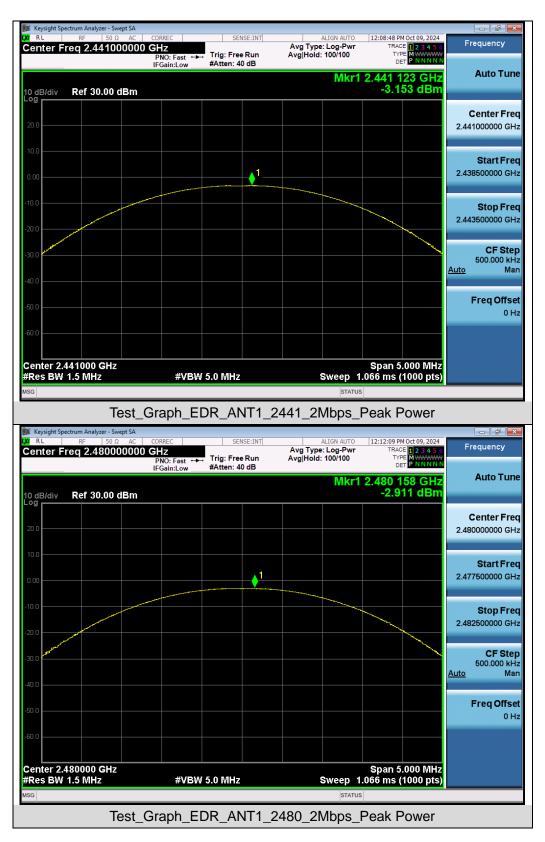




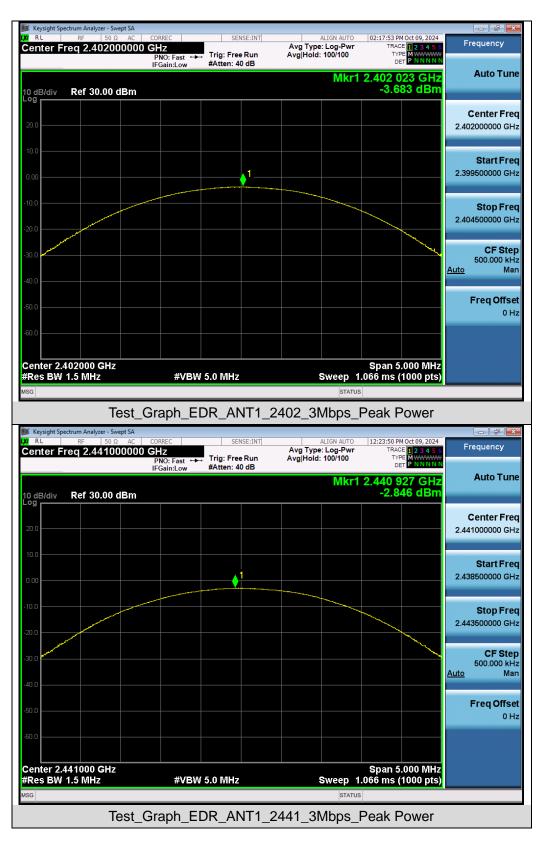

#### **6.4 Measurement Result**


| Test Data of Conducted Output Power |                         |                     |                 |              |  |  |
|-------------------------------------|-------------------------|---------------------|-----------------|--------------|--|--|
| Test Mode                           | Test Frequency<br>(MHz) | Peak Power<br>(dBm) | Limits<br>(dBm) | Pass or Fail |  |  |
|                                     | 2402                    | -4.808              | ≤21             | Pass         |  |  |
| GFSK                                | 2441                    | -4.035              | ≤21             | Pass         |  |  |
|                                     | 2480                    | -3.760              | ≤21             | Pass         |  |  |
|                                     | 2402                    | -3.954              | ≤21             | Pass         |  |  |
| π/4-DQPSK                           | 2441                    | -3.153              | ≤21             | Pass         |  |  |
|                                     | 2480                    | -2.911              | ≤21             | Pass         |  |  |
|                                     | 2402                    | -3.683              | ≤21             | Pass         |  |  |
| 8DPSK                               | 2441                    | -2.846              | ≤21             | Pass         |  |  |
|                                     | 2480                    | -2.745              | ≤21             | Pass         |  |  |

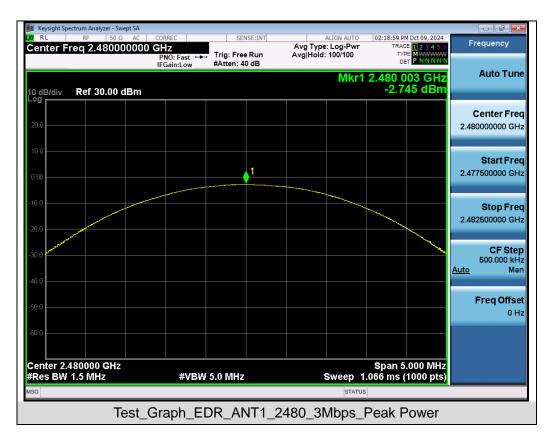





## **Test Graphs of Conducted Output Power**











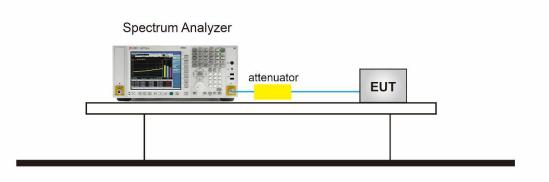







# 7. 20dB Bandwidth and 99% Occupied Bandwidth Measurement

## 7.1 Provisions Applicable

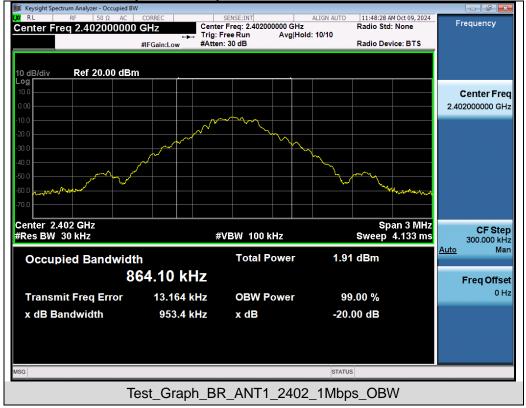

There is no corresponding limit requirement for this test item.

## 7.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 6.9.2 (20dB BW).

- The 20dB bandwidth spectrum analyzer setting reference is as follows:
- 1. Set RBW  $\geq$  1% to 5% of the 20dB bandwidth
- 2. VBW = Approximately three times RBW
- 3. Span = Approximately 2 to 5 times the 20dB bandwidth, centered on a hopping channel
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace to stabilize
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated
- 9. with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20
- 10. dB relative to the maximum level in the fundamental emission.
- The 99% bandwidth spectrum analyzer setting reference is as follows:
- 1. Span = 1.5 times to 5 times the OBW
- 2. Set RBW = 1% to 5% the OBW
- 3. VBW  $\geq$  3 × RBW
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace was allowed to stabilize

## 7.3 Measurement Setup (Block Diagram of Configuration)






#### 7.4 Measurement Results

| Test Data of Occupied Bandwidth and -20dB Bandwidth |                         |                                 |                          |        |              |  |  |
|-----------------------------------------------------|-------------------------|---------------------------------|--------------------------|--------|--------------|--|--|
| Test Mode                                           | Test Frequency<br>(MHz) | 99% Occupied<br>Bandwidth (MHz) | -20dB<br>Bandwidth (MHz) | Limits | Pass or Fail |  |  |
|                                                     | 2402                    | 0.864                           | 0.953                    | N/A    | Pass         |  |  |
| GFSK                                                | 2441                    | 0.867                           | 0.955                    | N/A    | Pass         |  |  |
|                                                     | 2480                    | 0.870                           | 0.952                    | N/A    | Pass         |  |  |
|                                                     | 2402                    | 1.170                           | 1.283                    | N/A    | Pass         |  |  |
| π /4-DQPSK                                          | 2441                    | 1.170                           | 1.281                    | N/A    | Pass         |  |  |
|                                                     | 2480                    | 1.170                           | 1.281                    | N/A    |              |  |  |
|                                                     | 2402                    | 1.172                           | 1.293                    | N/A    | Pass         |  |  |
| 8DPSK                                               | 2441                    | 1.172                           | 1.294                    | N/A    | Pass         |  |  |
|                                                     | 2480                    | 1.173                           | 1.293                    | N/A    | Pass         |  |  |

#### Test Graphs of Occupied Bandwidth and -20 Bandwidth















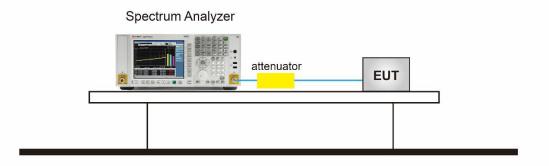






# 8. Conducted Band Edge and Out-of-Band Emissions

## 8.1 Provisions Applicable


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

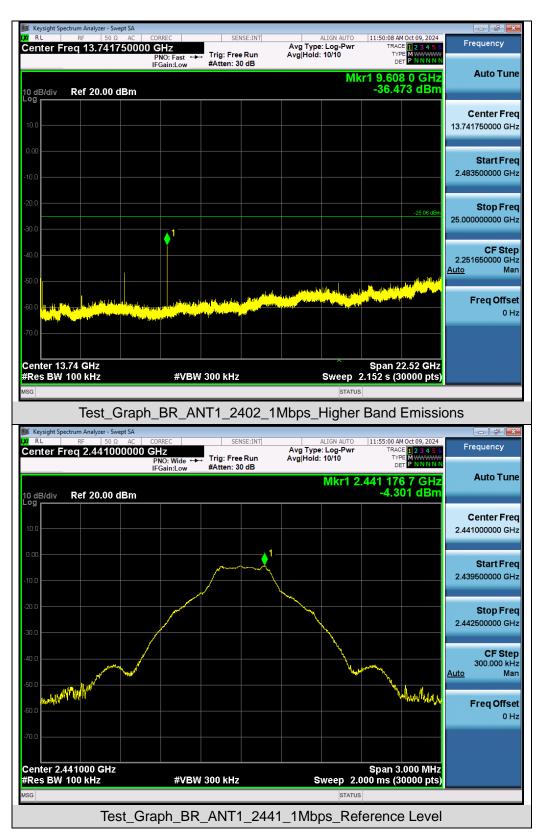
#### 8.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 6.10.4 and 7.8.8:

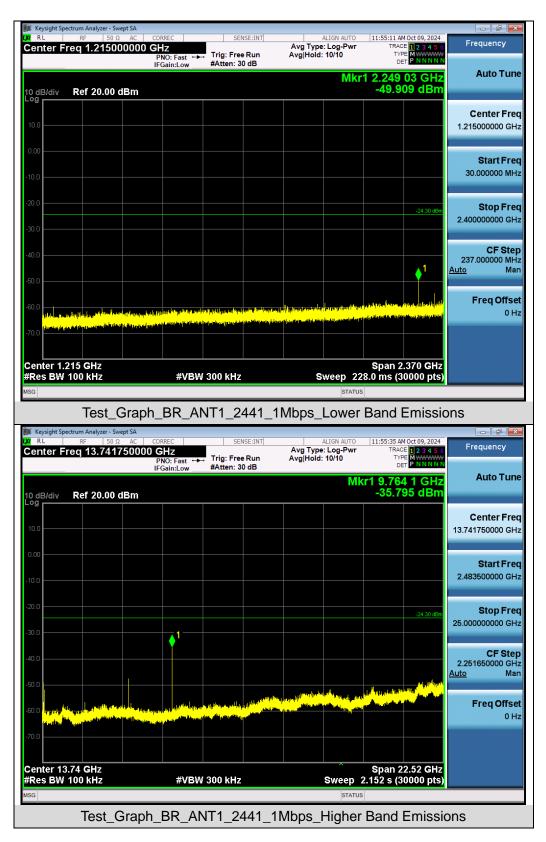
- Reference level measurement
- 1. Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max hold
- 7. Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- Emission level measurement
- 1. Span = Wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max hold
- 7. Trace was allowed to stabilize
- 8. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this section.

#### 8.3 Measurement Setup (Block Diagram of Configuration)





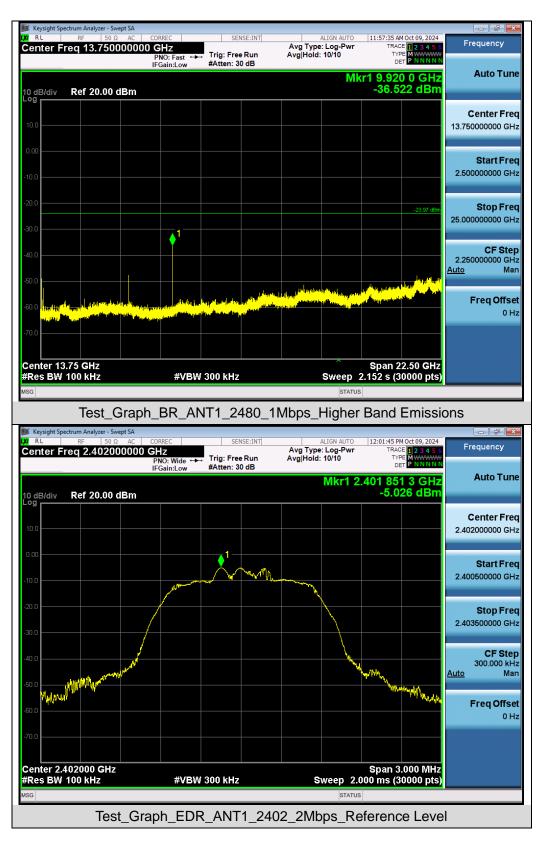

#### **8.4 Measurement Results**



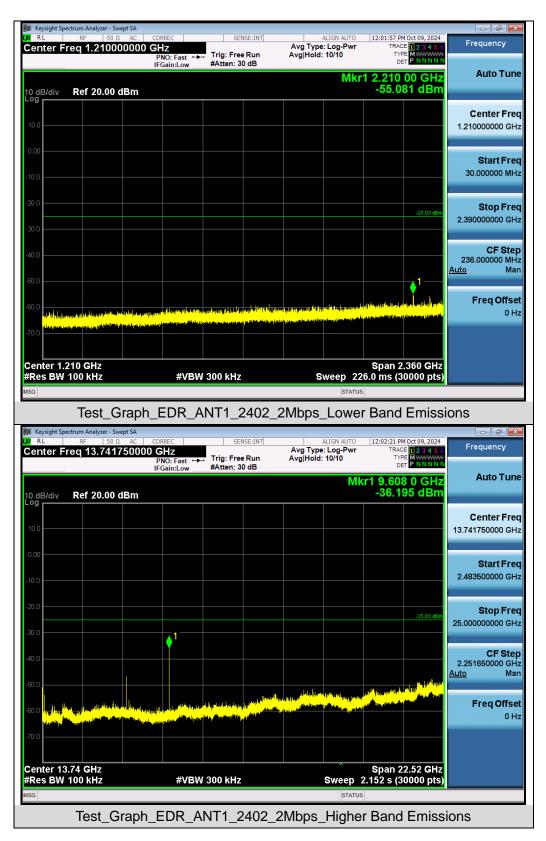

#### Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands







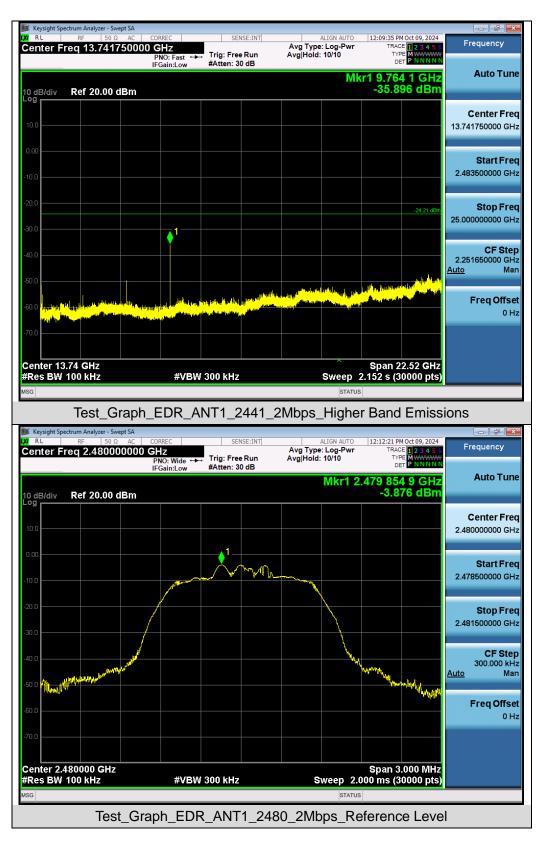




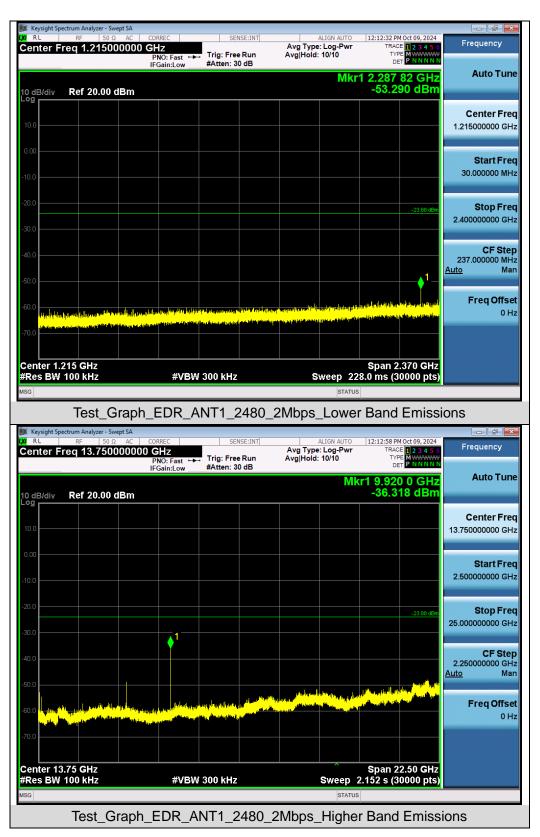






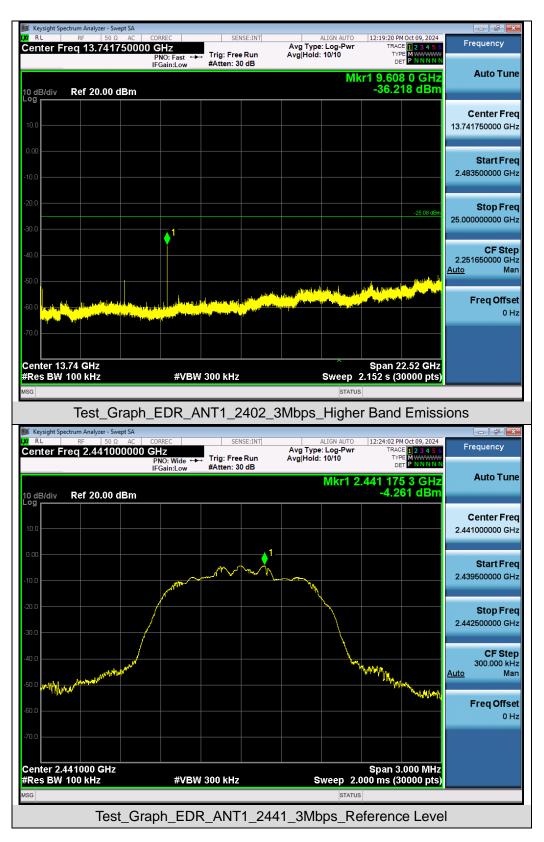







#### Report No.: AGC11775240905FR01 Page 39 of 76





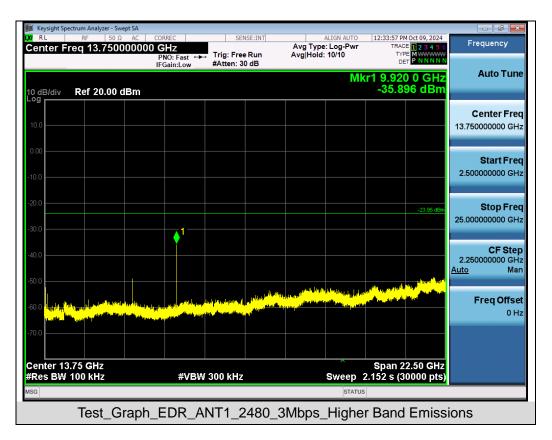




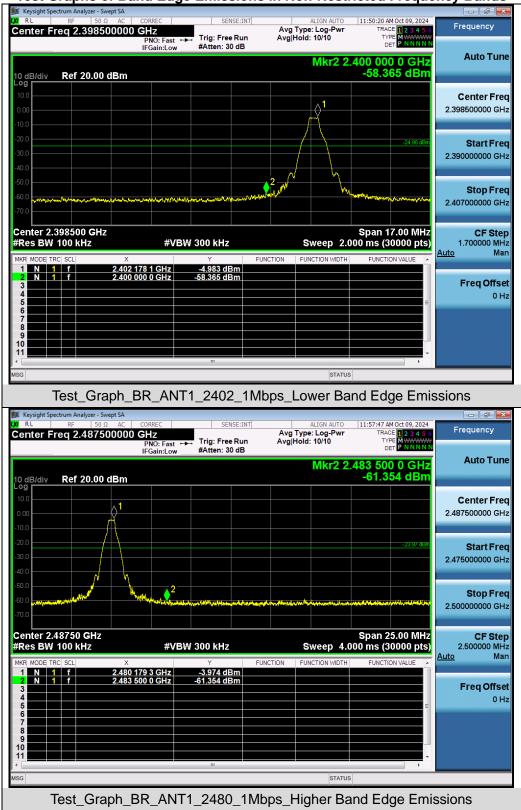






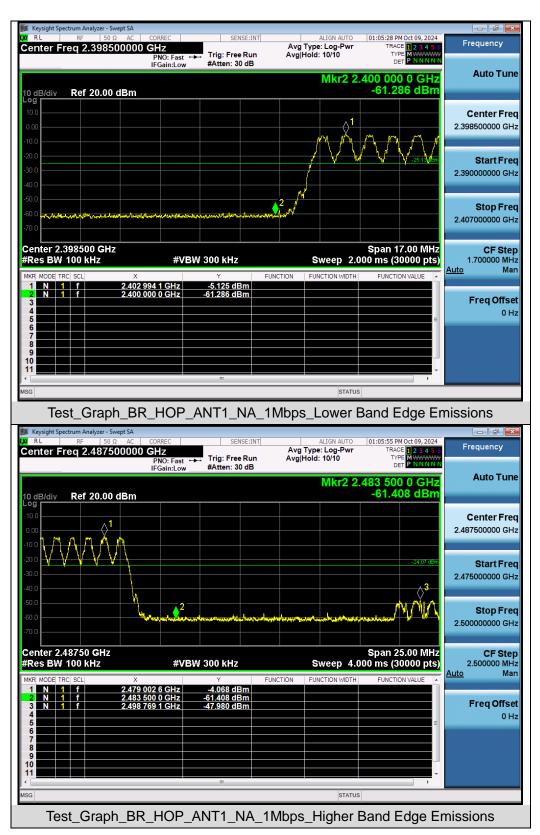




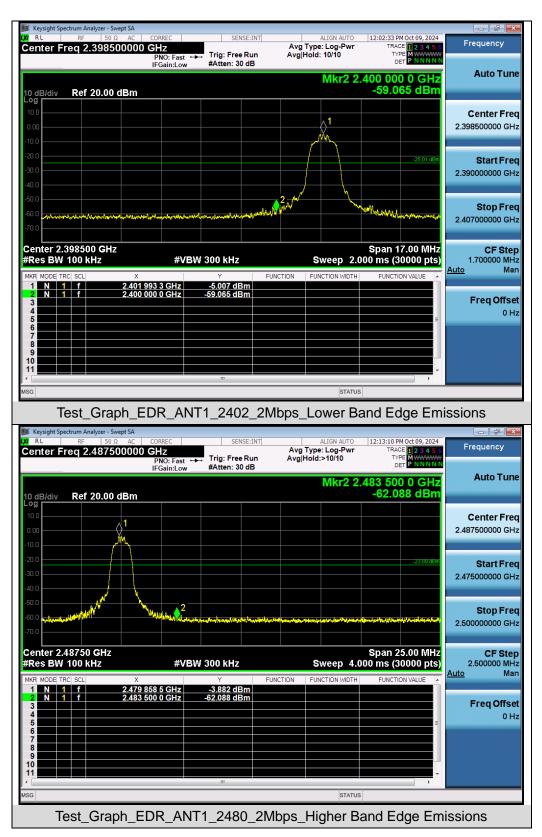





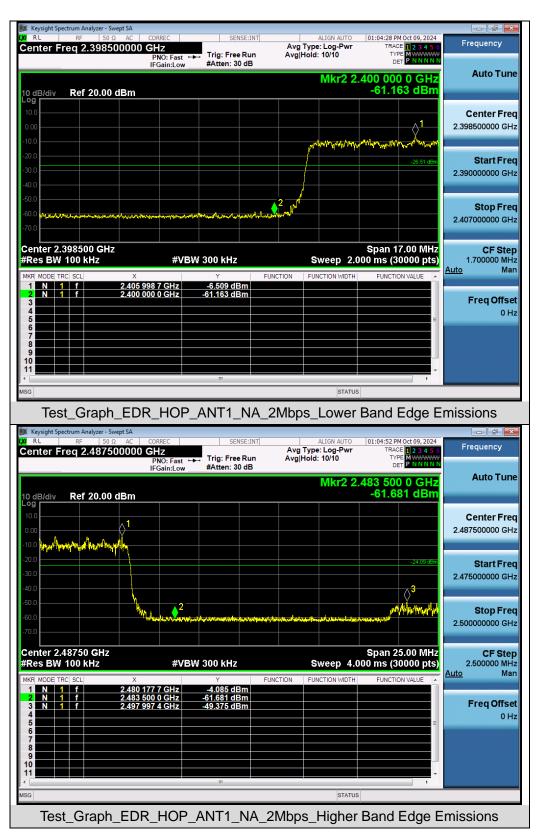


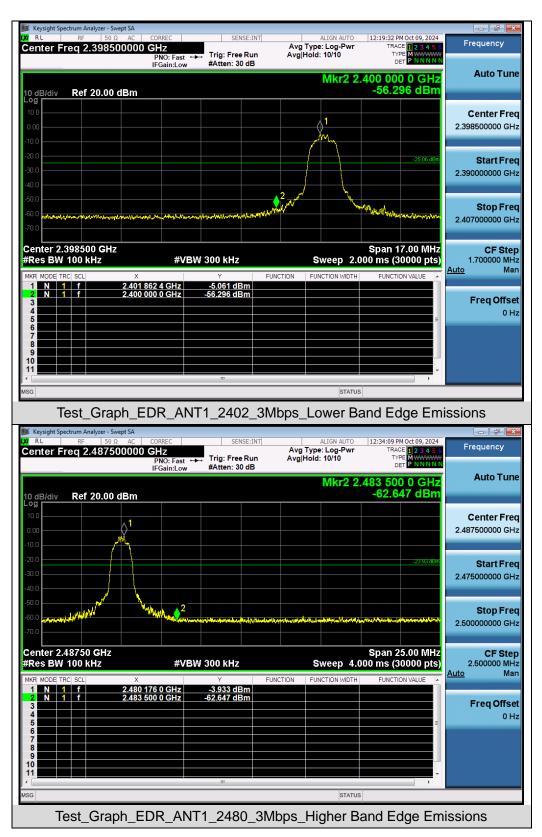


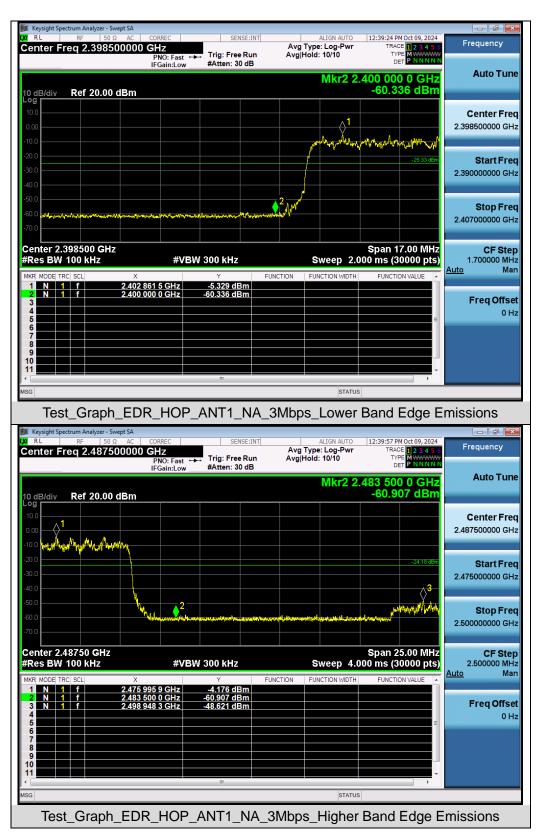

### Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands






















# 9. Radiated Spurious Emission

## 9.1 Measurement Limit

15.209 Limit in the below table has to be followed

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(kHz)                          | 300                              |
| 0.490~1.705          | 24000/F(kHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

### 9.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average



absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

| Spectrum Parameter    | Setting                                   |  |  |  |
|-----------------------|-------------------------------------------|--|--|--|
| Start ~Stop Frequency | 9KHz~150KHz/RB 200Hz for QP               |  |  |  |
| Start ~Stop Frequency | 150KHz~30MHz/RB 9KHz for QP               |  |  |  |
| Start ~Stop Frequency | 30MHz~1000MHz/RB 120KHz for QP            |  |  |  |
| Start ~Stop Frequency | 1GHz~26.5GHz                              |  |  |  |
|                       | 1MHz/3MHz for Peak, 1MHz/3MHz for Average |  |  |  |

#### The following table is the setting of spectrum analyzer and receiver.

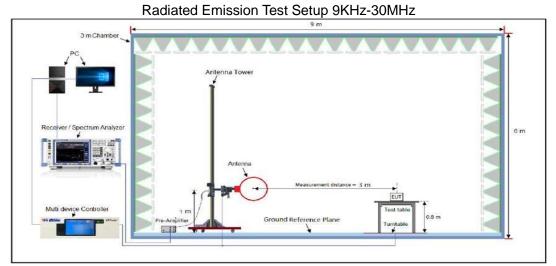
| Receiver Parameter    | Setting                        |
|-----------------------|--------------------------------|
| Start ~Stop Frequency | 9KHz~150KHz/RB 200Hz for QP    |
| Start ~Stop Frequency | 150KHz~30MHz/RB 9KHz for QP    |
| Start ~Stop Frequency | 30MHz~1000MHz/RB 120KHz for QP |



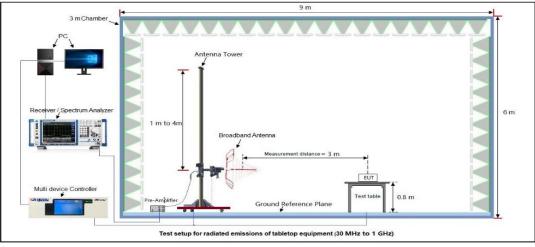
## • Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

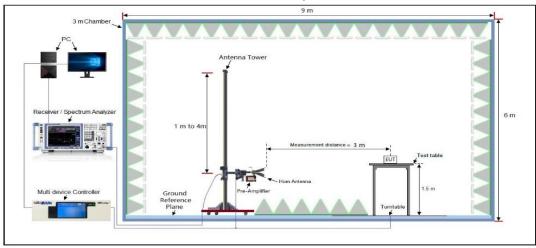
### • Peak Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

### <u>Average Measurements above 1GHz</u>


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW  $\geq$  [3 × RBW]
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- 8. The applicable correction factor is [10\*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.




### 9.3 Measurement Setup (Block Diagram of Configuration)



#### Radiated Emission Test Setup 30MHz-1000MHz



#### Radiated Emission Test Setup Above 1000MHz



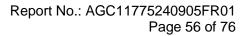
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/




#### 9.4 Measurement Result

### **Radiated Emission Below 30MHz**

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

|        | Radiated Emission Test Results at 30MHz-1GHz |         |                                 |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |                                       |                      |              |                |          |            |
|--------|----------------------------------------------|---------|---------------------------------|-----------------------------------------------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|---------------------------------------|----------------------|--------------|----------------|----------|------------|
| EUT    | Name                                         | Ма      | Manta Sleep White Noise Machine |                                               |         |       | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Model Name M         |      |                                       | MSWHITENOISE02-MSPKR |              |                |          |            |
| Temp   | erature                                      | 23.     | <b>2</b> °C                     |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relativ              | ∕e ⊦ | lumidity                              | 5                    | 8.6%         | 6              |          |            |
| Press  | sure                                         | 960     | DhPa                            |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Vo              | olta | ige                                   | ١                    | lorm         | al Vo          | oltag    | je         |
| Test M | Node                                         | Мо      | de 9                            |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antenr               | na I | Polarity                              | ŀ                    | loriz        | onta           | I        |            |
|        | 72.0                                         | dBu\    | //m                             |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |                                       |                      |              |                |          |            |
|        |                                              |         |                                 |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |                                       |                      |              | nit:<br>argin: | _        |            |
|        | -                                            |         |                                 |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | _    |                                       |                      |              |                |          |            |
|        | _                                            |         |                                 |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |                                       |                      |              |                |          | F          |
|        |                                              |         |                                 |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | _    |                                       |                      |              |                |          |            |
|        | -                                            |         |                                 |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |                                       |                      |              |                | Ŷ        | H          |
|        | 32                                           |         |                                 |                                               |         |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |      | A A A A A A A A A A A A A A A A A A A |                      | here the set | مجلس المسالمة  | part 4   | <u>~</u>   |
|        |                                              |         |                                 |                                               |         | Aller | M.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                    |      | and the south work                    | Mar .                | an a c Bas   |                |          |            |
|        |                                              | M water | nondernon                       | nahaman ang kang kang kang kang kang kang kan | MAN WAR | (MM)  | Mr. And Marine M | Marthan Hold Marthan | 4    |                                       |                      |              |                |          |            |
|        | -                                            |         |                                 |                                               |         |       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | _    |                                       |                      |              |                |          |            |
|        |                                              |         |                                 |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |                                       |                      |              |                |          |            |
|        |                                              |         |                                 |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |                                       |                      |              |                |          |            |
|        | -8<br>30.                                    | 000     | 40                              | 50 60                                         | 70 8    | 0     | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 30   | 0 400                                 | 500                  | 600          | 700            | 100      | 0.000      |
| Final  |                                              |         |                                 |                                               |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |                                       |                      |              |                |          |            |
| Final  | Data List<br>Freq                            |         |                                 | evel                                          | - Ea    | ctor  | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Margin               |      | Height                                |                      | ۸n           | gle            | <u> </u> |            |
| NO.    | [MHz                                         |         |                                 | uV/m]                                         |         | B]    | [dBµV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [dB]                 |      | [cm]                                  |                      |              | °]             |          | Polarity   |
| 1      | 99.877                                       | 77      | 31                              | .11                                           | 16      | 6.18  | 43.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.39                |      | 100                                   |                      | 1            | 14             |          | Horizontal |
| 2      | 113.71                                       | 43      | 30                              | .02                                           | 16      | 6.34  | 43.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.48                |      | 100                                   |                      | 2            | 17             |          | Horizontal |
| 3      | 185.78                                       | 82      | 22                              | .55                                           | 12      | 2.87  | 43.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.95                |      | 100                                   |                      | 8            | 36             |          | Horizontal |
| 4      | 268.48                                       | 53      | 24                              | .12                                           | 14      | 1.84  | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.88                |      | 100                                   |                      | 1            | 63             |          | Horizontal |
| 5      | 449.55                                       | 58      | 31                              | .37                                           | 24      | 1.77  | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.63                |      | 100                                   |                      | 2            | 35             |          | Horizontal |
| 6      | 893.85                                       | 67      | 37                              | .28                                           | 31      | .03   | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.72                 |      | 100                                   |                      | 1            | 24             |          | Horizontal |





|            | Radiated Emission Test Results at 30MHz-1GHz |                   |                |                   |                |                |                |          |  |
|------------|----------------------------------------------|-------------------|----------------|-------------------|----------------|----------------|----------------|----------|--|
| EUT Name   | Ma                                           | anta Sleep V      | hite Noise N   | <i>l</i> achine   | Model Na       | ame            | OISE02-MSPKR   |          |  |
| Temperatu  | <b>re</b> 23                                 | <b>.2</b> ℃       |                |                   | Relative       | Humidity       | 58.6%          |          |  |
| Pressure   | 96                                           | 0hPa              |                |                   | Test Volt      | age            | Normal Volta   | ige      |  |
| Test Mode  | M                                            | ode 9             |                |                   | Antenna        | Polarity       | Vertical       |          |  |
|            | 72.0 dBu                                     | .₩/m              |                |                   |                |                |                |          |  |
|            | 32                                           |                   |                | MM Martin M       |                |                |                |          |  |
|            | 30.000                                       | 40 50 6           | 0 70 80        | (MHz)             | E              | 800 400 9      | 500 600 700 10 | 000.000  |  |
| Final Data |                                              | T                 |                | 1                 |                |                |                |          |  |
|            | req.<br>IHz]                                 | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°]   | Polarity |  |
|            | 3992                                         | 35.56             | 14.06          | 40.00             | 4.44           | 100            | 172            | Vertical |  |
| 2 61.      | 3462                                         | 35.33             | 17.09          | 40.00             | 4.67           | 100            | 86             | Vertical |  |
| 3 102      | .3597                                        | 39.55             | 14.61          | 43.50             | 3.95           | 100            | 142            | Vertical |  |
| 4 174      | .4241                                        | 32.59             | 18.42          | 43.50             | 10.91          | 100            | 215            | Vertical |  |
| 5 446      | .4141                                        | 32.17             | 25.81          | 46.00             | 13.83          | 100            | 135            | Vertical |  |
| 6 763      | .3757                                        | 34.97             | 28.06          | 46.00             | 11.03          | 100            | 187            | Vertical |  |
|            |                                              | <u>I</u>          | 1              |                   |                | 1              |                | L        |  |

## **RESULT: Pass**

**Note:** 1. Factor=Antenna Factor + Cable loss, Margin=Limit-Level.

2. All test modes had been pre-tested. The mode 9 is the worst case and recorded in the report.



| EUT Name                                                                                                                                                                             | Manta Sleep<br>Machine                                                                                                              | White Noise                                                   | Model                                                                                                                                                | Name                                                                         | MSWHITENOISE02-MSPKR                                                                                                           |                                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| Temperature                                                                                                                                                                          | <b>23.2</b> ℃                                                                                                                       |                                                               | Relativ                                                                                                                                              | ve Humidity                                                                  | 58.6%                                                                                                                          |                                   |  |  |  |
| Pressure                                                                                                                                                                             | 960hPa                                                                                                                              |                                                               | Test V                                                                                                                                               | oltage                                                                       | Normal Vo                                                                                                                      | oltage                            |  |  |  |
| Test Mode                                                                                                                                                                            | Mode 7                                                                                                                              |                                                               | Anten                                                                                                                                                | na Polarity                                                                  | Horizonta                                                                                                                      |                                   |  |  |  |
|                                                                                                                                                                                      |                                                                                                                                     |                                                               | •                                                                                                                                                    |                                                                              | ·                                                                                                                              |                                   |  |  |  |
| Frequency                                                                                                                                                                            | Meter Reading                                                                                                                       | Factor                                                        | Emission Level                                                                                                                                       | Limits                                                                       | Margin                                                                                                                         | - Value Type                      |  |  |  |
| (MHz)                                                                                                                                                                                | (dBµV)                                                                                                                              | (dB)                                                          | (dBµV/m)                                                                                                                                             | (dBµV/m)                                                                     | (dB)                                                                                                                           | value Type                        |  |  |  |
| 4804.000                                                                                                                                                                             | 45.25                                                                                                                               | 0.08                                                          | 45.33                                                                                                                                                | 74                                                                           | -28.67                                                                                                                         | peak                              |  |  |  |
| 4804.000                                                                                                                                                                             | 38.86                                                                                                                               | 0.08                                                          | 38.94                                                                                                                                                | 54                                                                           | -15.06                                                                                                                         | AVG                               |  |  |  |
| 7206.000                                                                                                                                                                             | 41.23                                                                                                                               | 2.21                                                          | 43.44                                                                                                                                                | 74                                                                           | -30.56                                                                                                                         | peak                              |  |  |  |
| 7206.000                                                                                                                                                                             | 32.96                                                                                                                               | 2.21                                                          | 35.17                                                                                                                                                | 54                                                                           | -18.83                                                                                                                         | AVG                               |  |  |  |
|                                                                                                                                                                                      |                                                                                                                                     |                                                               |                                                                                                                                                      |                                                                              |                                                                                                                                |                                   |  |  |  |
|                                                                                                                                                                                      |                                                                                                                                     |                                                               |                                                                                                                                                      |                                                                              |                                                                                                                                |                                   |  |  |  |
| Remark:                                                                                                                                                                              |                                                                                                                                     |                                                               |                                                                                                                                                      |                                                                              |                                                                                                                                |                                   |  |  |  |
| Factor = Antenna Factor + Cable Loss – Pre-amplifier.                                                                                                                                |                                                                                                                                     |                                                               |                                                                                                                                                      |                                                                              |                                                                                                                                |                                   |  |  |  |
| -                                                                                                                                                                                    |                                                                                                                                     |                                                               |                                                                                                                                                      |                                                                              |                                                                                                                                |                                   |  |  |  |
| EUT Name                                                                                                                                                                             | Manta Sleep<br>Machine                                                                                                              |                                                               |                                                                                                                                                      | Name                                                                         | MSWHITE                                                                                                                        | ENOISE02-MSPK                     |  |  |  |
| EUT Name<br>Temperature                                                                                                                                                              |                                                                                                                                     |                                                               | Model                                                                                                                                                | Name<br>ve Humidity                                                          | MSWHITE<br>58.6%                                                                                                               | ENOISE02-MSPK                     |  |  |  |
|                                                                                                                                                                                      | Machine                                                                                                                             |                                                               | Model                                                                                                                                                | ve Humidity                                                                  | -                                                                                                                              |                                   |  |  |  |
| Temperature<br>Pressure                                                                                                                                                              | Machine           23.2℃                                                                                                             |                                                               | Model<br>Relativ<br>Test V                                                                                                                           | ve Humidity                                                                  | 58.6%                                                                                                                          |                                   |  |  |  |
| Temperature<br>Pressure<br>Test Mode                                                                                                                                                 | Machine<br>23.2℃<br>960hPa<br>Mode 7                                                                                                | White Noise                                                   | Model<br>Relativ<br>Test V<br>Anten                                                                                                                  | ve Humidity<br>oltage<br>na Polarity                                         | 58.6%<br>Normal Vo<br>Vertical                                                                                                 |                                   |  |  |  |
| Temperature Pressure Test Mode Frequency                                                                                                                                             | Machine<br>23.2°C<br>960hPa<br>Mode 7<br>Meter Reading                                                                              | White Noise<br>Factor                                         | Model<br>Relativ<br>Test V<br>Anten<br>Emission Level                                                                                                | ve Humidity<br>oltage<br>na Polarity                                         | 58.6%<br>Normal Vo<br>Vertical                                                                                                 |                                   |  |  |  |
| Temperature Pressure Test Mode Frequency (MHz)                                                                                                                                       | Machine<br>23.2℃<br>960hPa<br>Mode 7<br>Meter Reading<br>(dBµV)                                                                     | White Noise<br>Factor<br>(dB)                                 | Model Relativ Test V Anten Emission Level (dBµV/m)                                                                                                   | ve Humidity<br>oltage<br>na Polarity<br>Limits<br>(dBµV/m)                   | 58.6%<br>Normal Vo<br>Vertical<br>Margin<br>(dB)                                                                               | Ditage<br>Value Type              |  |  |  |
| Temperature Pressure Test Mode Frequency (MHz) 4804.000                                                                                                                              | Machine           23.2℃           960hPa           Mode 7           Meter Reading           (dBµV)           45.57                  | White Noise<br>Factor<br>(dB)<br>0.08                         | Model<br>Relativ<br>Test V<br>Anten<br>Emission Level<br>(dBµV/m)<br>45.65                                                                           | ve Humidity<br>oltage<br>na Polarity<br>Limits<br>(dBµV/m)<br>74             | 58.6%<br>Normal Vo<br>Vertical<br>Margin<br>(dB)<br>-28.35                                                                     | Value Type<br>peak                |  |  |  |
| Temperature Pressure Test Mode Frequency (MHz) 4804.000 4804.000                                                                                                                     | Machine           23.2°C           960hPa           Mode 7           Meter Reading           (dBµV)           45.57           36.82 | White Noise<br>Factor<br>(dB)<br>0.08<br>0.08                 | Model<br>Relativ<br>Test V<br>Anten<br>Emission Level<br>(dBµV/m)<br>45.65<br>36.9                                                                   | ve Humidity<br>oltage<br>na Polarity<br>Limits<br>(dBµV/m)<br>74<br>54       | 58.6%<br>Normal Vo<br>Vertical<br>Margin<br>(dB)<br>-28.35<br>-17.1                                                            | Value Type<br>peak<br>AVG         |  |  |  |
| Temperature           Pressure           Test Mode           Frequency           (MHz)           4804.000           4804.000           7206.000                                      | Machine         23.2℃         960hPa         Mode 7         Meter Reading         (dBµV)         45.57         36.82         41.45  | White Noise<br>Factor<br>(dB)<br>0.08<br>0.08<br>2.21         | Model           Relative           Test V           Anten           Emission Level           (dBµV/m)           45.65           36.9           43.66 | ve Humidity<br>oltage<br>na Polarity<br>Limits<br>(dBµV/m)<br>74<br>54<br>74 | 58.6%           Normal Vo           Vertical           Margin           (dB)           -28.35           -17.1           -30.34 | Value Type<br>peak<br>AVG<br>peak |  |  |  |
| Temperature<br>Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4804.000<br>4804.000                                                                                                   | Machine           23.2°C           960hPa           Mode 7           Meter Reading           (dBµV)           45.57           36.82 | White Noise<br>Factor<br>(dB)<br>0.08<br>0.08                 | Model<br>Relativ<br>Test V<br>Anten<br>Emission Level<br>(dBµV/m)<br>45.65<br>36.9                                                                   | ve Humidity<br>oltage<br>na Polarity<br>Limits<br>(dBµV/m)<br>74<br>54       | 58.6%<br>Normal Vo<br>Vertical<br>Margin<br>(dB)<br>-28.35<br>-17.1                                                            | Value Type<br>peak<br>AVG         |  |  |  |
| Temperature           Pressure           Test Mode           Frequency           (MHz)           4804.000           7206.000           7206.000                                      | Machine         23.2℃         960hPa         Mode 7         Meter Reading         (dBµV)         45.57         36.82         41.45  | White Noise<br>Factor<br>(dB)<br>0.08<br>0.08<br>2.21         | Model           Relative           Test V           Anten           Emission Level           (dBµV/m)           45.65           36.9           43.66 | ve Humidity<br>oltage<br>na Polarity<br>Limits<br>(dBµV/m)<br>74<br>54<br>74 | 58.6%           Normal Vo           Vertical           Margin           (dB)           -28.35           -17.1           -30.34 | Value Type<br>peak<br>AVG<br>peak |  |  |  |
| Temperature           Pressure           Test Mode           Frequency           (MHz)           4804.000           4804.000           7206.000           7206.000           Remark: | Machine         23.2℃         960hPa         Mode 7         Meter Reading         (dBµV)         45.57         36.82         41.45  | White Noise<br>Factor<br>(dB)<br>0.08<br>0.08<br>2.21<br>2.21 | Моdel<br>Relativ<br>Test V<br>Anten<br>Emission Level<br>(dBµV/m)<br>45.65<br>36.9<br>43.66<br>34.9                                                  | ve Humidity<br>oltage<br>na Polarity<br>Limits<br>(dBµV/m)<br>74<br>54<br>74 | 58.6%           Normal Vo           Vertical           Margin           (dB)           -28.35           -17.1           -30.34 | Value Type<br>peak<br>AVG<br>peak |  |  |  |

## **Radiated Emissions Test Results Above 1GHz**

## **RESULT: Pass**



| EUT      | <sup>-</sup> Name    |                     | Manta Slee<br>Machine | p White No                                                            | ise               | Mod          | Model Name   |             |                | MSWHITENOISE02-MSPKR |       |  |
|----------|----------------------|---------------------|-----------------------|-----------------------------------------------------------------------|-------------------|--------------|--------------|-------------|----------------|----------------------|-------|--|
| Tem      | perature             |                     | <b>23.2℃</b>          |                                                                       |                   | Rela         | tive Humidi  | ity         | 58.6%          |                      |       |  |
| Pres     | ssure                |                     | 960hPa                |                                                                       |                   | Test         | Voltage      |             | Normal Voltage |                      |       |  |
| Tes      | t Mode               |                     | Mode 8                |                                                                       |                   | Ante         | enna Polarit | y           | Horizoi        | ntal                 |       |  |
|          |                      |                     |                       |                                                                       |                   |              |              |             |                |                      |       |  |
|          | Frequenc             | су                  | Meter Reading         | Factor                                                                | . Emiss           | sion Lev     | el Limits    |             | Margin         | Value Typ            | ~     |  |
|          | (MHz)                |                     | (dBµV)                | (dB)                                                                  | (dE               | 3µV/m)       | (dBµV/m      | ı)          | (dB)           | value Typ            | e     |  |
|          | 4882.000             | C                   | 46.94                 | 0.14                                                                  | 4                 | 7.08         | 74           |             | -26.92         | peak                 |       |  |
|          | 4882.000             | C                   | 37.56                 | 0.14                                                                  | :                 | 37.7         | 54           |             | -16.3          | AVG                  |       |  |
|          | 7323.000             | )                   | 42.71                 | 2.36                                                                  | 4                 | 5.07         | 74           |             | -28.93         | peak                 |       |  |
|          | 7323.000             | 5                   | 33.32                 | 2.36                                                                  | 3                 | 5.68         | 54           |             | -18.32         | AVG                  |       |  |
|          |                      |                     |                       |                                                                       |                   |              |              |             |                |                      |       |  |
|          |                      |                     |                       |                                                                       |                   |              |              |             |                |                      |       |  |
|          | Remark:              |                     |                       |                                                                       |                   |              |              |             |                |                      |       |  |
|          | Factor = A           | ntenna              | a Factor + Ca         | ble Loss – F                                                          | Pre-amplifier     | <u>.</u>     |              |             |                |                      |       |  |
| EUT      | Name                 |                     | Manta Slee<br>Machine | p White No                                                            | ise               | Mod          | el Name      |             | MSWH           | IITENOISE02-         | MSPKR |  |
| Tem      | perature             |                     | <b>23.2</b> ℃         |                                                                       | Relative Humidity |              |              | ity         | 58.6%          |                      |       |  |
| Pres     | ssure                |                     | 960hPa                |                                                                       |                   | Test Voltage |              |             | Normal Voltage |                      |       |  |
| Test     | t Mode               |                     | Mode 8                |                                                                       |                   | Ante         | enna Polarit | y           | Vertical       |                      |       |  |
|          | _                    |                     |                       | _                                                                     | 1                 |              |              |             |                |                      |       |  |
| - F      | requency             |                     | er Reading            | Factor                                                                | Emission L        |              | Limits       |             | argin          | Value Type           |       |  |
|          | (MHz)                |                     | (dBµV)                | (dB)                                                                  | (dBµV/m           | 1)           | (dBµV/m)     |             | dB)            | nack                 |       |  |
|          | 1882.000             |                     | 45.25                 | 0.14                                                                  | 45.39             |              | 74           |             | 8.61           | peak                 |       |  |
|          | 1882.000             |                     | 37.74                 | 0.14                                                                  | 37.88             |              | 54           |             | 6.12           | AVG                  |       |  |
| -        | 7323.000<br>7323.000 |                     | 42.49                 | 2.36         44.85         74           2.36         35.97         54 |                   |              | 9.15<br>8.03 | peak<br>AVG |                |                      |       |  |
| <u> </u> | 323.000              | 33.61 2.36 35.97 54 |                       | -1                                                                    | 0.03              | AvG          |              |             |                |                      |       |  |
| Por      | nark:                |                     |                       |                                                                       |                   |              |              |             |                |                      |       |  |
|          |                      | na Fa               | ctor + Cable I        | oss – Pre-a                                                           | molifier          |              |              |             |                |                      |       |  |
| . 40     |                      |                     |                       |                                                                       |                   |              |              |             |                |                      |       |  |

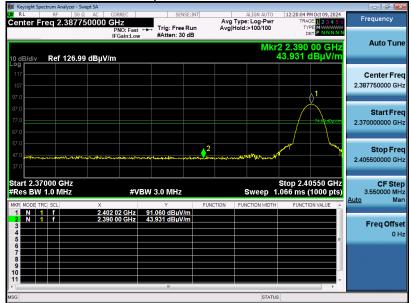
## **RESULT: Pass**



| EUT | Name           | IameManta Sleep White Noise<br>Machine |               |            | Model                   | Name       | MSWHITE   | MSWHITENOISE02-MSPKR |  |  |  |
|-----|----------------|----------------------------------------|---------------|------------|-------------------------|------------|-----------|----------------------|--|--|--|
| Tem | perature       | 23.2°C Relative Humidity               |               |            | 58.6%                   |            |           |                      |  |  |  |
| Pre | ssure          | 960hPa                                 |               |            | Test Vo                 | oltage     | Normal Vo | oltage               |  |  |  |
| Tes | t Mode         | Mode 9                                 |               |            | Antenn                  | a Polarity | Horizonta |                      |  |  |  |
|     |                |                                        |               |            |                         |            |           |                      |  |  |  |
|     | Frequency      | Meter Reading                          | Factor        | Emiss      | ion Level               | Limits     | Margin    |                      |  |  |  |
|     | (MHz)          | (dBµV)                                 | (dB)          | (dB        | µV/m)                   | (dBµV/m)   | (dB)      | Value Type           |  |  |  |
|     | 4960.000       | 45.84                                  | 0.22          | 46         | 5.06                    | 74         | -27.94    | peak                 |  |  |  |
|     | 4960.000       | 37.47                                  | 0.22          | 37         | 7.69                    | 54         | -16.31    | AVG                  |  |  |  |
|     | 7440.000       | 42.49                                  | 2.64          | 48         | 5.13                    | 74         | -28.87    | peak                 |  |  |  |
|     | 7440.000       | 33.58                                  | 2.64          | 36         | 6.22                    | 54         | -17.78    | AVG                  |  |  |  |
|     | Remark:        |                                        |               |            |                         |            |           |                      |  |  |  |
|     | Factor = Anten | na Factor + Cabl                       | e Loss – Pre- | amplifier. |                         |            |           |                      |  |  |  |
| EUT | Name           | Manta Sleep<br>Machine                 | White Noise   |            | Model                   | Name       | MSWHITE   | NOISE02-MSPKF        |  |  |  |
| Ten | perature       | <b>23.2</b> ℃                          |               |            | Relative Humidity 58.6% |            |           |                      |  |  |  |
| Pre | ssure          | 960hPa                                 |               |            | Test Voltage            |            | Normal Vo | oltage               |  |  |  |
| Tes | t Mode         | Mode 9                                 |               |            | Antenn                  | a Polarity | Vertical  |                      |  |  |  |
|     |                |                                        |               |            |                         |            |           | 1 1                  |  |  |  |
|     | Frequency      | Meter Reading                          | Factor        |            | ion Level               | Limits     | Margin    | Value Type           |  |  |  |
|     | (MHz)          | (dBµV)                                 | (dB)          | `          | µV/m)                   | (dBµV/m)   | (dB)      |                      |  |  |  |
|     | 4960.000       | 46.25                                  | 0.22          |            | 6.47                    | 74         | -27.53    | peak                 |  |  |  |
|     | 4960.000       | 38.41                                  | 0.22          |            | 3.63                    | 54         | -15.37    | AVG                  |  |  |  |
|     | 7440.000       | 42.64                                  | 2.64          |            | 5.28                    | 74         | -28.72    | peak                 |  |  |  |
|     | 7440.000       | 440.000 32.38 2.64 3                   |               | 35         | 5.02                    | 54         | -18.98    | AVG                  |  |  |  |
| I   |                | 02.00                                  |               | Remark:    |                         |            |           |                      |  |  |  |
|     | Remark:        | na Factor + Cabl                       |               | •          |                         |            |           | ·                    |  |  |  |

## Radiated Emissions Test Results for Above 1GHz

#### **RESULT: Pass**


#### Note:

- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.
- 4. All mode rates are tested and evaluated, 8DPSK modulated 3DH5 mode is the worst case and documented in the report.



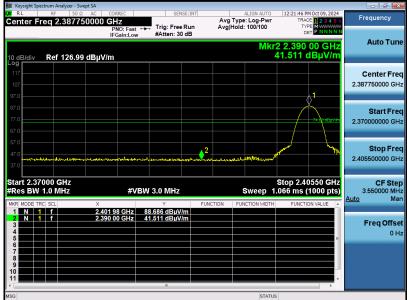
| EUT Name    | Manta Sleep White Noise<br>Machine | Model Name        | MSWHITENOISE02-MSPKR |
|-------------|------------------------------------|-------------------|----------------------|
| Temperature | <b>25.8</b> ℃                      | Relative Humidity | 46.0%                |
| Pressure    | 960hPa                             | Test Voltage      | Normal Voltage       |
| Test Mode   | Mode 7                             | Antenna Polarity  | Horizontal           |

### Test Graph for Peak Measurement

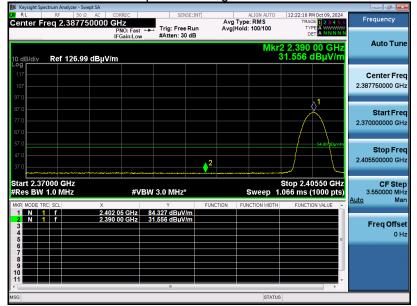


Test Graph for Average Measurement




## **RESULT: Pass**




| EUT Name    | Manta Sleep White Noise<br>Machine | Model Name        | MSWHITENOISE02-MSPKR |
|-------------|------------------------------------|-------------------|----------------------|
| Temperature | <b>25.8</b> ℃                      | Relative Humidity | 46.0%                |
| Pressure    | 960hPa                             | Test Voltage      | Normal Voltage       |
| Test Mode   | Mode 7                             | Antenna Polarity  | Vertical             |

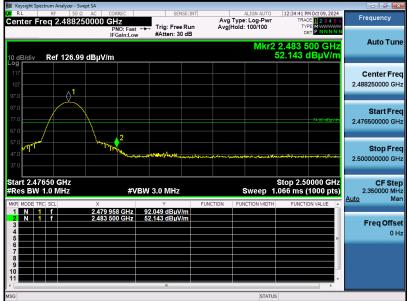
#### Band Edge Emission Test Results for Restricted Bands

### Test Graph for Peak Measurement

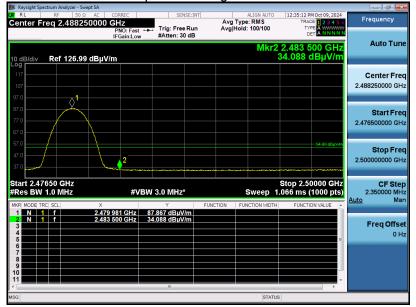


Test Graph for Average Measurement




#### **RESULT: Pass**




| EUT Name         Manta Sleep White Noise<br>Machine |               | Model Name        | MSWHITENOISE02-MSPKR |  |
|-----------------------------------------------------|---------------|-------------------|----------------------|--|
| Temperature                                         | <b>25.8</b> ℃ | Relative Humidity | 46.0%                |  |
| Pressure                                            | 960hPa        | Test Voltage      | Normal Voltage       |  |
| Test Mode                                           | Mode 9        | Antenna Polarity  | Horizontal           |  |

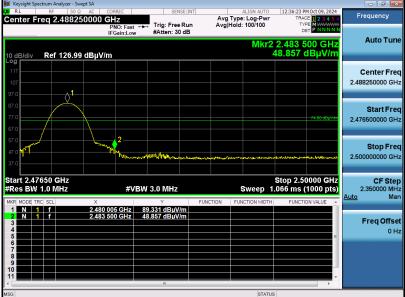
#### Band Edge Emission Test Results for Restricted Bands

#### Test Graph for Peak Measurement

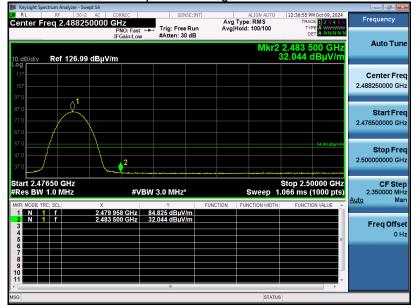


Test Graph for Average Measurement




#### **RESULT: Pass**




| EUT Name    | Manta Sleep White Noise<br>Machine | Model Name        | MSWHITENOISE02-MSPKR |  |
|-------------|------------------------------------|-------------------|----------------------|--|
| Temperature | <b>25.8</b> ℃                      | Relative Humidity | 46.0%                |  |
| Pressure    | 960hPa                             | Test Voltage      | Normal Voltage       |  |
| Test Mode   | Mode 9                             | Antenna Polarity  | Vertical             |  |

## Band Edge Emission Test Results for Restricted Bands





Test Graph for Average Measurement



#### **RESULT: Pass**

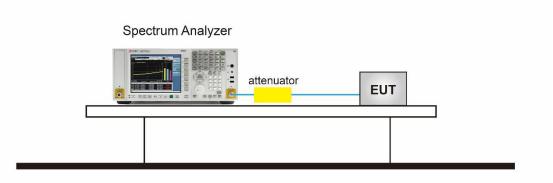
Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. All mode rates are tested and evaluated, 8DPSK modulated 3DH5 mode is the worst case and documented in the report.



# **10. Number of Hopping Frequency Measurement**

### **10.1 Provisions Applicable**

This frequency hopping system must employ a minimum of 15 hopping channels.


### **10.2 Measurement Procedure**

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span = The frequency band of operation. Depending on the number of channels the device

- 2. supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 3. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 4. VBW  $\geq$  RBW
- 5. Sweep time = Auto couple
- 6. Detector = Peak
- 7. Trace mode = Max hold
- 8. Allow the trace to stabilize

## 10.3 Measurement Setup (Block Diagram of Configuration)



#### **10.4 Measurement Result**

| Test Data of Number of Hopping Frequency                  |    |      |      |  |  |  |  |  |
|-----------------------------------------------------------|----|------|------|--|--|--|--|--|
| Test Mode Number of Hopping Frequency Limits Pass or Fail |    |      |      |  |  |  |  |  |
| 8DPSK Hopping                                             | 79 | >=15 | Pass |  |  |  |  |  |



| 200       Center Freq         201       Center Freq         202       Center Freq         203       Center Freq         204       Center Freq         205       Center Freq         206       Center Freq         207       Center Freq         208       Center Freq         209       Center Freq         200       Center Freq         201       Center Freq         2100       Center Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                       |           |         |                | Tambol        | <u></u>     | -ping -   | 10940       |             |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|-----------|---------|----------------|---------------|-------------|-----------|-------------|-------------|-----------------|
| Center Freq 2.441750000 GHz         Trig: Free Run<br>#Atten: 40 dB         Avg Type: Log-Pwr<br>Avg Hoid: 100/100         Trig: Frequency           10 dB/div         Ref 30.00 dBm         -3.848 dBm         Center Freq<br>2.441750000 GHz         Center Freq<br>2.441750000 GHz           200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | · · · · · · · · · · · · · · · · · · · |           | CODDEC  |                | OFNOT JUT     |             |           | 10.40.00.01 | 10-100 2024 |                 |
| Open Hild         Open Hild         Trig: Free Run<br>#Atten: 40 dB         Avgihidi: 100/100         Trig: Free Run<br>#Atten: 40 dB         Avgihidi: 100/100         Trig: Free Run<br>#Atten: 40 dB         Avgihidi: 12:468 87 GHz<br>-3.848 dBm         Auto Tune           10         dB/div         Ref 30.00 dBm         -3.848 dBm         -3.848 dBm         Center Freq<br>2.441750000 GHz         -3.848 dBm         Center Freq<br>2.441750000 GHz         -4.41750000 GHz         -4.41750000 GHz         -4.41750000 GHz         -4.41750000 GHz         -4.41750000 GHz         -4.41750000 GHz         -4.4175 GHz         -5.5180 MHz         -5.5180 MHz <t< td=""><td></td><td></td><td></td><td></td><td></td><td>SENSE:INT</td><td>Ava Tva</td><td></td><td></td><td></td><td>Frequency</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                       |           |         |                | SENSE:INT     | Ava Tva     |           |             |             | Frequency       |
| IF GainLow       #Atten: 40 dB       Der parturer         Mkr1 2.468 87 GHz<br>-3.848 dBm       Auto Tune         Center Freq<br>2.44175000 GHz       Center Freq<br>2.44175000 GHz         Mulp Amage And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Center F  | rey 2.44 17 3                         | 0000      |         | Trig           | : Free Run    |             |           | TYP         | E M WWWWW   |                 |
| Mikr 2.408 87 GH2       Center Freq         -3.848 dBm       -3.848 dBm         -00       -3.848 dBm         -01       -3.848 dBm         -02       -3.848 dBm         -03       -3.848 dBm         -04       -3.848 dBm         -05       -3.848 dBm         -06       -4.10         -07       -4.11         -08       -3.848 dBm         -09       -4.11         -01       -4.11         -02       -4.11         -03       -4.11         -04       -4.11         -05       -4.11         -06       -4.11         -07       -4.11         -08       -4.11         -09       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -01       -4.11         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                       |           |         |                | en: 40 dB     |             |           | DE          |             |                 |
| 100 dB/div       Ref 30.00 dBm       -3.848 dBm         200       -9       -9       -2         100       -9       -9       -2         100       -9       -9       -1         100       -9       -1       -1         100       -9       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         100       -1       -1       -1         200       -1       -1       -1         200       -1       -1       -1         200       -1       -1       -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                       |           |         |                |               |             | Mkr       | 1 2 468     | 87 GHz      | Auto Tune       |
| 200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       200       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 40/404 | Bof 20.00 c                           | 1Bm       |         |                |               |             |           | -3.8        | 48 dBm      |                 |
| 200<br>201<br>201<br>201<br>201<br>201<br>201<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Log       | Kei 30.00 0                           |           |         |                |               |             |           |             |             |                 |
| 200<br>201<br>201<br>201<br>201<br>201<br>201<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                       |           |         |                |               |             |           |             |             | Center Fred     |
| 100       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.0      |                                       |           |         |                |               |             |           |             |             |                 |
| 000       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.0      |                                       |           |         |                |               |             |           |             |             | 2.441750000 GHZ |
| 000       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                       |           |         |                |               |             |           |             |             |                 |
| 0.00       1       2.40000000 GHz         100       1       1       1         100       1       1       1         200       1       1       1       1         300       1       1       1       1       1         400       1       1       1       1       1       1         500       1       1       1       1       1       1       1         600       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td>10.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Oto at Ease</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0      |                                       |           |         |                |               |             |           |             |             | Oto at Ease     |
| 100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                       |           |         |                |               |             |           |             |             |                 |
| Stop Freq<br>2.483500000 GHz<br>2.483500000 GHz<br>2.483500000 GHz<br>2.483500000 GHz<br>2.483500000 GHz<br>8.350000 MHz<br>Auto<br>Man<br>Freq Offset<br>0 Hz<br>60.0<br>CEnter 2.44175 GHz<br>#Res BW 200 kHz<br>#VBW 620 kHz<br>Sweep 1.998 ms (1000 pts)<br>STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00      |                                       |           |         |                |               |             |           | <b></b> 1   |             | 2.40000000 GHz  |
| Stop Freq<br>2.483500000 GHz<br>2.483500000 GHz<br>2.483500000 GHz<br>2.483500000 GHz<br>2.483500000 GHz<br>8.350000 MHz<br>Auto<br>Man<br>Freq Offset<br>0 Hz<br>60.0<br>CEnter 2.44175 GHz<br>#Res BW 200 kHz<br>#VBW 620 kHz<br>Sweep 1.998 ms (1000 pts)<br>STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | nin dia Al-Lisa M                     |           |         | a 0 - 4        | 6606808080808 | N 101 101   | መአጠራስ ሸሩ  | NO OR NO    | 14444       |                 |
| Stop Freq<br>2.48350000 GHz<br>2.48350000 GHz<br>2.48350000 GHz<br>2.48350000 GHz<br>2.48350000 GHz<br>8.350000 Hz<br>8.350000 Hz<br>8.350000 Hz<br>8.350000 Hz<br>8.350000 Hz<br>8.350000 Hz<br>8.350000 Hz<br>8.350000 Hz<br>8.350000 Hz<br>9.40<br>9.40<br>9.40<br>9.40<br>9.40<br>9.40<br>9.40<br>9.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | I I I I I I I I I I I I I I I I I I I | MANAN VAN | MYYVWYY | and the second | ϞͽϐϐϠͽ        | NN YYYYY VM | IN NAM AN | /YUYUYYY    | VVYVY       |                 |
| 200 200 200 200 200 200 200 200 200 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 10.0    |                                       |           |         |                |               |             |           |             |             | Stop Freq       |
| 30.0<br>40.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0 |           |                                       |           |         |                |               |             |           |             |             | 2.483500000 GHz |
| Auto Society Span 83.50 MHz<br>Scenter 2.44175 GHz<br>#Res BW 200 kHz<br>#VBW 620 kHz<br>Sweep 1.998 ms (1000 pts)<br>Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -20.0     |                                       |           |         |                |               |             |           |             |             |                 |
| Auto Society Span 83.50 MHz<br>Scenter 2.44175 GHz<br>#Res BW 200 kHz<br>#VBW 620 kHz<br>Sweep 1.998 ms (1000 pts)<br>Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                       |           |         |                |               |             |           |             |             |                 |
| 40.0<br>60.0<br>60.0<br>Center 2.44175 GHz<br>#VBW 620 kHz<br>Sweep 1.998 ms (1000 pts)<br>STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -30.0     |                                       |           |         |                |               |             |           |             |             |                 |
| 40.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0 |           |                                       |           |         |                |               |             |           |             |             |                 |
| 50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0<br>50.0 | (0.0      |                                       |           |         |                |               |             |           |             |             | Auto Man        |
| 500         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600 <td>-40.0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -40.0     |                                       |           |         |                |               |             |           |             |             |                 |
| 500         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>հո</td> <td>Freg Offset</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                       |           |         |                |               |             |           |             | հո          | Freg Offset     |
| 60.0<br>Center 2.44175 GHz<br>#Res BW 200 kHz<br>#VBW 620 kHz<br>Sweep 1.998 ms (1000 pts)<br>Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -50.0     |                                       |           |         |                |               |             |           |             |             |                 |
| Center 2.44175 GHz<br>#Res BW 200 kHz #VBW 620 kHz Sweep 1.998 ms (1000 pts)<br>Isg status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                       |           |         |                |               |             |           |             |             | 0 H2            |
| #Res BW 200 kHz         #VBW 620 kHz         Sweep 1.998 ms (1000 pts)           Isg         status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -60.0     |                                       |           |         |                |               |             |           |             |             |                 |
| #Res BW 200 kHz         #VBW 620 kHz         Sweep 1.998 ms (1000 pts)           Isg         status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                       |           |         |                |               |             |           |             |             |                 |
| #Res BW 200 kHz         #VBW 620 kHz         Sweep 1.998 ms (1000 pts)           Isg         status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                       |           |         |                |               |             |           |             |             |                 |
| #Res BW 200 kHz         #VBW 620 kHz         Sweep 1.998 ms (1000 pts)           Isg         Isg         Isg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Center 2. | 44175 GHz                             |           |         |                |               |             |           | Span 8      | 3.50 MHz    |                 |
| ASG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                       |           | #V      | BW 620         | kHz           |             | Sweep 1   | .998 ms (   | 1000 pts)   |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                       |           |         |                |               |             |           |             |             |                 |
| Test_Graph_EDR_HOP_ANT1_NA_3Mbps_Number of Hopping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSG       |                                       |           |         |                |               |             |           |             |             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                       |           |         |                |               |             |           |             |             |                 |

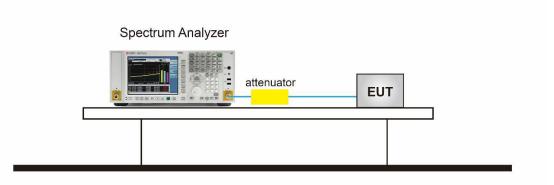
### Test Graphs of Number of Hopping Frequency

Note: All mode rates are tested and evaluated, 8DPSK modulated 3DH5 mode is the worst case and documented in the report.



# 11. Time of Occupancy (Dwell Time) Measurement

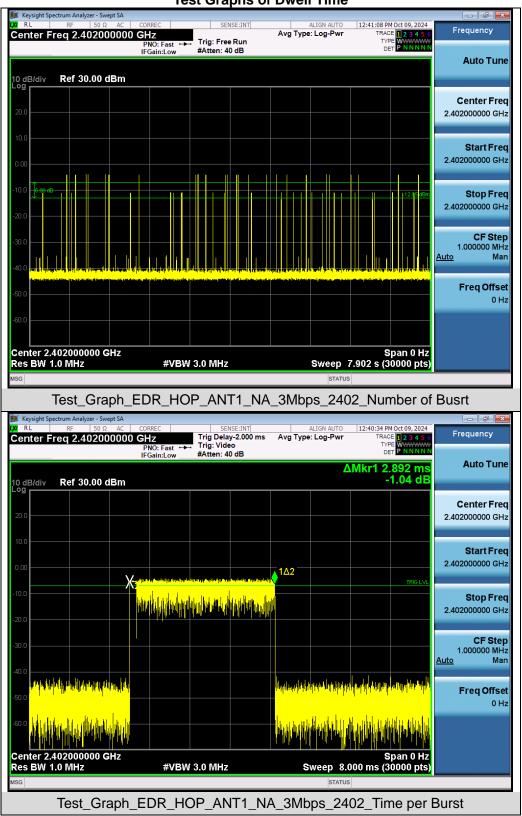
### **11.1 Provisions Applicable**


The maximum permissible time of occupancy is 400ms within a period of 400ms multiplied by the number of hopping channels employed.

## **11.2 Measurement Procedure**

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

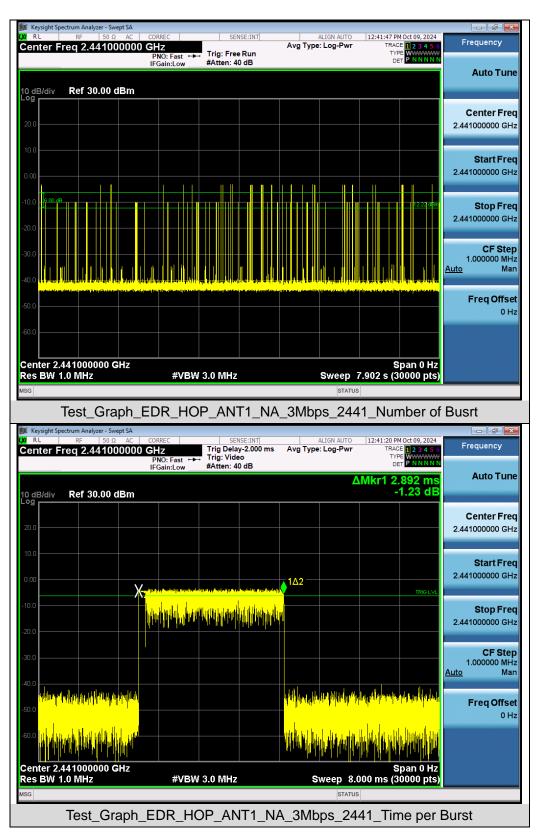
- 1. Span = Zero span, centered on a hopping channel.
- 2. RBW shall be  $\leq$  channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3. VBW  $\geq$  RBW
- 4. Sweep time = As necessary to capture the entire dwell time per hopping channel
- 5. Detector = Peak
- 6. Trace mode = Free Run
- 7. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. An oscilloscope may be used instead of a spectrum analyzer. The EUT shall show compliance with the appropriate regulatory limit for the number of hopping channels. A plot of the data shall be included in the test report.


### 11.3 Measurement Setup (Block Diagram of Configuration)

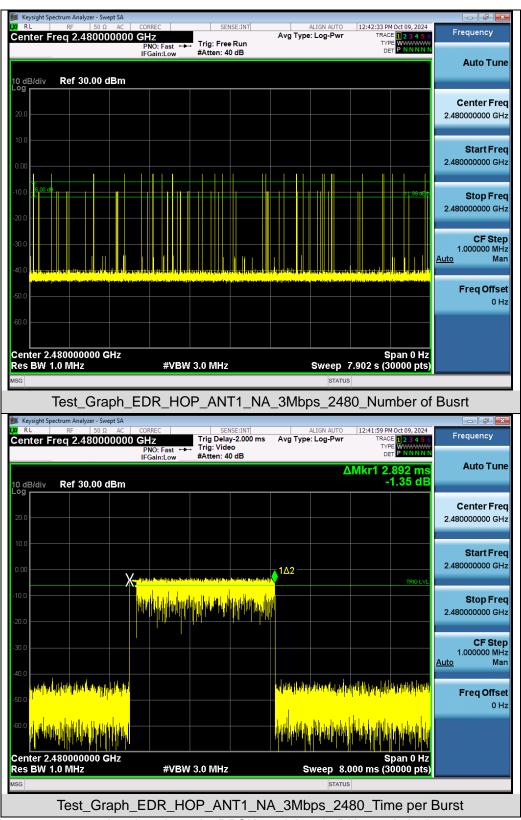



#### **11.4 Measurement Result**

| Test Data of Dwell Time |                                |                                                                  |                    |               |              |  |  |  |
|-------------------------|--------------------------------|------------------------------------------------------------------|--------------------|---------------|--------------|--|--|--|
| Channel                 | Time of Pulse for<br>3DH5 (ms) | Number of hops in the<br>period specified in the<br>requirements | Dwell Time<br>(ms) | Limit<br>(ms) | Pass or Fail |  |  |  |
| 2402                    | 2.892                          | 25.0*4                                                           | 289.200            | 400           | Pass         |  |  |  |
| 2441                    | 2.892                          | 30.0*4                                                           | 347.040            | 400           | Pass         |  |  |  |
| 2480                    | 2.892                          | 27.0*4                                                           | 312.336            | 400           | Pass         |  |  |  |







## **Test Graphs of Dwell Time**











Note: All mode rates are tested and evaluated, 8DPSK modulated 3DH5 mode is the worst case and documented in the report.