Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BTL (Auden) Certificate No: D2450V2-973 Feb21 ### **ALIBRATION CERTIFICATE** D2450V2 - SN:973 Object QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz February 08, 2021 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Seef Iller | | Approved by: | Katja Pokovic | Technical Manager | ALL | Issued: February 11, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-973_Feb21 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-973_Feb21 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.1 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.5 W/kg ± 17.0 % (k≃2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-973_Feb21 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.1 Ω + 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.2 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 4.450 | |----------------------------------|----------| | Electrical Delay (one direction) | 1.158 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | |
 | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: D2450V2-973_Feb21 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 08.02.2021 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:973** Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 121.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.18 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.5% Maximum value of SAR (measured) = 22.3 W/kg 0 dB = 22.3 W/kg = 13.48 dBW/kg ### Impedance Measurement Plot for Head TSL #### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the
Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BTL (Auden) Certificate No: D5GHzV2-1221_Feb21 ## CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1221 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: February 09, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | Status | | Approved by: | Katja Pokovic | Technical Manager | 000 | | | Taga Tonorio | , common munager | exas. | Issued: February 9, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1221_Feb21 Page 2 of 9 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.49 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.59 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | u u u u | #### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.4 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 4.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.53 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.9 ± 6 % | 5.09 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.7 W/kg ± 19.9 % (k=2) | | SAR averaged over
10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1221_Feb21 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 48.3 Ω - 8.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.5 dB | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 50.1 Ω - 2.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.3 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 52.8 Ω - 1.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.0 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 53.3 Ω + 2.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.5 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.190 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | #### **DASY5 Validation Report for Head TSL** Date: 09.02.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1221 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.49$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.59$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.88 \text{ S/m}$; $\varepsilon_r = 34.2$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5800 MHz; $\sigma = 5.09 \text{ S/m}$; $\varepsilon_r = 33.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/JEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.03 V/m: Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.2 W/kg #### SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.7% Maximum value of SAR (measured) = 18.1 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.34 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.1 W/kg #### SAR(1 g) = 8.26 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70% Maximum value of SAR (measured) = 18.8 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 79.37 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 8.53 W/kg; SAR(10 g) = 2.43 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.6% Maximum value of SAR (measured) = 19.8 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.74 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.25 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 19.8 W/kg = 12.96 dBW/kg ### Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client BTL Inc . **Certificate No:** Z19-60205 ### **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1145 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 12, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | | | | Calibrated by: Name Function Signature Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: June 17, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60205 Page 1 of 8 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1504 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The
following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.87 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.65 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.82 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.9 ± 6 % | 0.95 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.19 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.82 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.83 W/kg ±18.7 % (k=2) | ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.2Ω- 4.19jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.6dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.9Ω- 5.53jΩ | |--------------------------------------|---------------| | Return Loss | - 24.9dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 0.897 ns | |--|----------| | The state of s | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------| | • | 0. 2. (0 | #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1145 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.872$ S/m; $\varepsilon_r = 41.05$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7514; ConvF(9.47, 9.47, 9.47) @ 750 MHz; Calibrated: 8/27/2018 Date: 06.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.17 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 2.81 W/kg 0 dB = 2.81 W/kg = 4.49 dBW/kg ### Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1145 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.949$ S/m; $\varepsilon_r = 54.91$; $\rho = 1000$ kg/m³ Phantom section: Center Section **DASY5** Configuration: Probe: EX3DV4 - SN7514; ConvF(9.68, 9.68, 9.68) @ 750 MHz; Calibrated: 8/27/2018 Date: 06.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.39 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.34 W/kg SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.95 W/kg 0 dB = 2.95 W/kg = 4.70 dBW/kg ### Impedance Measurement Plot for Body TSL | 3TL | | Dipole Internal C | Calibration Record | I | | | |--|-------------------------------|--|--|--------------------|---|--| | Asset No. : | E-429 | Model No. : | D750V3 | Serial No. : | 1145 | | | Environmental | 23.3°C, 51 % | Original Cal. Date: | June 12, 2019 | Next Cal. Date: | June 12, 2022 | | | | | | ard List | | | | | 1 | IEEE Std 1528-2013 | IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorpitor Rate(SAR) in the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013 | | | | | | 2 | IEC 62209-2 | Procedure to determine the Specific Absorption Rate (SAR) for wireless communication device used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), March 2019 | | | | | | 3 | KDB865664 | SAR Measurement Requirements for 100 MHz to 6 GHz | | | | | | | | Equipment | Information | 1 | | | | Equipment : | Manufacturer : | Model No. : | Serial No. : | Cal.Organization : | Cal. Date : | | | Power Amplifier | Mini-Circuits | ZHL-42W+ | QA1333003 | NA | February 25, 2019 | | | DC Source | Iteck | OT6154 | M00157 | NA | August 3, 2019 | | | P-series power meter | Agilent | N1911A | MY45100473 | NA | September 23, 2019 | | | wideband power | Agilent | N1921A | MY51100041 | NA | September 23, 2019 | | | Smart Power Sensor | R&S | NRP-Z21 | 102209 | NA | March 1, 2019 | | | Dual directional | Woken | TS-PCC0M-05 | 107090019 | NA | March 10, 2019 | | | Signal Generator | Agilent | E4438C | MY4907131 | NA | Mar. 10, 2019 | | | ENA Network Analyzer | Agilent | E5071C | MY46102965 | NA | March 10, 2019 | | | Model No | | | For Head Tissue | | | | | | Item | Originak Cal. Result | Verified on 2019/12/2 | Deviation | Result | | | | Impedance, | | | | | | | | transformed to feed | 50.2Ω-4.19jΩ | 51.702Ω-1.32jΩ | <5Ω | Pass | | | | Return Loss(dB) | -27.6 | -30.339 | 9.9% | Pass | | | | SAR Value for | | | | | | | 1g(m\ | 1g(mW/g)
SAR Value for | 2.06 | 2.14 | 3.9% | Pass | | | | 10g(mW/g) | 1.38 | 1.42 | 2.9% | Pass | | | D750V3 | | | For Body Tissue | | | | | | Item | Originak Cal.
Result | Verified on 2019/12/2 | Deviation | Result | | | | Impedance, | 48.9Ω-5.53jΩ | 46.248Ω-2.18jΩ | <5Ω | Pass | | | | transformed to feed | - | - | | | | | | Return Loss(dB) | -24.9 | -28.952 | 16.3% | Pass | | | | SAR Value for | 2.08 | 2.17 | 4.3% | Pass | | | | 1g(mW/g) | | | | | | | | SAR Value for | 1.39 | 1.42 | 2.2% | Pass | | | | 10g(mW/g) Impedance Test-Head | | | Return Loss-Head | | | | E5071C Network Analyzer | impedance rest-nead | FE | ■ E5071C Nebwork Analyzer | Return Loss-nead | <u> </u> | | | ctive Ch/Trace 2 Response 3 Stanutus 4 Mkr/Analysis 5 Inst | tr Sales | | 1 Active Chillinace 2 Response 1 Stimulus 4 Min/Analysis 5 Ind
Tr1 S11 Log Mag 10.00d8/ Ref -20.00d8 (F | | | | | 71 S11 Smith (R+j×) Scale 1.0000 [F1]
>1 750.00000 MHz 51.702 D -1.3154 D : | 164-32 pF | Format
Smith (R+jx) | 30.00 >1 750.00000 MHz -30.339 dB | ~ | E5071C Men | | | | | Log Mag | 20.00 | | Measuremen
S11 | | | | | Phase | 25.55 | | Format | | | | | Group Delay | 10.00 | | Log Mag
Scale | | | | | . Smth | 0.000 | | | | | | | R+JX
Polar | | | Display | | | | | | -10.00 | | Average | | | | Ln Mag | | | | Calibration | | | | | Lin Mag | | | Caldrator | | | | | Lin Mag
SWR | -20.00) | | Stimulus | | | | | | -30.00 | * | Stimulus | | | | | SMR | -30.00 | 1 | Stimulus
Sweep Settu | | | | | SWA: Peal Imagnary Expand | | • | Stroube
Sweep Seh | | | | | SWR Real 3raginary E-pand Phase Protote | -30.00 | | Streutus
Sweep Sehu
Trapper
Marker | | | | | SWR Real Imaginary Expand Phase Positive Phase | -30.00
-40.00
-50.00 | | Strende
Sweep Sent
Trigger
Marker | | | | | SWR Real 3raginary E-pand Phase Protote | -30.00 | | SternAuf Sweep Seh Trigger Marker Marker Sean | | | | | SWR Real Imaginary Expand Phase Positive Phase | -30.00
-40.00
-50.00 | | Stroubs
Sweep Sehu
Trigger | | | Start 550 Mex | TPW 70 Hz | SWR Real Imaginary Expand Phase Positive Phase | -30.00
-40.00
-50.00
-70.00
-70.00
1 Stat 550 Mec | \$100 TO 1640 | Stimulus
Sweep Sehu
Trigger
Marker
Marker Searc | | | Impedance Test-Body | Return Loss-Body | |---|--| | ■ ESO71C Nebwork Analyzer | ■ ESO71C Network Analyzer | | CANADA AND AND AND AND AND AND AND AND AN | 1 Setting Philipson 2 December 4 Ministration 4 Street Outer | Calibrator: Rot - Liano Approver: Herbort lin #### Validation Report for Head TSL Test Laboratory: BTL Date: 2021/1/15 #### System Check H750 Frequency: 750 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C Medium parameters used: f = 750 MHz; $\sigma = 0.903$ S/m; $\epsilon_c = 41.769$; $\rho = 1000$ kg/m³ DASY5 Configuration: - -Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than - Area Scan Setting: Find Secondary Maximum Vision. 2.0 30.0012W/kg 0.0012W/kg Electronics: DAE4 Sn1486; Calibrated: 2020/6/4 Probe: EX3DV4 SN7369; ConvF(10.24, 10.24, 10.24) @ 750 MHz; Calibrated: 2020/5/29 Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Phantom: SAM Twin Phantom V5.0; Type: QD 000 P40 C; Serial: TP-1897 #### Configuration/Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm, Maximum value of SAR (measured) = 2.79 W/kg #### Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.25 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17.6 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 2.82 W/kg Calibrator: Approver: Voter Cher In Collaboration with # CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn Client E-mail: cttl@chinattl.com BTL Tel: +86-10-62304633-2079 **Certificate No:** Z21-60123 ### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d084 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: April 13, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | ReferenceProbe EX3DV4 | SN 7307 | 29-May-20(SPEAG,No.EX3-7307_May20) | May-21 | | DAE4 | SN 777 | 08-Jan-21(CTTL-SPEAG,No.Z21-60003) | Jan-22 | | | | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | |)c : *** | | | | Calibrated by: Name Function Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: April 19, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60123 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | , | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.53 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.29 W/kg ± 18.7 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head
TSL | Impedance, transformed to feed point | 50.6Ω- 3.12jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 30.0dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.301 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------|