Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature)..: File administrators Joan Wu

Supervised by

(position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Mar. 06, 2025

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

CTA TESTIN

Applicant's name...... Beijing Silion Technology Corp.,LTD.

Beijing, 102200 China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description RFID module

Trade Mark N/A

Manufacturer Beijing Silion Technology Corp.,LTD.

Model/Type reference..... SIM7300

Listed Models N/A

Frequency..... From 902.75MHz to 927.25MHz

Rating DC 5.0V from external circuit

Result...... PASS

CTATESTING

Page 2 of 32 Report No.: CTA25020800801

TEST REPORT

RFID module Equipment under Test

Model /Type SIM7300

N/A Listed Models

CTATESTING **Applicant** Beijing Silion Technology Corp.,LTD.

5 Floor, Building A, No.3 Longyu North St., Changping District, Address

Beijing, 102200 China

Beijing Silion Technology Corp.,LTD. Manufacturer

5 Floor, Building A, No.3 Longyu North St., Changping District, Address

Beijing, 102200 China

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: CTA25020800801 Page 3 of 32

Contents

		TESTING	ntents		
	11	TEST STANDARDS	TING		4
	<u>2</u>	SUMMARY		ESTING	<u>5</u>
	2.1	General Remarks			5
	2.2	Product Description			5 5 5
	2.3	Equipment Under Test			5
	2.4	Short description of the Equipment under	er Test (EUT)		5
	2.5	EUT configuration	, ,		6
-A71	2.6	EUT operation mode			6
CAL	2.7	Block Diagram of Test Setup			6
	2.8	Related Submittal(s) / Grant (s)			6
	2.9	Modifications			6
	<u>3</u>	TEST ENVIRONMENT	= CTATES		- IN Y C
	<u> </u>	TEST ENVIRONMENT		, TE	5111
	3.1	Address of the test laboratory		CTATE:	7
	3.2	Test Facility			7
	3.3	Environmental conditions			7
	3.4	Summary of measurement results			8
	3.5	Statement of the measurement uncertain	atv		8
	3.6	Equipments Used during the Test	ity		9
		TATL			
	4	TEST CONDITIONS AND RESU	II TS		11
	4	TEST CONDITIONS AND RESC	,	NG.	···· · · ·
	4.1	AC Power Conducted Emission		ATESTING	11
	4.1 4.2	Radiated Emission			14
	4.2	Maximum Peak Output Power			20
	4.3 4.4	20dB Bandwidth			20 21
	4.4 4.5	Frequency Separation			23
	4.6	Number of hopping frequency			24
	4.7	Time of Occupancy (Dwell Time)			25
	4.8	Out-of-band Emissions			27
TATE	4.9	Antenna Requirement			31
	4.5	Antenna requirement			31
	<u>5</u>	TEST SETUP PHOTOS OF THE	EUT		32
			TESI		
	<u>6</u>	PHOTOS OF THE EUT	<u></u>		32
				CTATES	
				C.	
-					

Page 4 of 32 Report No.: CTA25020800801

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 32 Report No.: CTA25020800801

SUMMARY

2.1 General Remarks

Date of receipt of test sample		Feb. 08, 2025
Testing commenced on	2 CONTRACTOR	Feb. 08, 2025
Testing concluded on	:	Mar. 06, 2025

2.2 Product Description

Product Description:	RFID module
Model/Type reference:	SIM7300
Power supply:	DC 5.0V from external circuit
Test board	Supplied by the manufacturer
Hardware version:	SIM7300_REV2.0
Software version:	24.11.05.01
Testing sample ID:	CTA250208008-1# (Engineer sample), CTA250208008-2# (Normal sample)
RFID	
Modulation Technology:	ASK
Operation frequency:	902.75MHz-927.25MHz
Channel number:	50
Antenna type:	External antenna
Antenna gain:	6.00 dBi
Note:	Eight antennas cannot be used at the same time.

Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz			
(ET)		0	12 V DC	0	24 V DC			
Other (specified in blank below)								
		<u>DC</u>	5.0V from external circuit			, , , ,		
2.4 Short description of the Equipment under Test (EUT)								
This is a RFID module.								

Short description of the Equipment under Test (EUT)

This is a RFID module.

For more details, refer to the user's manual of the EUT.

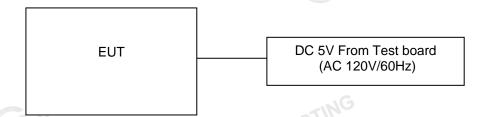
Page 6 of 32 Report No.: CTA25020800801

EUT configuration 2.5

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

 supplied by the lab)
---	---


0	Adapter	Input: AC 100-240V 50/60Hz
		Output: DC 5V 3A
0	PC	Model: E470C
		Trade Mark: thinkpad

2.6 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 50 channels provided to the EUT and Channel 01/25/50 were selected to test.

Channel	Frequency (MHz)
01	902.75
02	903.25
	i i
24	914.25
25	914.75
26	915.25
	TES
49	926.75
50	927.25
.7 Block Diagram of Test Setup	

Block Diagram of Test Setup 2.7

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

No modifications were implemented to meet testing criteria. CTA TESTING Report No.: CTA25020800801 Page 7 of 32

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges: CTA TESTING Radiated Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
	JG
Humidity:	46 %
Atmospheric pressure:	950-1050mbar

Conducted testina:

Outladdica testing.	
Temperature:	25 ° C
	223 000
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTA TESTING	CTATESTING

Report No.: CTA25020800801 Page 8 of 32

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	ASK	☑ Lowest☑ Middle☑ Highest	ASK	⊠ Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	ASK	⊠ Full	ASK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	ASK	☑ Lowest☑ Middle☑ Highest	ASK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	ASK	 Lowest Middle Highest	ASK		Compliant
§15.247(b)(1)	Maximum output peak power	ASK	☑ Lowest☑ Middle☑ Highest	ASK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	ASK	✓ Lowest✓ Highest	ASK	☑ Lowest☑ Highest	Compliant
§15.205	Band edgecompliance radiated	ASK	☑ Lowest☑ Highest	ASK		Compliant
§15.247(d)	TX spuriousemissions conducted	ASK	☑ Lowest☑ Middle☑ Highest	ASK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	ASK	Lowest Middle Highest	ASK	Lowest Middle Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	ASK		ASK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	ASK	☑ Lowest☑ Middle☑ Highest	ASK	⊠ Middle	Compliant

Remark: The measurement uncertainty is not included in the test result.

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	1	1.1%	(1)

Report No.: CTA25020800801 Page 9 of 32

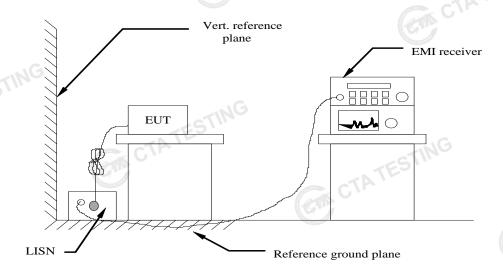
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
Broadband Horn Antenna	A-INFOMW	LB-180500H-2.4F	CTA-336	2023/09/13	2026/09/12
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02

Report No.: CTA25020800801 Page 10 of 32


Test Equipment	Test Equipment Manufacturer		Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A

Report No.: CTA25020800801 Page 11 of 32

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

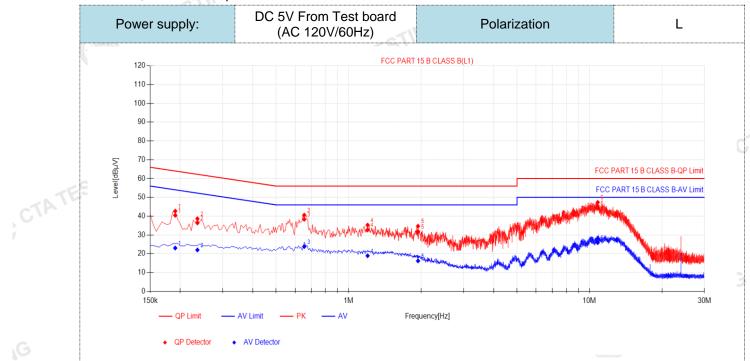
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

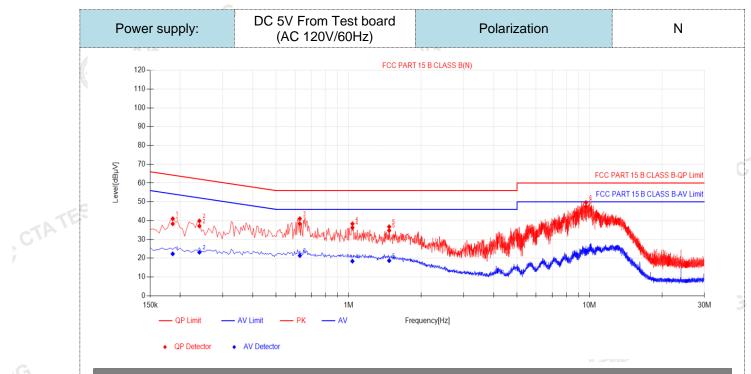
Frequency range (MHz)	Limit (d	dBuV)
Frequency range (Miriz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ncy.	


TEST RESULTS

Remark:

1. RFID were test at Low, Middle, and High channel; only the worst result of RFID Middle Channel was reported as below:

Report No.: CTA25020800801

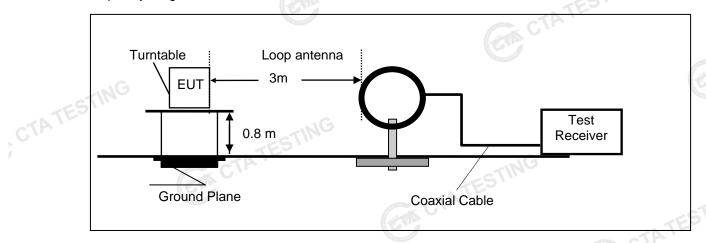

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.1905	10.05	30.39	40.44	64.01	23.57	12.99	23.04	54.01	30.97	PASS
2	0.2355	9.98	26.40	36.38	62.25	25.87	12.03	22.01	52.25	30.24	PASS
3	0.654	9.97	28.34	38.31	56.00	17.69	13.84	23.81	46.00	22.19	PASS
4	1.1985	9.90	22.79	32.69	56.00	23.31	9.03	18.93	46.00	27.07	PASS
5	1.941	9.92	21.88	31.80	56.00	24.20	6.27	16.19	46.00	29.81	PASS
6	10.8195	10.26	34.08	44.34	60.00	15.66	15.65	25.91	50.00	24.09	PASS
).QP Value tor (dB)=ir	,		• .	. ,	•	•	THE			110

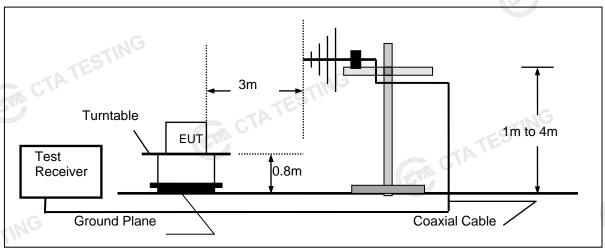
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

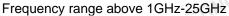
Page 13 of 32 Report No.: CTA25020800801

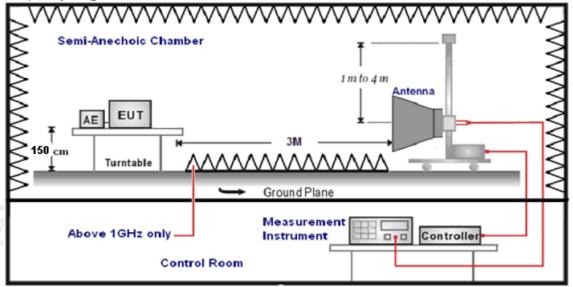
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBμV]	QP Margin [dB]	ΑV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.186	10.01	28.29	38.30	64.21	25.91	12.32	22.33	54.21	31.88	PASS
2	0.24	10.01	27.11	37.12	62.10	24.98	13.16	23.17	52.10	28.93	PASS
3	0.627	10.13	28.18	38.31	56.00	17.69	11.26	21.39	46.00	24.61	PASS
4	1.0365	10.13	26.16	36.29	56.00	19.71	8.31	18.44	46.00	27.56	PASS
5	1.473	10.14	24.59	34.73	56.00	21.27	8.56	18.70	46.00	27.30	PASS
6	9.672	10.40	37.09	47.49	60.00	12.51	13.52	23.92	50.00	26.08	PASS


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTATESTING

Page 14 of 32 Report No.: CTA25020800801


Radiated Emission 4.2


TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Report No.: CTA25020800801 Page 15 of 32

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	C
9KHz-30MHz	Active Loop Antenna	3	25 mars
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	1 Can
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	
FS = RA + AF + CL - AG	CTATES
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

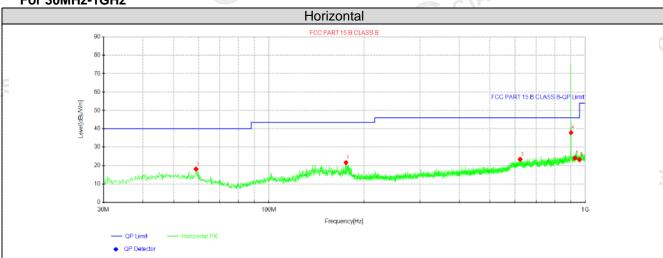
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

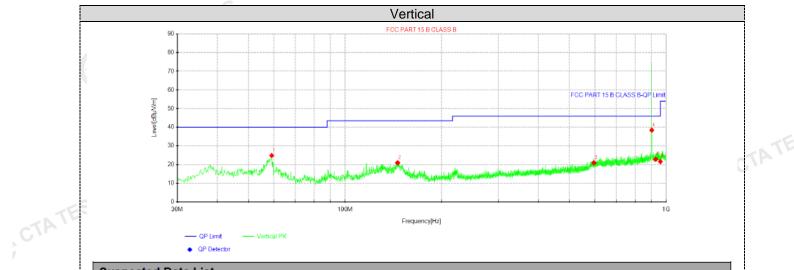
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	(Meters)		2.422/=((0.4.)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


Page 16 of 32 Report No.: CTA25020800801

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- For below 1GHz testing recorded worst at Low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.


For 30MHz-1GHz

Susp	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevite
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	58.8575	30.54	18.06	-12.48	40.00	21.94	100	158	Horizontal
2	175.257	36.40	21.60	-14.80	43.50	21.90	100	250	Horizontal
3	623.155	29.09	23.38	-5.71	46.00	22.62	200	333	Horizontal
4	902	40.43	37.86	-2.57	46.00	8.14	200	20	Horizontal
5	928	26.38	24.07	-2.31	46.00	21.93	100	181	Horizontal
6	960	25.34	23.21	-2.13	46.00	22.79	100	100	Horizontal
ote:1).	Level (dB	βμV/m)= Rea	ading (dBµ	V)+ Fact	or (dB/m)				
•	•	• •	• .	•	Cable loss (d	dB) - Pre A	mplifier ga	ain (dB)	
	,	3/m)=Antenr	,	,	•	dB) - Pre A	mplifier ga	ain (dB)	

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTATESTING

Report No.: CTA25020800801 Page 17 of 32

Suspe	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority			
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	59.1	37.35	24.82	-12.53	40.00	15.18	100	46	Vertical			
2	145.793	36.47	20.94	-15.53	43.50	22.56	100	14	Vertical			
3	595.146	27.03	20.94	-6.09	46.00	25.06	200	326	Vertical			
4	902	40.99	38.42	-2.57	46.00	7.58	100	92	Vertical			
5	928	25.12	22.81	-2.31	46.00	23.19	100	255	Vertical			
6	960	23.72	21.59	-2.13	46.00	24.41	200	14	Vertical			

CTA TES

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

For 1GHz to 10GHz

Frequency(MHz):		902.75		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1805.5	59.87	PK	74	14.13	72.14	25.46	3.6	41.33	-12.27
1805.5	42.01	AV	54	11.99	54.28	25.46	3.6	41.33	-12.27
2708.25	51.90	PK	74	22.10	61.06	28.32	5.12	42.6	-9.16
2708.25	40.33	AV	54	13.67	49.49	28.32	5.12	42.6	-9.16

Frequency(MHz):			902.75 Po		Pola	arity:		VERTICAL	
Frequency (MHz)	Emis	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1805.5	57.90	PK	74.00	16.10	70.17	25.46	3.6	41.33	-12.27
1805.5	40.57	AV	54.00	13.43	52.84	25.46	3.6	41.33	-12.27
2708.25	49.05	PK	74.00	24.95	58.21	28.32	5.12	42.6	-9.16
2708.25	39.50	AV	54.00	14.50	48.66	28.32	5.12	42.6	-9.16

Frequency(MHz):			914.75		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1829.5	59.07	PK	74.00	14.93	71.35	25.45	3.6	41.33	-12.28
1829.5	41.87	AV	54.00	12.13	54.15	25.45	3.6	41.33	-12.28
2744.25	50.61	PK	74.00	23.39	59.78	28.3	5.12	42.59	-9.17
2744.25	40.53	AV	54.00	13.47	49.70	28.3	5.12	3 42.59	-9.17
Carlo U							STIN		

B OPHIN									
Frequency(MHz):		914.75		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1829.5	57.02	PK	74.00	16.98	69.30	25.45	3.6	41.33	-12.28
1829.5	39.77	AV	54.00	14.23	52.05	25.45	3.6	41.33	-12.28
2744.25	49.83	PK	74.00	24.17	59.00	28.3	5.12	42.59	-9.17
2744.25	38.94	AV	54.00	15.06	48.11	28.3	5.12	42.59	-9.17

Frequency(MHz):		927.25		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1854.5	58.58	PK	74.00	15.42	70.73	25.62	3.63	41.4	-12.15
1854.5	41.70	AV	54.00	12.30	53.85	25.62	3.63	41.4	-12.15
2781.75	48.94	PK	74.00	25.06	58.04	28.46	5.14	42.7	-9.1
2781.75	39.38	AV	54.00	14.62	48.48	28.46	5.14	42.7	-9.1
	-11	1G							

Frequency(MHz):		927.25		Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1854.5	56.49	PK	74.00	17.51	68.64	25.62	3.63	41.4	-12.15
1854.5	38.51	AV	54.00	15.49	50.66	25.62	3.63	41.4	-12.15
2781.75	47.43	PK	74.00	26.57	56.53	28.46	5.14	42.7	-9.1
2781.75	37.92	AV	54.00	16.08	47.02	28.46	5.14	42.7	-9.1

Page 19 of 32 Report No.: CTA25020800801

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 20 of 32 Report No.: CTA25020800801

Maximum Peak Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 1W (30dBm).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Channel	Output power (dBm)	Limit (dBm)	Result
CH01	29.491		TATES
CH25	29.543	30.0	Pass
CH50	29.554		

CTATESTIN Note: 1.The test results including the cable loss.

Page 21 of 32 Report No.: CTA25020800801

20dB Bandwidth

Limit

For frequency hopping systems operating in the 902MHz-928MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

EUT	SPECTRUM ANALYZER	CTING
<u>Test Results</u>		CTA TESTING
Channel	20dB bandwidth (MHz)	Result
CH00	0.2016	
CH31	0.2076	Pass
CH63	0.2148	
Test plot as follows:	CTATES COM C	TATESTING CT

Page 23 of 32 Report No.: CTA25020800801

4.5 Frequency Separation

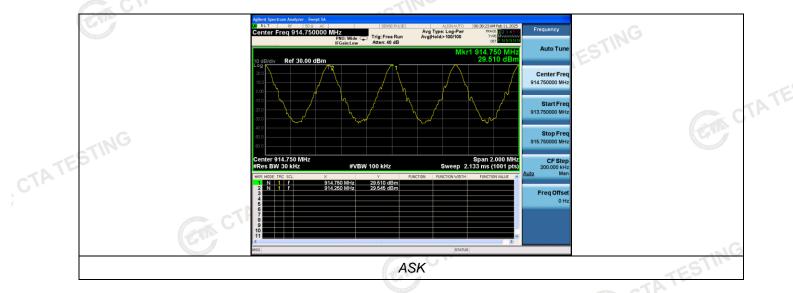
LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the CTATE fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

TEST CONFIGURATION



TEST RESULTS

Channel	Channel Separation (MHz)	Limit(MHz)	Result
CH24	0.5	25KHz or 20dB bandwidth	CIA
CH25	0.5	25KHz or 20dB bandwidth	Pass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

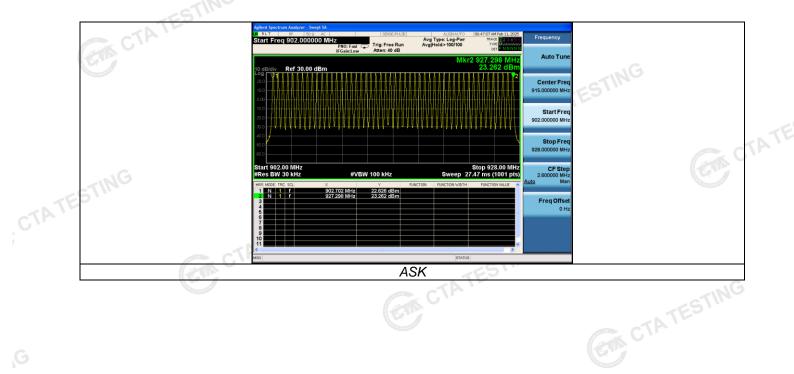
Page 24 of 32 Report No.: CTA25020800801

Number of hopping frequency

Limit C

≥50 For Frequency hopping systems in the 902–928MHz band

Test Procedure


TATESTING CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 903MHz to 906MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

Test Results

Test Results	CTATES	STING
Number of Hopping Channel	Limit	Result
50	≥50	Pass

Page 25 of 32 Report No.: CTA25020800801

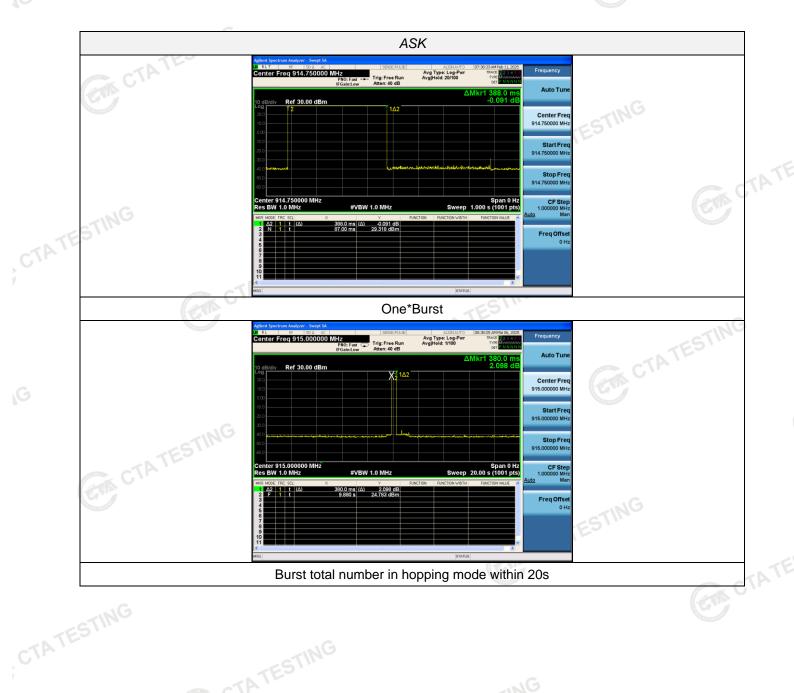
Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.


Test Configuration

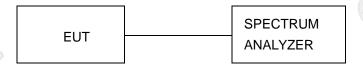
Test Results

Test Results			CTATES		TESTING
СН	Burst time (s)	Dwell time (s)	Limit (s)	Result	CIL
25	0.388	0.380	0.40	Pass	

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel. CTATESTING Test plot as follows:

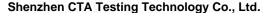
Page 27 of 32 Report No.: CTA25020800801

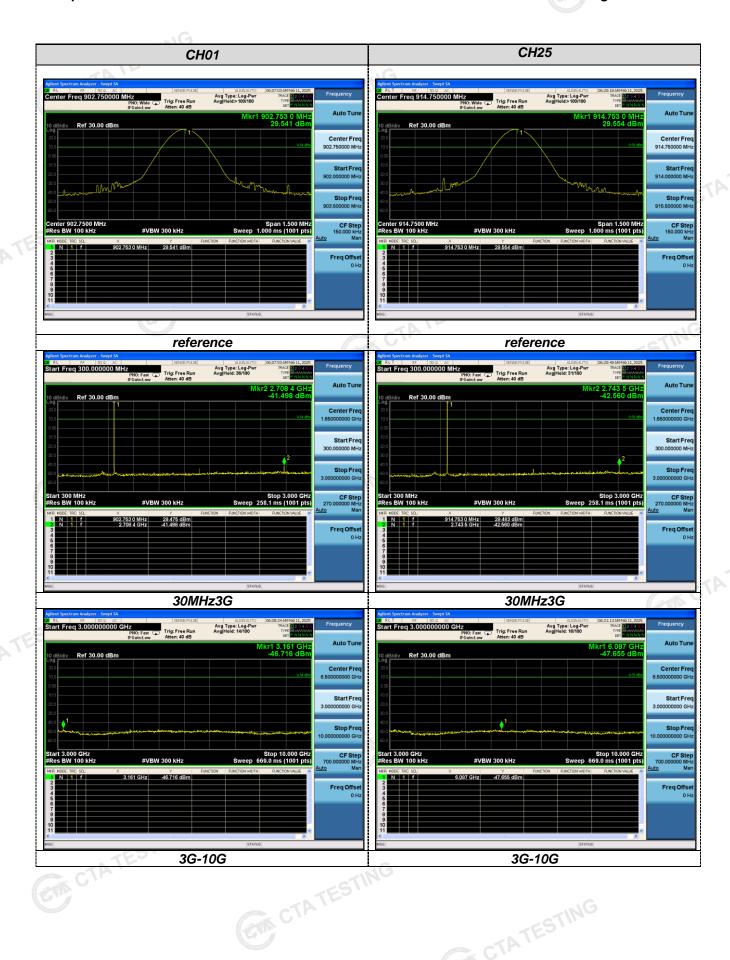
Out-of-band Emissions

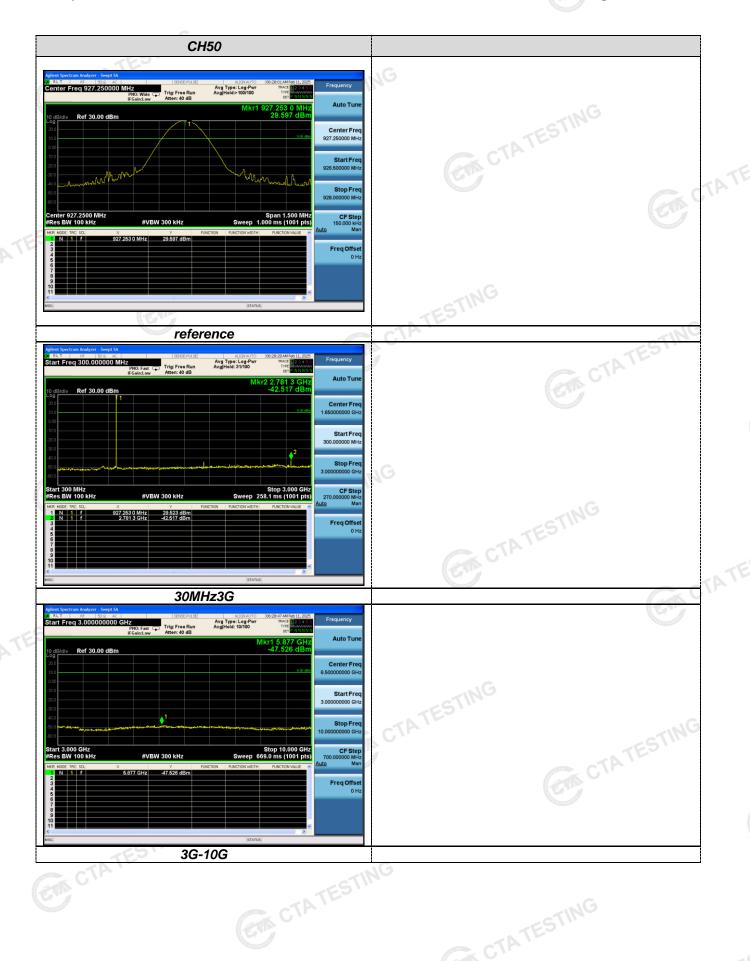

Limit C

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure


Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.


Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Report No.: CTA25020800801 Page 30 of 32

Band-edge Measurements for RF Conducted Emissions: Avg Type: Log-Pw Avg|Hold:> 100/100 Avg Type: Log-Pw Avg|Hold:>100/100 10: Fast Trig: Free Run : Fast Trig: Free Run -51.513 dB Center Fre 863.500000 MH CF Step 13.500000 MH: to Mar Span 135.0 MHz Sweep 12.93 ms (1001 pts) Stop 1.00000 GHz Sweep 9.467 ms (1001 pts) CF Step 9.900000 MH: 29.552 dBm -40.536 dBm -51.513 dBm Freq Offse Left Band edge hoping off Right Band edge hoping off Avg Type: Log-Pw Avg|Hold:> 100/100 Trig: Free Run Trig: Free Run Ref 30.00 dE Center Fre 63.500000 MH 29.684 dBm -40.372 dBm -50.315 dBm Freq Offset 0 Hz Right Band edge hoping on Left Band edge hoping on CTATESTING

Report No.: CTA25020800801 Page 31 of 32

4.9 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 6.00 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

Page 32 of 32 Report No.: CTA25020800801

5 Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

6 Photos of the EUT

CTATESTING Please refer to separated files for External & Internal Photos of the EUT. ****************** End of Report ***************