COMOSAR E-Field Probe Calibration Report Ref: ACR.30.6.23.BES.A # WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO .,LTD BLOCK A, BAO SHI SCIENCE PARK,BAO SHI ROAD, BAO'AN DISTRICT SHENZHEN 518108,P.R. CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE **SERIAL NO.: 0123-EPGO-396** #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 01/30/2023 Accreditations #2-6789 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction. #### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI). #### COMOSAR E-FIELD PROBE CALIBRATION REPORT | | Name | Function | Date | Signature | |------------------------|---------------|-------------------------|-----------|--------------| | Prepared by: | Cyrille ONNEE | Measurement Responsible | 1/30/2023 | | | Checked & approved by: | Jérôme Luc | Technical Manager | 1/31/2023 | JE | | Authorized by: | Yann Toutain | Laboratory Director | 1/31/2023 | Yann TOUTAAN | | | Customer Name | |---------------|------------------| | | World | | | Standardization | | Distribution: | Certification & | | | Testing Group Co | | | .,Ltd | | Issue | Name | Date | Modifications | |-------|---------------|-----------|-----------------| | A | Cyrille ONNEE | 1/30/2023 | Initial release | | | | | | | | | | | | | | | | # Microwave Vision Group #### TABLE OF CONTENTS | 1 | Devi | ce Under Test4 | | |---|-------|-----------------------|---| | 2 | Prod | uct Description4 | | | | 2.1 | General Information | | | 3 | Meas | surement Method4 | | | | 3.1 | Sensitivity | | | | 3.2 | Linearity | 5 | | | 3.3 | Isotropy | 5 | | | 3.4 | Boundary Effect | 5 | | 4 | Meas | surement Uncertainty6 | | | 5 | Calib | oration Results6 | | | | 5.1 | Calibration in air | 6 | | | 5.2 | Calibration in liquid | 7 | | 6 | Veri | fication Results9 | | | 7 | List | of Equipment9 | | #### 1 DEVICE UNDER TEST | Device Under Test | | | | |--|-----------------------|--|--| | Device Type COMOSAR DOSIMETRIC E FIELD PRO | | | | | Manufacturer | MVG | | | | Model | SSE2 | | | | Serial Number | 0123-EPGO-396 | | | | Product Condition (new / used) | New | | | | Frequency Range of Probe | 0.15 GHz-7.5GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.232 MΩ | | | | | Dipole 2: R2=0.250 MΩ | | | | | Dipole 3: R3=0.248 MΩ | | | #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. **Figure 1** – *MVG COMOSAR Dosimetric E field Probe* | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | #### 3 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards. #### 3.1 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz. #### 3.2 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. #### 3.3 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. #### 3.4 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm step}$ along lines that are approximately normal to the surface: $$\mathrm{SAR}_{\mathrm{unicertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \, \frac{\left(d_{\mathrm{be}} + d_{\mathrm{step}}\right)^2}{2d_{\mathrm{step}}} \frac{\left(e^{-d_{\mathrm{be}}/(\delta/2)}\right)}{\delta/2} \quad \mathrm{for} \, \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \; \mathrm{mm}$$ where SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect dbe is the distance between the surface and the closest zoom-scan measurement point, in millimetre Δ_{step} is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz; △SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value. The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%). #### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency. The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz. The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz. #### 5 CALIBRATION RESULTS | Ambient condition | | | | | |--------------------------------|-------------|--|--|--| | Liquid Temperature 20 +/- 1 °C | | | | | | Lab Temperature | 20 +/- 1 °C | | | | | Lab Humidity | 30-70 % | | | | #### 5.1 CALIBRATION IN AIR The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide. From this curve, the sensitivity in air is calculated using the below formula. $$E^{2} = \sum_{i=1}^{3} \frac{V_{i} (1 + \frac{V_{i}}{DCP_{i}})}{Norm_{i}}$$ where Vi=voltage readings on the 3 channels of the probe DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe | Normx dipole 1 $(\mu V/(V/m)^2)$ | | | |----------------------------------|------|------| | 1.27 | 1.51 | 0.77 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 106 | 104 | 104 | #### 5.2 CALIBRATION IN LIQUID The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below. $$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$ The E-field in the liquid is determined from the SAR measurement according to the below formula. $$E_{liquid}^2 = \frac{\rho SAR}{\sigma}$$ where σ =the conductivity of the liquid ρ=the volumetric density of the liquid SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below For the calorimeter cell (150-450 MHz), the formula is: $$SAR = c \frac{dT}{dt}$$ where c=the specific heat for the liquid dT/dt=the temperature rises over the time For the waveguide setup (600-75000 MHz), the formula is: $$SAR = \frac{4PW}{ab\delta}e^{\frac{-2Z}{\delta}}$$ where a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ =the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid. | <u>Liquid</u> | Frequency | <u>ConvF</u> | |---------------|-----------|--------------| | | (MHz*) | | | HL750 | 750 | 2.11 | | BL750 | 750 | 2.19 | | HL850 | 835 | 1.99 | | BL850 | 835 | 2.14 | | HL900 | 900 | 1.93 | | BL900 | 900 | 2.18 | | HL1800 | 1800 | 2.13 | | BL1800 | 1800 | 2.30 | | HL1900 | 1900 | 2.26 | | BL1900 | 1900 | 2.35 | | HL2000 | 2000 | 2.40 | | BL2000 | 2000 | 2.53 | | HL2450 | 2450 | 2.43 | | BL2450 | 2450 | 2.66 | | HL2600 | 2600 | 2.23 | | BL2600 | 2600 | 2.35 | | HL3300 | 3300 | 2.00 | | BL3300 | 3300 | 1.79 | | HL3900 | 3900 | 2.23 | | BL3900 | 3900 | 2.17 | | HL4200 | 4200 | 2.27 | | BL4200 | 4200 | 2.25 | | HL4600 | 4600 | 2.18 | | BL4600 | 4600 | 2.12 | | HL4900 | 4900 | 2.14 | | BL4900 | 4900 | 2.13 | | HL5200 | 5200 | 1.90 | | BL5200 | 5200 | 1.73 | | HL5400 | 5400 | 2.10 | | BL5400 | 5400 | 1.81 | | HL5600 | 5600 | 2.13 | | BL5600 | 5600 | 1.98 | | HL5800 | 5800 | 2.11 | | BL5800 | 5800 | 1.85 | (*) Frequency validity is +/-50MHz below 600MHz, +/-100MHz from 600MHz to 6GHz and +/-500MHz above 6GHz #### **6 VERIFICATION RESULTS** The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is ± -0.2 dB for linearity and ± -0.15 dB for axial isotropy. Linearity:+/-1.88% (+/-0.08dB) #### 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | CALIPROBE Test
Bench | Version 2 | NA | Validated. No cal required. | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | Page: 9/10 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | |----------------------------------|--------------------------|----------------------------|---|---| | Fluoroptic Thermometer | LumaSense Luxtron
812 | 94264 | 09/2022 | 09/2025 | | Coaxial cell | MVG | | Validated. No cal required. | Validated. No cal required. | | Waveguide | MVG | SN 32/16 WG2_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_0G600_1 | Validated. No cal required. | Validated. No cal required. | | Waveguide | MVG | SN 32/16 WG4_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_0G900_1 | Validated. No cal required. | Validated. No cal required. | | Waveguide | MVG | SN 32/16 WG6_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | | Validated. No cal required. | Validated. No cal required. | | Waveguide | MVG | SN 32/16 WG8_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800B_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800H_1 | Validated. No cal required. | Validated. No cal required. | | Waveguide | MVG | SN 32/16 WG10_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_3G500_1 | Validated. No cal required. | Validated. No cal required. | | Waveguide | MVG | SN 32/16 WG12_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_5G000_1 | Validated. No cal required. | Validated. No cal required. | | Waveguide | MVG | SN 32/16 WG14_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | | Validated. No cal required. | Validated. No cal required. | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | ## **SAR Reference Dipole Calibration Report** Ref: ACR.313.11.23.BES.A # WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO .,LTD BLOCK A, BAO SHI SCIENCE PARK,BAO SHI ROAD, BAO'AN DISTRICT SHENZHEN 518108, P.R. CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: 3723-DIP0G835-733 #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 09/11/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction. #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. | | Name | Function | Date | Signature | |------------------------|---------------|-------------------------|-----------|-------------| | Prepared by : | Cyrille ONNEE | Measurement Responsible | 11/9/2023 | 28 | | Checked & approved by: | Jérôme Luc | Technical Manager | 11/9/2023 | Jes | | Authorized by: | Yann Toutain | Laboratory Director | 11/9/2023 | Gann TOUTAN | Yann Signature numérique de Yann Toutain ID Date: 2023.11.09 16:42:07 +01'00' | | Customer Name | | | |----------------|------------------|--|--| | | World | | | | | Standardization | | | | Distribution : | Certification & | | | | | Testing Group Co | | | | | .,Ltd | | | | Issue | Name | Date | Modifications | |-------|---------------|-----------|-----------------| | A | Cyrille ONNEE | 11/9/2023 | Initial release | | | | | | | | | | | | | | | | #### TABLE OF CONTENTS | ł | murc | auction4 | | |---|------|----------------------------|---| | 2 | Dev | ice Under Test4 | | | 3 | Proc | luct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Mechanical Requirements | 5 | | | 4.2 | S11 parameter Requirements | 5 | | | 4.3 | SAR Requirements | | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Mechanical dimensions | 5 | | | 5.2 | S11 Parameter | 5 | | | 5.3 | SAR | 5 | | 6 | Cali | pration Results6 | | | | 6.1 | Mechanical Dimensions | 6 | | | 6.2 | S11 parameter | 6 | | | 6.3 | SAR | 6 | | 7 | List | of Equipment8 | | #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | | |--|-------------------|--|--|--|--| | Device Type COMOSAR 835 MHz REFERENCE DIPOLI | | | | | | | Manufacturer | MVG | | | | | | Model | SID835 | | | | | | Serial Number | 3723-DIP0G835-733 | | | | | | Product Condition (new / used) | New | | | | | #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole #### 4 MEASUREMENT METHOD #### 4.1 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. #### 5 MEASUREMENT UNCERTAINTY #### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. #### 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. #### 5.3 SAR The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. #### 6 CALIBRATION RESULTS #### 6.1 MECHANICAL DIMENSIONS | L mm | | h | h mm | | mm | |----------|---------------|----------|--------------|----------|-------------| | Measured | Required | Measured | Required | Measured | Required | | 161.22 | 161.00 +/- 2% | 89.32 | 89.80 +/- 2% | 3.60 | 3.60 +/- 2% | #### 6.2 S11 PARAMETER #### 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | |-----------------|--------------------|------------------|---------------------------| | 835 | -29.38 | -20 | $49.7\Omega - 2.9j\Omega$ | #### 6.3 SAR The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. #### 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 45.5 sigma: 0.92 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 835 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency | 1g SAR (W/kg) | | | 10g SAR (W/kg) | | | |-----------|---------------|---------------------------------|-------------------------------|----------------|---------------------------------|-------------------------------| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | 835 MHz | 0.94 | 9.42 | 9.56 | 0.62 | 6.21 | 6.22 | ### LIST OF EQUIPMENT | THE SHAPE | Equi | pment Summary S | Sheet | | | |---------------------------------------|----------------------------|--------------------|---|-----------------------------|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration Date | | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal required. | Validated. No cal required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | | Reference Probe | MVG | 3523-EPGO-429 | 11/2023 | 11/2024 | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 06/2024 | | |