

Page 1 of 25 JQA File No. : KL80150044 Issue Date : May 19, 2015

TEST REPORT

Applicant Address	:	Sharp Corporation, Communication Systems Division 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan
Products	:	Smart Phone
Model No.	:	404SH
Serial No.	:	004401/11/549838/4
FCC ID Test Standard	:	APYHRO00220 CFR 47 FCC Rules and Regulations Part 15
Test Results	:	Passed
Date of Test	:	May 5 ~ 8, 2015

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- $\bullet~$ VLAC does not approve, certify or warrant the product by this test report.

TABLE OF CONTENTS

Page 2 of 25

Page

1	Description of the Equipment Under Test	. 3
2	Summary of Test Results	. 4
3	Test Procedure	
4	Test Location	
5	Recognition of Test Laboratory	. 5
6	Description of Test Setup	
7	Test Requirements	

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT	: Equipment Under Test	EMC
A TO	· Associated Equipment	TENAT

- **AE** : Associated Equipment
- N/A : Not Applicable
- N/T : Not Tested

- EMC: Electromagnetic CompatibilityEMI: Electromagnetic InterferenceEMS: Electromagnetic Susceptibility
- \boxtimes indicates that the listed condition, standard or equipment is applicable for this report.
- indicates that the listed condition, standard or equipment is not applicable for this report.

1 Description of the Equipment Under Test

Page 3 of 25

1.	Manufacturer	:	Sharp Corporation, Communication Systems Division 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan
2.	Products	:	Smart Phone
3.	Model No.	:	404SH
4.	Serial No.	:	004401/11/549838/4
5.	Product Type	:	Pre-production
6.	Date of Manufacture	:	February, 2015
7.	Power Rating	:	4.0VDC(Lithium-ion Battery UBATIA258AFN1 3000mAh)
8.	Grounding	:	None
9.	Transmitting Frequency	:	$13.560 \mathrm{~MHz}$
10.	Receiving Frequency	:	$13.560 \mathrm{~MHz}$
11.	Antenna Type	:	Internal Antenna (Integral)
12.	EUT Authorization	:	Certification
13.	Received Date of EUT	:	April 20, 2015

Page 4 of 25

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15 Subpart C – Intentional Radiators

The EUT described in clause 1 was tested according to the applied standard shown above. Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \boxtimes - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

□ - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Assistant Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

higen Osawa

Shigeru Osawa Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

3 Test Procedure

 Test Requirements
 : §15.225, §15.207 and §15.209

 Test Procedure
 : ANSI C63.4–2003

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2016)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2016)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2016)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2016)

Page 5 of 25

Page 6 of 25

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of :

	Item	Manufacturer	Model No.	Serial No.	FCC ID
А	Smart Phone	Sharp	404SH	004401/11/549838/4	APYHRO00220

The auxiliary equipment used for testing : None

Type of Cable: None

6.2 Test Arrangement (Drawings)

А

6.3 Operating Condition

The test were carried under 4 mode shown as follows:

- 1. Felica (Modulation Type : ASK)
- 2. ISO/IEC14443 Type A (Modulation Type : ASK)
- 3. ISO/IEC14443 Type B (Modulation Type : ASK)
- 4. ISO/IEC15693 Type V (Modulation Type : ASK)

The Radiated Emission test were carried under 1 test configurations shown in clause 6.2. In all tests, the fully charged battery is used for the EUT.

Detailed Transmitter portion: Transmitter frequency : 13.560 MHz

Detailed Receiver portion: Receiver frequency : 13.560 MHz

Other Clock Frequency 19.2MHz, 48MHz, 12MHz, 27.12MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement.

Page 7 of 25

7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
Antenna Requirement	Section 15.203	Section 1.11	Passed	-
AC Powerline Conducted Emission	Section 15.207	Section 7.1	N/A *1)	-
Radiated Emission	Section 15.225(a)(b)(c)(d)	Section 7.2	Passed	-
Occupied Bandwidth	Section 15.215(c)	Section 7.3	Passed	-
Frequency Stability	Section 15.225(e)	Section 7.4	Passed	-

Note: 1) See Section 7.1.

7.1 AC Powerline Conducted Emission

The requirements are \Box - Applicable $[\Box$ - Tested. \Box - Not tested by applicant request.] \boxtimes - Not Applicable

 \Box - Passed \Box - Failed \Box - Not judged

Remarks : <u>When the smart phone is connected to the AC Charger or Earpbone, the RF(13.56MHz)</u> communicating function is not available.

	JQA File No. : KL80150044		-
	Model No. : 404SH Standard : CFR 47 FCC	FCC ID : AP Rules and Regulations Part 15	YHRO00220
7.2 Radiated E			Page 8 of 2
7.2.1.1 Radiate	d Emission (§15.225(a)(b)(c))		
The requireme	nts are 🛛 - Applicable 🛛 - 🗌 - Not Applicable	Tested. \Box - Not tested by applicant \mathbf{r}	request.]
	🛛 - Passed 🗌 - Fai	iled 🗌 - Not judged	
7.2.1.2 Worst P	oint and Measurement Uncerta	nty	
Min. Limit Ma	rgin (Quasi-Peak)	<u> </u>	567 MHz
Uncertainty of	Measurement Results	9 kHz – 30 MHz <u>+/-</u> 3	3.0 dB(2σ)
	<u>e Radited Emission at 30m of 1</u> ode, Z axis position.	.3.567 MHz is -9.4 dB(uV/m). ISO/IEC	15693 Type V
7.2.2.1 Radiate	d Emission (§15.225(d))		
The requireme	nts are 🛛 - Applicable 🛛 - 🗋 - Not Applicable	Tested. \Box - Not tested by applicant i	request.]
	🛛 - Passed 🗌 - Fai	lled 🗌 - Not judged	
7.2.2.2 Worst P	oint and Measurement Uncertai	nty	
Min. Limit Ma	rgin (Quasi-Peak)	<u> </u>	MHz
Uncertainty of	Measurement Results		$\begin{array}{c} 3.0 \\ 3.8 \\ 4.8 \\ dB(2\sigma) \\ dB(2\sigma) \\ dB(2\sigma) \\ dB(2\sigma) \end{array}$

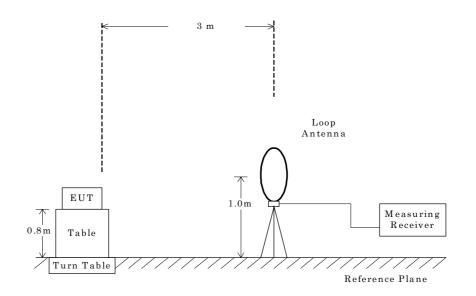
Remarks: <u>No spurious emissions in the range 20dB below the limit. When the smart phone is connected to the AC Charger or Earphone, the RF(13.56MHz) communicating function is not available.</u>

Page 9 of 25

7.2.3 Test Instruments

Anechoic Chamber A2							
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval		
Test Receiver	ESU26	Rohde & Schwarz	A-6	2015/4	1 Year		
Loop Antenna	HFH2-Z2	Rohde & Schwarz	C-2	2014/8	1 Year		
RF Cable	RG213/U	SUHNER	H-28	2014/8	1 Year		
Biconical Antenna	VHA9103/BBA9106	Schwarzbeck	C-30	2014/5	1 Year		
Log-periodic Antenna	UHALP9108-A1	Schwarzbeck	C-31	2014/5	1 Year		
RF Cable	S 10162 B-11 etc.	SUHNER	H-4	2015/4	1 Year		
Site Attenuation			H-15	2015/1	1 Year		
Pre-Amplifier	310N	SONOMA	A-17	2015/4	1 Year		

7.2.4 Test Method and Test Setup (Diagrammatic illustration)


7.2.4.1 Radiated Emission 9 kHz - 30 MHz

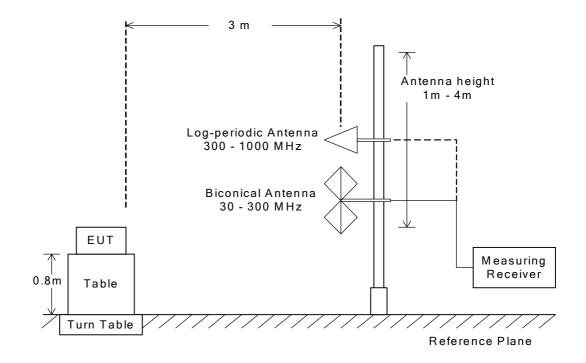
The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

Page 10 of 25


7.2.4.2 Radiated Emission 30 MHz – 1000 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

- Side View -

Page 11 of 25

7.2.5 Test Data

7.2.5.1 Radiated Emission (§15.225(a)(b)(c) & §15.209(a))

Test Mode : Felica

Test condition : Transmitting(Felica)

<u>Test Date: May 5, 2015</u> Temp.: 22 °C, Humi: 50 %

Frequency [MHz]	Correction Factor [dB(1/m)]	Meter Readings at 3 m [dB(µV)]	Limits [dB(µV/m)]	Specified Distance [m]	Extrapolated Results [dB(µV/m)]	Margin [dB]	Remarks
13.410	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
13.553	19.8	< 10.0	50.5	30.0	< -10.2	> +60.7	-
13.560	19.8	23.4	84.0	30.0	3.2	+80.8	-
13.567	19.8	10.6	50.5	30.0	- 9.6	+60.1	-
13.710	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
27.120	22.1	< 10.0	29.5	30.0	< - 7.9	> +37.4	-

NOTES

1. Test Distance : 3 m

2. The correction factor includes the antenna factor and the cable loss.

3. The symbol of "<" means "or less".

4. The symbol of ">" means "more than".

5. The testing loop antenna was rotated at the vertical and horizontal axis to maximize received emissions. The above Meter Reading was maximum emission level.

6. Calculation:

For fundamental, the measured field strength was extrapolated to distance 30m, using the formula that field strength using the formula that field strength aries as the inverse distance square(40 dB per decade of distance).

 $\begin{array}{l} \mbox{Fundamental}: \mbox{Correction Factor} + \mbox{Meter Reading} = 19.8 + 23.4 = 43.2 \ dB(\mu V/m) \\ \mbox{Result at } 30 \ m = -40 + 43.2 = 3.2 \ dB(\mu V/m) \ (\mbox{Conversion Factor}: 40 \ dB/decade) \\ \mbox{Limits for } 13.553 - 13.567 \ MHz(\$15.225(a)) = 20 \ log10(15848) = 84.0 \ dB\mu V/m \\ \mbox{Limits for } 13.410 - 13.553, 13.567 - 13.710 \ MHz(\$15.225(b)) = 20 \ log10(334) = 50.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.10 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.10 - 13.410, 13.710 - 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \mbox{Limits for } 13.10 - 13.410 - 13.410 - 13.410 \ dB\mu V/m \\ \mbox{Limits for } 13.10 - 13.410 - 13.410 \ dB\mu V/m \\ \mbox{Limits for } 13.10 - 13.410 \ dB\mu V/m \\ \mbox{Limits for } 13.10 - 13.410 \ dB\mu V/m \\ \mbox{Limits for } 13.10 - 13.410 \ dB\mu V/m \\ \mbox{Limits for } 13.10 - 13.410 \ dB\mu V/m \\ \mbox{Limits for } 13.410 \ dB\mu V/m \\ \mbox{Limits for } 13.410 \ dB\mu V/m \\ \mbox{Limits for } 13.410 \ dB\mu V/m \ dB\mu V/m \\ \mbox{Limits for } 13.410 \ dB\mu$

 $\begin{array}{l} \text{Harmonics: Correction Factor + Meter Reading = } 22.1 + <10.0 = <32.1 \ \text{dB}(\mu\text{V/m}) \\ \text{Result at } 30 \ \text{m} = -40 + <32.1 = <-7.9 \ \text{dB}(\mu\text{V/m}) \quad \text{(Conversion Factor : } 40\text{dB/decade}) \\ \text{Limits for Harmonics(} 15.209(a)) = 20\log 10(30) = 29.5 \ \text{dB}\mu\text{V/m} \end{array}$

7. Test receiver setting(s) :

Quasi-Peak Detector IF Bandwidth: 9kHz or 200Hz(Except for 9 kHz -90 kHz, 110 kHz -490 kHz) Average Detector, IF Bandwidth: 9kHz or 200Hz(9 kHz -90 kHz, 110 kHz -490 kHz)

: CFR 47 FCC Rules and Regulations Part 15

Page 12 of 25

Test Date: May 5, 2015

Test Mode : ISO/IEC14443 Type A

Test condition :	<u>Temp.: 22 °C, Humi: 50 %</u>						
Frequency [MHz]	Correction Factor [dB(1/m)]	Meter Readings at 3 m [dB(μV)]	Limits [dB(µV/m)]	Specified Distance [m]	Extrapolated Results [dB(µV/m)]	Margin [dB]	Remarks
13.410	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
13.553	19.8	< 10.0	50.5	30.0	< -10.2	> +60.7	-
13.560	19.8	22.6	84.0	30.0	2.4	+81.6	-
13.567	19.8	< 10.0	50.5	30.0	< -10.2	> +60.7	-
13.710	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
27.120	22.1	< 10.0	29.5	30.0	< - 7.9	> +37.4	-

NOTES

1. Test Distance : 3 m

2. The correction factor includes the antenna factor and the cable loss.

3. The symbol of "<" means "or less".

4. The symbol of ">" means "more than".

5. The testing loop antenna was rotated at the vertical and horizontal axis to maximize received emissions. The above Meter Reading was $% \left({{{\rm{max}}} \right)$ maximum emission level.

6. Calculation:

For fundamental, the measured field strength was extrapolated to distance 30m, using the formula that field strength using the formula that field strength aries as the inverse distance square(40 dB per decade of distance).

Fundamental : Correction Factor + Meter Reading = 19.8 + 22.6 = 42.4 dB(µV/m) Result at 30 m = \cdot 40 + 42.4 = 2.4 dB(μ V/m) (Conversion Factor : 40dB/decade) Limits for $13.553 \cdot 13.567 MHz(\$15.225(a)) = 20 \log 10(15848) = 84.0 dB\mu V/m$ Limits for $13.410 \cdot 13.553, 13.567 \cdot 13.710 \text{MHz}(\$15.225(b)) = 20 \log 10(334) = 50.5 \text{ dB}\mu\text{V/m}$ Limits for 13.110-13.410,13.710-14.010MHz (\$15.225(c)) = 20log10(106) = 40.5 dBµV/m

Harmonics : Correction Factor + Meter Reading = 22.1 + <10.0 = <32.1 dB(µV/m) Result at 30 m = \cdot 40 + \langle 32.1 = \langle -7.9 dB(μ V/m) (Conversion Factor : 40dB/decade) Limits for Harmonics(\$15.209(a)) = $20\log_{10}(30)$ = $29.5 \text{ dB}\mu\text{V/m}$

7. Test receiver setting(s) :

Quasi-Peak Detector IF Bandwidth: 9kHz or 200Hz(Except for 9 kHz -90 kHz, 110 kHz -490 kHz) Average Detector, IF Bandwidth: 9kHz or 200Hz(9kHz -90kHz, 110kHz -490kHz)

Test Mode : ISO/IEC14443 Type B

Page 13 of 25

Test Date:	May 5, 2015
Temp.: 22 °C.	Humi: 50 %

Test condition : Transmitting(Type B)						Temp.: 22 °C, Humi: 5	
Fre quency [MHz]	Correction Factor [dB(1/m)]	Meter Readings at 3 m [dB(µV)]	Limits [dB(µV/m)]	Spe cifie d Dis tance [m]	Extrapolated Results [dB(µV/m)]	Margin [dB]	Remarks
13.410	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
13.553	19.8	< 10.0	50.5	30.0	< -10.2	> +60.7	-
13.560	19.8	22.6	84.0	30.0	2.4	+81.6	-
13.567	19.8	< 10.0	50.5	30.0	< -10.2	> +60.7	-
13.710	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
27.120	22.1	< 10.0	29.5	30.0	< - 7.9	> +37.4	-

NOTES

1. Test Distance : 3 m

2. The correction factor includes the antenna factor and the cable loss.

3. The symbol of "<" means "or less".

4. The symbol of ">" means "more than".

5. The testing loop antenna was rotated at the vertical and horizontal axis to maximize received emissions. The above Meter Reading was maximum emission level.

6. Calculation:

For fundamental, the measured field strength was extrapolated to distance 30m, using the formula that field strength using the formula that field strength arises as the inverse distance square(40 dB per decade of distance).

 $\begin{array}{l} \mbox{Fundamental}: \mbox{Correction Factor} + \mbox{Meter Reading} = 19.8 + 22.6 = 42.4 \ dB(\mu V/m) \\ \mbox{Result at } 30 \ m = \cdot 40 + 42.4 = 2.4 \ dB(\mu V/m) \ (\mbox{Conversion Factor}: 40 \ dB/\ decade) \\ \mbox{Limits for } 13.553 \cdot 13.567 \ MHz(\$15.225(a)) = 20 \ log10(15848) = 84.0 \ dB\mu V/m \\ \mbox{Limits for } 13.410 \cdot 13.553, 13.567 \cdot 13.710 \ MHz(\$15.225(b)) = 20 \ log10(334) = 50.5 \ dB\mu V/m \\ \mbox{Limits for } 13.110 \cdot 13.410, 13.710 \cdot 14.010 \ MHz(\$15.225(c)) = 20 \ log10(106) = 40.5 \ dB\mu V/m \\ \end{array}$

 $\begin{array}{l} Harmonics: Correction \ Factor + Meter \ Reading = 22.1 + < 10.0 = < 32.1 \ dB(\mu V/m) \\ Result at 30 \ m = -40 + < 32.1 = < -7.9 \ dB(\mu V/m) \ (Conversion \ Factor : 40 \ dB/decade) \\ Limits \ for \ Harmonics(\$15.209(a)) = 20 \ log10(30) = 29.5 \ dB\mu V/m \end{array}$

7. Test receiver setting(s) :

Quasi-Peak Detector IF Bandwidth: 9kHz or 200Hz(Except for 9 kHz -90 kHz, 110 kHz -490 kHz) Average Detector, IF Bandwidth: 9kHz or 200Hz(9 kHz -90 kHz, 110 kHz -490 kHz)

: CFR 47 FCC Rules and Regulations Part 15

Page 14 of 25

Test Date: May 5, 2015

Test Mode : ISO/IEC15693 Type V

Test condition :	Transmitting(Type V	<i>v</i>)				<u>Temp.: 22 °C</u> ,	Humi: 50 %
Frequency [MHz]	Correction Factor [dB(1/m)]	Meter Readings at 3 m [dB(μV)]	Limits [dB(µV/m)]	Specified Distance [m]	Extrapolated Results [dB(µV/m)]	Margin [dB]	Remarks
13.410	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
13.553	19.8	< 10.0	50.5	30.0	< -10.2	> +60.7	-
13.560	19.8	23.7	84.0	30.0	3.5	+80.5	-
13.567	19.8	10.8	50.5	30.0	- 9.4	+59.9	-
13.710	19.8	< 10.0	40.5	30.0	< -10.2	> +50.7	-
27.120	22.1	< 10.0	29.5	30.0	< - 7.9	> +37.4	-

NOTES

1. Test Distance : 3 m

2. The correction factor includes the antenna factor and the cable loss.

3. The symbol of "<" means "or less".

4. The symbol of ">" means "more than".

5. The testing loop antenna was rotated at the vertical and horizontal axis to maximize received emissions. The above Meter Reading was $% \left({{{\rm{max}}} \right)$ maximum emission level.

6. Calculation:

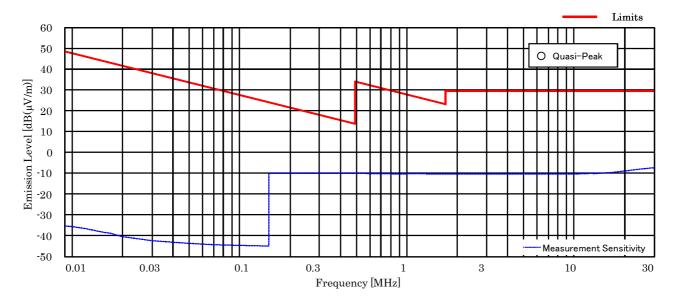
For fundamental, the measured field strength was extrapolated to distance 30m, using the formula that field strength using the formula that field strength aries as the inverse distance square(40 dB per decade of distance).

Fundamental : Correction Factor + Meter Reading = 19.8 + 23.7 = 43.5 dB(µV/m) Result at 30 m = \cdot 40 + 43.5 = 3.5 dB(μ V/m) (Conversion Factor : 40dB/decade) Limits for 13.553-13.567MHz(15.225(a)) = 20log10(15848) = 84.0 dBµV/m Limits for $13.410 \cdot 13.553, 13.567 \cdot 13.710 \text{MHz}(\$15.225(b)) = 20 \log 10(334) = 50.5 \text{ dB}\mu\text{V/m}$ Limits for 13.110-13.410,13.710-14.010MHz (\$15.225(c)) = 20log10(106) = 40.5 dBµV/m

Harmonics : Correction Factor + Meter Reading = 22.1 + <10.0 = <32.1 dB(µV/m) Result at 30 m = \cdot 40 + \langle 32.1 = \langle -7.9 dB(μ V/m) (Conversion Factor : 40dB/decade) Limits for Harmonics(\$15.209(a)) = $20\log_{10}(30)$ = $29.5 \text{ dB}\mu\text{V/m}$

7. Test receiver setting(s) :

Quasi-Peak Detector IF Bandwidth: 9kHz or 200Hz(Except for 9 kHz -90 kHz, 110 kHz -490 kHz) Average Detector, IF Bandwidth: 9kHz or 200Hz(9kHz -90kHz, 110kHz -490kHz)


Page 15 of 25

7.2.5.2 Radiated Emission (§15.209(a))(9kHz - 30MHz)

Test Mode: All mode

Test condition : Transmitting

Fre quency [MHz]	Correction Factor [dB(1/m)]	Meter Readings at 3 m [dB(µV)]	Limits [dB(µV/m)]	Specified Distance [m]	Extrapolated Results [dB(µV/m)]	Margin [dB]	Remarks
0.009	29.6	< 15.0	48.5	300.0	< -35.4	> +83.9	-
0.01	29.2	< 15.0	47.6	300.0	< -35.8	> +83.4	-
0.05	21.2	< 15.0	33.6	300.0	< -43.8	> +77.4	-
0.10	20.3	< 15.0	27.6	300.0	< -44.7	> +72.3	-
0.50	19.8	< 10.0	33.6	30.0	< -10.2	> +43.8	-
1.00	19.7	< 10.0	27.6	30.0	< -10.3	> +37.9	-
5.00	19.6	< 10.0	29.5	30.0	< -10.4	> +39.9	-
10.00	19.6	< 10.0	29.5	30.0	< -10.4	> +39.9	-
20.00	20.9	< 10.0	29.5	30.0	< - 9.1	> +38.6	-
30.00	22.5	< 10.0	29.5	30.0	< - 7.5	> +37.0	-

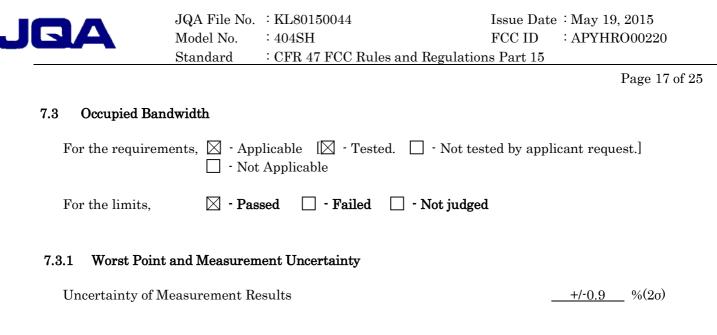
NOTES

1. Test Distance : 3 m

- 2. The spectrum was checked from $9~\mathrm{kHz}$ to $30~\mathrm{MHz}.$
- 3. The correction factor includes the antenna factor and the cable loss.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 7. Test receiver setting(s) :
- Quasi-Peak Detector, IF Bandwidth: 9kHz or 200Hz(Except for 9 kHz -90 kHz, 110 kHz -490 kHz) Average Detector, IF Bandwidth: 9kHz or 200Hz(9 kHz -90 kHz, 110 kHz -490 kHz)

<u>Test Date: May 5, 2015</u>

<u>Temp.: 22 °C, Humi: 50 %</u>



Page 16 of 25

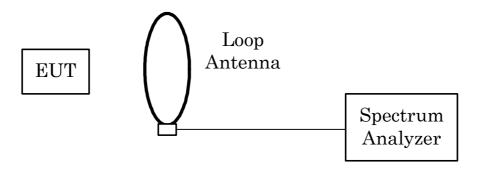
7.2.5.3 Radiated Emission (§15.209(a))(30MHz - 1000MHz)

Test Mode : All mode

Results : No spurious emissions in the range 20dB below the limit.

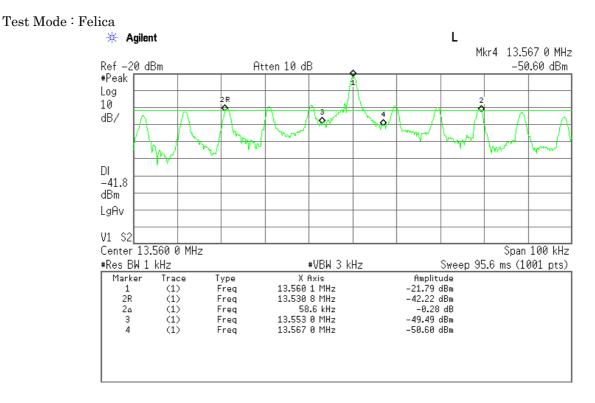
Remarks : _____

7.3.2 Test Instruments


Shielded Room S4							
TypeModelManufacturerID No.Last Cal.Interval							
Spectrum Analyzer E4446A		Agilent	A-39	2014/9	1 Year		
Loop Antenna	LU-100A	TEXIO	C-33	N/A	N/A		

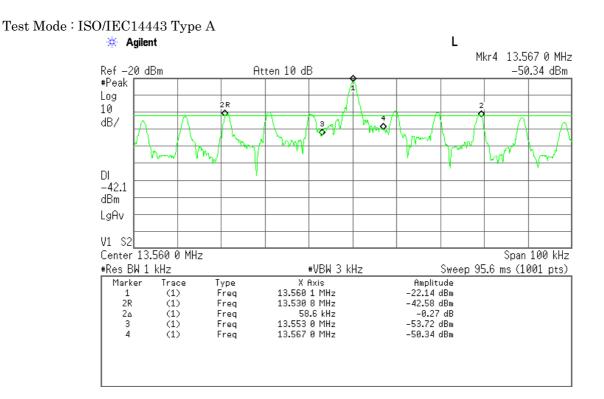
Page 18 of 25

7.3.3 Test Method and Test Setup (Diagrammatic illustration)

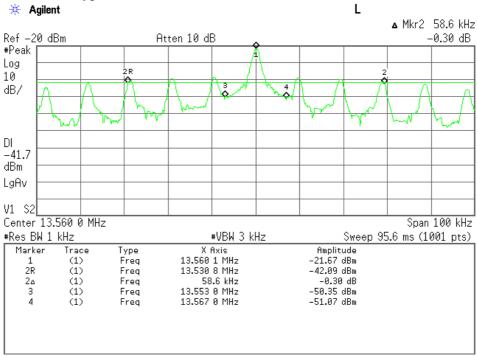

The test system is shown as follows:

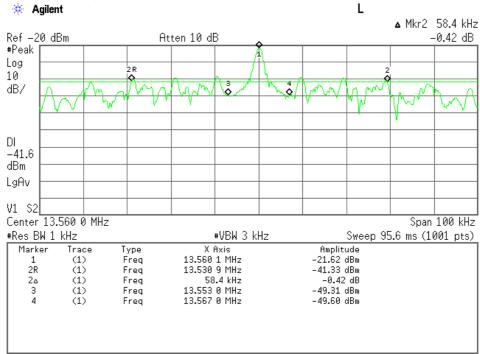
The setting of the spectrum analyzer are shown as follows:

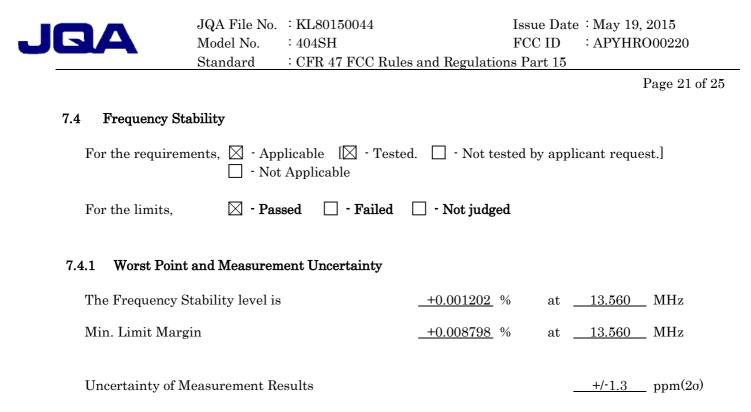
Res. Bandwidth	1 kHz
Video Bandwidth	$3 \mathrm{kHz}$
Span	100 kHz
Sweep Time	AUTO
Trace	Maxhold


7.3.4 Test Data

<u>Test Date : May 7, 2015</u> <u>Temp.:23°C, Humi:48%</u>


Page 19 of 25




Test Mode : ISO/IEC14443 Type B

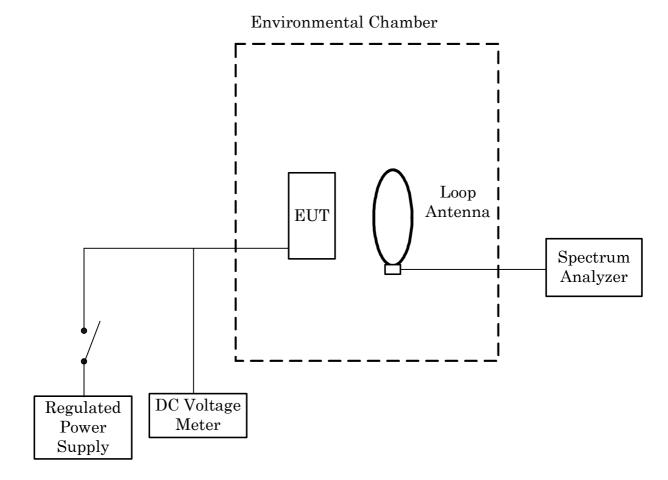
Page 20 of 25 $\,$

Test Mode : ISO/IEC15693 Type V

Remarks :

7.4.2 Test Instruments

Shielded Room S4							
TypeModelManufacturerID No.Last Cal.							
Spectrum Analyzer	E4446A	Agilent	A-39	2014/9	1 Year		
Loop Antenna	LU-100A	TEXIO	C-33	N/A	N/A		
DC Voltage Meter	2011-39	YEW	B-33	2014/6	1 Year		
Environmental Chamber	SH-641	ESPEC	F-32	2014/7	1 Year		



Page 22 of 25 $\,$

7.4.3 Test Method and Test Setup (Diagrammatic illustration)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -20, +20 and +50 degrees Celsius.

Page 23 of 25 $\,$

7.4.4 Test Data

Frequency Stability Measurement

Test Date: May 8, 2015

Transmitting Fre	quency	: 13.560 MHz				
DC Supply Volta	ge	: 4.0 VDC				
Ambient		Frequency with	time elapse[MHz]			
Temperature	Startup	2 minutes	5 minutes	10 minutes		
[°C]						
-20	13.560061	13.560050	13.560024	13.560007		
20	13.560162	13.560163	13.560163	13.560163		
50	13.560094	13.560094	13.560094	13.560094		
Ambient Diviation with tim		time elapse[%]		Limits	Margin	
Temperature	Startup	2 minutes	5 minutes	10 minutes	[%]	[%]
[°C]						
-20	+ 0.000450	+ 0.000369	+ 0.000177	+ 0.000052	0.01	+ 0.009550
20	+ 0.001195	+ 0.001202	+ 0.001202	+ 0.001202	0.01	+ 0.008798
50	+ 0.000693	+ 0.000693	+ 0.000693	+ 0.000693	0.01	+ 0.009307

Sample of calculated result at 13.560 MHz, as the Minimum Margin point:Ambient Temperature: 20 °C / 2 minutesDC Supply Voltage4.0V

Minimum Margin: 0.010000 - 0.001202 = 0.008798 (%) The point shown on " _____" is the Minimum Margin Point. The Maximum Deviation Point is shown on a thick letter.

Note: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.