

Wireless Test Report – 358250-1TRFWL

Applicant:

Teko Telecom Srl a Socio Unico

Product:

Very High-Power Amplifier (module)

Model:

MVHPA0004UMTS-D2

FCC ID:

XM2-VHPAAWF

Specification:

FCC 47 CFR Part 27

Miscellaneous wireless communications services

Date of issue: November 6, 2018

Test engineer(s): Andrey Adelberg, Senior EMC/Wireless Specialist Signature:

Reviewed by: David Duchesne, Senior EMC/Wireless Specialist Signature:

Lab and test locations

Company name	Nemko Canada Inc.		
Facilities	Ottawa site:		
	303 River Road, Ottawa	303 River Road, Ottawa, ON, Canada,	
	K1V 1H2		
	Tel: +1 613 737 9680		
	Fax: +1 613 737 9691		
Test site registration	Organization	Recognition numbers and location	
	FCC	CA2040 (Ottawa)	
	ISED	CA2040A-4 (Ottawa)	
Website	www.nemko.com		

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of o	contents	3
Section 1.	. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	4
Section 2	. Summary of test results	5
2.1	FCC Part 27 test results	5
Section 3		
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	Product description and theory of operation	6
3.5	EUT exercise details	6
3.6	EUT setup diagram	7
Section 4	. Engineering considerations	8
4.1	Modifications incorporated in the EUT	8
4.2	Technical judgment	8
4.3	Deviations from laboratory tests procedures	8
Section 5	. Test conditions	9
5.1	Atmospheric conditions	9
5.2	Power supply range	9
Section 6	. Measurement uncertainty	10
6.1	Uncertainty of measurement	10
Section 7	. Test equipment	11
7.1	Test equipment list	11
Section 8	. Testing data	12
8.1	KDB 935210 Clause 3.2 AGC threshold	12
8.2	FCC 27.50(d)(2) and KDB 935210 Clause 3.5 Mean output power at RF antenna connector and booster gain	13
8.3	KDB 935210 Clause 3.3 Out-of-band rejection	15
8.4	FCC 27.53(h) and KDB 935210 Clause 3.6 Spurious emissions at RF antenna connector	16
8.5	FCC 27.53(h) and KDB 935210 Clause 3.8 Radiated spurious emissions	27
8.6	Part 2.1049 and KDB 935210 Clause 3.4 Occupied bandwidth: input versus output signal comparison	37
Section 9	. Setup Photos	44
9.1	Set-up	44
Section 10	0. Block diagrams of test set-ups	45
10.1	Radiated emissions set-up for frequencies below 1 GHz	45
10.2	Radiated emissions set-up for frequencies above 1 GHz	45

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Teko Telecom Srl a Socio Unico
Address	Via Meucci, 24/a
	I-40024 Castel S. Pietro Terme (BO), Italy

1.2 Test specifications

FCC 47 CFR Part 27	Miscellaneous Wireless Communications Services

1.3 Test methods

KDB 935210 D05 Indus Booster Basic Meas v01r02 $Measurements\ guidance\ for\ industrial\ and\ non-consumer\ signal\ booster,\ repeater,\ and\ amplifier\ devices$

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.5 below. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Table 1.6-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	November 6, 2018	Original report issued

Section 2. Summary of test results

2.1 FCC Part 27 test results

Table 2.1-1: Result summary

Part	Test description	Verdict
KDB 935210 Clause 3.2	AGC threshold	Pass
§27.50(d)(2) and KDB 935210 Clause 3.5	Mean output power at RF antenna connector and booster gain	Pass
KDB 935210 Clause 3.3	Out-of-band rejection	Pass
§27.53(h) and KDB 935210 Clause 3.6	Spurious emissions at RF antenna connector	Pass
§27.53(h) and KDB 935210 Clause 3.8	Radiated spurious emissions	Pass
§27.54 and KDB 935210 Clause 3.7	Frequency stability	Not applicable ¹
§2.1049 and KDB 935210 Clause 3.4	Occupied bandwidth	Pass

Notes: ¹The EUT is not a Translator and does not alter the input signal in any way.

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	September 10, 2018
Nemko sample ID number	1

3.2 EUT information

Product name	Very High-Power Amplifier
Model	MVHPA0004UMTS-D2
Serial number	None

3.3 Technical information

Operating bands	2110–2180 MHz and 2180–2200 MHz	
Modulation type	LTE AWGN	
Channel BW	5 MHz	
Power requirements	6A, 28-30 VDC	
Emission designator	5M00D7W	
Gain	46 dB	
Antenna information	External Antenna is not provided EUT used a 50 Ω termination.	

3.4 Product description and theory of operation

EUT is a medium power amplifier.

3.5 EUT exercise details

The EUT was controlled via a Laptop interface with GUI to configure the system. Input of the EUT was connected to signal generator which replicated the AWGN test signal that has a 4.1 MHz 99 % occupied bandwidth (OBW) (representative of a 5 MHz LTE channel) with a pseudo-random symbol pattern.

3.6 EUT setup diagram

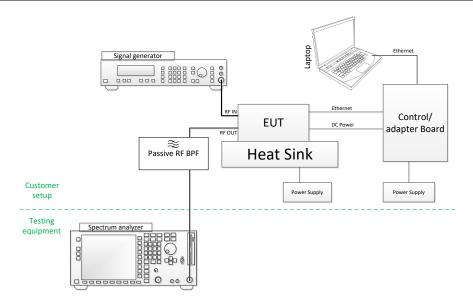


Figure 3.6-1: Setup diagram

Name	Info
Heat sink	Teko Telecom, domestic production
Supervision for amplifier	Teko Telecom M/N: MSPVRUV0001, S/N: 2015729111
External power supply for amplifier	TDK LAMBDA Z36-24-L-E, S/N: LOC-606A416-0001
External passive band pass filter	M/N: Teko 05 015 4270 S/N:18050850 (for 600 and 700 band)
External passive band pass filter	M/N: Teko 05 015 4315 (for AWF band), S/N:18010511415
Laptop	Dell E5440, S/N:9XV5N12
Signal Generator	Agilent M/N N5182A MXG, S/N: MY48180714

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum analyzer	Rohde & Schwarz	FSU	FA001877	1 year	Oct 26/18
Power meter	Agilent	E4418B	FA001678	1 year	June 5/19
Power sensor	НР	8482A	FA001944	1 year	May 30/19
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	Mar. 26/19
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	Oct. 1/18
Horn antenna (1–18 GHz)	EMCO	3115	FA000649	1 year	Sept. 27/18
Preamp (1–18 GHz)	ETS-Lindgren	124334	FA002877	1 year	Nov. 14/18
50 Ω coax cable	Huber + Suhner	None	FA002830	1 year	May 8/19
50 Ω coax cable	C.C.A.	None	FA002555	1 year	May 1/19
Horn antenna (18–40 GHz)	EMCO	3116	FA001847	1 year	Oct. 1/18
Pre-amplifier (18–26 GHz)	Narda	BBS-1826N612	FA001550	_	VOU

Notes: VOU Verify on use.

KDB 935210 Clause 3.2 AGC threshold 935210 D05 Indus Booster Basic Meas v01r02

Section 8. Testing data

8.1 KDB 935210 Clause 3.2 AGC threshold

8.1.1 Definitions and limits

Test EUT to find an AGC threshold.

8.1.2 Test summary

Test date	September 11, 2018
Test engineer	Andrey Adelberg

8.1.3 Observations, settings and special notes

The output power was measured by using a calibrated RMS power meter. Test was repeated with input single carrier set to the 1 dB compression point.

8.1.4 Test data

Table 8.1-1: AGC threshold results

Frequency, MHz	AGC threshold level	RF power at the input, dBm	RF power at the output, dBm	Gain, dB
2112.5	Nominal	-3.64	41.79	45.43
2112.5	Nominal + 1 dB	-2.65	42.70	45.35
2145.0	Nominal	-3.64	42.20	45.84
2145.0	Nominal + 1 dB	-2.65	42.82	45.47
2177.5	Nominal	-3.64	42.24	45.88
2177.5	Nominal + 1 dB	-2.65	42.71	45.36
2182.5	Nominal	-3.64	42.22	45.86
2182.5	Nominal + 1 dB	-2.65	42.70	45.35
2190.0	Nominal	-3.64	42.14	45.78
2190.0	Nominal + 1 dB	-2.65	42.58	45.23
2197.5	Nominal	-3.64	41.91	45.55
2197.5	Nominal + 1 dB	-2.65	42.40	45.05

Test name FCC 27.50(d)(2) and KDB 935210 Clause 3.5 Mean output power at RF antenna connector and

booster gain

Specification FCC Part 27 and 935210 D05 Indus Booster Basic Meas v01r02

8.2 FCC 27.50(d)(2) and KDB 935210 Clause 3.5 Mean output power at RF antenna connector and booster gain

8.2.1 Definitions and limits

FCC 27.50(d)

- (2) The power of each fixed or base station transmitting in the 1995-2000 MHz, the 2110-2155 MHz 2155-2180 MHz band, or 2180-2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:
 - (i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;
 - (ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.
- (5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

8.2.2 Test summary

Test date	September 13, 2018
Test engineer	Andrey Adelberg

8.2.3 Observations, settings and special notes

The output power was measured by using a calibrated RMS power meter.

Test was repeated with input single carrier set to the 0.5 dB below AGC threshold level and 3 dB above AGC threshold level.

8.2.4 Test data

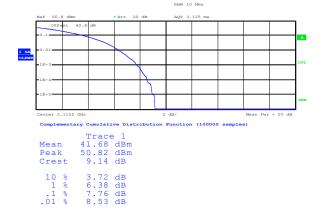
Table 8.2-1: Gain measurement results

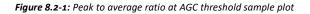
Frequency, MHz	AGC threshold level	RF power at the input, dBm	RF power at the output, dBm	Gain, dB
2112.5	Nominal – 0.5 dB	-4.17	41.31	45.48
2112.5	Nominal + 3 dB	-0.63	42.70	43.33
2145.0	Nominal – 0.5 dB	-4.17	41.73	45.90
2145.0	Nominal + 3 dB	-0.63	42.82	43.45
2177.5	Nominal – 0.5 dB	-4.17	41.75	45.92
2177.5	Nominal + 3 dB	-0.63	42.71	43.34
2182.5	Nominal – 0.5 dB	-4.17	41.72	45.89
2182.5	Nominal + 3 dB	-0.63	42.69	43.32
2190.0	Nominal – 0.5 dB	-4.17	41.63	45.80
2190.0	Nominal + 3 dB	-0.63	42.58	43.21
2197.5	Nominal – 0.5 dB	-4.17	41.39	45.56
2197.5	Nominal + 3 dB	-0.63	42.40	43.03

Test name FCC 27.50(d)(2) and KDB 935210 Clause 3.5 Mean output power at RF antenna connector and

booster gain

Specification FCC Part 27 and 935210 D05 Indus Booster Basic Meas v01r02




Table 8.2-2: EIRP results

Frequency, MHz	AGC threshold level	RF output power, dBm	EIRP limit, dBm/MHz	Margin, dB
2112.5	Nominal – 0.5 dB	41.31	62.15	20.84
2112.5	Nominal + 3 dB	42.70	62.15	19.45
2145.0	Nominal – 0.5 dB	41.73	62.15	20.42
2145.0	Nominal + 3 dB	42.82	62.15	19.33
2177.5	Nominal – 0.5 dB	41.75	62.15	20.40
2177.5	Nominal + 3 dB	42.71	62.15	19.44
2182.2	Nominal – 0.5 dB	41.72	62.15	20.43
2182.5	Nominal + 3 dB	42.69	62.15	19.46
2190.0	Nominal – 0.5 dB	41.63	62.15	20.52
2190.0	Nominal + 3 dB	42.58	62.15	19.57
2197.5	Nominal – 0.5 dB	41.39	62.15	20.76
2197.5	Nominal + 3 dB	42.40	62.15	19.75

Table 8.2-3: Peak to average ratio results

Frequency, MHz	AGC threshold level	Peak to Average Ratio, dB	Peak to Average Ratio Limit, dBm	Margin, dB
2112.5	Nominal – 0.5 dB	7.76	13.00	5.24
2112.5	Nominal + 3 dB	7.72	13.00	5.28
2145.0	Nominal – 0.5 dB	7.69	13.00	5.31
2145.0	Nominal + 3 dB	7.72	13.00	5.28
2177.5	Nominal – 0.5 dB	7.79	13.00	5.21
2177.5	Nominal + 3 dB	7.79	13.00	5.21
2182.2	Nominal – 0.5 dB	7.76	13.00	5.24
2182.5	Nominal + 3 dB	7.92	13.00	5.08
2190.0	Nominal – 0.5 dB	7.92	13.00	5.08
2190.0	Nominal + 3 dB	7.85	13.00	5.15
2197.5	Nominal – 0.5 dB	7.82	13.00	5.18
2197.5	Nominal + 3 dB	7.85	13.00	5.15



Figure 8.2-2: Peak to average ratio above AGC threshold sample plot

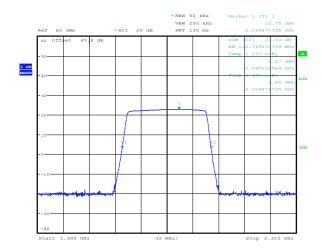
8.3 KDB 935210 Clause 3.3 Out-of-band rejection

8.3.1 Definitions and limits

Test EUT for out-of-band rejection of input signals to show the filter frequency response.

8.3.2 Test summary

Test date	September 13, 2018
Test engineer	Andrey Adelberg


8.3.3 Observations, settings and special notes

- The signal generator at the EUT input swept from 1995 MHz to 2315 MHz with CW signal.
- The testing was performed with spectrum analyser with the following settings:

Spectrum analyzer setting:

Frequency range	250% of passband
Detector mode	Peak
Resolution bandwidth	50 kHz and 1000 kHz
Video bandwidth	>RBW
Trace mode	Max Hold
Measurement time	Auto

8.3.4 Test data

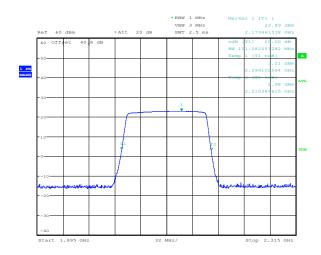


Figure 8.3-1: Out-of-band rejection at 1 % of EBW

Figure 8.3-2: Out-of-band rejection at 1 % of pass band

Summary: 20 dB bandwidth of the filter is 111.3 MHz

Section 8

Specification

Testing data

Test name FCC 27.53(h) and KDB 935210 Clause 3.6 Spurious emissions at RF antenna connector

FCC Part 27 and 935210 D05 Indus Booster Basic Meas v01r02

8.4 FCC 27.53(h) and KDB 935210 Clause 3.6 Spurious emissions at RF antenna connector

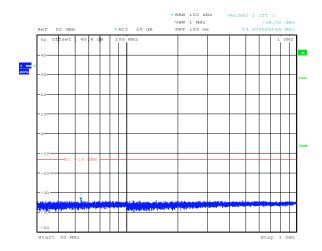
8.4.1 Definitions and limits

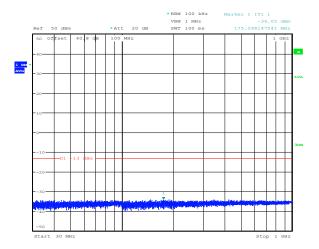
(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

8.4.2 Test summary

Test date	September 13, 2018
Test engineer	Andrey Adelberg

8.4.3 Observations, settings and special notes


For intermodulation testing signal generator provided two identical adjacent channels at the EUT input.


Receiver/Spectrum Analyzer settings:

Frequency range	30 MHz to 10 th harmonic
Detector mode	RMS
Resolution bandwidth sweep	100 kHz (below 1 GHz), 1000 kHz (above 1 GHz)
Resolution bandwidth band edge	> 1 -5% of OBW
Video bandwidth	>RBW
Trace mode	Max Hold
Measurement time	Averaging

8.4.4 Test data

Figure 8.4-1: Conducted spurious emissions below 1 GHz for low channel (AWS)

Figure 8.4-2: Conducted spurious emissions below 1 GHz for mid channel (AWS

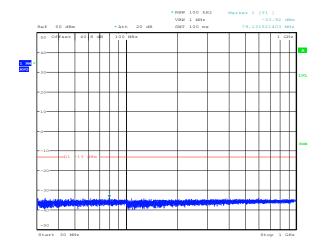
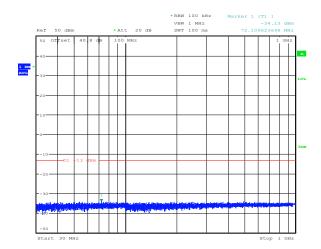
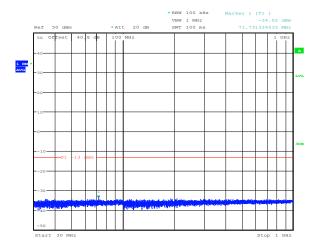




Figure 8.4-3: Conducted spurious emissions below 1 GHz for high channel (AWS)

Figure 8.4-4: Conducted spurious emissions below 1 GHz for low channel (AWE)

Figure 8.4-5: Conducted spurious emissions below 1 GHz for mid channel (AWE)

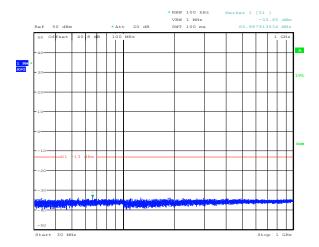
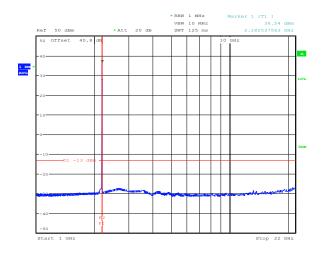
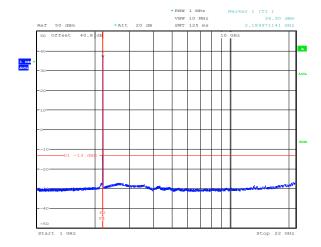




Figure 8.4-6: Conducted spurious emissions below 1 GHz for high channel (AWE)

Figure 8.4-7: Conducted spurious emissions above 1 GHz for low channel (AWS)

Figure 8.4-8: Conducted spurious emissions above 1 GHz for mid channel (AWS)

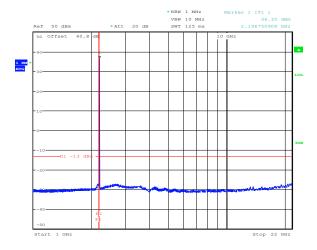
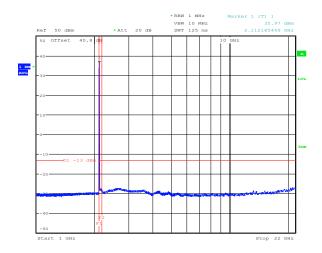
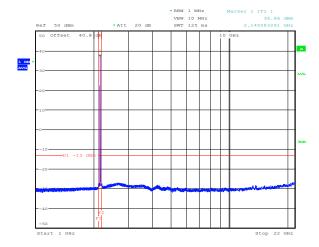




Figure 8.4-9: Conducted spurious emissions above 1 GHz for high channel (AWS)

Figure 8.4-10: Conducted spurious emissions above 1 GHz for low channel (AWE)

Figure 8.4-11: Conducted spurious emissions above 1 GHz for mid channel (AWE)

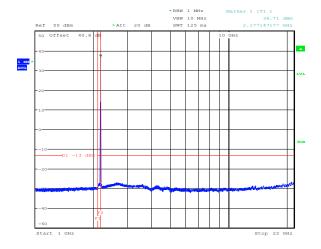


Figure 8.4-12: Conducted spurious emissions above 1 GHz for high channel (AWE)

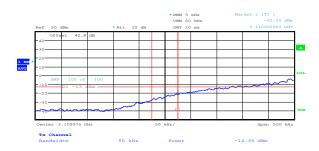
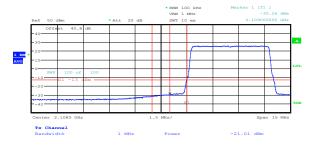



Figure 8.4-13: Conducted lower band edge at 2110 MHz at AGC threshold (AWE)

Figure 8.4-14: Conducted lower band edge at 2110 MHz at AGC threshold + 3 dB (AWE)

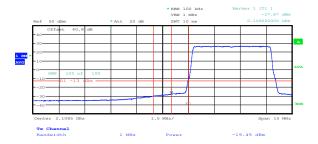


Figure 8.4-15: Conducted lower band edge at 2110 -1 MHz at AGC threshold (AWE)

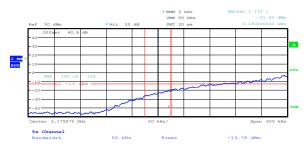
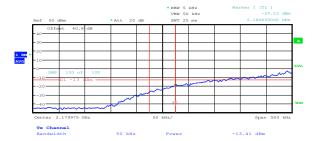



Figure 8.4-16: Conducted lower band edge at 2110 -1 MHz at AGC threshold + 3 dB (AWE)

Figure 8.4-17: Conducted lower band edge at 2180 MHz at AGC threshold (AWS)

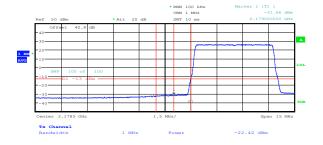
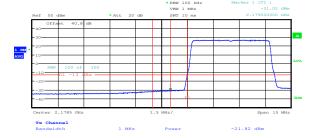



Figure 8.4-18: Conducted lower band edge at 2180 MHz at AGC threshold + 3 dB (AWS)

Figure 8.4-19: Conducted lower band edge at 2180 -1 MHz at AGC threshold (AWS)

Figure 8.4-20: Conducted lower band edge at 2180-1 MHz at AGC threshold + 3 dB

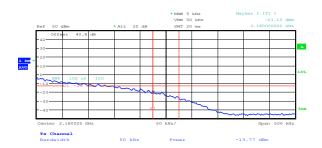


Figure 8.4-21: Conducted upper band edge at 2180 MHz at AGC threshold

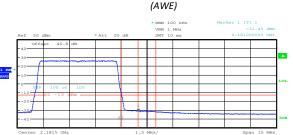
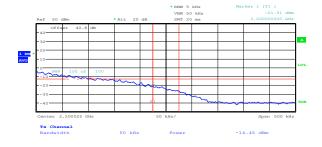



Figure 8.4-23: Conducted upper band edge at 2180 +1 MHz at AGC threshold (AWE)

Figure 8.4-25: Conducted upper band edge at 2200MHz at AGC threshold (AWS)

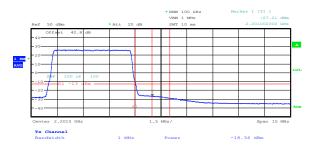


Figure 8.4-27: Conducted upper band edge at 2200 +1 MHz at AGC threshold (AWS)

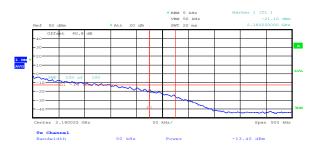


Figure 8.4-22: Conducted upper band edge at 2180 MHz at AGC threshold + 3 dB (AWE)

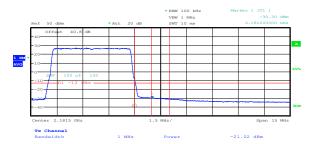
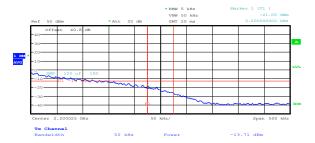



Figure 8.4-24: Conducted upper band edge at 2180 +1 MHz at AGC threshold + 3 dB (AWE)

Figure 8.4-26: Conducted upper band edge at 2200 MHz at AGC threshold + 3 dB (AWS)

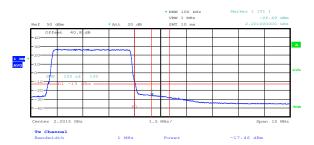
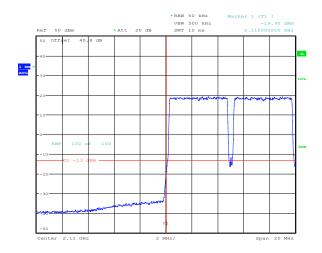
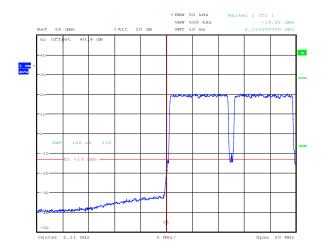




Figure 8.4-28: Conducted upper band edge at 2220 +1 MHz at AGC threshold + 3 dB (AWS)

Figure 8.4-29: Conducted lower band edge at 2110 MHz at AGC threshold (intermodulation) (AWE)

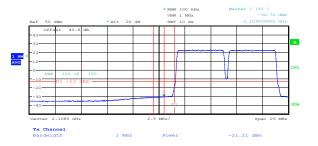


Figure 8.4-30: Conducted lower band edge at 2110 MHz at AGC threshold + 3 dB (intermodulation) (AWE)

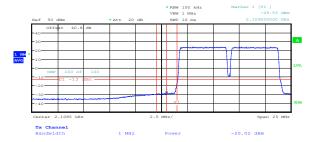
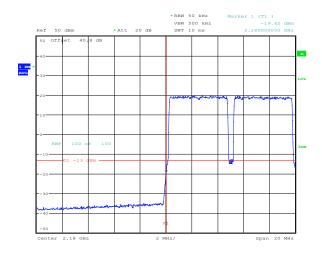



Figure 8.4-31: Conducted lower band edge at 2110 - 1 MHz at AGC threshold (intermodulation) (AWE)

Figure 8.4-32: Conducted lower band edge at 2110 - 1 MHz at AGC threshold + 3 dB (intermodulation) (AWE)

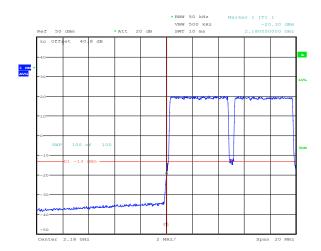


Figure 8.4-33: Conducted lower band edge at 2180 MHz at AGC threshold (intermodulation) (AWS)

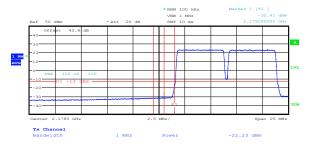


Figure 8.4-34: Conducted lower band edge at 2180 MHz at AGC threshold + 3 dB (intermodulation) (AWS)

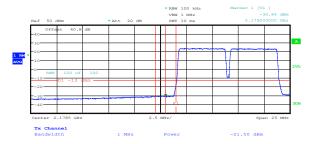
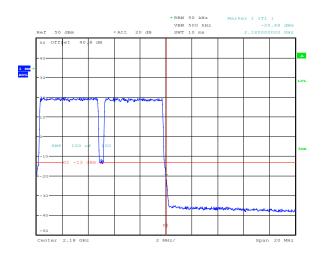



Figure 8.4-35: Conducted lower band edge at 2180 - 1 MHz at AGC threshold (intermodulation) (AWS)

Figure 8.4-36: Conducted lower band edge at 2180 - 1 MHz at AGC threshold + 3 dB (intermodulation) (AWS)

Center 2.18 GHz

Figure 8.4-37: Conducted upper band edge at 2180 MHz at AGC threshold (intermodulation) (AWE)

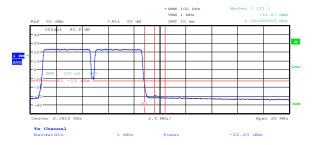


Figure 8.4-38: Conducted upper band edge at 2180 MHz at AGC threshold + 3 dB (intermodulation) (AWE)

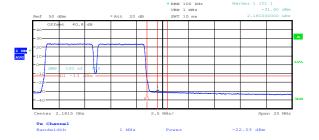
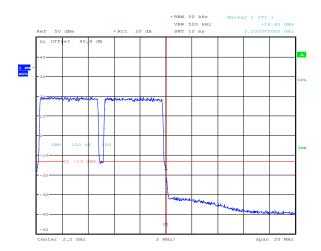



Figure 8.4-39: Conducted lower band edge at 2180 + 1 MHz at AGC threshold (intermodulation) (AWE)

Figure 8.4-40: Conducted lower band edge at 2180 + 1 MHz at AGC threshold + 3 dB (intermodulation) (AWE)

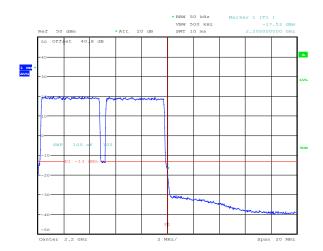


Figure 8.4-41: Conducted upper band edge at 2200 MHz at AGC threshold (intermodulation) (AWS)

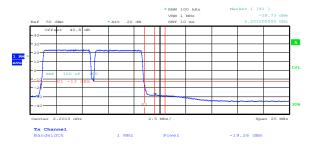


Figure 8.4-42: Conducted upper band edge at 2200 MHz at AGC threshold + 3 dB (intermodulation) (AWS)

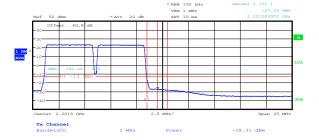


Figure 8.4-43: Conducted lower band edge at 2200 + 1 MHz at AGC threshold (intermodulation) (AWS)

Figure 8.4-44: Conducted lower band edge at 2200 + 1 MHz at AGC threshold + 3 dB (intermodulation) (AWS)

Section 8

Testing data

Test name Specification FCC 27.53(h) and KDB 935210 Clause 3.8 Radiated spurious emissions FCC Part 27 and 935210 D05 Indus Booster Basic Meas v01r02

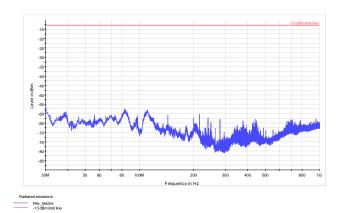
8.5 FCC 27.53(h) and KDB 935210 Clause 3.8 Radiated spurious emissions

8.5.1 Definitions and limits

- (h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.
- (2) Additional protection levels. Notwithstanding the foregoing paragraph (h)(1) of this section:
- (i) Operations in the 2180-2200 MHz band are subject to the out-of-band emission requirements set forth in §27.1134 for the protection of federal government operations operating in the 2200-2290 MHz band.
- 27.1134(e) Protection of Federal operations in the 2200-2290 MHz band—(1) Default emission limits. Except as provided in paragraph (e)(2) of this section, the following default out-of-band emissions limits shall apply for AWS-4 operations in the 2180-2200 MHz band.
- (i) For these AWS-4 operations, the power of any emissions on all frequencies between 2200 and 2290 MHz shall not exceed an EIRP of -100.6 dBW/4 kHz (-70.6 dBm/4 kHz).

8.5.2 Test summary

Test date	September 13, 2018
Test engineer	Andrey Adelberg


8.5.3 Observations, settings and special notes

Receiver/Spectrum Analyzer settings:

Frequency range	30 MHz to 10 th harmonic
Detector mode	Peak
Resolution bandwidth	100 kHz (below 1 GHz), 1000 kHz (above 1 GHz), 5 kHz (within 2.2–2.29 GHz)
Video bandwidth	>RBW
Trace mode	Max Hold

8.5.4 Test data

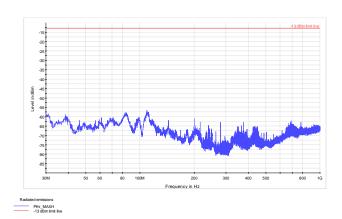


Figure 8.5-1: Radiated spurious emissions within 30 MHz to 1 GHz – Low Channel (AWE)

Figure 8.5-2: Radiated spurious emissions within 30 MHz to 1 GHz – Middle Channel (AWE)

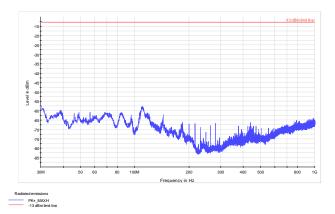
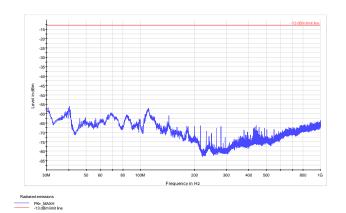



Figure 8.5-3: Radiated spurious emissions within 30 MHz to 1 GHz – High Channel (AWE)

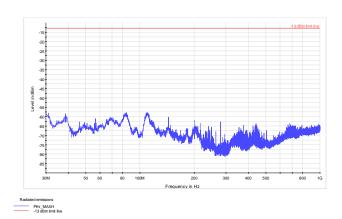


Figure 8.5-4: Radiated spurious emissions within 30 MHz to 1 GHz – Low Channel (AWS)

Figure 8.5-5: Radiated spurious emissions within 30 MHz to 1 GHz – Middle Channel (AWS)

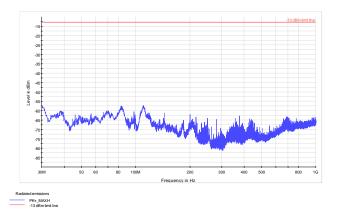
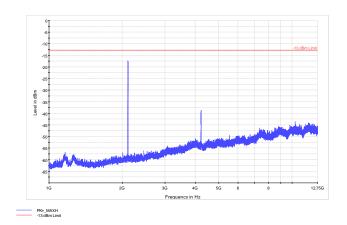



Figure 8.5-6: Radiated spurious emissions within 30 MHz to 1 GHz – High Channel (AWS)

13 (Bin FS into loc 17 750000000 GHz

Figure 8.5-7: Radiated spurious emissions within 1 to 12.75 GHz – Low Channel (AWE)

Figure 8.5-8: Radiated spurious emissions within 13 to 18 GHz – Low Channel (AWE)

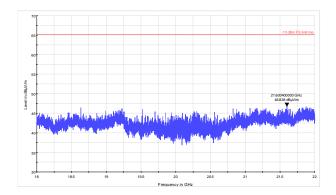
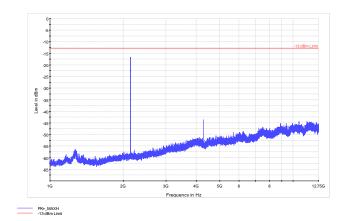



Figure 8.5-9: Radiated spurious emissions within 18 to 22 GHz – Low Channel (AWE)

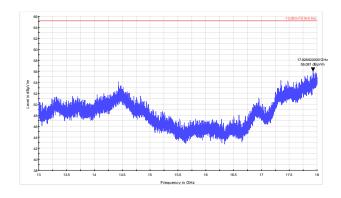


Figure 8.5-10: Radiated spurious emissions within 1 to 12.75 GHz – Middle Channel (AWE)

Figure 8.5-11: Radiated spurious emissions within 13 to 18 GHz – Middle Channel (AWE)

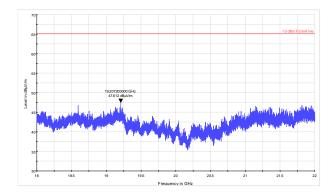
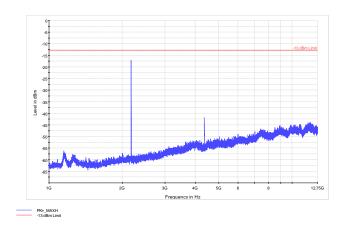
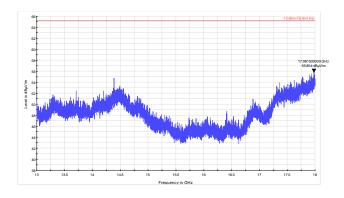




Figure 8.5-12: Radiated spurious emissions within 18 to 22 GHz – Middle Channel (AWE)

Figure 8.5-13: Radiated spurious emissions within 1 to 12.75 GHz – High Channel (AWE)

Figure 8.5-14: Radiated spurious emissions within 13 to 18 GHz – High Channel (AWE)

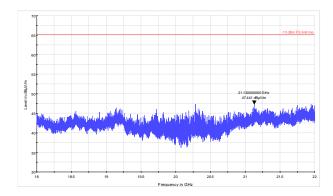
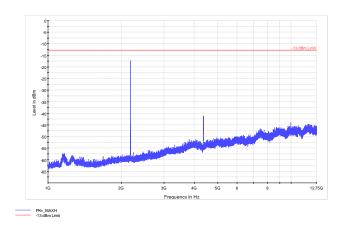
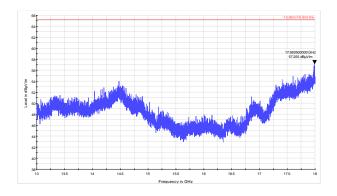




Figure 8.5-15: Radiated spurious emissions within 18 to 22 GHz – High Channel (AWE)

Figure 8.5-16: Radiated spurious emissions within 1 to 12.75 GHz – Low Channel (AWS)

Figure 8.5-17: Radiated spurious emissions within 13 to 18 GHz – Low Channel (AWS)

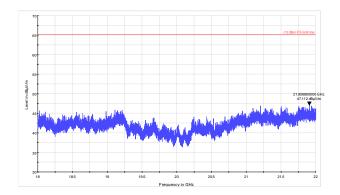
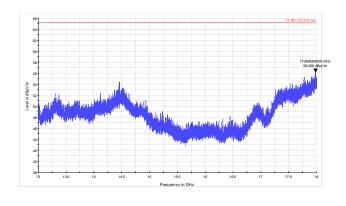
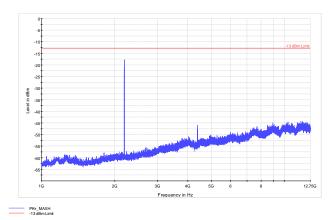




Figure 8.5-18: Radiated spurious emissions within 18 to 22 GHz – Low Channel (AWS)

Figure 8.5-19: Radiated spurious emissions within 1 to 12.75 GHz – Middle Channel (AWS)

Figure 8.5-20: Radiated spurious emissions within 13 to 18 GHz – Middle Channel (AWS)

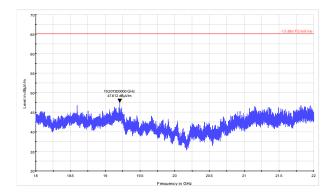
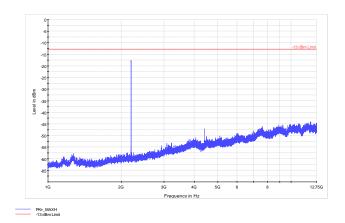
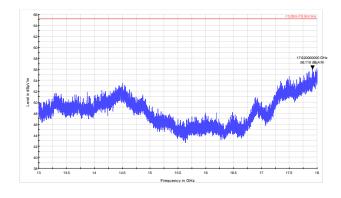




Figure 8.5-21: Radiated spurious emissions within 18 to 22 GHz – Middle Channel (AWS)


Figure 8.5-22: Radiated spurious emissions within 1 to 12.75 GHz – High Channel (AWS)

Figure 8.5-23: Radiated spurious emissions within 13 to 18 GHz – High Channel (AWS)

Figure 8.5-24: Radiated spurious emissions within 18 to 22 GHz – High Channel (AWS)

Figure 8.5-25: Radiated spurious emissions within 2.2–2.29 GHz Low Channel (AWS)

Figure 8.5-26: Radiated spurious emissions within 2.2–2.29 GHz Mid Channel (AWS)

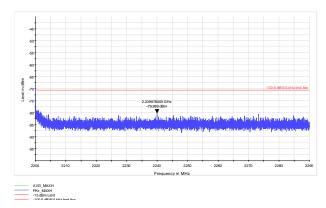


Figure 8.5-27: Radiated spurious emissions within 2.2–2.29 GHz High Channel (AWS)

Test name Part 2.1049 and KDB 935210 Clause 3.4 Occupied bandwidth: input versus output signal

comparison

Specification FCC Part 2 and 935210 D05 Indus Booster Basic Meas v01r02

8.6 Part 2.1049 and KDB 935210 Clause 3.4 Occupied bandwidth: input versus output signal comparison

8.6.1 Definitions and limits

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. The spectral shape of the output should look similar to the input. Input OBW and output OBW were assessed and compared side by side.

8.6.2 Test summary

Test date	September 13, 2018
Test engineer	Andrey Adelberg

8.6.3 Observations, settings and special notes

Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1 % of OBW
Video bandwidth	≥RBW
Trace mode	Max Hold

Test name

Part 2.1049 and KDB 935210 Clause 3.4 Occupied bandwidth: input versus output signal

comparison

Specification FCC Part 2 and 935210 D05 Indus Booster Basic Meas v01r02

8.6.4 Test data

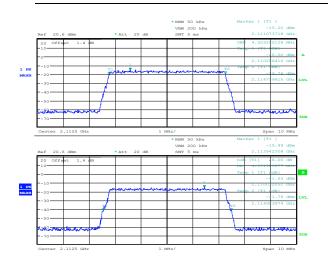


Figure 8.6-1: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold, low channel (AWE)

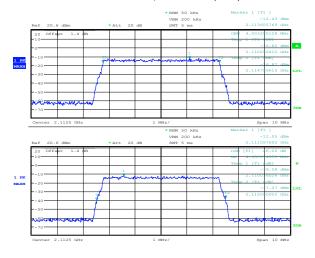


Figure 8.6-3: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold +3 dB, Low channel (AWE)

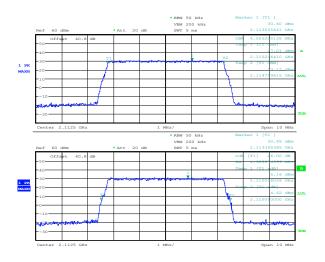


Figure 8.6-2: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold, low channel (AWE)

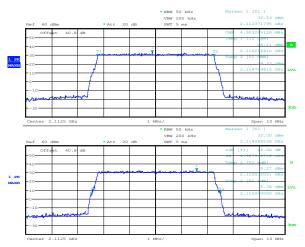
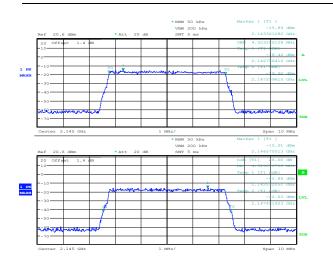


Figure 8.6-4: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold +3 dB, Low channel (AWE)


Test name

Part 2.1049 and KDB 935210 Clause 3.4 Occupied bandwidth: input versus output signal

comparison

Specification FCC Part 2 and 935210 D05 Indus Booster Basic Meas v01r02

Figure 8.6-5: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold, Middle channel (AWE)

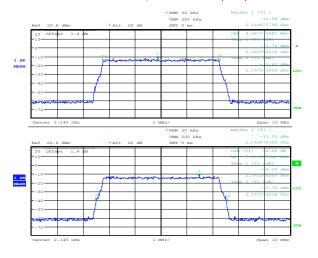


Figure 8.6-7: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold +3 dB, Middle channel (AWE)

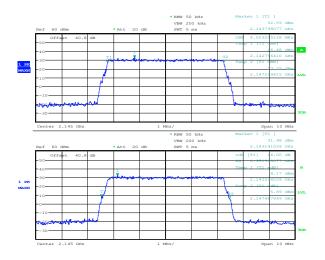


Figure 8.6-6: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold, Middle channel (AWE)

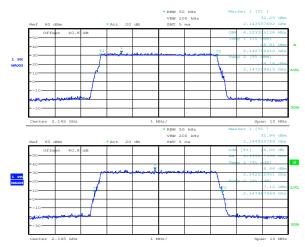
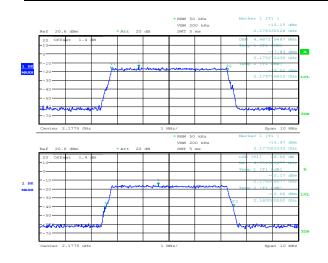
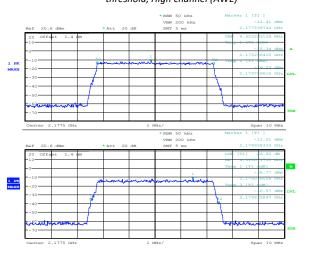


Figure 8.6-8: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold +3 dB, Middle channel (AWE)


Test name

Part 2.1049 and KDB 935210 Clause 3.4 Occupied bandwidth: input versus output signal


comparison

Specification FCC Part 2 and 935210 D05 Indus Booster Basic Meas v01r02

Figure 8.6-9: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold, High channel (AWE)

Figure 8.6-10: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold, High channel (AWE)

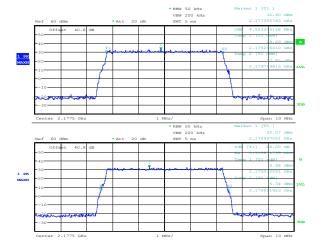


Figure 8.6-11: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold +3 dB, High channel (AWE)

Figure 8.6-12: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold +3 dB, High channel (AWE)

Test name

Part 2.1049 and KDB 935210 Clause 3.4 Occupied bandwidth: input versus output signal

comparison

Specification FCC Part 2 and 935210 D05 Indus Booster Basic Meas v01r02

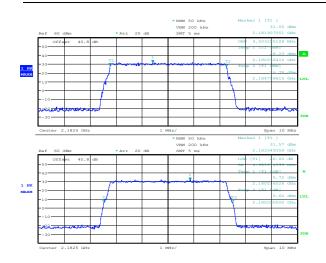


Figure 8.6-13: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold, low channel (AWS)

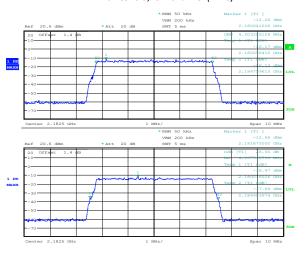


Figure 8.6-14: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold, low channel (AWS)

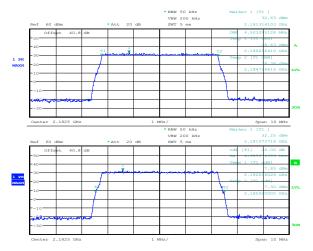


Figure 8.6-15: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold +3 dB, Low channel (AWS)

Figure 8.6-16: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold +3 dB, Low channel (AWS)

Test name Part 2.1049 and KDB 935210 Clause 3.4 Occupied bandwidth: input versus output signal

comparison

Specification FCC Part 2 and 935210 D05 Indus Booster Basic Meas v01r02

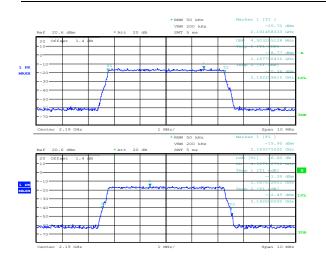
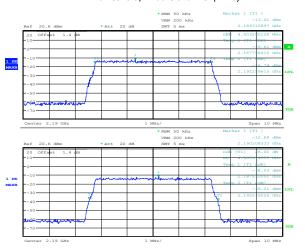



Figure 8.6-17: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold, Middle channel (AWS)

Figure 8.6-18: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold, Middle channel (AWS)

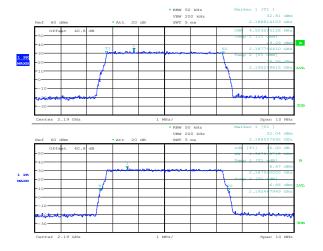
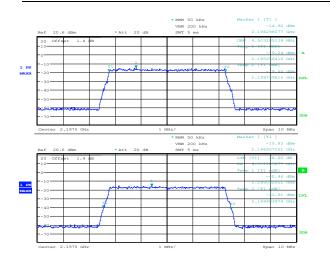


Figure 8.6-19: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold +3 dB, Middle channel (AWS)

Figure 8.6-20: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold +3 dB, Middle channel (AWS)


Test name

Part 2.1049 and KDB 935210 Clause 3.4 Occupied bandwidth: input versus output signal

comparison

Specification FCC Part 2 and 935210 D05 Indus Booster Basic Meas v01r02

* NRW 50 MHz Marker 1 (F1)

* NAT 60 dibe * ALT 20 dib SWT 5 ms 2.19625000 dits

* Offset 40.8 dib SWT 5 ms 2.19625000 dits

* Offset 40.8 dib SWT 5 ms 2.19625000 dits

* Offset 40.8 dib SWT 5 ms 2.19625000 dits

* Offset 40.8 dib SWT 5 ms 2.19625000 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5 ms 2.1962500 dits

* Offset 40.8 dib SWT 5

Figure 8.6-21: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold, High channel (AWS)

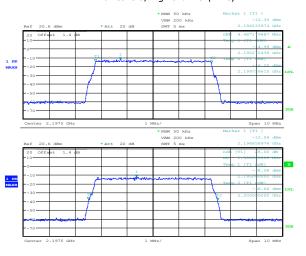


Figure 8.6-22: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold, High channel (AWS)

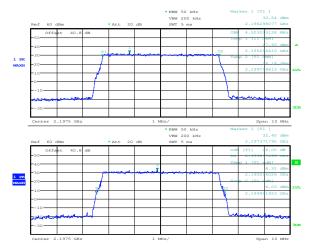


Figure 8.6-23: 99% OBW and 26 dB EBW at the input of the EUT at AGC threshold +3 dB, High channel (AWS)

Figure 8.6-24: 99% OBW and 26 dB EBW at the output of the EUT at AGC threshold +3 dB, High channel (AWS)

Section 9. Setup Photos

9.1 Set-up

Figure 9.1-1: Radiated setup photo below 1 GHz

Figure 9.1-2: Radiated setup photo below 1 GHz

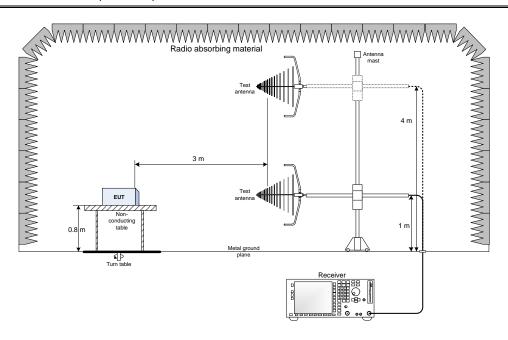
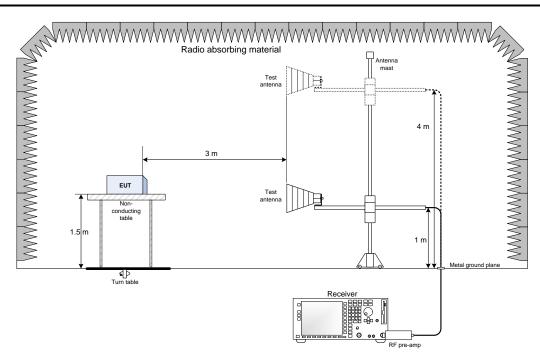


Figure 9.1-3: Radiated setup photo above 1 GHz



Section 10. Block diagrams of test set-ups

10.1 Radiated emissions set-up for frequencies below 1 GHz

10.2 Radiated emissions set-up for frequencies above 1 GHz

