

FCC TEST REPORT (PART 22)

Cohda Wireless Pty Ltd.				
27 Greenhill Road Wayville SA 50	34 Australia			
Cohda Wireless Pty Ltd.				
27 Greenhill Road Wayville SA 503	34 Australia			
Road-Side (Transceiver) Unit for in	nfrastructure.			
Cohda Wireless				
MK6 RSU				
MK6 RSU				
2AEGPMK6RSU	2AEGPMK6RSU			
Jun. 26, 2023 ~Sep. 01, 2023	Jun. 26, 2023 ~Sep. 01, 2023			
n carried out according to the requi	rements of the following standard:			
Subpart H ⊠ FCC Part 2 03-D ⊠ ANSI C63.26-2015 03-E	5			
e submitted sample was found to <u>C</u>	OMPLY with the test requirement			
Prepared by Chao Wu Approved by Peibo Sun gineer / Mobile Department Manager / Mobile Department				
chao Wu	Simpeibo			
ate: Sep. 01, 2023	Date: Sep. 01, 2023			
	Cohda Wireless Pty Ltd. 27 Greenhill Road Wayville SA 50. Road-Side (Transceiver) Unit for in Cohda Wireless MK6 RSU MK6 RSU 2AEGPMK6RSU Jun. 26, 2023 ~Sep. 01, 2023 In carried out according to the requinate out according to the require out according to the requinate out according to the require out according to the r			

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

RELEAS	E CONTROL RECORD	4
1 SUMM	ARY OF TEST RESULTS	5
1.1	MEASUREMENT UNCERTAINTY	6
1.2	TEST SITE AND INSTRUMENTS	7
2 GENER	AL INFORMATION	9
2.1	GENERAL DESCRIPTION OF EUT	9
2.2	CONFIGURATION OF SYSTEM UNDER TEST	11
2.3	DESCRIPTION OF SUPPORT UNITS	12
2.4	TEST ITEM AND TEST CONFIGURATION	12
2.5	EUT OPERATING CONDITIONS	15
2.6	GENERAL DESCRIPTION OF APPLIED STANDARDS	16
3 TEST T	YPES AND RESULTS	17
3.1	OUTPUT POWER MEASUREMENT	17
3.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	17
3.1.2		
3.1.3 3.1.4		
3.2	FREQUENCY STABILITY MEASUREMENT	26
3.2.1		
3.2.2 3.2.3		
3.2.4		
3.3	OCCUPIED BANDWIDTH MEASUREMENT	
3.3.1		_
3.3.2 3.3.3		
3.3.4		
	BAND EDGE MEASUREMENT	30
3.4.1		
3.4.2 3.4.3		
3.4.4		
3.5	CONDUCTED SPURIOUS EMISSIONS	33
3.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	33
3.5.2		
3.5.3 3.5.4		
	RADIATED EMISSION MEASUREMENT	
3.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	35
3.6.2		
3.6.3 3.6.4		
3.6.5		

3.7 PI	EAK TO AVERAGE RATIO	58
	LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT	
3.7.2	TEST SETUP	58
3.7.3	TEST PROCEDURES	58
3.7.4	TEST RESULTS	59
4 PHOTOG	RAPHS OF THE TEST CONFIGURATION	60
5 INFORM	ATION ON THE TESTING LABORATORIES	61
6 MODIFIC	ATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY	ΓΗΕ LAB62

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-QSU2306260109RF01	Original release	Sep. 01, 2023

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 22 & Part 2				
STANDARD SECTION			Test lab*	
§2.1046	Coduncted Output Power	Compliance	Α	
§22.913 (a)(5)	Equivalent Isotropic Radiated Power	Compliance	Α	
§2.1055 §22.355	Frequency Stability	See Note		
§2.1049	Occupied Bandwidth	See Note		
§ 22.913(d)	Peak to average ratio	See Note		
§2.1051 §22.917(a)	Band Edge Measurements	See Note		
§2.1051 §22.917(a)	Conducted Spurious Emissions	See Note		
§2.1053 §22.917(a)	Radiated Spurious Emissions	Compliance	Α	

NOTE: Refer to the module report (Report No.: SEWA2205000015RG01, Model Name: AG550Q-NA, FCC ID: XMR2022AG550QNA).

*Test Lab Information Reference

Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zhuyi Road, High-tech District, Suzhou City, Anhui Province

Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.

1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
Maximum Peak Output Power	±2.06dB
Frequency Stability	±76.97Hz
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Band Edge Measurements	±4.70dB
Peak to average ratio	±0.76dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.2 TEST SITE AND INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,22	Aug.29,24
Pre-Amplifier	R&S	SCU08F1	101028	Sep.16,22	Sep.15,24
Vector Signal Generator	R&S	SMBV100B	102176	Feb.16,22	Feb.15,24
Signal Generator	R&S	SMB100A	182185	Feb.16,22	Feb.15,24
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-E MC-01Cham ber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-E MC-02Cham ber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESR26	101734	Feb.25,22	Feb.24,24
EMI TEST Receiver	R&S	ESW44	101973	Feb.25,22	Feb.24,24
Bilog Antenna	SCHWARZBEC K	VULB 9163	1264	Feb.28,22	Feb.27,24
Horn Antenna	ETS-LINDGRE N	3117	227836	Aug.22,22	Aug.21,24
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Feb.23,22	Feb.22,24
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,22	Aug.21,24
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.23,22	Feb.22,24
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.27,22	Jun.26,24
Test Software	EMC32	EMC32	N/A	N/A	N/A
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	Oct.01,22	Sep.30,24
DC Source	HYELEC	HY3010B	551016	Aug.31,22	Aug.30,24
Hygrothermograph	DELI	20210528	SZ014	Sep.06,22	Sep.05,24
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-AMI18843A(CAB LE)	R&S	HF290-NMNM-7. 00M	N/A	N/A	N/A
TMC-AMI18843A(CAB LE)	R&S	HF290-NMNM-4. 00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.28,23	Oct.27,23
CABLE	R&S	W12.14	N/A	Apr.28,23	Oct.27,23
CABLE	R&S	J12J103539-00-1	SEP-03-20- 069	Apr.28,23	Oct.27,23
CABLE	R&S	J12J103539-00-1	SEP-03-20- 070	Apr.28,23	Oct.27,23
Temperature Chamber	votsch	VT4002	5856607810 0050	May.31,22	May.30,24

NOTE: 1. The calibration interval of the above test instruments is 6 months or 12 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

2. The test was performed in 3m Semi-anechoic Chamber and RF Oven Room.

- 3. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested
- 4. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

2.1 GENERAL DESCRIPTION OF EUT			
PRODUCT*	Road-Side (Transceiver) Unit for infrastructure.		
BRAND NAME*	Cohda Wireless		
MODEL NAME*	MK6 RSU		
SERIES MODEL*	MK6 RSU		
NOMINAL VOLTAGE*	48Vdc(POE Adapter)		
MODUL ATION TYPE	WCDMA	BPSK, QPSK	
MODULATION TYPE	LTE	QPSK, 16QAM, 64QAM	
	WCDMA	826.4MHz ~ 846.6MHz	
	LTE Band 5 (Channel Bandwidth: 1.4MHz)	824.7MHz ~ 848.3MHz	
FREQUENCY RANGE	LTE Band 5 (Channel Bandwidth: 3MHz)	825.5MHz ~ 847.5MHz	
	LTE Band 5 (Channel Bandwidth: 5MHz)	826.5MHz ~ 846.5MHz	
	LTE Band 5 (Channel Bandwidth: 10MHz)	829MHz ~ 844MHz	
	WCDMA 119.4mW		
	LTE Band 5 (Channel Bandwidth: 1.4MHz)	119.4mW	
MAX. ERP POWER	LTE Band 5 (Channel Bandwidth: 3MHz)	114.02mW	
	LTE Band 5 (Channel Bandwidth: 5MHz)	114.29mW	
	LTE Band 5 (Channel Bandwidth: 10MHz)	115.61mW	
	WCDMA	4M15F9W	
	LTE Band 5	QPSK: 1M08G7D	
	(Channel Bandwidth: 1.4MHz)	16QAM: 1M09W7D	
		64QAM: 1M10W7D	
	LTE Band 5	QPSK: 2M70G7D	
EMISSION	(Channel Bandwidth: 3MHz)	16QAM: 2M69W7D	
DESIGNATORGOGN	,	64QAM: 2M69W7D	
	LTE Band 5	QPSK: 4M47G7D	
	(Channel Bandwidth: 5MHz)	16QAM: 4M47W7D	
	,	64QAM: 4M48W7D	
	LTE Band 5	QPSK: 8M93G7D	
	(Channel Bandwidth: 10MHz)	16QAM: 8M91W7D	
	,	64QAM: 8M92W7D	

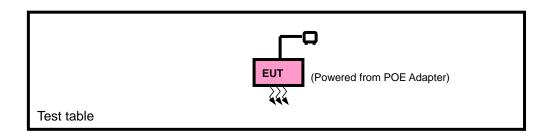
ANTENNA TYPE*	Dipole Antenna with 0.27dBi gain for WCDMA V/LTE B5
HW VERSION*	Rev 1.0
SW VERSION*	19.Release.134186
I/O PORTS*	Refer to user's manual
CABLE SUPPLIED*	N/A
EXTREME TEMPERATURE*	-20-75 °C
EXTREME VOLTAGE*	40.8V – 55.2V

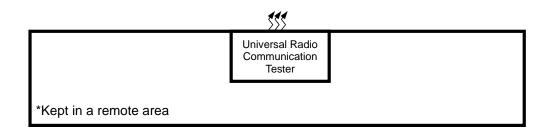
NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

MODULATION MODE	TX FUNCTION
WCDMA	1TX/1RX
LTE	1TX/1RX

4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.


List of Accessory:


ACCESSORIES	MANUFACTURER	MODEL
2x Antenna for LTE/2G/3G/CDMA	Taoglas	TG.80.4H31
1x Antenna for WLAN/BT	HUBER+SUHNER	1399.17.0224
1x Antenna for WLAN	HUBER+SUHNER	1399.17.0224
2x Antenna for DSRC	Taoglas	TD.80.6H31
1x Antenna for GNSS	Taoglas	TLS.40.1F11
1xM12 field attachable connector	Amphenol	MSXS-08BMMD- SL8001

2.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION

2.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	ThinkPad E14	HRSW00024	N/A
2	POE Adapter	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

2.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case in ERP and radiated emission was found when positioned on X-plane for GSM /EDGE /LTE. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	DESCRIPTION
Α	EUT + POE Adapter with WCDMA or LTE link
В	EUT + DC Supply with WCDMA or LTE link

WCDMA MODE

EUT CONFIGURE MODE	TEST ITEM	TEST ITEM AVAILABLE CHANNEL		MODE	
Α	ERP	4132 to 4233	4132, 4182, 4233	WCDMA	
В	FREQUENCY STABILITY	4132 to 4233	4132, 4182, 4233	WCDMA	
Α	OCCUPIED BANDWIDTH	4132 to 4233	4132, 4182, 4233	WCDMA	
Α	BAND EDGE	4132 to 4233	4132, 4233	WCDMA	
Α	CONDCUDETED EMISSION	4132 to 4233	4132, 4182, 4233	WCDMA	
Α	RADIATED EMISSION	4132 to 4233	4132, 4182, 4233	WCDMA	
Α	PEAK TO AVERAGE RATIO	4132 to 4233	4132, 4182, 4233	WCDMA	

LTE BAND 5 MODE

EUT CONFIGURE MODE	TEST ITEM	Available Channel	Tested Channel	Channel bandwidth	modulation	mode			
		20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK,16QAM	1 RB / 0 RB Offset			
^	ERP	20415 to 20635	20415, 20525, 20635	3MHz	QPSK,16QAM	1 RB / 0 RB Offset			
А	EKP	20425 to 20625	20425, 20525, 20625	5MHz	QPSK,16QAM	1 RB / 0 RB Offset			
		20450 to 20600	20450, 20525, 20600	10MHz	QPSK,16QAM	1 RB / 0 RB Offset			
		20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK,16QAM	Full RB / 0 RB Offset			
Б	FREQUENCY	20415 to 20635	20415, 20525, 20635	3MHz	QPSK,16QAM	Full RB / 0 RB Offset			
В	STABILITY	20425 to 20625	20425, 20525, 20625	5MHz	QPSK,16QAM	Full RB / 0 RB Offset			
		20450 to 20600	20450, 20525, 20600	10MHz	QPSK,16QAM	Full RB / 0 RB Offset			
		20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK,16QAM	Full RB / 0 RB Offset			
	OCCUPIED BANDWIDTH	20415 to 20635	20415, 20525, 20635	3MHz	QPSK,16QAM	Full RB / 0 RB Offset			
А		20425 to 20625	20425, 20525, 20625	5MHz	QPSK,16QAM	Full RB / 0 RB Offset			
		20450 to 20600	20450, 20525, 20600	10MHz	QPSK,16QAM	Full RB / 0 RB Offset			
		20407 to 20643	20407	1.4 MHz	ODSK 16OAM	1 RB / 0 RB Offset			
				1.4 IVID2	QPSK,16QAM	Full RB / 0 RB Offset			
		20407 to 20643	20643	1.4 MHz	QPSK,16QAM	1 RB / 5 RB Offset			
			20043	1.4 WII 12	QI SIX, IOQAW	Full RB / 0 RB Offset			
		20415 to 20635	20415	3 MHz	QPSK,16QAM	1 RB / 0 RB Offset			
		20410 to 20000	20410	0 1011 12	Q1 011,10Q11VI	Full RB / 0 RB Offset			
						20415 to 20635	20635	3 MHz	QPSK,16QAM
А	BAND EDGE	20110 to 20000	20000	0 1011 12	Q1 014,10Q141	Full RB / 0 RB Offset			
, ,		20425 to 20625	20425	5MHz	QPSK,16QAM	1 RB / 0 RB Offset			
				02		Full RB / 0 RB Offset			
		20425 to 20625	20625	5MHz	QPSK,16QAM	1 RB / 24 RB Offset			
						Full RB / 0 RB Offset			
		20450 to 20600	20450	10MHz	QPSK,16QAM	1 RB / 0 RB Offset			
						Full RB / 0 RB Offset			
		20450 to 20600	20600	10MHz	QPSK,16QAM	1 RB / 49 RB Offset			
					,	Full RB / 0 RB Offset			

	CONDCUDETED	20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK,16QAM	1 RB / 0 RB Offset
A		20415 to 20635	20415, 20525, 20635	3MHz	QPSK,16QAM	1 RB / 0 RB Offset
A	EMISSION	20425 to 20625	20425, 20525, 20625	5MHz	QPSK,16QAM	1 RB / 0 RB Offset
		20450 to 20600	20450, 20525, 20600	10MHz	QPSK,16QAM	1 RB / 0 RB Offset
	RADIATED EMISSION	20407 to 20643	20525	1.4MHz	QPSK	1 RB / 0 RB Offset
		20415 to 20635	20525	3MHz	QPSK	1 RB / 0 RB Offset
A		20425 to 20625	20425,20525, 20625	5MHz	QPSK	1 RB / 0 RB Offset
		20450 to 20600	20525	10MHz	QPSK	1 RB / 0 RB Offset
		20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK,16QAM	1 RB / 0 RB Offset Full RB / 0 RB Offset
	PEAK TO AVERAGE RATIO	20415 to 20635	20415, 20525, 20635	3MHz	QPSK,16QAM	1 RB / 0 RB Offset Full RB / 0 RB Offset
A		20425 to 20625	20425, 20525, 20625	5MHz	QPSK,16QAM	1 RB / 0 RB Offset Full RB / 0 RB Offset
		20450 to 20600	20450, 20525, 20600	10MHz	QPSK,16QAM	1 RB / 0 RB Offset Full RB / 0 RB Offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

TEST CONDITION:

TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
ERP	23deg. C, 70%RH	DC 48V By POE Adapter	Chao Wu
RADIATED EMISSION	23deg. C, 70%RH	DC 48V By POE Adapter	Chao Wu

2.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2
FCC 47 CFR Part 22
KDB 971168 D01 Power Meas License Digital Systems v03r01
ANSI/TIA/EIA-603-D
ANSI/TIA/EIA-603-E
ANSI C63.26-2015

NOTE: All test items have been performed and recorded as per the above standards.

3 TEST TYPES AND RESULTS

3.1 OUTPUT POWER MEASUREMENT

3.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

Mobile / Portable station are limited to 7 watts e.r.p.

3.1.2 TEST PROCEDURES

EIRP / ERP MEASUREMENT:

Per KDB 971168 D01 Power Meas License Digital Systems v03r01 or subclause 5.2.5.5 of ANSI C63.26-2015, the relevant equation for determing the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

ERP or EIRP = $P_{Meas} + G_{T} - L_{C}$

Where:

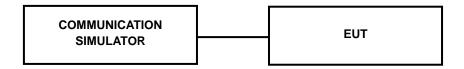
ERP or EIRP = effective radiated power or equivalent isotropically radiated power, respectively (expressed in the same units as P_{Meas} , typically dBW or dBm);

P_{Meas} = measured transmitter output power or PSD, in dBm or dBW;

 G_T = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

Lc = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

CONDUCTED POWER MEASUREMENT:


The EUT was set up for the maximum power with WCDMA link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

3.1.3 TEST SETUP

EIRP / ERP Measurement:

CONDUCTED POWER MEASUREMENT:

3.1.4 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm):

Band	WCDMA V					
TX Channel	4132	4182	4233			
Rx Channel	4357	4407	4458			
Frequency(MHz)	826.4	836.4	846.6			
RMC 12.2K	22.65	22.60	22.53			
HSDPA Subtest-1	21.97	21.93	21.82			
HSDPA Subtest-2	21.96	21.92	21.81			
HSDPA Subtest-3	21.45	21.41	21.30			
HSDPA Subtest-4	21.44	21.40	21.29			
DC-HSDPA Subtest-1	21.89	21.87	21.74			
DC-HSDPA Subtest-2	21.88	21.86	21.73			
DC-HSDPA Subtest-3	21.46	21.35	21.24			
DC-HSDPA Subtest-4	21.45	21.34	21.23			
HSUPA Subtest-1	20.53	20.49	20.38			
HSUPA Subtest-2	20.12	20.08	19.97			
HSUPA Subtest-3	21.10	21.07	20.96			
HSUPA Subtest-4	19.49	19.46	19.35			
HSUPA Subtest-5	21.08	21.05	20.94			

LTE Band 5

				Low CH	Mid CH	High CH
Band/BW	Modulation	RB	RB	20407	20525	20643
Danu/DVV	Wodalation	Size	Offset	Frequency 824.7 MHz	Frequency 836.5 MHz	Frequency 848.3 MHz
		1	0	22.43	22.37	22.31
		1	2	22.41	22.33	22.26
		1	5	22.46	22.25	22.28
	QPSK	3	0	22.51	22.31	22.38
		3	1	22.65	22.46	22.24
		3	3	22.58	22.37	22.35
		6	0	21.66	21.45	21.35
	16QAM	1	0	21.76	21.55	21.56
		1	2	21.85	21.63	21.52
		1	5	21.79	21.71	21.52
5/ 1.4		3	0	21.61	21.52	21.34
		3	1	21.63	21.46	21.36
		3	3	21.55	21.38	21.41
		6	0	20.52	20.50	20.33
		1	0	20.72	20.58	20.49
		1	2	20.65	20.65	20.49
		1	5	20.80	20.64	20.45
	64QAM	3	0	20.55	20.45	20.26
		3	1	20.66	20.52	20.37
		3	3	20.62	20.39	20.40
		6	0	19.60	19.58	19.39

D 1/D) 1/	Madulatian	RB	RB	Low CH 20415	Mid CH 20525	High CH 20635	
Band/BW	Modulation	Size	Offset	Frequency 825.5 MHz	Frequency 836.5 MHz	Frequency 847.5 MHz	
		1	0	22.45	22.39	22.30	
		1	7	22.37	22.34	22.26	
		1	14	22.42	22.25	22.28	
	QPSK	8	0	21.50	21.34	21.38	
		8	3	21.58	21.46	21.26	
		8	7	21.55	21.44	21.39	
		15	0	21.63	21.46	21.29	
	16QAM	1	0	21.73	21.61	21.59	
		1	7	21.82	21.66	21.50	
			1	14	21.82	21.71	21.52
5/3		8	0	20.57	20.53	20.34	
		8	3	20.68	20.41	20.39	
		8	7	20.57	20.36	20.37	
		15	0	20.52	20.44	20.36	
		1	0	20.78	20.61	20.43	
		1	7	20.68	20.59	20.48	
		1	14	20.81	20.66	20.45	
	64QAM	8	0	19.58	19.49	19.27	
		8	3	19.70	19.46	19.42	
		8	7	19.59	19.43	19.36	
		15	0	19.62	19.55	19.43	

		RB	RB	Low CH 20425	Mid CH 20525	High CH 20625	
Band/BW	Modulation	Size	Offset	Frequency 826.5 MHz	Frequency 836.5 MHz	Frequency 846.5 MHz	
		1	0	22.46	22.34	22.31	
		1	12	22.42	22.31	22.26	
		1	24	22.43	22.24	22.32	
	QPSK	12	0	21.53	21.34	21.35	
		12	6	21.58	21.47	21.27	
		12	13	21.59	21.40	21.40	
		25	0	21.61	21.49	21.32	
	16QAM	1	0	21.74	21.57	21.59	
			1	12	21.79	21.69	21.49
		1	24	21.82	21.71	21.51	
5/5		12	0	20.57	20.51	20.31	
		12	6	20.65	20.45	20.35	
		12	13	20.52	20.38	20.40	
		25	0	20.52	20.45	20.33	
		1	0	20.72	20.58	20.49	
		1	12	20.65	20.65	20.48	
		1	24	20.74	20.71	20.45	
	64QAM	12	0	19.59	19.46	19.26	
		12	6	19.64	19.53	19.41	
		12	13	19.63	19.42	19.33	
		25	0	19.58	19.61	19.41	

		RB	RB	Low CH 20450	Mid CH 20525	High CH 20600
Band/BW	Modulation	Size	Offset	Frequency 829 MHz	Frequency 836.5 MHz	Frequency 844 MHz
		1	0	22.51	22.41	22.36
		1	24	22.44	22.39	22.28
		1	49	22.48	22.32	22.33
	QPSK	25	0	21.57	21.39	21.40
		25	12	21.66	21.48	21.32
		25	25	21.63	21.45	21.41
		50	0	21.67	21.51	21.37
	16QAM	1	0	21.81	21.62	21.61
		1	24	21.87	21.71	21.54
		1	49	21.84	21.79	21.53
5/ 10		25	0	20.65	20.57	20.39
		25	12	20.71	20.47	20.41
		25	25	20.59	20.43	20.42
		50	0	20.58	20.52	20.38
		1	0	20.79	20.63	20.51
		1	24	20.73	20.67	20.54
		1	49	20.82	20.72	20.47
	64QAM	25	0	19.63	19.51	19.34
		25	12	19.72	19.54	19.43
		25	25	19.67	19.47	19.41
		50	0	19.64	19.63	19.44

ERP POWER (dBm)

WCDMA

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
4132	826.4	22.65	0.27	20.77	119.4	7
4182	836.4	22.6	0.27	20.72	118.03	7
4233	846.6	22.53	0.27	20.65	116.14	7

REMARKS: ERP Output Power (dBm) = EIRP (dBm) -2.15(dB).

LTE BAND 5

CHANNEL BANDWIDTH: 1.4MHz QPSK

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20407	824.7	22.65	0.27	20.77	119.4	7
20525	836.5	22.46	0.27	20.58	114.29	7
20643	848.3	22.38	0.27	20.5	112.2	7

CHANNEL BANDWIDTH: 1.4MHz 16QAM

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20407	824.7	21.85	0.27	19.97	99.31	7
20525	836.5	21.71	0.27	19.83	96.16	7
20643	848.3	21.56	0.27	19.68	92.9	7

CHANNEL BANDWIDTH: 1.4MHz 64QAM

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20407	824.7	20.8	0.27	18.92	77.98	7
20525	836.5	20.65	0.27	18.77	75.34	7
20643	848.3	20.49	0.27	18.61	72.61	7

CHANNEL BANDWIDTH: 3MHz QPSK

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20415	825.5	22.45	0.27	20.57	114.02	7
20525	836.5	22.39	0.27	20.51	112.46	7
20635	847.5	22.3	0.27	20.42	110.15	7

CHANNEL BANDWIDTH: 3MHz 16QAM

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20415	825.5	21.82	0.27	19.94	98.63	7
20525	836.5	21.71	0.27	19.83	96.16	7
20635	847.5	21.59	0.27	19.71	93.54	7

CHANNEL BANDWIDTH: 3MHz 64QAM

OHARRE BARDWIDTH: SMILE OTGAM									
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
20415	825.5	20.81	0.27	18.93	78.16	7			
20525	836.5	20.66	0.27	18.78	75.51	7			
20635	847.5	20.48	0.27	18.6	72.44	7			

CHANNEL BANDWIDTH: 5MHz QPSK

Channel	Frequency (MHz)	Conducted Power (dBm)	G⊤-L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20425	826.5	22.46	0.27	20.58	114.29	7
20525	836.5	22.34	0.27	20.46	111.17	7
20625	846.5	22.32	0.27	20.44	110.66	7

CHANNEL BANDWIDTH: 5MHz 16QAM

OHAMILE	CHARREE BARBWIDTH: CHILLE TOQAM									
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)				
20425	826.5	21.82	0.27	19.94	98.63	7				
20525	836.5	21.71	0.27	19.83	96.16	7				
20625	846.5	21.59	0.27	19.71	93.54	7				

CHANNEL BANDWIDTH: 5MHz 64QAM

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20425	826.5	20.74	0.27	18.86	76.91	7
20525	836.5	20.71	0.27	18.83	76.38	7
20625	846.5	20.49	0.27	18.61	72.61	7

CHANNEL BANDWIDTH: 10MHz QPSK

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20450	829	22.51	0.27	20.63	115.61	7
20525	836.5	22.41	0.27	20.53	112.98	7
20600	844	22.36	0.27	20.48	111.69	7

CHANNEL BANDWIDTH: 10MHz 16QAM

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20450	829	21.87	0.27	19.99	99.77	7
20525	836.5	21.79	0.27	19.91	97.95	7
20600	844	21.61	0.27	19.73	93.97	7

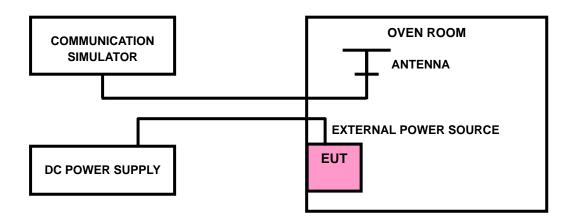
CHANNEL BANDWIDTH: 10MHz 64QAM

Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)
20450	829	20.82	0.27	18.94	78.34	7
20525	836.5	20.72	0.27	18.84	76.56	7
20600	844	20.54	0.27	18.66	73.45	7

REMARKS: ERP Output Power (dBm) = EIRP (dBm) -2.15(dB).

3.2 FREQUENCY STABILITY MEASUREMENT

3.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT


1.5 ppm is for base and fixed station. 2.5 ppm is for mobile station.

3.2.2 TEST PROCEDURE

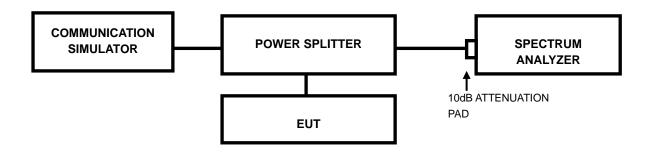
- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ±0.5°C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

3.2.3 TEST SETUP

3.2.4 TEST RESULTS

Please Refer to the module report (Report No.: SEWA2205000015RG01, Model Name: AG550Q-NA, FCC ID: XMR2022AG550QNA).



3.3 OCCUPIED BANDWIDTH MEASUREMENT

3.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 %of the total mean power of a given emission.

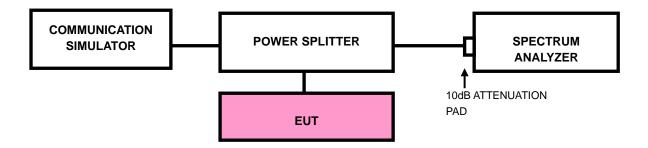
3.3.2 TEST SETUP

3.3.3 TEST PROCEDURES

- a. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

3.3.4 TEST RESULTS

Please Refer to the module report (Report No.: SEWA2205000015RG01, Model Name: AG550Q-NA, FCC ID: XMR2022AG550QNA).



3.4 BAND EDGE MEASUREMENT

3.4.1 LIMITS OF BAND EDGE MEASUREMENT

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

3.4.2 TEST SETUP

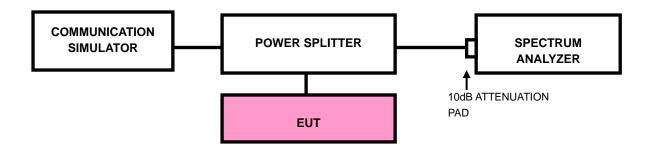
3.4.3 TEST PROCEDURES

- a) All measurements were done at low and high operational frequency range
- b) Connect the transmitter to the spectrum analyzer via coaxial cable while ensuring proper impedance matching.
- c) Tune the analyzer to the nominal center frequency of the emission bandwidth (EBW)
- d) .Set the resolution bandwidth (RBW) ≥ 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- e) Beyond the 1MHz band from the band edge, RBW=1MHz was used.
- f) Set the video bandwidth (VBW) to $\ge 3 \times RBW$.
- g) Select the average power (RMS) display detector.
- h) Set the number of measurement points to ≥ 1001 .
- i) Use auto-coupled sweep time.
- j) Perform the measurement over an interval of time when the transmission is continuous and at its maximum power level.
- k) The RF fundamental frequency should be excluded against the limit line in the operating frequency band and use RBW is 10KHz or 100KHz.
- I) Record the max trace plot into the test report.

3.4.4 TEST RESULTS

Please Refer to the module report (Report No.: SEWA2205000015RG01, Model Name: AG550Q-NA, FCC ID: XMR2022AG550QNA).

3.5 CONDUCTED SPURIOUS EMISSIONS


3.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

3.5.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 9kHz up to a frequency including its 10 th harmonic.
 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

3.5.3 TEST SETUP

3.5.4 TEST RESULTS

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

Please Refer to the module report (Report No.: SEWA2205000015RG01, Model Name: AG550Q-NA, FCC ID: XMR2022AG550QNA).

3.6 RADIATED EMISSION MEASUREMENT

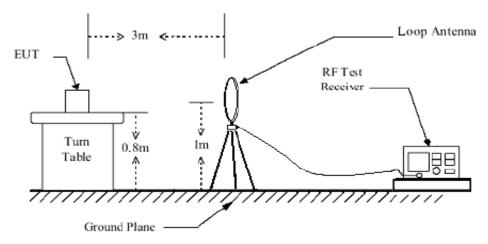
3.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

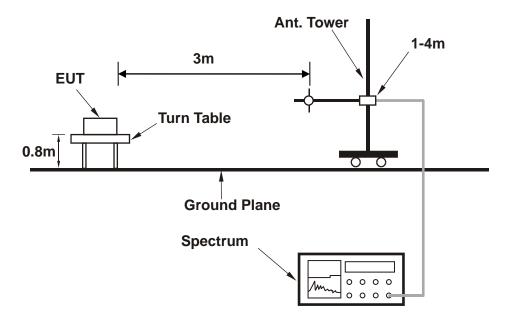
3.6.2 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.

NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

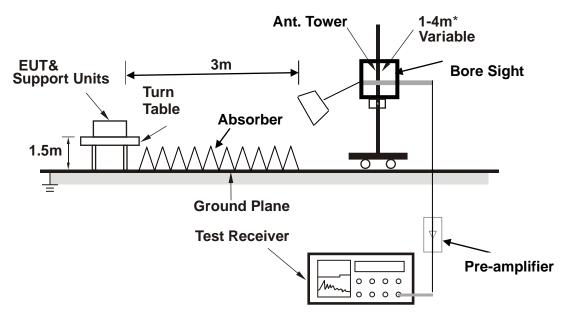

3.6.3 DEVIATION FROM TEST STANDARD

No deviation



3.6.4 TEST SETUP

< Frequency Range below 30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

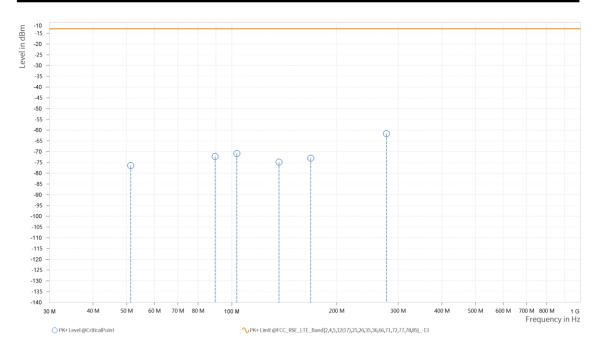
Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.6.5 TEST RESULTS

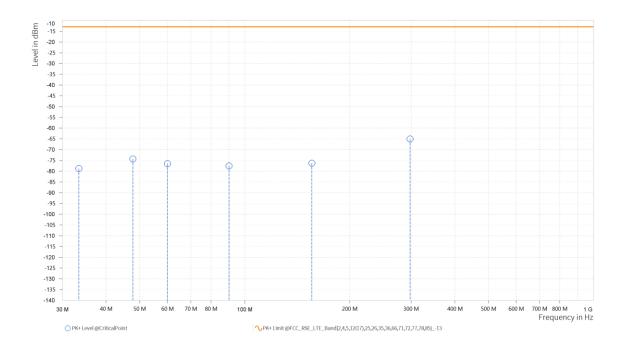
NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.


BELOW 1GHz WORST-CASE DATA

30 MHz - 1GHz data:

LTE Band5: CHANNEL BANDWIDTH: 1.4MHz

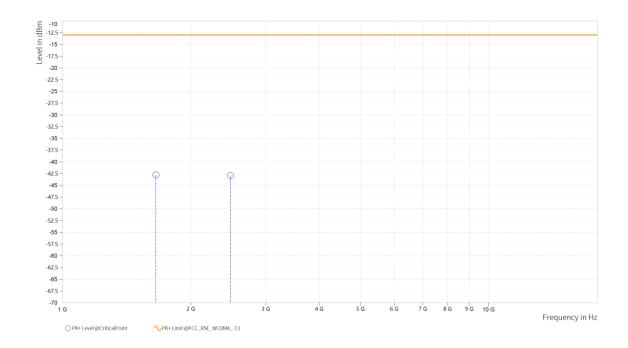
MODE	TX channel 20525	FREQUENCY RANGE	Below 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V
TESTED BY	Chao Wu		
ANTEN	NA POLARITY & TEST DIS	STANCE: HORIZONTAL A	Т 3 М


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	51.300	-76.43	-13.00	63.43	1.44	Н	5.2	2
1	89.600	-72.26	-13.00	59.26	-4.93	Н	186	2
1	103.400	-70.83	-13.00	57.83	-4.34	Н	186	2
1	136.500	-74.88	-13.00	61.88	-7.53	Н	186	2
1	168.500	-73.03	-13.00	60.03	-7.52	Н	1	2
1	277.450	-61.61	-13.00	48.61	0.56	Н	1	2

MODE	TX channel 20525	FREQUENCY RANGE	Below 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V			
TESTED BY	Chao Wu					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	33.450	-78.78	-13.00	65.78	-4.46	V	182.2	2
1	47.750	-74.33	-13.00	61.33	1.41	V	5.8	2
1	60.000	-76.51	-13.00	63.51	1.54	V	182.2	2
1	90.100	-77.55	-13.00	64.55	-0.65	V	5.8	2
1	155.650	-76.31	-13.00	63.31	-4.87	V	1	2
1	297.800	-65.02	-13.00	52.02	0.56	V	1	2

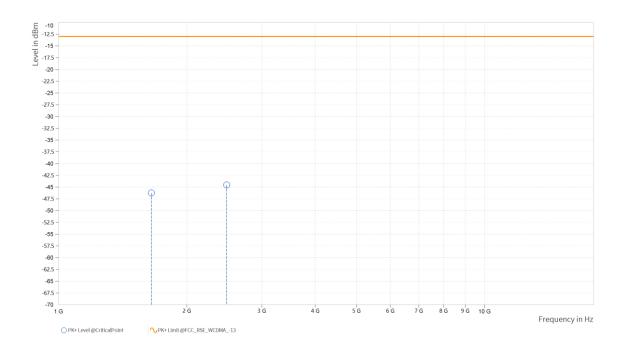
ABOVE 1GHz DATA


Note: For higher frequency, the emission is too low to be detected.

WCDMA Band V:

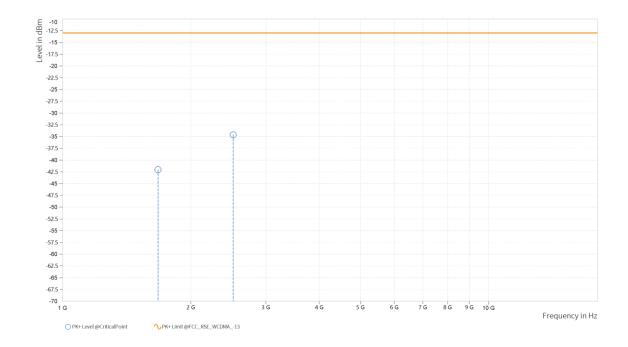
CH 4132:

MODE	TX channel 4132	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V				
TESTED BY	Chao Wu						
ANTENN	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,655.000	-42.76	-13.00	29.76	5.91	Ι	85.4	1
3	2,476.000	-42.90	-13.00	29.90	10.92	Н	157.1	1

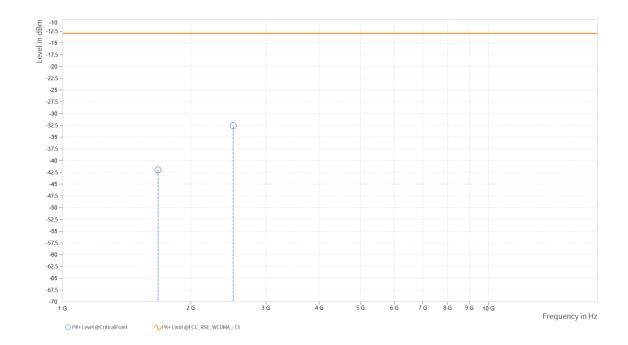
MODE	TX channel 4132	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V
TESTED BY	Chao Wu		
ANTEN	NA POLARITY & TEST DIS	TANCE: VERTICAL AT	3 M

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,650.500	-46.24	-13.00	33.24	5.80	V	85.4	1
3	2,479.500	-44.55	-13.00	31.55	11.00	V	201.6	2



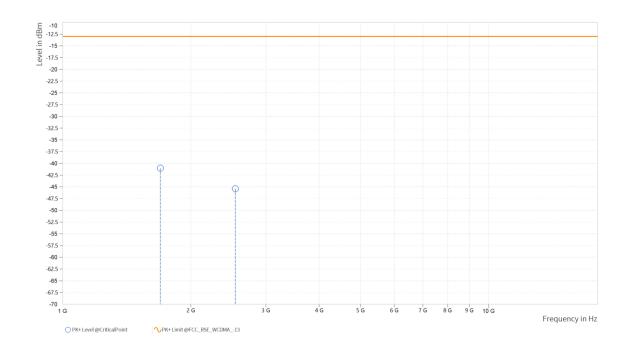
CH 4182:

MODE	TX channel 4182	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V
TESTED BY	Chao Wu		
ANTENN	A POLARITY & TEST DIST	ANCE: HORIZONTAL A	T 3 M


Rg	Frequency [MHz]	PK+ Level [dBm]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,674.500	-42.03	-13.00	29.03	6.29	Ι	84.2	1
3	2,512.000	-34.63	-13.00	21.63	11.56	Н	154.8	1

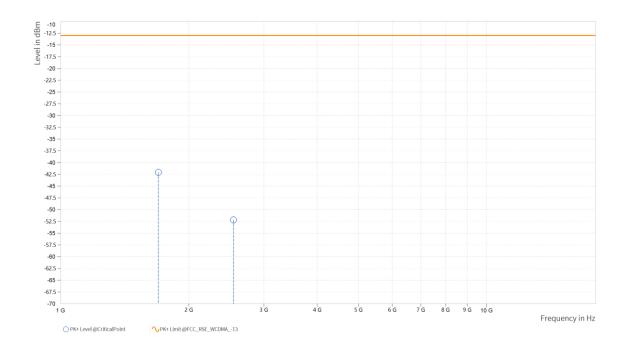
MODE	TX channel 4182	FREQUENCY RANGE	Above 1000MHz					
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V					
TESTED BY	Chao Wu							
ANTEN	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,674.500	-41.98	-13.00	28.98	6.29	V	1	1
3	2,512.500	-32.58	-13.00	19.58	11.56	V	1	1



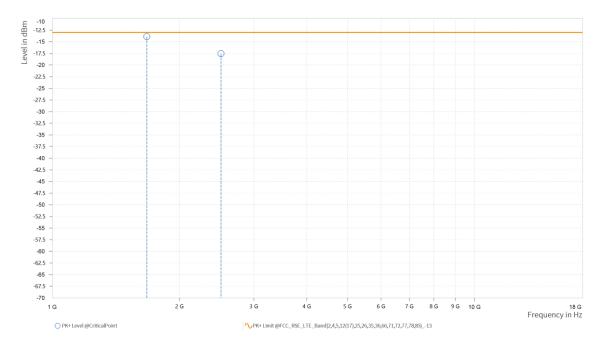
CH 4233:

MODE	TX channel 4233	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V
TESTED BY	Chao Wu		
ANTENN	A POLARITY & TEST DIST	ANCE: HORIZONTAL A	T 3 M


Rg	Frequency [MHz]	Level	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,696.000	-41.03	-13.00	28.03	6.40	Ι	85.5	1
3	2,542.000	-45.41	-13.00	32.41	11.38	Н	201.6	2

MODE	TX channel 4233	FREQUENCY RANGE	Above 1000MHz					
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V					
TESTED BY	Chao Wu							
ANTEN	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							

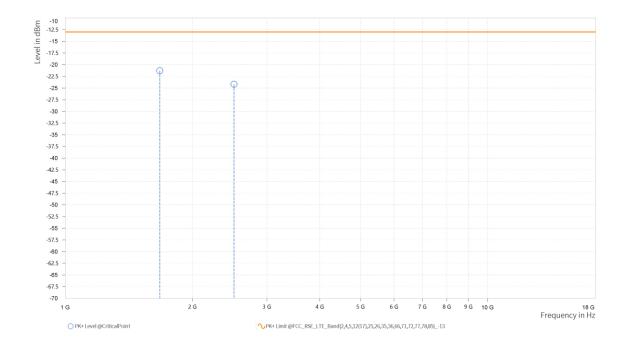
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,695.500	-42.08	-13.00	29.08	6.40	V	85.4	1
3	2,544.000	-52.19	-13.00	39.19	11.36	V	359	2



LTE Band 5

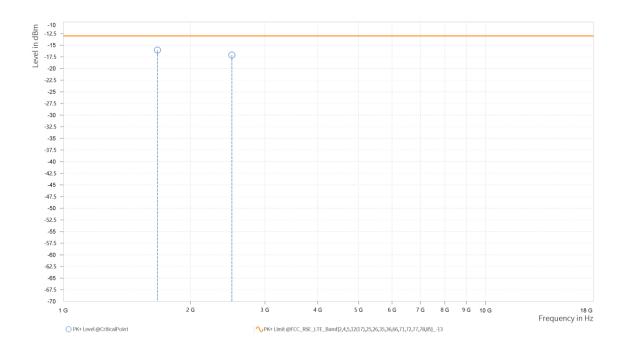
CHANNEL BANDWIDTH: 1.4MHz/QPSK

MODE	TX channel 20525	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V				
TESTED BY	Chao Wu						
ANTEN	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						


Rg	Frequency [MHz]	PK+ Level [dBm]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,672.500	-13.88	-13.00	0.88	23.79	Ι	1	2
3	2,508.000	-17.55	-13.00	4.55	24.23	Н	359	1

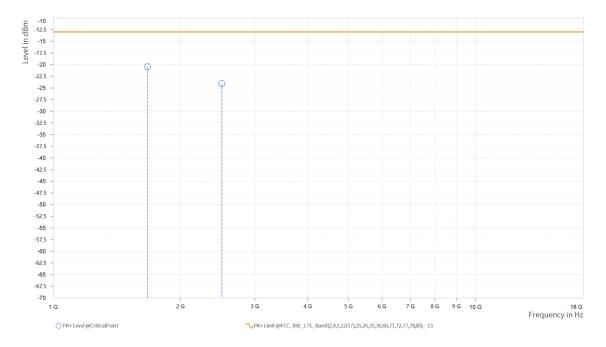
MODE	TX channel 20525	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V			
TESTED BY	Chao Wu					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,672.500	-21.28	-13.00	8.28	23.59	٧	1	1
3	2,508.000	-24.19	-13.00	11.19	23.89	V	230.1	2



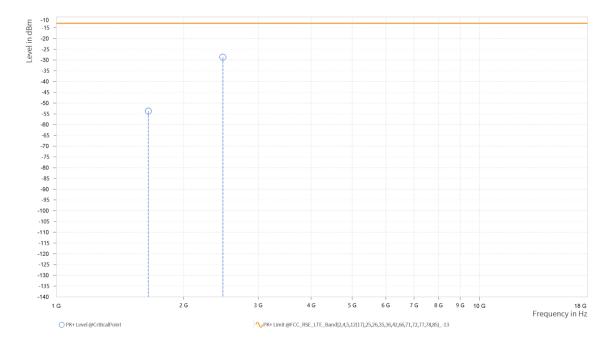
CHANNEL BANDWIDTH: 3MHz/QPSK

MODE	TX channel 20525	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V
TESTED BY	Chao Wu		
ANTEN	NA POLARITY & TEST DI	STANCE: HORIZONTAL A	AT 3 M


Rg	Frequency [MHz]	PK+ Level [dBm]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,670.000	-16.04	-13.00	3.04	23.53	Н	0.9	2
3	2,505.500	-17.09	-13.00	4.09	24.28	Н	359.1	1

MODE	TX channel 20525	FREQUENCY RANGE	Above 1000MHz					
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V					
TESTED BY	Chao Wu							
ANTE	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							

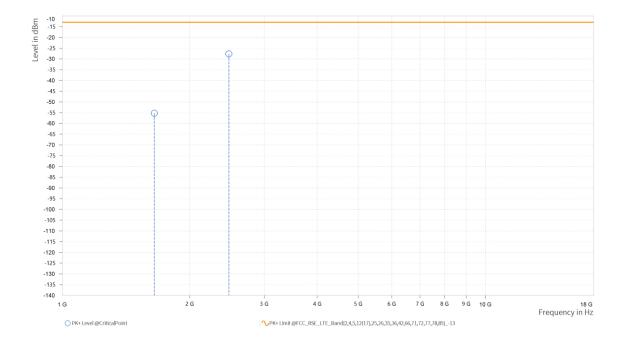
Rg	Frequency [MHz]		PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,670.500	-20.47	-13.00	7.47	23.35	V	1	1
3	2,505.500	-24.09	-13.00	11.09	23.92	V	229	2



CHANNEL BANDWIDTH: 5MHz / QPSK

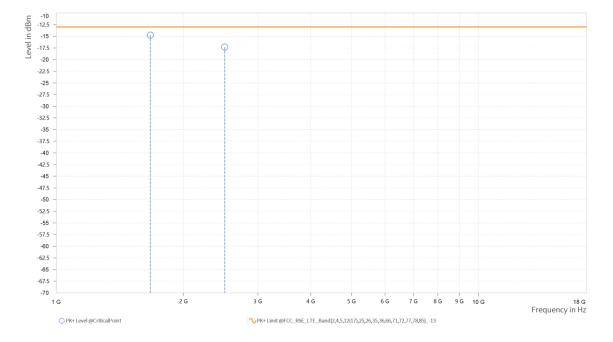
CH 20425

MODE	TX channel 20425	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V			
TESTED BY	Chao Wu					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						


Rg	Frequency [MHz]	Level	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,649.000	-53.74	-13.00	40.74	13.33	Н	89	1
3	2,473.000	-28.66	-13.00	15.66	19.06	Н	198.1	2

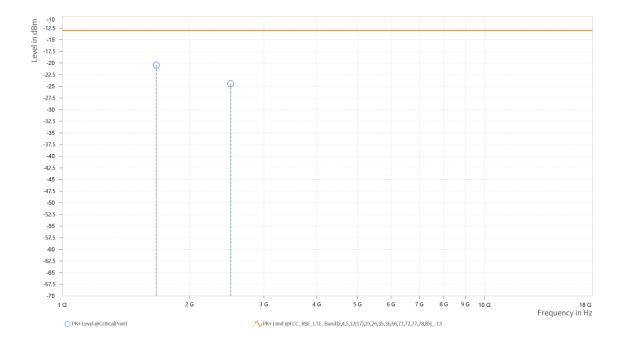
MODE	TX channel 20425	FREQUENCY RANGE	Above 1000MHz		
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V		
TESTED BY	Chao Wu				
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					

Rg	Frequency [MHz]	Level	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,649.500	-55.25	-13.00	42.25	13.86	V	1	2
3	2,473.000	-27.67	-13.00	14.67	18.74	V	192.1	2



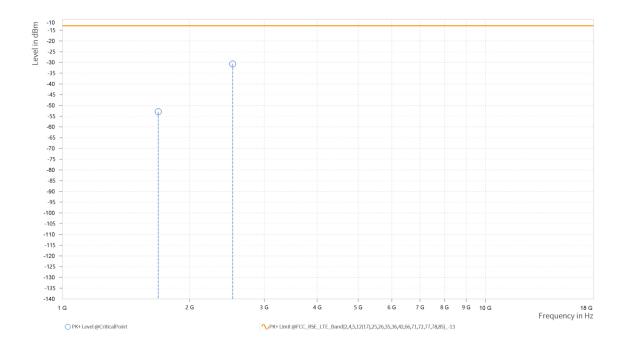
CH 20525

MODE	TX channel 20525	FREQUENCY RANGE	Above 1000MHz		
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V		
TESTED BY	Chao Wu				
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,668.500	-14.75	-13.00	1.75	23.37	Ι	359	2
3	2,503.000	-17.32	-13.00	4.32	24.32	Н	359	1

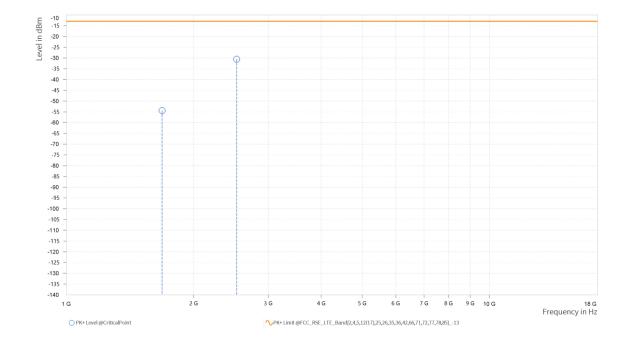
MODE	TX channel 20525	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V			
TESTED BY	Chao Wu					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,669.000	-20.42	-13.00	7.42	23.16	V	359.1	1
3	2,503.000	-24.44	-13.00	11.44	23.96	V	230.2	2



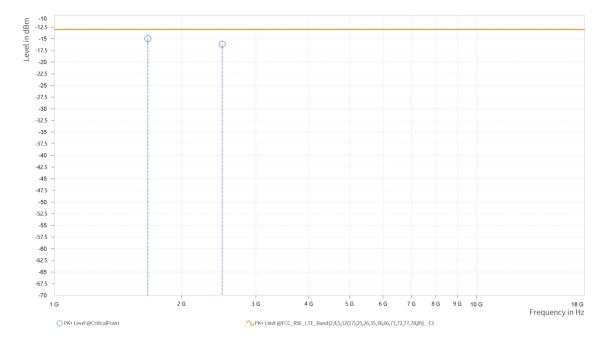
CH 20625

MODE	TX channel 20625	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V			
TESTED BY	Chao Wu					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,684.000	-52.93	-13.00	39.93	14.35	Η	90.2	2
3	2,525.500	-30.70	-13.00	17.70	18.41	Н	166.7	2

MODE	TX channel 20625	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V			
TESTED BY	Chao Wu					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

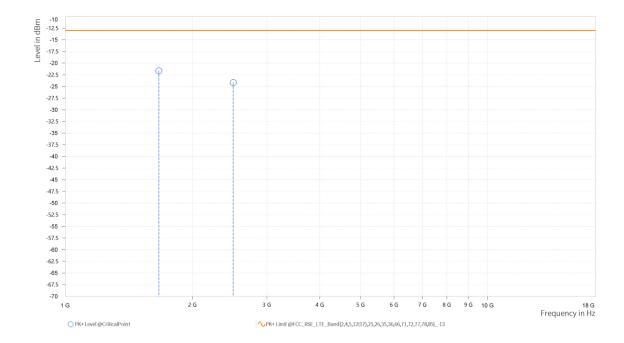
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,683.500	-54.44	-13.00	41.44	13.70	V	359	2
3	2,525.500	-30.53	-13.00	17.53	19.22	V	193.3	2



CHANNEL BANDWIDTH: 10MHz/QPSK

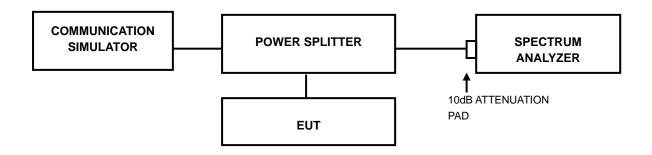
CH 20525

MODE	TX channel 20525	FREQUENCY RANGE	Above 1000MHz		
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V		
TESTED BY	Chao Wu				
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,664.000	-15.01	-13.00	2.01	22.89	Η	1	1
3	2,496.000	-16.18	-13.00	3.18	24.45	Н	359	1

MODE	TX channel 20525 FREQUENCY RANG		Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	DC 48V			
TESTED BY	Chao Wu					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,664.000	-21.66	-13.00	8.66	22.55	٧	359	1
3	2,496.000	-24.18	-13.00	11.18	24.07	V	221.8	2



3.7 PEAK TO AVERAGE RATIO

3.7.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

3.7.2 TEST SETUP

3.7.3 TEST PROCEDURES

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

3.7.4 TEST RESULTS

Please Refer to the module report (Report No.: SEWA2205000015RG01, Model Name: AG550Q-NA, FCC ID: XMR2022AG550QNA).

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

5 INFORMATION ON THE TESTING LABORATORIES

We, Huarui 7layers High Technology (Suzhou) Co., Ltd., were founded in 2020 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Suzhou EMC/RF Lab:

Tel: +86 (0557) 368 1008

6 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

--END--